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a b s t r a c t

The paper focuses on deterministic and unambiguous recognizable two-dimensional
languageswith particular attention to the case of a one-letter alphabet. The family DREC(1)
of deterministic languages over a one-letter alphabet is characterized as bothL(DOTA)(1),
the class of languages accepted by deterministic on-line tessellation acceptors, and
L(2AFA)(1), the class of languages recognized by 2-way alternating finite automata. We
show that there are inherently ambiguous languages and unambiguously recognizable
languages that cannot be deterministically recognized even in the case of a one-letter
alphabet. In particular we show that on-line tessellation acceptors are more powerful than
their deterministic counterpart, even in the case of a one-letter alphabet. Finally we show
that DREC(1) is complex enough not to be characterized in terms of classical operations.
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1. Introduction

Since the sixties, many studies were devoted to two-dimensional languages or picture languages. These are sets of two-
dimensional arrays of symbols over a finite alphabet and they generalize the classical one-dimensional languages or string
languages. This generalization has led to the definition of many different classes of picture languages and these classes are
interesting as formal methods of image recognition, as well as mathematical objects in their own right. In particular, in [11],
the family REC(Σ) of recognizable picture languageswas introduced: it generalizes the class of recognizable string languages
using their characterization in terms of local languages and projections (cf. [7]). The pair of a local picture language and a
projection is called the tiling system.
The definition of REC(Σ) is implicitly non-deterministic and it seems not possible to eliminate this non-determinism

without a loss in power of recognition: any deterministic finite model for two-dimensional languages defines a class
that is strictly included in REC(Σ) (see e.g. [6,13,26]). This result fits the fact that REC(Σ) family is not closed under
complementation, whereas any deterministic family must have this closure property.
Deterministic languages play an important role in the recognition process of pictures. Indeed the parsing problem for two-

dimensional languages in REC(Σ) is an NP-complete problem [18]. In order to decide whether a given picture p belongs to
the language recognized by a given tiling system we have to scan p in order to find a picture p′, in the local language,
whose projection is equal to p. In general, such a recognition process is non-deterministic: at each step, one can have a
backtracking on all already scanned positions. So it is important to have tiling systems that lead to computations with no
backtracking. After this, deterministic tiling systems were recently defined in [2], and the given definition generalizes the
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one-dimensional (string) case. Indeed a tiling system corresponds, in one dimension, to a set of undirected transitions. To
consider determinismwe have to fix a computation direction. Remark that determinism, even in the one-dimensional case,
is a notion related to a fixed direction (usually understood): we have determinism, along the left-to-right direction, and
co-determinism, along the right-to-left direction. In two dimensions this reasoning leads to define determinism along four
main directions, each one starting in one of the four corners. Deterministic languages are defined as languages that can be
recognized by a tiling system that is deterministic according to some corner-to-corner direction. The class of deterministic
languages over an alphabetΣ is denoted DREC(Σ). Once again, the generalization from one to two dimensions, results in a
more complex notion.
An intermediate notion between determinism and recognizability is unambiguity. A tiling system for L ⊆ Σ∗∗ is

unambiguous [10] when any picture in L has a unique local counter-image and L is unambiguous if it is recognized by
an unambiguous tiling system. UREC(Σ) denotes the family of all unambiguous two-dimensional languages overΣ . As one
may expect, determinism implies unambiguity. Furthermore in [2] the proper inclusion of DREC(Σ) in UREC(Σ) is shown,
whereas in [4] the proper inclusion of UREC(Σ) in REC(Σ) is stated. A main result of this paper states that the same proper
inclusions hold even for one-letter alphabet.
In this paper we study deterministic and unambiguous languages over a one-letter alphabet, whose classes are denoted

DREC(1) and UREC(1) respectively. Note that the investigation on a one-letter alphabet is a necessary step in studying
recognizability: if a language belongs to REC(Σ) then necessarily its projection over a one-letter alphabet must belong to
REC(1). Considering a one-letter alphabet is equivalent to study the shapes of pictures before their contents.
The tiling recognizability of unary languages has been considered in [9,11]. More precisely there are considered tiling

recognizable languages of pictures where the number of columns is a function of the number of rows (or vice versa) and
it is shown that such functions cannot grow more quickly than an exponential function or slower than a logarithmic one,
apart from the constant functions. Regular expressions for languages over one-letter alphabet are studied in [21,3]. Some
comparisons between the different kinds of automata accepting two-dimensional languages, in the special case of a one-
letter alphabet, are contained in [13,14,20,19]. In general, the same separation results hold in the one-letter case as in
the several-letters case. Very recently the authors of [5] investigated the complexity of unary tiling recognizable picture
languages.
This paper mainly focuses on DREC(1) and UREC(1) families, but it concerns other families of unary languages too along

with some results on the general alphabet case. First, it is shown that DREC(1) coincides with bothL(2AFA)(1), the class of
languages accepted by2-way alternating finite automata, andL(DOTA)(1), the family of languages accepted bydeterministic
on-line tessellation acceptors (Proposition 7): when the cardinality of the alphabet is one, these three approaches are
equivalent. Hence any result stated for one of these families immediately holds for the other two ones too. Then we prove
some closure properties of DREC(Σ) and DREC(1).
A main result is a necessary condition for languages in DREC(1) that states some periodicity in the local language

corresponding to a deterministic tiling system (Proposition 10). As application, we provide an example of a language Lmult
not in DREC(1) (Proposition 15): the proof needs a careful analysis of its local pictures for any deterministic tiling system.
Proposition 15 has several applications. It allows us to show that in the one-letter case: (1) there are unambiguously but
not deterministically recognizable languages (Proposition 17); (2) there exist languages accepted by on-line tessellation
acceptors (OTA), but not by deterministic on-line tessellation acceptors (DOTA) (Corollary 20); (3) DREC(1) (and hence
L(DOTA)(1), and L(2AFA)(1) too) is not closed under row and column star operations (Proposition 16). All these results
are contained in Section 4.
In Section 5 we consider determinism, unambiguity and recognizability and show that they yield different classes, even

for one-letter alphabets.
In Section 6 we compare DREC(1) with some other families of one-letter languages defined using boolean operations,

row-, column-, diagonal-concatenations and stars. We show that the structure of DREC(1) cannot be captured by such
operations: there are languages in DREC(1) that cannot be expressed using union, concatenations and stars and there are
languages constructed by means of these operations that are not in DREC(1). Recall that this is also the case for the whole
REC(Σ): the only known characterization needs also some alphabetic projection [11].
Finally in Section 7 we state some conclusions and open problems.
A preliminary and partial version of this paper can be found in [1].

2. Preliminaries

We introduce some definitions about two-dimensional languages. The notations used, some examples and results and
more details can be mainly found in [11].
A two-dimensional string (or a picture) over a finite alphabetΣ is a two-dimensional rectangular array of elements ofΣ .

The set of all pictures over Σ is denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗. Given a picture
p ∈ Σ∗∗, let `1(p) = m, the number of rows and `2(p) = n the number of columns; the pair (m, n) is the size of p. Note
that when a one-letter alphabet is concerned, a picture p is totally defined by its size (m, n), and we will write p = (m, n).
Unlike the one-dimensional case, we can define an infinite number of empty pictures, namely all the pictures of size (m, 0)
and of size (0, n), for allm, n ≥ 0, that we denote by λm,0 and λ0,n respectively. For any picture p of size (m, n), we consider
the bordered picture p̂ of size (m+ 2, n+ 2) obtained by surrounding pwith a special boundary symbol # 6∈ Σ .
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A tile is a picture of size (2, 2) and B2,2(p) is the set of all sub-pictures of size (2, 2) of a picture p. Given an alphabet Γ , a
two-dimensional language L ⊆ Γ ∗∗ is local if there exists a finite setΘ of tiles overΓ ∪{#} such that L = {p ∈ Γ ∗∗|B2,2(̂p) ⊆
Θ}, and we will write L = L(Θ).
A tiling system is a quadruple (Σ,Γ ,Θ, π) where Σ and Γ are finite alphabets, Θ is a finite set of tiles over Γ ∪ {#}

and π : Γ → Σ is a projection. A two-dimensional language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system
(Σ,Γ ,Θ, π) such that L = π(L(Θ)) (extendingπ in the usualway).Wedenote byREC(Σ) the family of all tiling recognizable
picture languages overΣ . Note that when a unary alphabet is considered a tiling system can be specified by giving only the
local alphabet and the set of tiles; we will write (Γ ,Θ).
Furthermore, in this paper, for any family of languagesF (Σ) over an alphabetΣ , we denote byF (1) the corresponding

family over a one-letter alphabet.

Example 1. Consider the language Lm,m = {(m,m) | m ≥ 0} of square pictures over a one-letter alphabet, say Σ = {a},
that is pictures with same number of rows and columns. Lm,m belongs to REC(1). Indeed it can be obtained as projection of
the language of squares over the alphabet {0, 1} in which all the symbols in the main diagonal are 1, whereas the remaining
positions carry symbol 0 (cf. [11]).

Let p and q be two pictures over an alphabet Σ . The column-concatenation of p and q (denoted by p eq) and the row-
concatenation of p and q (denoted by p eq) are partial operations, defined only if `1(p) = `1(q) and if `2(p) = `2(q),
respectively, and are given by:

p eq = p q p eq = p
q .

Only in the case of one-letter alphabet, one can also define the diagonal-concatenation [3]. The diagonal-concatenation
of p = (m, n) and q = (m′, n′) is the picture p e\ q = (m+m′, n+ n′). It can be represented by

p e\ q = p
q .

The definitions of picture-concatenations can be extended to languages. By iterating these operations, one can define the
row-, column- and diagonal-transitive closures (or stars) of languages, denoted by ∗ e, ∗ e, and ∗ e\ , respectively. REC(Σ)
family is closed under row- and column-concatenation and their closures, under union, intersection and rotation; on the
contrary it is not closed under complementation (see [11]) even in the case of one-letter alphabet [23]. Further REC(1) is
closed under diagonal-concatenation and its closure.

Example 2. Let L2m,2n be the language of pictures over a one-letter alphabet with even dimensions, that is L2m,2n =
{p |`1(p) = 2m, `2(p) = 2n, m, n ≥ 0}. We have that L2m,2n = ({(2, 2)}∗

e
)∗

e
, and also L2m,2n = {λ0,2}∗

e\ e\ {λ2,0}∗ e\ .
Example 3. Let Lfc=lc be the language of pictures over Σ = {a, b} whose first column is equal to the last one. Language
Lfc=lc ∈ REC(Σ). Informally we can define a local language where information about first column symbols of a picture p is
brought along horizontal direction, by means of subscripts, to match the last column of p (see [4]).
Consider also the language Lfc=c′ of pictures where the first column is equal to some ith column, i 6= 1. Note that

Lfc=c′ = Lfc=lc eΣ∗∗ and thus Lfc=c′ ∈ REC(Σ). Similarly Lc′=lc = Σ∗∗ eLfc=lc and Lfc=c′ ∩ Lc′=lc are all in REC(Σ).
Two-dimensional on-line tessellation acceptors (OTA) were introduced in [13]. A run of an OTA on a picture consists in

associating a state to each position of the picture. Such state for some position (i, j) is given by the transition function and
depends on the symbol in that position and on the states already associated to positions (i, j− 1), (i− 1, j− 1) and (i− 1, j)
(note that an equivalent definition is possible with the state not depending on the state in the top-left corner, (i− 1, j− 1)
[11]). A deterministic version of this model is obtained, as usual, requiring that the state associated by the transition
function to any position is unique; a deterministic OTA is referred to as DOTA. We have that the familyL(DOTA)(Σ) of two-
dimensional languages recognized by a DOTA is strictly included in the family L(OTA)(Σ) of two-dimensional languages
recognized by an OTA. Moreover, despite this kind of automaton is quite difficult to manage, this is actually the machine
counterpart of a tiling system: REC(Σ) = L(OTA)(Σ) [16].
Another model of automaton recognizing two-dimensional languages is the 4-way automaton (4NFA or 4DFA for the

deterministic version); a four-way automaton is defined as an extension of the two-way automaton that recognizes strings
(cf. [6]) by allowing it to move in four directions: Left, Right, Up, Down. A 2NFA is a 4NFA that can move right and down only.
The family of languages recognized by a 4NFA (resp. 4DFA, 2NFA) is denotedL(4NFA)(Σ) (resp.L(4DFA)(Σ),L(2NFA)(Σ)).
An alternating finite automaton (AFA) [17] is a generalization of a finite automaton where a state can be either existential

or universal. A computation that meets a universal (existential, resp.) state accepts if every (at least one, resp.) path from
that state is accepting. A two-way two-dimensional alternating automaton (here denoted 2AFA) is an AFA that can move right
and down only. The family of languages recognized by a 2AFA is denotedL(2AFA)(Σ).
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3. Deterministic recognizable languages: Some properties

Very recently the definition of deterministic tiling systems and deterministic languages was introduced and discussed
[2]. Deterministic recognizable languages are defined according to one of the four corner-to-corner directions: from top-
left corner towards the bottom-right one (tl2br for short), and all the other corner-to-corner directions in the set C2C =
{tl2br, tr2bl, bl2tr, br2tl}. A tiling system (Σ,Γ ,Θ, π) is tl2br-deterministic if for any γ1, γ2, γ3 ∈ Γ ∪ {#} and σ ∈ Σ

there is at most one tile
γ1 γ2
γ3 γ4

∈ Θ , with π(γ4) = σ . Similarly d-deterministic tiling systems are defined, for any

d ∈ C2C . A recognizable two-dimensional language L is deterministic, if it is recognized by a d-deterministic tiling system
for some corner-to-corner direction d. Moreover, DREC(Σ) denotes the class of deterministic recognizable two-dimensional
languages over the alphabet Σ . According to our notation, DREC(1) will denote the class of deterministic languages over a
one-letter alphabet.

Example 4. The tiling system sketched in Example 1 for the language Lm,m of square pictures is d-deterministic for d =
tl2br, br2tl, but not for the other directions. Anyway Lm,m ∈DREC(1).

Example 5. Let Lfc=lc be the language of pictures overΣ = {a, b} whose first column is equal to the last one, as defined in
Example 3. The tiling system there described is d-deterministic for any d ∈ C2C and hence Lfc=lc ∈ DREC(Σ).

In [2], it is shown that L ∈ L(DOTA)(Σ) if and only if L is recognized by a tl2br-deterministic tiling system and,
moreover, DREC(Σ) is characterized as the closure by rotation of L(DOTA)(Σ). Indeed, using the result that a language
is inL(DOTA)(Σ) if and only if its 180◦ rotation is inL(2AFA)(Σ) (see [15]), we have that DREC(Σ) also coincides with the
closure by rotation ofL(2AFA)(Σ). Furthermore, when |Σ | = 1, these characterizations can be strengthened in view of the
following remark.

Remark 6. Consider languages on one-letter alphabet. As observed in Example 4, a tiling system may be d-deterministic
along a given d ∈ C2C , but not along the other directions. Even though, if L ∈ DREC(1) then, for any d ∈ C2C , there exists
a d-deterministic tiling system recognizing L. Indeed from a d-deterministic tiling system recognizing L, one can construct
a d′-deterministic tiling system, by replacing its tiles by some proper rotations. For example, consider the tiling system for
language Lm,m of square pictures shown in Example 1. It is tl2br-deterministic, but not tr2bl-deterministic. We can obtain a
tr2bl-deterministic tiling system recognizing Lm,m, by replacing its tiles by their 90◦ rotations. This way, the local image of
a square is a square with symbol 1 on the counter-diagonal and 0 elsewhere. The same holds for the other corner-to-corner
directions.

Proposition 7. DREC(1)= L(DOTA)(1)= L(2AFA)(1).

Proof. L ∈ L(DOTA)(1) iff L is recognized by a tl2br-deterministic tiling system; thusL(DOTA)(1)⊆ DREC(1). Moreover, if
L is recognized by a d-deterministic tiling system for some d ∈ C2C then it is also recognized by a tl2br-deterministic tiling
system (see Remark 6); thus DREC(1)=L(DOTA)(1). In [15] the authors show that a language is inL(DOTA)(Σ) iff its 180◦
rotation is inL(2AFA)(Σ). But, when |Σ | = 1, then any language coincides with its 180◦ rotation. �

Nowwe study closure properties of DREC(Σ) under the boolean operations, and compare the general alphabet case with
the one-letter case. Different results hold for the unary alphabet since in the general case, mixing tiling systems that are
deterministic from different corner-to-corner directions does not yield any determinism.

Proposition 8. Let Σ be a finite alphabet, |Σ | ≥ 2. Then DREC(Σ) is closed under complementation, but it is not closed under
union and intersection.

Proof. The closure under complementation is in [2]. Let Lfc=c′ and Lc′=lc as in Example 3. These languages are both in
DREC(Σ), but their intersection is not [2]. Hence DREC(Σ) is not closed under union (otherwise the closure under union
and complementation would yield the one under intersection). �

Corollary 9. DREC(1) is closed under union, intersection and complementation.

Proof. The result follows from Proposition 7 and the analogous closure properties ofL(DOTA)(Σ) [13]. �

4. A necessary condition for DREC(1)

In this section we state a necessary condition for languages in DREC(1); it will provide an example of a recognizable
language that cannot be deterministically recognized. Such example will yield several important consequences.
Roughly speaking the necessary condition says that the (local) pictures with same number m of rows satisfy some

‘‘periodicity’’ condition. Note that, in the general case of a language L ∈ REC(Σ), the Horizontal Iteration Lemma holds
(cf. [11]): any sufficient long (local) picture withm rows has a factor that can be arbitrarily repeated still remaining in L. In
the case of L ∈ DREC(1) the result is much stronger: because of determinism, all (local) pictures with m rows in L can be
obtained (column) concatenating a fixed picture (xm) with some repetitions of another picture (ym) (any local picture is the
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prefix of the longer ones). Furthermore, Corollary 14 states that the ‘‘period’’ (the number of columns of minimal ym) can be
divided only by prime numbers less than or equal to the number of tiles in the referred tiling system.
Remark that the result is strongly based on the cardinality one of the alphabet and it does not hold in general (for example

the local language for Lfc=lc on a two-letter alphabet as in Example 3 does not satisfy this condition, even if it is tl2br-
deterministic).
Let uswrite y′ ≺ y if y = y′ ey′′ for some y′′ ∈ Σ∗∗, say that y′ is a prefix of y, and denote by Pref (L) = {y′ | y′ ≺ y for some

y ∈ L}. Further we introduce for any picture p of size (m, n), the half-bordered picture p̃ of size (m + 1, n + 1) obtained by
surrounding pwith the boundary symbol only on its top and left borders. Wewill denote by L̃(Θ) = {p ∈ Γ ∗∗|B2,2(p̃) ⊆ Θ}
and L̃m(Θ) the set of pictures in L̃(Θ)withm rows.

Proposition 10. Let L ∈ DREC(1) and (Γ ,Θ) be a tl2br-deterministic tiling system for L with |Γ | = γ .
For any m > 0, there exist xm, ym ∈ Γ ∗∗, with `2(xm), `2(ym) ≤ γ m, such that for any p ∈ L̃m(Θ), with `2(p) > γ m, we

have p ∈ Pref (xm e(y∗ e
m )).

Moreover if, for any m > 0, ȳm denotes some ym as above with minimal number of columns, then `2(ȳm+1) = c · `2(ȳm) for
some c ∈ {1, 2, . . . , γ }.

Proof. Letm > 0: every picture in L̃m(Θ) can have atmost γ m distinct columns. If L̃m(Θ) is finite, the statement is vacuously
true. Otherwise, consider the picture p0 ∈ L̃m(Θ)with `2(p0) = γ m + 1: in p0 there exist two columns, say the ith and the
jth ones, with i < j, that are equal. Clearly 1 ≤ i ≤ γ m (such considerations are similar to the ones in the proof of the
Horizontal Iteration Lemma [11]). Set xm the picture of size (m, i− 1) such that xm ≺ p0, and ym the picture of size (m, j− i)
such that xm eym ≺ p0. Since (Γ ,Θ) is tl2br-deterministic, then for any picture p ∈ L̃m(Θ) with `2(p) > γ m, p0 ≺ p. So
the ith column of p is equal to its jth one. Furthermore determinism implies that also the (i + 1)th column of p is equal to
the (j + 1)th one, and, in general, the nth column of p is equal to the (n + `2(ym))th one, for any n > i. Therefore we have
p ∈ Pref (xm e(y∗ e

m )).
Moreover, if we choose in p0 the indexes i and j such that (j − i) is minimal, then in any p ∈ L̃m(Θ) with `2(p) > γ m,

there cannot exist two equal columns at a distance less than j− i = `2(ym) (apply again the determinism).
Now, for any m > 0, let us choose ym and ym+1 with minimal number of columns and denote them by ȳm and ȳm+1:

we show that `2(ȳm+1) = c · `2(ȳm) for some c ∈ {1, 2, . . . , γ }. Indeed, any q ∈ L̃m+1(Θ), with `2(q) > γ m+1, is in
Pref (xm+1 e(ȳ∗ e

m+1)). By erasing the last row of qwe obtain a picture p ∈ L̃m(Θ), that is in Pref (xv e(y∗ e
v )), with `2(ȳm+1) =

`2(yv). On the other hand, we have p ∈ Pref (xm e(ȳ∗ e
m )). In such situation we have that necessarily `2(ȳm+1) = `2(yv)

is a multiple of `2(ȳm) by some factor c ∈ {1, 2, . . . , γ }. Indeed, we cannot have `2(ȳm+1) < `2(ȳm). Moreover it cannot
be `2(ȳm+1) ≡ h mod `2(ȳm), h 6= 0. Otherwise, yv = y0 e· · · ey0 ey′0 with y0 = y′0 ey′′0 and `2(y′0) = h. This would
imply that in y0 the first column and the (h + 1)th one are equal, against the minimality of `2(ȳm). At last, it cannot be
`2(ȳm+1) = k · `2(ȳm)with k > γ , otherwise yv = x0 e· · · ex0, k times, for some x0 with `2(x0) = `2(ȳm). But, since below
the first column of x0, in p, at most γ different symbols can occur, this is against the minimality of `2(ȳm+1) = k · `2(x0). �

The necessary condition as just stated for the local language associated to a language in DREC(1) has a weaker
consequence on the language itself.

Corollary 11. Let L ∈ DREC(1). Then there exists a constant γ > 0 such that, for any m > 0, there exist integers cm, pm, with
0 ≤ cm, pm ≤ γ m and, if pm > 0, then, for any n > cm, we have (m, n) ∈ L iff (m, n+ pm) ∈ L.
Moreover if, for any m > 0, p̄m denotes the minimal pm as above, then p̄m+1 = cp̄m for some c ∈ {1, 2, . . . , γ }.

Example 12. Let L = {(m,m+ 2k) | m, k ≥ 0}. A tl2br-deterministic tiling system recognizing L is the one associating, for
anym, k ≥ 0, to themth row of lengthm+ 2k, the local row 0m−11(ab)k, and to themth row of lengthm+ 2k+ 1, the local
row 0m−11(ab)ka. In this case the minimal xm is a picture of size (m,m) (with 1 on the diagonal, 0 under the diagonal and a
proper prefix of (ab)∗ in each row above the diagonal) and the minimal ym is a picture of size (m, 2) (where rows ab and ba
properly alternate).

Example 13. Let L = {(m, 2m) | m ≥ 0}. The tiling system for L that can be constructed from the DOTA given in [13]
(following the canonical construction, cf. [11]) provides a more involved example of a tl2br-deterministic tiling system,
where the number of columns of xm grows exponentially.

Proposition 10 states some periodicity on any local language for a deterministic language in DREC(1). The next corollary
states some relation between the ‘‘period’’ and the number of tiles. More precisely, given a tl2br-deterministic tiling system
(Γ ,Θ), let us denote, for anym > 0, by k(Γ ,Θ)m (or simply km when the tiling system is clearly stated) the number of columns
of ȳm constructed as in Proposition 10. Then the prime divisors of km are only numbers less than or equal to the number of
tiles.

Corollary 14. Let L ∈ DREC(1), let (Γ ,Θ) be a tl2br-deterministic tiling system for L and let |Γ | = γ .
Then, for any m > 0, we have km = 1h12h23h3 . . . γ hγ for some hi ≥ 0, i = 1, . . . , γ .

Proof. The proof is by induction on m. Since L ∈ DREC(1), k1 is at most γ . For the inductive step note that, from
Proposition 10, we have km+1 = ckm for some c ∈ {1, 2, . . . , γ } and that for km the inductive hypothesis holds. �
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We now apply the necessary condition for DREC(1) stated in Proposition 10 in order to show that the language Lmult =
{(m, km) | m ≥ 0, k ≥ 0} does not belong to DREC(1). Note that we cannot use Corollary 11 for this goal. For this we
need to deeply analyze the local pictures in Lmult , from a computational point of view, looking at what local columns must
‘‘represent’’ and from a more analytical point of view, looking at the periodicity of the divisors (less than or equal to a given
threshold) in a sequence of consecutive integers. First, for anym, n > 0, let us denote by Dm(n) the set of all the divisors of
n that are less than or equal tom.

Proposition 15. The language Lmult does not belong to DREC(1).

Proof. The proof is by contradiction and it consists in showing that if Lmult ∈ DREC(1) then Corollary 14 does not hold.
Suppose that Lmult ∈ DREC(1) and let (Γ ,Θ) be a tl2br-deterministic tiling system recognizing it with |Γ | = γ . From
Proposition 10, for any m > 0, there exist xm, ȳm ∈ Γ ∗∗, such that for any p ∈ L̃m(Θ), with `2(p) > γ m, we have
p ∈ Pref (xm e(ȳ∗ e

m ))with `2(ȳm) = km. We are going to show that, under such hypothesis, for anym > 0, km is a multiple
of m. This contradicts Corollary 14, since for any prime integer z such that z > γ , kz would be a multiple of z, against the
fact that the prime divisors of kz must be less than or equal to γ .
Let us show that for anym > 0, km is a multiple ofm.
First we show that, if p ∈ L̃m(Θ) is such that its ith column is equal to its jth one and j > i > `2(xm) + `2(ȳm), then

Dm(i) = Dm(j) (see also the figure below). Let us denote for any d ≤ m, h ≤ `2(p) by pd,h the subpicture of p consisting of
its first d rows and its first h columns. Note that the periodicity of p (i.e. p ∈ Pref (xm e(ȳ∗ e

m )) ) implies a similar periodicity
for any subpicture pd,h. Furthermore, since (Γ ,Θ) is a tl2br-deterministic tiling system, if (d, h) ∈ Lmult then its (unique)
counter-image in L(Θ) is pd,h. Now suppose that d ∈ Dm(j); then (d, j) ∈ Lmult (recall that d is a divisor of n iff the picture
(d, n) ∈ Lmult ). The first d symbols in the jth column of pmatch the # symbols (bymeans of allowed tiles inΘ). Then so is for
the first d symbols in the ith column of p, pd,i ∈ L(Θ) and, hence, (d, i) ∈ Lmult i.e. d ∈ Dm(i). Conversely, if d ∈ Dm(i) then
(d, i) ∈ Lmult , that is pd,i is in L(Θ). We show that also pd,j is in L(Θ). Indeed the top and the left borders match # symbols
since p ∈ L̃m(Θ); the right border matches # symbols since it is equal to the right border of pd,i; and finally the bottom
border of pd,j matches # symbols because the bottom border of pd,i does and the remaining bottom tiles are a repetition of
some previous ones (recall that j > i > `2(xm) + `2(ȳm)). This concludes the proof that, if p ∈ L̃m(Θ) is such that its ith
column is equal to its jth one and j > i > `2(xm)+ `2(ȳm), then Dm(i) = Dm(j).
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In particular we have that for any n > 2γ m, since the nth column of p is equal to the (n + km)th one, then Dm(n) =
Dm(n+ km).
Now, using this fact, we are able to show that, for anym > 0, km is a multiple ofm. By contradiction, suppose that there

exists l, 1 ≤ l < m, such that km ≡ l mod m. Take n such that n > 2γ m and n ≡ (m− l) mod m. Then n+ km ≡ 0 mod m
and this is against Dm(n) = Dm(n+ km).
As a remark, note that the same technique can be used to show that km is a multiple of the lowest common multiple of

1, 2, . . . ,m. �

This result has some immediate, but very meaningful consequences. As a first application we obtain some non-closure
properties of DREC(1). Also note that, because of Proposition 7, the same non-closure properties hold for L(DOTA)(1), and
L(2AFA)(1) (as far as we know, the properties are not stated even in those frameworks).

Proposition 16. DREC(1),L(DOTA)(1), andL(2AFA)(1) are not closed neither under ∗ enor under ∗ e.
Proof. Consider the language Lmult introduced in Example 4. We have shown that Lm,m ∈ DREC(1). On the other hand
Proposition 15 shows that Lmult = L∗

e
m,m does not belong to DREC(1). In a similar way, the 90

◦ rotation of Lmult is an example
of non-closure under ∗ e. �

5. Determinism and unambiguity

In this section we consider determinism and unambiguity in the frame of tiling recognizability of picture languages,
as introduced in [4] and in [10], respectively. As one may expect, determinism implies unambiguity. Moreover the proper
inclusion of DREC(Σ) in UREC(Σ) and of UREC(Σ) in REC(Σ) have been shown (see [2] and [4], resp.). We are now able to
show that such strict inclusions hold even for a one-letter alphabet.

Proposition 17. DREC(1)⊂ UREC(1), where the inclusion is strict.
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Proof. Consider the language Lmult . Proposition 15 shows that it does not belong to DREC(1). On the other hand we can
construct an unambiguous tiling system recognizing Lmult . Starting from a tiling system T recognizing the language of square
pictures, as sketched in Example 1, we can yield a tiling system for Lmult , following the construction of a tiling system for the
column star of a language in [11]. We make two disjoint copies of T and we force it to alternate starting with the first copy.
The resulting tiling system is unambiguous, since for any picture (m, km) the value k is unique. �

The next result uses a necessary condition on UREC(Σ) family shown in [4] that involves some matrices associated to a
two-dimensional language. This approach has recently been applied to encompass some other known necessary conditions
for REC(Σ) family and its closure by complementation (see [12]).
Let us recall the terminology and the necessary condition for UREC(Σ) family. Let L ⊆ Σ∗∗ be a picture language. For

any m ≥ 1, we can consider the subset L(m) ⊆ L containing all pictures in L with exactly m rows. Note that the language
L(m) can be viewed as a string language over the alphabetΣm,1 of the columns, i.e. words in L(m) have a ‘‘fixed heightm’’.
Moreover, for any string language L, one can define the infinite boolean matrix ML = ‖aαβ‖α∈Σ∗,β∈Σ∗ where aαβ = 1 if
and only if αβ ∈ L. Observe that, since every regular language has a finite index (Myhill–Nerode Theorem), the number of
different rows ofML is finite. Moreover, given a matrixM , we denote by RankQ (M), the rank ofM over the field of rational
numbers Q .
Now let us recall the necessary condition for UREC(Σ) family.

Proposition 18 ([4]). Let L ⊆ Σ∗∗. If L ∈ UREC, then there is a k ∈ N such that, for all m ≥ 1, RankQ (ML(m)) ≤ km.
Wewill use this necessary condition to show that UREC(1) is strictly contained in REC(1). First, let us fix some notations:

we denote by λ the empty string and, forΣ = {a} and n ∈ N , by an the string overΣ∗ of length n. Moreover, form ∈ N , we
denote by lcm(1, 2, . . . ,m) the lowest common multiple of 1, 2, . . . ,m.
Proposition 19. UREC(1)⊂ REC(1), where the inclusion is strict.
Proof. The inclusion UREC(1) ⊆ REC(1) is trivial. Now let us define, for any m ≥ 0, the function f (m) = lcm(2m +
1, . . . , 2m+1) and the language L = {(m, n) | n is not multiple of f (m)} over the unary alphabet Σ = {a}. It was shown
that L ∈ REC(1) (see [22,23]). Now, we will show that L does not satisfy the necessary condition of Proposition 18 so that L ∈
REC(1) \ UREC(1). Indeed, for any m > 1, consider language L(m) as defined above and the corresponding boolean matrix
ML(m). Let us denote by c the picture over the alphabet Σ with m rows and one column, i.e. c = (m, 1), and consider, in
ML(m), the sub-matrix Mc composed by the f (m) + 1 rows and the f (m) + 1 columns indexed by λ, c , c2, . . ., c f (m), in this
order. Then, for i = 1, . . . , f (m)+1, the ith row ofMc will have symbol 1 in all its entries except for the f (m)+2− i position
that will carry symbol 0. Therefore RankQ (ML(m)) ≥ f (m)+ 1. Moreover, it was shown (see [22,23]) that f (m) = 2θ(2

m) and
then RankQ (ML(m)) cannot be bounded by km where k is a constant. �

In view of known characterizations involving tiling recognizability and OTA, we obtain the following result.
Corollary 20. L(DOTA)(1)⊂ L(UOTA)(1)⊂ L(OTA)(1), with all strict inclusions.
Proof. Propositions 17 and 19 can be restated using the following characterizations: DREC(1)= L(DOTA)(1) (Proposition 7),
UREC(Σ)= L(UOTA)(Σ) (see [4,25]) and REC(Σ)= L(OTA)(Σ) (see [16]). �

Remark 21. It is well known that OTA are more powerful than DOTA [13], but the examples given in the literature are
all on alphabets with cardinality greater than one. The language Lmult gives an example of a language that is in L(OTA)(1)
but not inL(DOTA)(1). Also note that a different proof of the strict inclusion ofL(DOTA)(1) inL(OTA)(1) could be obtained
observing thatL(OTA)(1)= REC(1) and REC(1) is not closed under complementation [23], whileL(DOTA)(1) is closed under
complementation [13].

6. DREC(1) and some regular families

In this section we look for a characterization of DREC(1) in terms of (regular) operations already introduced for two-
dimensional languages over a one-letter alphabet. Hence we will compare DREC(1) with some families REG(1), L(D),
L(CRD), of languages over a one-letter alphabet, that can be constructed using union, row-, column- and diagonal-
concatenations and their closures. REG(Σ) is defined in [21] and has been recently considered in [24] as a possible
counterpart of regular one-dimensional languages, while L(D), L(CRD) are defined and investigated in [3]. Unfortunately
we will find that DREC(1) family is not captured by such considered classes.
Let us recall some definitions.

• REG(1) is the smallest family containing the singleton and closed under union, row- and column-concatenations and
stars.
• L(D) is the smallest family containing the empty set, λ0,0, λ0,1, λ1,0 and closed under union, diagonal-concatenation and
star.
• L(CRD) is the smallest family containing the empty set, λ0,0, λ0,1, λ1,0 and closed under union, row-, column-, and
diagonal-concatenations and stars.

Now, let us show someproperties and characterizations of these classes thatwill be useful later, to yield some comparison
results.
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Fig. 1. Relations among DREC(1), REG(1),L(D) andL(CRD).

In [21] the author showed that REG(1) is closed under the boolean operations (as well as DREC(1)) and that the following
characterization holds. Roughly it says that languages in REG(1) contain pictures where the number of rows and the number
columns respect some periodicity, and this independently from each other.

Proposition 22 ([21]). L is in REG(1) if and only if it is a finite union of Cartesian product of ultimately periodic sets.

Example 23. Let Lm,m be the language of square pictures (see Example 1). We have Lm,m = {(1, 1)}∗
e\
= {λ0,1

e\ λ1,0}∗ e\
∈

L(D), while Lm,m /∈ REG(1). In fact in Lm,m there are an infinite number of pairs of pictures (n, n) and (n′, n′) with n 6= n′
while (n, n′) /∈ Lm,m (use Proposition 22).

On the other hand in [3] it is shown that L ∈ L(D) if and only if the set of sizes of pictures in L is a rational relation and
if and only if L is accepted by a 2NFA. We give here another characterization, more similar to the one in Proposition 22 for
REG(1).

Proposition 24. L ∈ L(D) if and only if it is a finite union of languages of the form c∗
e\ e\ P∗ e\ , where c is a single picture and

P is a finite set of pictures. FurthermoreL(D) is closed under union, intersection and complementation.

Proof. We use the characterization of rational relations of N2 in terms of semilinear sets of N2 given in [8]. Recall that a
semilinear set of N2 is a finite union of linear sets, i.e. sets of the form {c} + P where c is an element of N2 and P is a finite
subset of N2. �

We are now able to show the following relations among DREC(1), REG(1),L(D), andL(CRD), as summarized in Fig. 1.

Proposition 25. DREC(1) is incomparable withL(CRD).

Proof. The language Lmult is inL(CRD) since Lmult = L∗
e

m,m and Lm,m ∈ L(D) (Example 23). On the other hand Lmult /∈ DREC(1)
(see Proposition 15).
Consider now L′ = {(m, 2m) | m ≥ 0}. We have L′ ∈ L(DOTA)(1) (see [13]) and hence L′ ∈ DREC(1) (see Proposition 7).

On the other hand L′ /∈ L(CRD) (cf. [3]). �

Proposition 26. REG(1) ( L(D)⊆ DREC(1) ∩L(CRD).

Proof. We have REG(1) ⊂ L(D). Indeed using Proposition 22 any language in REG(1) can be accepted by a 2NFA that first
verifies the number of columns moving right on the first row (simulating a classical finite automaton on strings), and then
verifies the number of rows moving down on the last column. The inclusion is strict: for example Lm,m ∈ L(D)\REG(1) (see
Example 23).

L(D)⊆ DREC(1) sinceL(D)= L(2NFA)⊆ L(2AFA)= DREC(1).
L(D)⊆ L(CRD) follows from definition. �

Previous propositions say that the structure of DREC(1) cannot be encompassed by classical operations: DREC(1)
coincides neither with REG(1), nor withL(D), nor even withL(CRD). And the same result holds if we would consider other
operations, such as intersection and/or complementation. Indeed L(D) is closed under intersection and complementation,
while considering also intersection and/or complementation of languages inL(CRD) would result in a class equal or bigger
thanL(CRD), but never equal to DREC(1).

7. Conclusions and open questions

We have investigated determinism and unambiguity for tiling recognized two-dimensional languages over a one-letter
alphabet. We found that these notions yield different classes of languages even for a one-letter alphabet, whereas some
equivalences with other formalisms hold. These results along with the difficulty to capture the DREC(1) family by means of
classical operations, point out the richness and complexity of deterministic two-dimensional languages, even for a one-letter
alphabet.
The investigation is surely not yet accomplished. For example the paper leaves incomplete the study of some closure

properties of the considered classes. Furthermore, it would be interesting to examine the relationships of the UREC(1) family
with the other families considered in Section 6. It is also an open question as to whetherL(D)= DREC(1) ∩L(CRD) or not.
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Following the characterizations given in this paper, such a question has an equivalent statement in a different formalism:
it says that L(2NFA)(1) = L(2AFA)(1) ∩L(CRD), that is a language is accepted by a 2AFA and it is in L(CRD) iff it can be
accepted with only existential states.
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