
Topology and its Applications 156 (2009) 1241–1252
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Variations of selective separability

Angelo Bella a, Maddalena Bonanzinga b, Mikhail Matveev c,∗
a Dipartimento di Matematica, Cittá Universitaria, Viale A. Doria 6, 98125 Catania, Italy
b Dipartimento di Matematica, Università di Messina, C.da Papardo, Salita Sperone 31, 98166 Messina, Italy
c Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA, 22030 USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2007
Received in revised form 23 August 2007

MSC:
54D65
54B10
54C35

Keywords:
Selection principles
Separable space
M-separable space
H-separable space
R-separable space
GN-separable space
Menger space
Hurewicz space
Rothberger space
Gerlitz–Nagy property (∗)

C p space

A space X is selectively separable if for every sequence (Dn: n ∈ ω) of dense subspaces of
X one can select finite Fn ⊂ Dn so that

⋃{Fn: n ∈ ω} is dense in X . In this paper selective
separability and variations of this property are considered in two special cases: C p spaces
and dense countable subspaces in 2κ .
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1. Introduction

In this paper we consider some properties that are stronger than separability in the way similar to how the covering
properties of Menger, Hurevicz and Rothberger are stronger than the Lindelöf property.

Let X be a topological space, and let D denote the family of all dense subspaces of X . In [25] Scheepers considers the
following selection principles:

X � Sfin(D, D): for every sequence (Dn: n ∈ ω) of elements of D, one can pick finite Fn ⊂ Dn so that
⋃{Fn: n ∈ ω} ∈ D.

X � S1(D, D): for every sequence (Dn: n ∈ ω) of elements of D, one can pick pn ∈ Dn so that {pn: n ∈ ω} ∈ D.

In [3], selection principle Sfin(D, D) was called selective separability. We call spaces X satisfying Sfin(D, D) or S1(D, D)

M-separable and R-separable, respectively. Also, we say that X is H-separable if for every sequence (Dn: n ∈ ω) of elements
of D, one can pick finite Fn ⊂ Dn so that for every nonempty open set O ⊂ X , the intersection O ∩ Fn is nonempty for all
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but finitely many n. In Section 6, we consider one more variation of selective separability, called GN-separability. We are not
giving the definition here because it is more technical.

Naturally, “M-”, “R-”, and “H-”, are motivated by analogy with well-known Menger, Rothberger, and Hurevicz properties.
(Recall that X is Menger if for every sequence (On: n ∈ ω) of open covers, one can pick finite Fn ⊂ On so that

⋃{Fn: n ∈ ω}
covers X ; X is Rothberger if for every sequence (On: n ∈ ω) of open covers, one can pick O n ∈ On so that {O n: n ∈ ω} covers
X ; X is Hurevicz if for every sequence (On: n ∈ ω) of open covers, one can pick finite Fn ⊂ On so that for every x ∈ X ,
x ∈ ⋃

Fn for all but finitely many n.)
The following implications are obvious:

separable ← M-separable
↖
↙

H-separable

R-separable

↙
↖

countable π -weight

On the other hand, having a countable network does not imply selective separability since not all countable spaces are
selectively separable. For compact spaces, M-, R-, and H-separability are equivalent to each other and to having a countable
π -base. It was noted in [3], that for M-separability this follows from the equality π w(X) = δ(X) which holds for compact
X [10] (here, δ(X) = sup{d(Y ): Y is dense in X} [26]; δ(X) = ω for every M-separable space X ).

M-, R-, or H-separability are not preserved by arbitrary continuous mappings (moreover, it is easy to see that every
separable space can be represented as a retract of a space having a dense countable subspace consisting of isolated points;
such a space of course has a countable π -base; alternatively, it is easy to see that every separable topology is contained
in a stronger topology having a dense countable subspace consisting of isolated points), but these properties are preserved
by continuous mappings f such that f (U ) has nonempty interior for every nonempty open set U , hence in particular they
are preserved by continuous open mappings, and by continuous closed irreducible mappings (see [3] for M-separability).
M-, R-, or H-separability are not preserved by arbitrary subspaces, but they are preserved by open subspaces, and by dense
subspaces (see [3] for M-separability). Surprisingly, it remains an open question whether or not M-separability is preserved
by finite unions or by finite products of spaces [3]. An example of a Hausdorff space X such that δ(X) = ω but δ(X2) > ω
is given in [26]; however, one can check that this example is not M-separable.

M-separability and variations of this property were considered in the literature in many aspects, for example: topological
games [25,4,7], C p -theory [25,3], irresolvability, maximal topologies [25,3], spaces of subsets [14,5]. Here we mention just
several interesting results and leave aside statements in terms of game theory.

Theorem 1. ([25], Theorem 19) Every HFD space is R-separable.

Theorem 2. ([25], Theorem 13) For a separable metrizable space X, the following conditions are equivalent:

(1) All finite powers of X are Rothberger.
(2) C p(X) is R-separable.

Theorem 3. ([3], Theorem 2.9) A space C p(X) is M-separable iff it is separable and has countable fan tightness.

Theorem 4. ([14], Theorem 4) For a space X, the following conditions are equivalent:

(1) 2X equipped with upper Fell topology is R-separable.
(2) X satisfies S1(K, K).

(K is the family of all k-covers of X , see [15].)

Theorem 5. ([3], Theorem 2.25) If d = ω1 , then there is a maximal regular countable space which is not M-separable.

In this paper, we consider these properties in two specific situations: (1) dense countable subspaces in 2κ , and
(2) C p -spaces. The choice of the first topic is clear: all countable spaces are obviously separable, and so when consider-
ing a stronger form of separability, it is natural to examine countable spaces; dense countable subspaces in 2κ seem to be
one of the first natural choices for such an examination. The choice of the second topic is motivated by Theorems 2 and 3,
and in general by duality between covering properties of X and tightness-type properties of C p(X) [2] (selective separability
is in some sense a global version of tightness-type properties). There is a relationship between the two topics; thus, if K is
a zero-dimensional metrizable compact space, then C p(K ,2) is a dense countable subspace in 2K .

2. Terminology and preliminaries

In terminology, we in general follow [8]. We assume all spaces to be Tychonoff even if some statements below are valid
under weaker separation assumptions.
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A family P of open sets in X is called a π -base for X if every nonempty open set in X contains a nonempty element
of P ; π w(X) = min{|P |: P is a π -base for X} is the π -weight of X .

The i-weight of (X, T )) is iw((X, T ) = min{κ: there is a Tychonoff topology T ′ ⊂ T such that w((X, T ′)) = κ}. Contin-
uous bijections are called condensations; thus, if T ′ ⊂ T , then we say that (X, T ) condenses onto (X, T ′).

A space X has countable fan tightness, see [2], if whenever x ∈ An for all n ∈ ω, one can choose finite Fn ⊂ An so that
x ∈ ⋃{Fn: n ∈ ω}. It is natural to say that X has countable fan tightness with respect to dense subspaces if this statement is true
for An dense in X , that is for every x ∈ X and every sequence (An: n ∈ ω) of dense subspaces of X one can choose finite
Fn ⊂ An so that x ∈ ⋃{Fn: n ∈ ω}.

A space X has Reznichenko property (see, for example, [12]) if whenever x ∈ A \ A, there are pairwise disjoint finite
Fn ⊂ A (n ∈ ω) such that every neighborhood of x intersects all but finitely many Fn . Sakai calls Reznichenko property
weakly Fréchet [23]. It is natural to say that X is weakly Fréchet with respect to dense subspaces if for every dense D ⊂ X and
every x ∈ X \ D , there are pairwise disjoint nonempty finite Fn ⊂ D (n ∈ ω) such that every neighborhood of x intersects all
but finitely many Fn .

Also Sakai calls X weakly Fréchet in the strict sense if whenever x ∈ An for all n ∈ ω, there are finite Fn ⊂ An such that every
neighborhood of x intersects all but finitely many Fn [23]. This property is the conjunction of Reznichenko property and
the countability of fan tightness. It is natural to say that X is weakly Fréchet in the strict sense with respect to dense subspaces
if for every sequence (Dn: n ∈ ω) of dense subspaces of X and for every x ∈ X there are finite Fn ⊂ Dn such that every
neighborhood of x intersects all but finitely many Fn .

A space X has countable strong fan tightness [22] if whenever x ∈ An for n ∈ ω, there are xn ∈ An such that x ∈ {xn: n ∈ ω}.
It is natural to say that X has countable strong fan tightness with respect to dense subspaces if for every x ∈ X and every
sequence (Dn: n ∈ ω) of dense subspaces of X one can pick xn ∈ Dn so that x ∈ {xn: n ∈ ω}.

Terminology related with Gerlitz–Nagy property (∗) and GN-separability will be introduced in Section 6.
For f , g ∈ ωω , f �∗ g means that f (n) � g(n) for all but finitely many n ∈ ω (see e.g. [6]). A set of functions X ⊂ ωω

is bounded if there is g ∈ ωω such that f �∗ g for all f ∈ X ; X is dominating if for every h ∈ ωω , there is f ∈ X such that
h �∗ f ; b and d denote the minimum of cardinality of an unbounded set, and of a dominating set in ωω , respectively [6].

A family of functions X ⊂ ωω can be guessed by a function g ∈ ωω if for every f ∈ X the set {n ∈ ω: f (n) = g(n)} is
infinite.

Let M denote the family of all meager subsets of R. Minimum of cardinalities of subfamilies of M covering R is denoted
by cov(M). Minimum of cardinalities of subfamilies A ⊂ M such that

⋃
A /∈ M is denoted by add(M). We will need the

following results:

Theorem 6. ([16]) add(M) = min{b, cov(M)}.

Theorem 7. ([16,17]) cov(M) = min{|X |: X ⊂ ωω and X cannot be guessed}.

Theorem 8. ([19,24]) add(M) = min{|X |: X ⊂ ωω and there do not exist f , g ∈ ωω such that f is strictly increasing and for every
x ∈ X, for all but finitely many n, there is j ∈ [ f (n), f (n + 1)) such that x( j) = g( j)}.

(Theorem 8 is a combination of Proposition 21 in [19], Theorem 21 in [19], and a theorem from [24] mentioned in the
end of [19]).

Let κ be a cardinal. In [24], Scheepers introduces the following statement:

A(κ): For every sequence (Un: n ∈ ω) of partitions of a set K of cardinality κ into countably many pieces, there are a
strictly increasing f ∈ ωω and Un ∈ Un (n ∈ ω) such that each element of K is included into all but finitely many sets⋃{Un: f (i) � n < f (i + 1)}.

We will need the following:

Theorem 9. ([24]) add(M) = min{κ: A(κ) fails}.

3. M-separability

In this section we recall some results from [3] and extend some of them.

Definition 10. A space X is M-separable if for every sequence (Dn: n ∈ ω) of dense subspaces of X one can select finite
Fn ⊂ Dn so that

⋃{Fn: n ∈ ω} is dense in X .

Theorem 11. ([3]) If δ(X) = ω and π w(X) < d, then X is M-separable.

Corollary 12. (See also [3].) If κ < d, then every countable subspace of 2κ is M-separable.
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Theorem 13. ([3]) The space 2d contains a dense countable subspace which is not M-separable.

Corollary 14. The smallest π -weight of a countable non-M-separable space is d.

Proposition 15. A separable space X is M-separable iff X has countable fan tightness with respect to dense subspaces.

Proof. Suppose X has countable fan tightness with respect to dense subspaces, and let D = {dn: n ∈ ω} be a dense subspace
of X . Given a sequence of dense subspaces of X , enumerate it as (Dn,m: n,m ∈ ω). For each n ∈ ω, pick finite Fn,m ⊂ Dn,m

so that dn ∈ ⋃{Fn,m: m ∈ ω}. Then
⋃{Fn,m: n,m ∈ ω} is dense in X .

The reverse implication is obvious. �
The previous proposition is not true if we drop with respect to dense subspaces: consider, for example, the countable

Fréchet–Urysohn fan (see also [3]) or βω.

Proposition 16. The following conditions are equivalent:

(1) X is hereditarily M-separable.
(2) X is hereditarily separable and all countable subspaces of X are M-separable.

Proof. Assume (2). Let M be a subspace of X and (Yn: n ∈ ω) be a sequence of dense subspaces of M . Since X is hereditarily
separable, there exist countable Zn ⊂ Yn , n ∈ ω, such that Zn is dense in Yn for each n ∈ ω. Put Z = ⋃{Zn: n ∈ ω}. Since Z
is countable, it is M-separable; then, since {Zn: n ∈ ω} is a sequence of dense subsets of Z , there exist finite Fn ⊂ Zn , n ∈ ω,
such that

⋃
n∈ω Fn is dense in Z. Since Z is dense in M,

⋃
n∈ω Fn is dense in M . Then X is hereditarily M-separable. �

Theorem 17. (Arhangelskii, [1], Theorem 2.2.2 in [2]) The following conditions are equivalent:

(1) C p(X) has countable fan tightness.
(2) All finite powers of X are Menger.

Corollary 18. If all finite powers of X are Menger, then every separable subspace of C p(X) is M-separable.

In the proof of (1) ⇒ (2) in Theorem 17, Arhangelskii indicates that the sets An he uses (see the definition of countable
fan tightness in Section 2) are dense in C p(X). This implies the following:

Proposition 19. the following condition is equivalent to conditions (1) and (2) in Theorem 17:

(1′) C p(X) has countable fan tightness with respect to dense subspaces.

Recently, Okunev and Tkachuk have noticed the similar fact about the “usual” tightness (see [20], Theorem 2.8).

Theorem 20. (Noble, [18], see Theorem 1.1.5 in [2]) For every Tychonoff space X, iw(X) = d(C p(X)).

Putting together the results above, we get the following:

Theorem 21. For a Tychonoff space, the following conditions are equivalent:

(1) C p(X) is a separable space and has countable fan tightness.
(1′) C p(X) is a separable space and has countable fan tightness with respect to dense subspaces.
(2) C p(X) is M-separable.
(3) iw(X) = ω and Xn is Menger for each n ∈ N.

Corollary 22. ([3]) If C p(X) is M-separable, then for every finite n, C p(Xn) is M-separable, and (C p(X))ω is M-separable.

Corollary 23. ([3]) If X is second countable, then C p(X) is M-separable iff C p(X) is hereditarily M-separable.

Corollary 24. ([3]) If X is a second countable space of cardinality less than d, then C p(X) is hereditarily M-separable.
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Proposition 25. For a zero-dimensional X , the following conditions are equivalent to the conditions of Theorem 21:

(2ω) C p(X,ω) is M-separable.
(22) C p(X,2) is M-separable.

Proof. For convenience of proof, we extend the list of conditions adding one more:

(2Q) C p(X,Q) is M-separable.

(2) ⇒ (2Q) Because for a zero-dimensional X , C p(X,Q) is dense in C p(X,R).
(2Q) ⇒ (2ω) Take Z instead of ω. For every n ∈ Z, pick irrational point αn ∈ (n,n + 1). Define a mapping π : Q → Z by

setting π(q) = n if q ∈ (αn−1,αn). Then f �→ π ◦ f is a continuous open mapping from C p(X,Q) onto C p(X,Z) (and we
know that M-separability is preserved by continuous open mappings).

(2ω) ⇒ (22) For n ∈ Z, put ρ(n) = 0 if n < 0 and ρ(n) = 1 if n � 0. Then f �→ ρ ◦ f is a continuous open mapping from
C p(X,Z) onto C p(X,2).

(22) ⇒ (3) Since X is zero-dimensional, and C p(X,2) is separable, iw(X) = ω (for a dense countable C ⊂ C p(X,2),
{ f −1(0), f −1(1): f ∈ C} is a base for a zero-dimensional second countable topology on X which is included into the
original topology).

Now we show that Xn is Menger for each n ∈ N, following the argument from ([2], the proof of (a) ⇒ (b) in Theo-
rem 2.2.2). Let n ∈ N , and let (Uk: k ∈ ω) be a sequence of open covers of Xn . A family μ of open sets of X is called
Uk-small if for every V 1, . . . , Vn ∈ μ, there is G ∈ Uk such that V 1 × · · · × Vn ⊂ G . Denote by Ek the family of all finite
Uk-small families of clopen sets in X . For μ ∈ Ek , put Fμ = { f ∈ C p(X,2): f (X \ ⋃

μ) = {0}}. Denote Ak = ⋃{Fμ: μ ∈ Ek}.
It is easy to see that Ak is dense in C p(X,2).

By M-separability of C p(X,2), there are finite Hk ⊂ Ak such that
⋃{Hk: k ∈ ω} is dense in C p(X,2). For every f ∈ Hk ,

fix μ f ∈ Ek such that f ∈ Fμ f . For every V 1, . . . , Vn ∈ μ f , pick G(V 1, . . . , Vn) ∈ Uk so that V 1 × · · · × Vn ⊂ G(V 1, . . . , Vn).
Then Vk = {G(V 1, . . . , Vn): V 1, . . . , Vn ∈ μ f and f ∈ Hk} is a finite subfamily of Uk .

It follows that
⋃{Vk: k ∈ ω} is a cover of Xn . Indeed, let x = 〈x1, . . . , xn〉 ∈ Xn . Then U = {ϕ ∈ C p(X,2): ϕ(x1) = · · · =

ϕ(xn) = 1} is a nonempty open set in C p(X,2), so there are k ∈ ω and f ∈ Hk ∩U . Pick V 1, . . . , Vn ∈ μ f so that 〈x1, . . . , xn〉 ∈
V 1 × · · · × Vn . Then x = 〈x1, . . . , xn〉 ∈ G(V 1, . . . , Vn) ∈ Vk . �
Corollary 26. If (X, T ) can be condensed onto a separable metrizable space (X, T M) such that all finite powers of (X, T M) are
Menger, then C p((X, T )) contains a dense M-separable subspace.

Proof. C p((X, T M)) can be viewed as a subspace of C p((X, T )); then obviously it is dense. �
Remark. In general, it is not true that if C p(X) contains a dense M-separable subspace, then C p(X) is M-separable. Let D(c)

be the discrete space of cardinality c. The proof of Theorem 46 below can be easily modified to show that C p(D(c)) = Rc

contains a dense H-separable subspace. On the other hand, it follows from Theorem 21 that C p(D(c)) = Rc is not M-
separable (another way to verify this is to notice that δ(Rc) = c).

Question 27. Suppose C p(X) contains a dense M-separable subspace. Does it follow that X can be condensed onto a second
countable space all finite powers of which are Menger?

4. H-separability

Definition 28. A space X is H-separable if for every sequence (Dn: n ∈ ω) of dense subspaces of X , one can pick finite
Fn ⊂ Dn so that for every nonempty open set O ⊂ X , the intersection O ∩ Fn is nonempty for all but finitely many n.

Theorem 29. If δ(X) = ω and π w(X) < b, then X is H-separable.

Proof. Let B = {Bα: α < κ} be a π -base for X . We assume that κ < b, and all sets Bα are nonempty. Let (Yn: n ∈ ω) be
a sequence of dense subspaces of X . Select for each n ∈ ω a dense countable Dn = {dn,m: m ∈ ω} ⊂ Yn . For α < κ , define
functions fα ∈ ωω by letting fα(n) = min{m: dn,m ∈ Bα}. Since κ < b, there is a function f ∗ ∈ ωω such that for every α < κ ,
f ∗(n) > fα(n) for all but finitely many n. For n ∈ ω, put Fn = {dn,m: m � f ∗(n)}. Then Fn is a finite subset of Dn , and each
Bα meets all but finitely many Fn . �
Corollary 30. If κ < b, then every countable subspace of 2κ is H-separable.

Theorem 31. The space 2b contains a dense countable subspace which is not H-separable.
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Proof. Let X = {xm: m ∈ ω} be a countable dense subspace in 2b , and let { fα: α < b} ⊂ ωω be an unbounded family. We
define points yn,m ∈ 2b (n,m ∈ ω) as follows:

yn,m(α) =
{

1 if m < fα(n),

xm(α) otherwise.

Put Yn = {yn,m: m ∈ ω} and Y = ⋃{Yn: n ∈ ω}; Y is the subspace of 2b declared in the statement of the theorem.
First, we claim that Yn is dense in 2b . Fix a canonical open set U (s) ⊂ 2b where s : dom(s) → 2 is a finite function, that

is dom(s) ⊂ b, |dom(s)| < ω, and U (s) = {x ∈ 2b: x �dom(s)= s}. Let g = max{ fα: α ∈ dom(s)}. Since X is dense in 2b , the
set U (s) contains infinitely many points of X , and so we can find some m > g(n) such that xm �dom(s)= s. If α ∈ dom(s),
then we have m > g(n) � fα(n), and therefore yn,m(α) = xm(α). This means that yn,m �dom(s)= s, and so Yn ∩ U (s) �= ∅. This
suffices to assert that Yn is dense in 2b .

To conclude the proof we claim that for any choice of finite subsets Fn ⊂ Yn , there is a basic open set in 2b that misses
infinitely many Fn . Define a function f ∈ ωω so that Fn ⊂ {yn,m: m < f (n)} and choose β so that f � >∗ fβ , i.e. the set
N = {n ∈ ω: f (n) < fβ(n)} is infinite. Now, if n ∈ N , and yn,m ∈ Fn , we have m < f (n) � fβ(n), and so yn,m(β) = 1. In other
words, we have shown that y(β) = 1 for every y ∈ F . This means that the set Fn does not intersect the basic open set
U = {x ∈ 2b: x(β) = 0}. �
Corollary 32. The smallest π -weight of a countable non-H-separable space is b.

Corollary 33. The existence of a countable M-separable space which is not H-separable is consistent with ZFC.

Question 34. Does there exist a ZFC example of a M-separable space which is not H-separable?

Proposition 35. A separable space is H-separable iff it is weakly Fréchet in the strict sense with respect to dense subspaces.

Proof. The “only if” part is obvious.
Now suppose X is weakly Fréchet in the strict sense with respect to dense subspaces, let D = {dk: k ∈ ω} be a dense

subspace of X , and let (Dn: n ∈ ω) be an arbitrary sequence of dense subspaces of X . For every k,n ∈ ω, pick finite Fk,n ⊂ Dn

so that every neighborhood of dk intersects infinitely many Fk,n . For every n, put Fn = ⋃{Fk,n: 0 � k � n}. Then Fn is a finite
subset of Dn , and every nonempty open set in X intersects all but finitely many Fn . �
Proposition 36. The following conditions are equivalent:

(1) X is hereditarily H-separable.
(2) X is hereditarily separable, and all countable subsets of X are H-separable.

Theorem 37. ([12], stated as in [23]) The following conditions are equivalent:

(1) C p(X) is weakly Fréchet in the strict sense.
(2) All finite powers of X are Hurewicz.

Proposition 38. Conditions of Theorem 37 are equivalent to the following condition:

(1′) C p(X) is weakly Fréchet in the strict sense with respect to dense subspaces.

Proof. We only have to prove (1′) ⇒ (2). Again the proof is a minor modification of the argument from [2], the proof
of (a) ⇒ (b) in Theorem 2.2.2. Let n ∈ N, and let (Uk: k ∈ ω) be a sequence of open covers of Xn . Let Ek Fμ and Ak be
like in the proof of Proposition 25 (22) ⇒ (3). Consider the function e ≡ 1 on X . By (1′), there are finite Hk ⊂ Ak such
that every neighborhood of e intersects all but finitely many Hk . For every f ∈ Hk , fix μ f ∈ Ek such that f ∈ Fμ f . For
every V 1, . . . , Vn ∈ μ f , pick G(V 1, . . . , Vn) ∈ Uk such that V 1 ×· · ·× Vn ⊂ G(V 1, . . . , Vn). Then Vk = {G(V 1, . . . , Vn): V 1, . . . ,

Vn ∈ μ f and f ∈ Hk} is a finite subfamily of Uk .
It follows that every point x = 〈x1, . . . , xn〉 ∈ Xn is in

⋃
Vk for all but finitely many k. Indeed, put U = {ϕ ∈ C p(X):

ϕ(xi) > 0 for 0 � i � n}. Then U is open in C p(X) and e ∈ U . So Hk ∩ U �= ∅ for all but finitely many k. Let Hk ∩ U �= ∅,
f ∈ Hk ∩ U . Pick V 1, . . . , Vn ∈ μ f so that 〈x1, . . . , xn〉 ∈ V 1 × · · · × Vn . Then x = 〈x1, . . . , xn〉 ∈ G(V 1, . . . , Vn) ∈ Vk . �
Corollary 39. If all finite powers of X are Hurewicz, then every separable subspace of C p(X) is H-separable.

Putting together previous results, we get the following:
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Theorem 40. For a Tychonoff space, the following conditions are equivalent:

(1) C p(X) is separable and weakly Fréchet in the strict sense.
(1′) C p(X) is separable and weakly Fréchet in the strict sense with respect to dense subspaces.
(2) C p(X) is H-separable.
(3) iw(X) = ω, and Xn is Hurewicz for each n ∈ N.

Corollary 41. If C p(X) is H-separable, then for every finite n, C p(Xn) is H-separable, and (C p(X))ω is H-separable.

Corollary 42. If X is second countable, then C p(X) is H-separable iff C p(X) is hereditarily H-separable.

Corollary 43. If X is a second countable space of cardinality less than b, then C p(X) is hereditarily H-separable.

Proposition 44. For a zero-dimensional X , the following conditions are equivalent to the conditions of Theorem 40:

(2ω) C p(X,ω) is H-separable.
(22) C p(X,2) is H-separable.

The proof is similar to the proof of Proposition 25.

Corollary 45. If (X, T ) can be condensed onto a separable metrizable space (X, T M) such that all finite powers of (X, T M) are
Hurewicz, then C p((X, T )) contains a dense H-separable subspace.

Theorem 46. The space 2c contains a dense countable H-separable subspace.

Proof. Interpret 2c as 2(2ω) . Put X = C p(2ω,2) where 2ω bears the usual product topology that makes it homeomorphic to
the Cantor set. Then X is dense in 2(2ω) . On the other hand, X is countable. Indeed, for every f ∈ X , the sets f −1(0) and
f −1(1) are clopen subsets of the compact space 2ω; they can therefore be partitioned into finitely many elements of the
standard countable base B of 2ω . So we have an injection from C p(X) to the countable set consisting of all ordered pairs of
finite subfamilies of B. Then X is H-separable by Proposition 44. �
5. R-separability

Definition 47. A space X is R-separable if for every sequence (Dn: n ∈ ω) of dense subspaces of X one can pick pn ∈ Dn so
that {pn: n ∈ ω} is dense in X .

Theorem 48. If δ(X) = ω and π w(X) < cov(M), then X is R-separable.

Proof. Similar to the proof of Theorem 29, but we choose f ∗ that guesses all fα , and pick pn = dn, f ∗(n) ∈ Dn; then
{pn: n ∈ ω} is dense in X . �
Corollary 49. If κ < cov(M), then every countable subspace of 2κ is R-separable.

Theorem 50. The space 2cov(M) contains a dense countable subspace which is not R-separable.

Proof. Similar to the proof of Theorem 31, only we start with a family { fα: α < cov(M)} ⊂ ωω that cannot be guessed,
and modify the last claim accordingly. �
Corollary 51. The smallest π -weight of a countable non-R-separable space is cov(M).

It follows that the existence of a countable M-separable space which is not R-separable is consistent with ZFC. How-
ever such a space can be found without cardinality assumptions: the countable space C p(2ω,2) is H-separable (hence
M-separable) but not R-separable since 2ω does not have Rothberger property (see below).

Proposition 52. A separable space is R-separable iff it has countable strong fan tightness with respect to dense subspaces.

Proposition 53. The following conditions are equivalent:

(1) X is hereditarily R-separable.
(2) X is hereditarily separable and all countable subspaces of X are R-separable.
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Theorem 54. ([22]) The following conditions are equivalent:

(1) C p(X) has countable strong fan tightness.
(2) All finite powers of X are Rothberger.

In the proof of (1) ⇒ (2) in Theorem 54, Sakai mentions that the sets An he uses are dense in C p(X). The following is
an immediate corollary:

Proposition 55. Conditions (1) and (2) of Theorem 54 are equivalent to the following condition:

(1′) C p(X) has countable strong fan tightness with respect to dense subspaces.

Corollary 56. If all finite powers of X are Rothberger, then every separable subspace of C p(X) is R-separable.

Putting together previous results, we get the following:

Theorem 57. For a Tychonoff space, the following conditions are equivalent:

(1) C p(X) is separable and has countable strong fan tightness.
(1′) C p(X) is separable and has countable strong fan tightness with respect to dense subspaces.
(2) C p(X) is R-separable.
(3) iw(X) = ω, and Xn is Rothberger for each n ∈ N.

Corollary 58. If C p(X) is R-separable, then for every finite n, C p(Xn) is R-separable, and (C p(X))ω is R-separable.

Corollary 59. If X is second countable, then C p(X) is R-separable iff C p(X) is hereditarily R-separable

Corollary 60. If X is a second countable space of cardinality less than cov(M), then C p(X) is hereditarily R-separable.

Proposition 61. Consistently, C p(X) is R-separable iff X is at most countable.

Proof. Consistently, a second countable space X is Rothberger iff it is countable [13]. But if C p(X) is R-separable, then by
Theorem 57 X condenses onto a second countable Rothberger space.

Proposition 62. If X is zero-dimensional, then the following conditions are equivalent to the conditions of Theorem 57:

(2ω) C p(X,ω) is R-separable.
(22) C p(X,2) is R-separable.

The proof is similar to the case of M-separability.

Corollary 63. If (X, T ) can be condensed onto a separable metrizable space (X, T M) such that all finite powers of (X, T M) are
Rothberger, then C p((X, T )) contains a dense R-separable subspace.

Question 64. Does there exist an X such that C p(X) is not R-separable but contains a dense R-separable subspace?

Question 65. Suppose κ > ω and 2κ contains a dense R-separable subspace. Does it follow that there is an X with |X | = κ
and C p(X) being R-separable?

Theorem 66.

(CH) The space 2c contains a dense countable R-separable subspace.

Proof. First of all, note that example from the proof of Theorem 46 does not work since 2ω is not Rothberger.
Recall that a subspace S ⊂ 2ω1 is finally dense if there is α < ω1 such that πω1\α(S) is dense in 2ω1\α ; X ⊂ 2ω1 is

called Hereditarily Finally Dense (HFD) if every infinite S ⊂ X is finally dense. HFD spaces exist assuming (CH), and they are
hereditarily separable, see [21], so there exist countable HFD spaces. Let Y be a countable HFD space, and let α < ω1 be
such that X = πω1\α(Y ) is dense in 2ω1\α . Taking into account (CH), view X as a subspace in 2c . It is countable, dense, and,
again, an HFD. By Theorem 1 it is R-separable. �
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Alternative proof. Let X ⊂ R be an uncountable set whose all finite powers are Rothberger. (Under (CH) such spaces exist,
see the proof of Theorem 2.11 in [11].) Then C p(X,2) is R-separable. Let Y be a dense countable subspace in C p(X,2). Then
Y is R-separable and can be viewed as a dense countable subspace in 2c . �
Question 67. Is it consistent that for k > ω, 2k does not contain dense countable R-separable subspaces?

6. GN-separability

In this section we discuss only spaces without isolated points. We need some preliminaries before giving the definition
of GN-separability.

Recall that X has property (∗) of Gerlitz–Nagy [9] if for each sequence (Un: n ∈ ω) of open covers of X there is a partition
X = ⋃{Xn: n ∈ ω} such that for each n and m there are k and l such that m < k < l and there are Ui ∈ Ui , k � i � l such
that Xn ⊂ ⋃{Ui: k � i � l}.

Theorem 68. ([19]) The following conditions are equivalent:

(1) X has property (∗).
(2) For each sequence (Un: n ∈ ω) of open covers of X , there are Un ∈ Un and a strictly increasing function f : ω → ω such that for

every x ∈ X, x ∈ ⋃{Ui: f (n) � i < f (n + 1)} for all but finitely many n.
(3) X is both Hurewicz and Rothberger.

A dual form of condition (2) in Theorem 68 was considered in [14]. A countable dense subset D of X is called groupable
if it can be partitioned as D = ⋃{An: n ∈ ω} (where the sets An are nonempty and finite) so that every nonempty open set
in X intersects all but finitely many An . Notice that if D is groupable, then D is ω-resolvable, that is it can be partitioned
into ω many pairwise disjoint dense subsets.

Selection principle S1(D, D gp), introduced in [14], states that for each sequence (Dn: n ∈ ω) of dense subsets of X there
are dn ∈ Dn such that {dn: n ∈ ω} is groupable.

Definition 69. A space X is called GN-separable if it satisfies S1(D, D gp).

A symmetry between GN-separability and the condition (2) in Theorem 68 can be easier seen with the help of the
following lemma:

Lemma 70. For every family {An: n ∈ ω} of pairwise disjoint nonempty finite subsets of a countably infinite set N there exists a
partition of N into pairwise disjoint finite sets Bm (m ∈ ω) such that each Bm contains at least one An.

Theorem 68 motivates the following question:

Question 71. Under what conditions is GN-separability equivalent to the conjunction of H-separability and R-separability?

Below we show that this is the case for C p spaces. Here we present some positive results in the general case. The first
one is obvious.

Proposition 72. Every GN-separable space is R-separable.

A partial result in the “R + H ⇒ GN” direction will be obtained via a sequence of simple steps.

Proposition 73. If D and D ′ are two dense countable sets in X, D ⊃ D ′ , and D ′ is groupable, then D is groupable.

Proof. Assume D ′ = ⋃{An: n ∈ ω}, where the sets An are pairwise disjoint, nonempty, and finite and every nonempty open
set in X intersects all but finitely many An . If D \ D ′ = ∅, of course D is groupable. If D \ D ′ is finite, then {An, D \ D ′: n ∈ ω}
is the partition of D witnessing that D is groupable. If D \ D ′ is countable, enumerate D \ D ′ = {dn: n ∈ ω} and put
Bn = An ∪ {dn}, n ∈ ω; then {Bn: n ∈ ω} is the partition of D witnessing that D is groupable. �
Proposition 74. The following conditions are equivalent:

(1) X is GN-separable.
(2) X is R-separable, and every dense countable subset of X contains a groupable subset.
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Proof. (2) ⇒ (1) Let (Dn: n ∈ ω) be a sequence of dense subsets of X . Then there exist dn ∈ Dn , n ∈ ω, such that {dn: n ∈ ω}
is dense in X , and a groupable subset D ′ ⊂ {dn: n ∈ ω}. By Proposition 73, we have that {dn: n ∈ ω} is groupable.

(1) ⇒ (2) We already noticed that X is R-separable. So let D be a dense countable subset of X ; considering the sequence
(Dn: n ∈ ω), where Dn = D for every n ∈ ω, we obtain a subset {dn: n ∈ ω} of D which is groupable. �
Proposition 75. If X is H-separable, then every ω-resolvable dense countable subspace of X is groupable.

Proof. Let D be an ω-resolvable dense countable subset of X . Let {An: n ∈ ω} be a partition of D into pairwise disjoint
dense subsets. By H-separability, there exist finite Fn ⊂ An , n ∈ ω, such that every nonempty open sets intersects all but
finitely many Fn . Then F = ⋃

n∈ω Fn is a countable dense subset of X which is groupable. Since D ⊃ F , by Proposition 73,
D is groupable. �

Two previous propositions together imply

Proposition 76. If X is both R-separable and H-separable, and every dense countable subspace of X is ω-resolvable, then X is GN-
separable.

Lemma 77. If X is a countable space without isolated points, and π w(X) < add(M), then X is ω-resolvable.

Proof. Let K be a π -base for X , |K| = κ < add(M). Enumerate X = {xn: n ∈ ω}. For n ∈ ω, put Un = {Vn,m: n � m < ω}
where Vn,m = {P ∈ K: xm ∈ P and x j /∈ P for n � j < m} (i.e. the elements of K are classified by the first point in the
enumeration, starting from n; some Vn,m may be empty). Then Un is a partition of K . By Theorem 9, there are f ∈ ωω and
Un ∈ Un satisfying principle A(κ). The sets Un are of the form Un = Vn,m(n) for some m(n).

For i ∈ ω, denote M(i) = {m(n): f (i) � n < f (i + 1)}. Then M(i) ⊂ ω, the sets M(i) are finite, and any m ∈ ω may
belong only to finitely many sets M(i) (in fact, only to some of those for which f (i) � m). It follows that there is a strictly
increasing sequence (i j: j ∈ ω) such that the sets M(i j) are pairwise disjoint. Partition the set J = {i j: j ∈ ω} into infinitely
many pairwise disjoint infinite subsets Jl (l ∈ ω). Put Tl = ⋃{M(i j): i j ∈ Jl}, and Xl = {xn: n ∈ Tl}. Then the sets Xl are
pairwise disjoint (since so are M(i j)) and dense in X (because each Tl contains x j corresponding to infinitely many blocks⋃{Un: f (i) � n < f (i + 1)}, and thus Tl must meet all elements of the π -base K). �

The following is an immediate corollary.

Lemma 78. If X does not have isolated points, δ(X) = ω, and π w(X) < add(M), then X is ω-resolvable.

Theorem 79. If X does not have isolated points, δ(X) = ω, and π w(X) < add(M), then X is GN-separable.

Proof. By Theorem 6, add(M) = min{b, cov(M)}. So by Theorems 29 and 48, X is both H-separable, and R-separable. By
Lemma 78, X is ω-resolvable. Then by Proposition 76, X is GN-separable. �
Corollary 80. If κ < add(M), then every countable subspace of 2κ is GN-separable.

Theorem 81. The space 2add(M) contains a dense countable subspace which is not GN-separable.

Proof. Similar to Theorem 31. Let X = {xm: m ∈ ω} be a dense countable subspace in 2add(M) . Let F = { fα: α < add(M)} ⊂
ωω be a family of functions such that for every ϕ, g ∈ ωω (where ϕ is strictly increasing), there is α < add(M) such that for
infinitely many n, for all j ∈ (ϕ(n),ϕ(n + 1)), fα( j) �= g( j) (see Theorem 8). Then the last claim in the proof of Theorem 31
is modified accordingly. �
Corollary 82. The smallest π -weight of a countable space without isolated points which is not GN-separable is add(M).

Proposition 83. Let X be a space without isolated points.

(1) If X is weakly Fréchet with respect to dense subspaces, then every dense countable subspace of X is groupable.
(2) If every dense countable subspace of X is groupable and δ(X) = ω, then X is weakly Fréchet with respect to dense subspaces.

Proof. (1) Let D = {dm: m ∈ ω} be a dense countable subspace of X . Let dm ∈ D . Put Ddm = D \ {dm}; it is a dense subspace
of X . Fix pairwise disjoint finite Fm,n ⊂ Ddm so that every neighborhood of dm intersects all but finitely many Fm,n .

Put H0 = F0,0.
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Now suppose k > 0 and pairwise disjoint nonempty finite sets Hi ⊂ D have been defined for 0 � i < k so that if 0 � m � i,
then Hi contains one of the sets Fm,n . Put Kk = ⋃{Hi: 0 � i < k}. Let 0 � m � k. Since the set Kk is finite, and the sets Fm,n

are pairwise disjoint, there is n(k,m) such that Fm,n(k,m) ∩ Kk = ∅. Put Hk = ⋃{Fm,n(k,m): 0 � m � k}. Then Hk is a finite
subset of D disjoint from each of Hk′ for k′ < k.

Thus the sets Hk are defined for all k ∈ ω. It is easy to see that every open set in X intersects all but finitely many Hk .
If there are points in D not included into any Hk , add them to Hk , not more than one to each. This makes D groupable.

(2) Obvious. �
Proposition 84. A separable space without isolated points is GN-separable iff it has countable strong fan tightness with respect to
dense subspaces and is weakly Fréchet with respect to dense subspaces.

Proof. The necessity is obvious.
Sufficiency: having a countable family of dense subspaces of X , double enumerate it as (Dn,m: n,m ∈ ω). Fix one more

dense countable subspace D = {dn: n ∈ ω}. We may assume that dn /∈ Dn,m for any n and m. Since X has countable strong
fan tightness, one can pick dn,m ∈ Dn,m so that dn ∈ {dn,m: m ∈ ω}. Then {dn,m: n,m ∈ ω} is dense in X . By Proposition 83 it
is groupable. �
Remark. We cannot state analog of Propositions 16, 36, or 53 for GN-separability because when considering GN-separability
we assume the space not to have isolated points; it turns out that the notion of hereditary GN-separability does not make
sense.

Theorem 85. (Kočinac and Scheepers, [12]) The following conditions are equivalent:

(1) C p(X) has countable strong fan tightness, and is weakly Fréchet.
(2) All finite powers of X have property (∗).

Theorem 86. The following conditions are equivalent:

(1) C p(X) is separable, has countable strong fan tightness, and is weakly Fréchet.
(1′) C p(X) is separable, has countable strong fan tightness with respect to dense subspaces, and is weakly Fréchet with respect to dense

subspaces.
(2) C p(X) is GN-separable.

(2′) C p(X) is H-separable and R-separable.
(3) iw(X) = ω, and all finite powers of X have property (∗).

(3′) iw(X) = ω, and all finite powers of X are Hurewicz and Rothberger.

Proof. (1) ⇔ (3′) ⇔ (2′) follows from Theorems 40, 57.
(3) ⇔ (3′) follows from Theorem 68.
(1) ⇒ (1′) is trivial.
(1′) ⇔ (2) follows from Proposition 84.
It suffices to prove (2) ⇒ (3′).
(2) ⇒ (iw(X) = ω) is trivial.
(2) ⇒ (all finite powers are Rothberger) follows from Theorem 57 and Proposition 72.
It remains only to show that (2) ⇒ (all finite powers of X are Hurewicz). This is a modification of the proof of Proposi-

tion 38.
Let n ∈ N, and let (Uk: k ∈ ω) be a sequence of open covers of Xn . We assume that Ul refines Uk if l > k. Define Ek , Ak

and Fμ like in the proof of Proposition 25 (22) ⇒ (3). Then Ek ⊃ El and Ak ⊃ Al if l > k.
Consider the function e ≡ 1 on X . By GN-separability, there are fk ∈ Ak such that the set D = { fk: k ∈ ω} is groupable,

that is can be partitioned as D = ⋃{Bm: m ∈ ω} (where Bm are nonempty and finite) so that every nonempty open set in
C p(X) (in particular, every neighborhood of e) intersects all but finitely many Bm . For m ∈ ω, let k(m) = min{k: fk ∈ Bm}.
Let fk ∈ Bm . Fix μk ∈ Ek such that fk ∈ Fμk . For every V 1, . . . , Vn ∈ μk , pick G(V 1, . . . , Vn) ∈ Uk(m) such that V 1 × · · ·× Vn ⊂
G(V 1, . . . , Vn). Then Vm = {G(V 1, . . . , Vn): V 1, . . . , Vn ∈ μk and fk ∈ Bm} is a finite subfamily of Uk(m) .

Like in the proof of Proposition 38, it follows that every point of Xn is in
⋃

Vm for all but finitely many m.
Now we define Wk ⊂ Uk for all k ∈ ω. If k is of the form k(m) for some m ∈ ω, we put Wk = Vm . If k is not of this

form, there is the first k′ > k which is of this form. For every W ∈ Wk′ , pick O (W ) ∈ Uk so that O (W ) ⊃ W and put
Wk = {O (W ): W ∈ Wk′ }. Then each Wk is a finite subfamily of Uk , and each point of Xn is contained in

⋃
Wk for all but

finitely many k. �
Corollary 87. If all finite powers of X have property (∗), then every separable subspace of C p(X) is GN separable.
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Corollary 88. If C p(X) is GN-separable, then for every finite n, C p(Xn) is GN-separable, and (C p(X))ω is GN-separable.

Corollary 89. If X is a second countable space of cardinality less than add(M), then C p(X) is GN-separable.

Proposition 90. Let X be zero-dimensional. The following conditions are equivalent to the conditions of Theorem 86:

(2ω) C p(X,ω) is GN-separable.
(22) C p(X,2) is GN-separable.

The proof is similar to the M-, H-, and R-cases.

Corollary 91. If (X, T ) can be condensed onto a separable metrizable space (X, T M) such that all finite powers of (X, T M) have
property (∗), then C p((X, T )) contains a dense GN-separable subspace.

Question 92. Suppose some dense subspace of C p(X) is GN-separable. Must C p(X) be GN-separable?

Question 93. Suppose κ > ω and 2κ contains a dense GN-separable subspace. Does it follow that there is an X with |X | = κ
and C p(X) GN-separable?

Question 94. Can one prove, assuming (CH), that 2c contains a dense countable GN-separable subspace?
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[14] G. DiMaio, Lj. Kočinac, E. Meccariello, Selection principles and hyperspace topologies, Topology Appl. 153 (2005) 912–923.
[15] R.A. McCoy, Function spaces which are k-spaces, Topology Proc. 5 (1980) 134–146.
[16] A. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981) 93–114.
[17] A. Miller, A characterization of the least cardinal for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982) 498–502.
[18] N. Noble, The density character in function spaces, Proc. Amer. Math. Soc. 42 (1) (1974) 515–531.
[19] A. Nowik, M. Scheepers, T. Weiss, The algebraic sum of sets of real numbers with strong measure zero sets, J. Symbolic Logic 63 (1998) 301–324.
[20] O. Okunev, V. Tkachuk, Density properties and points of uncountable order for families of open sets in function spaces, Topology Appl. 122 (2002)

397–406.
[21] J. Roitman, Basic S and L, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Sci. Pub. B.V., 1984, pp. 295–326.
[22] M. Sakai, Property C ′′ and function spaces, Proc. Amer. Math. Soc. 104 (3) (1988) 917–919.
[23] M. Sakai, Special subsets of reals characterizing local properties of function spaces, in: Lj.D.R. Kočinac (Ed.), Selection Principles and Covering Properties

in Topology, in: Quad. Mat., vol. 18, 2007, pp. 195–225.
[24] M. Scheepers, Meager sets and infinite games, in: Contemp. Math., vol. 192, 1996, pp. 77–90.
[25] M. Scheepers, Combinatorics of open covers, VI. Selectors for sequences of dense sets, Quaest. Math. 22 (1) (1999) 109–130.
[26] J.H. Weston, J. Shilleto, Cardinalities of dense sets, Gen. Topology Appl. 6 (1976) 227–240.


	Variations of selective separability
	Introduction
	Terminology and preliminaries
	M-separability
	H-separability
	R-separability
	GN-separability
	Acknowledgements
	References


