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Abstract: The aim of this paper is to summarize the efforts carried out so far in the 

fabrication of Si-based biosensors by a team of researchers in Catania, Italy. This work was 

born as a collaboration between the Catania section of the Microelectronic and 

Microsystem Institute (IMM) of the CNR, the Surfaces and Interfaces laboratory 

(SUPERLAB) of the Consorzio Catania Ricerche and two departments at the University of 

Catania: the Biomedical Science and the Biological Chemistry and Molecular Biology 

Departments. The first goal of our study was the definition and optimization of an 

immobilization protocol capable of bonding the biological sensing element on a Si-based 

surface via covalent chemical bonds. We chose SiO2 as the anchoring surface due to its 

biocompatibility and extensive presence in microelectronic devices. The immobilization 

protocol was tested and optimized, introducing a new step, oxide activation, using 

techniques compatible with microelectronic processing. The importance of the added step 

is described by the experimental results. We also tested different biological molecule 

concentrations in the immobilization solutions and the effects on the immobilized layer. 

Finally a MOS-like structure was designed and fabricated to test an electrical transduction 
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mechanism. The results obtained so far and the possible evolution of the research field are 

described in this review paper.  

 
Keywords: Si-based biosensors; biological molecules immobilization; glutaraldehyde; 

glucose oxidase; DNA strands; metallothioneines; microelectronic compatibility 

 

 
1. Introduction  

 

The ability to detect biomolecular interactions is of extreme importance in medical, pharmaceutical 

and biotechnological research and development. Biosensors have been developed for this purpose [1-

3]. Their increasing importance in everyday life is driving a merger of the microelectronics and 

biomedical communities. The common objective is the production of devices ready for mass 

production that will perform accurate analyses.  

A biosensor is a device that transforms biochemical information (presence and/or concentration of a 

specific analyte), into an analytically useful signal. It can be schematically represented as two basic 

components connected in series: a biological recognition system (bio-receptor, usually acting with 

interactions at supramolecular level) and a physical-chemical transducer. The system may be 

completed by a signal amplifier and a microelectronic circuit to elaborate the signal. Usually, the 

biosensor and the signal processing circuitry are not integrated. Different types of biologically 

sensitive materials can be applied as recognition elements. They can be enzymes, antibodies, antigens 

[4], proteins [5], nucleic acids [6,7] or even living biological systems (e.g., cells, plants, organs or 

whole organisms) [8].  

Over the last 20 years there has been a growing interest in creating microbiosensors, fabricated in 

Si-compatible technologies, to be integrated within microelectronic circuits. The reason is that silicon-

based devices would provide a lot of potential advantages such as small size and weight, fast response, 

high reliability, low output impedance, the possibility of automatic packaging at wafer level, on-chip 

integration and a signal processing scheme with the future prospect of low-cost mass production of 

portable microanalysis systems. In fact, among microelectronic materials, silicon (Si) has the most 

mature and low cost technology. Moreover, the Metal-Oxide-Semiconductor (MOS) system based on 

silicon as semiconductor and on SiO2 as dielectric is one of the key enabling technologies of these last 

fifty years. Complementary MOS (CMOS) technology has allowed the development of VLSI circuits 

with unprecedented performances at an exceptionally low cost for most of digital, analog, mixed 

signal, and RF circuits. The basis for this impressive progress is the exceptional quality of the Si/SiO2 

system in terms of interface and bulk defects, low cost robustness to electrical and mechanical stress, 

scalability of the transistors, etc. Finally, SiO2 based matrixes have been proved to be a very useful 

support for the immobilization of biological molecules thanks to their capability of retaining biological 

activity. Many goals will be achieved using Si-based materials: i) the possibility to shrink the devices, 

implying reduced molecular diffusion path, faster kinetics and an improvement of the analytical 

performance of the device [9,10]; ii) the possibility to create micro-structured devices achieving 

complex functions, e.g. micro-total-analysis-systems; iii) the integration on the same chip of the 

electronics and/or photo-electronics needed for detection; iv) the possibility to make in vivo 
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physiological monitoring; it implies lower reagent consumption, hence minimized sample volumes, 

lower energy consumption, and less space requirement (sensor portability). It should be mentioned that 

conventional biosensors need extensive packaging, complex electronic interfaces and regular 

maintenance or reactivation. 

Finally, electrical sensing is considered one of the main goals to achieve in the next generation of 

biosensors since it could promote their integration within complex electrical circuits. Due to their 

simple principle of measurement and integrable signal processing on chip, biosensors that are based on 

electrochemical transducer principles are the most common sensor devices produced so far [11-20] and 

used in everyday life. Moreover, they are the most easily integrable in a microelectronic circuit, thus 

they would minimize the integration efforts in a complex circuitry.  

The immobilization of the biological probe onto the transducer surface plays an important role in 

the overall performances of biosensors. Three main issues must be considered: i) the sensing surface 

must be biocompatible; ii) the immobilization protocol must not degrade the inorganic part of the 

sensor (for Si-based devices, VLSI compatibility); iii) the biological molecule must be anchored to the 

solid surface avoiding its denaturizing or the loss of its activity. The environment of the immobilized 

probes at the solid surface depends upon the mode of immobilization and can differ from that 

experienced in the bulk solution. These issues have been the target of many works in literature [10,21-

26]. The most used approach is the formation of covalent bonds with the solid surface [10,24,25,27-

29], often using bifunctional reagents to bridge the biological molecule and the functionalized sample 

surface. If silicon dioxide is used, the thermal processing used (wet or dry) may produce quite different 

results [23]. The immobilization procedure must be optimized to obtain the maximum surface 

coverage and to prevent the biological molecule denaturation and/or the loss of its specific property, 

e.g. for an enzyme its enzymatic activity [30,31]. 

Si-based biosensors, as well as conventional microelectronic devices, must be fully characterized 

using standard microelectronics techniques allowing biological molecule monitoring. In this way, the 

new technology costs are contained, since no new equipment is needed. Different techniques were 

used: X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The first one 

provides information on chemical bonds and molecular composition of the material surfaces, combined 

with a high surface specificity; while the second one allows a careful topographic inspection of the 

surface. Finally, spectrophotometric techniques were also used. The above mentioned techniques were 

used to study the immobilization of three different biological molecules on SiO2 surfaces: glucose 

oxidase (GOx), DNA strands and metallothioneine (MT).  

GOx is 160 kDa homodimeric globular protein, with a tightly bound (Ka = 1x10-10) flavin adenine 

dinucleotide (FAD) per monomer. The overall dimer dimensions measured by X-ray crystallography 

are 6.0×5.2×7.7 nm3 [32]. GOx, as all peptides and proteins, is a polymer of α-amino acids; it includes 

580 amino acids, the FAD cofactor, six N-acetylglucosamine residues, three mannose residues and 152 

solvent molecule acids [32]. As it is well known, the general chemical structure of an α-amino acid 

(excluding proline) is R-CH-NH2–(COOH). The enzyme catalyzes the oxidation of β-D-glucose to  

D-glucono-1,5-lactone by a reaction that can be summarized in two steps: i) glucose oxidation with the 

enzyme reduction, ii) re-oxidation of the enzyme with consumption of molecular oxide (O2) and 

production of hydrogen peroxide (H2O2) [33]. This enzyme is usually employed when the glucose 
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concentration in the blood must be measured, hence GOx based micro-biosensors [34] would have 

immediate applications in monitoring diabetes [35].  

The second biological molecule immobilized was single strand DNA (ssDNA). DNA molecules are 

charged macromolecules and the direct hybridisation event is an affinity binding process. DNA is a 

poly-anion with negative charges along its phosphate backbone. Double strand DNA can be 

considered as a circular cylinder (with a diameter of about 1.5–2 nm) with electrostatic charges evenly 

distributed about the cylindrical surface [36]; the length of a DNA probe depends on the number of 

nucleotides and the length of a nucleotide (or base) is about ~ 0.34 nm [6]. To selectively recognise a 

unique human DNA sequence, DNA probes must be at least 16 bases long [37]. DNA recognition 

methods have assumed a primary importance in the genetic diseases’ diagnosis.  

Finally, MTs, extracted from rabbit liver, have a low molecular weight (<7,000 Da) [38] and ar 

cysteine-rich. They bind heavy metals such as silver (Ag), cadmium (Cd), zinc (Zn), copper (Cu) and 

mercury (Hg). Their dimensions, obtained using dark-field electron microscopy, are 3.6×2.5×1.6 nm3. 

The primary structure consists of 60-61 amino acid residues, 20 of which are cysteines, while there is a 

lack of aromatic and histidine residues. Not all the cysteines are involved in disulphide bonds and are 

able to link 7-14 metal ions per MT via thiol groups –SH [39]. This protein could be used as new 

sensitive element for the detection of heavy metal ions presence in liquid environment. 

 

2. Results and Discussion  
 
2.1. Immobilization protocol: definition and optimization 

 

The biological molecule immobilization procedure, reported schematically in Figure 1, requires 

four steps. The first one is oxide activation. It consists in the sample immersion in an ammonia and 

hydrogen peroxide water solution (SSC, ratio NH2:H2O2:H2O 1:1:10) at 70°C for 20 minutes. The 

process leaves OH terminated groups on the surface. This step is fundamental when the oxidation 

process is performed in dry ambient, in fact, the surface must be pre-treated before the second step 

(silanization) in order to maximize the -OH groups available to bond the silane groups [23]. The 

second step consisted of a treatment in vapours of 3-aminopropyltriethoxysilane NH2-(CH2)3-

Si(OC2H5)3 (APTES) for 1 h. After silanization, the samples were cured under vacuum at 80 °C for  

40 min. This process terminated the surface with -NH2 groups. The last two steps were linker molecule 

immobilization [surface terminated with –(C=O)H groups] and amino terminated biological molecule 

bonding. The linker molecule deposition was carried out using glutaraldehyde (GA), 2.5%, in 

phosphate buffer solution (PBS). GA is a linear molecule (CHO-(CH2)3-CHO) with one aldehydic 

group (CHO) at each end. Finally, the biological molecule immobilization was carried out for times 

ranging from 2 h up to 48 h at room temperature using water or PBS solutions depending on the 

molecule to immobilize (see experimental for details). The power of this method is that, once 

optimized, it may be used for any biological molecule having amino groups free for bonding. The 

details of the immobilization procedure for GOx [30,31,40], DNA [41] and MT [42] probes are fully 

reported elsewhere.  
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Figure 1.  Schematic structure of the probe immobilization protocol. The four 

immobilization steps, oxide activation, silanization, linker molecule deposition and 

biological molecule immobilization are indicated as: oxide activation, APTES, GA, 

biomolecule (NH2 terminated), respectively. 

 
 

The protocol effectiveness was tested using AFM and XPS measurements. In particular, the AFM 

analyses for all the intermediate steps of the immobilization process for GOx are reported in Figure 2. 

It should be stressed that the immobilization steps are the same for all the biomolecules reported in this 

work. Figure 2a shows the result on the sample that underwent oxide activation and silanization. The 

AFM measurements of this sample indicate a surface rms value of 0.22 nm. We used the same vertical 

scale in all three-dimensional images to allow a direct comparison of the samples. It should be noted 

that the APTES layer, if the surface is properly functionalized, has a physical thickness of 0.8±0.1 nm 

[43]. The AFM results suggested a good sample coverage. The highest peaks observed in Figure 2c are 

due to APTES polymerization. Samples that did not undergo oxide activation showed more 

polymerized sites (see ref. 40), indicating that a lower number of active sites was available for GA 

immobilization. 

When the GA was deposited on the sample surface, only small modifications of the surface 

morphology occurred (Figure 2b). In fact, the surface rms, as measured by AFM, was 0.19 nm, barely 

distinguishable from the data extracted from the previous sample measurements. The data clearly 

indicated that the surface did not undergo relevant modifications, detectable by AFM. Measurements 

carried out on a sample that underwent the full immobilization process with GOx molecules are shown 

in Figure 2c. A clear modification of the surface occurred due to enzyme immobilization, with the 

appearance of peaks having the same height and good distribution on the sample surface. The rms 

value for this sample was 0.59 nm. Finally, the comparison of Figures 2c and d allowed us to make 

some considerations on the immobilization protocol, particularly on the importance of the first two 

immobilization steps: oxide activation and APTES functionalization. The data showed that oxide 
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activation is fundamental for achieving the best surface coverage. If the sample did not undergo this 

step, the surface coverage was not uniform. The rms roughness of the sample not subjected to oxide 

activation (1.46 nm) was much higher than the rms roughness of the fully processed sample (0.59 nm). 

This indicated that surface coverage was not uniform and the peak heights were not all the same, 

indicating that there were regions where, probably, the GOx did not bind to the surface. Our results 

demonstrated that the oxide activation had a double effect: it reduced the surface contaminations and 

allowed the formation of more surface sites available for silanization (OH terminations).  

 

Figure 2.  AFM images of: (a) up-to-APTES, (b) up-to-GA, (c) fully processed (with 

GOx), and (d) fully processed (with GOx) without the first step (NO SSC step). The 

vertical scale is 10 nm while the horizontal scales are both 1 μm. Higher peaks appear 

lighter on a gray scale. 

 
 

Similar conclusions can be drawn measuring the samples by XPS. In particular, the Si 2p peaks of 

the same samples, shown in Figure 3, provide interesting information. The reference sample (in black) 

exhibited two components having binding energies of 99.7 eV and 104 eV, assigned to Si° and SiO2 

respectively [44,45]. The SiO2 component is centred at 104 eV instead of 103.4 eV, as expected, due to 

differential charging between the SiO2 layer and the Si substrate [45]. The Si° component is visible 

since the oxide thickness is small (6.5 nm) and the substrate signal succeeds to pass the oxide and 

reach the detector. Our results [40-42] demonstrate that if the organic film deposited on the sample 

surface is uniform the substrate Si° signal is fully shield. In fact, the up-to-GA sample, processed using 

our protocol, does not exhibit such signal (blue line). The same result is, clearly, obtained for the 
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Full+SSC sample (red spectrum), since a further layer is deposited on the surface (see schematic). The 

situation is completely different for the Full-NO SSC step sample (green spectrum in Figure 3). Even 

if a thick layer is deposited on the oxide it still exhibits the Si° component.  

 

Figure 3. High statistic acquisition mode XPS Si2p spectral regions of the reference (black 

line), up to GA (blue line), fully processed with SSC (GOx molecule, red line, Full) and 

fully process without SSC (green line, Full-NO SSC step) samples. A schematic of the 

immobilization steps is also reported (top left). 

 
 

This result clearly indicated that the immobilization procedure did not produce a uniform film for 

the full-NO SSC step sample, despite of the fact that the enzyme was correctly immobilized. The 

results confirmed that the immobilization procedure without oxide activation was not the best 

achievable on our SiO2 surfaces [40,41,46]. The great improvement in film uniformity measured on the 

samples that underwent Full+SSC protocol can be explained considering that the oxide activation, we 

introduced as the first step, allowed us to increase the number of available sites for enzyme bonding 

and to obtain a final uniform deposition. The enzymatic activity measurements confirmed these results 

(see after) [46]. 
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It should be mentioned that a correct silanization procedure is fundamental for the uniform 

coverage of the surface. We demonstrated that if silanization is not properly carried out, APTES 

polymerization occurs as immediately observed by AFM measurements [40]. 

The direct evidence of the biomolecules immobilization on the sample surface was provided by the 

analysis of the XPS C1s spectra reported in Figure 4, of a sample stopped after the APTES step (up to 

APTES, black line), after the GA (up to GA, light blue line), fully processed with GOx (green line, 

Full GOx), fully processed with DNA (red line, Full DNA) and fully processed with MT (blue line, 

Full MT) samples.  

 

Figure 4.  High statistic acquisition mode XPS C1s spectral regions of: up-to-APTES 

(black line), up to GA (light blue line), fully processed with GOx (green line, Full GOx), 

fully processed with DNA (red line, Full DNA) and fully processed with MT (blue line, 

Full MT) samples. The magenta lines are the simulated peaks. 
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The C 1s component, centred at 284.8–285eV and clearly observed in the first two samples (up to 

APTES and up to GA), is assigned to C-C and C-H bonds. The magenta line superimposed to the 

experimental spectrum was a simulation of the C-C and C-H XPS peaks. The up-to-GA sample 

showed only this peak, and an additional weak shoulder at about 287 eV attributed to the R-CHO 

groups of GA. It should be reminded (see introduction) that the GA is a linear molecule  

(CHO-(CH2)3-CHO) with one aldehydic group (CHO) at each end. The other samples showed other 

components at higher binding energies.  

The Full GOx samples exhibited at least other two components at 286.3–286.5eV, assigned to        

R-CH2*-NH-(CO)-, and at 288.3eV, assigned to R-CH2-NH-(C*O)-chemical groups respectively. The 

magenta lines in Figure 4 are the simulated peaks superimposed to the experimental data to allow one 

an easier identification of the different peaks. They are characteristic of the proteins and expected if 

the enzyme is deposited on the sample [31,40,42,44-46].  

When DNA strands are immobilized on the sample (Full DNA), besides of the C1s peak at 285 eV, 

the XPS spectrum exhibited a component at about 288 eV. It has been assigned to –(C=O)-N chemical 

groups. They are characteristic of the DNA nitrogen bases and their presence is expected only when 

the DNA is deposited on the sample [41,42,44,45], as demonstrated by their absence in the other 

spectra compared in the same Figure. These results confirmed the DNA presence on the sample, in fact 

the component of C1s at 288 eV we assigned to the nitrogen bases of DNA is specific of DNA 

presence in our samples.  

Finally, the Full MT sample shows at least other two additional components at 286.3 eV assigned to 

R–CH2*–NH–(CO)–, and 288.3 eV, assigned to R–CH2–NH–(C*O)– chemical groups, characteristic 

of the proteins, as already observed for the Full GOx sample. In order to understand if the 

immobilization procedure has affected the bio-molecules’ characteristics, the enzymatic activity of the 

fully processed GOx samples was monitored using a simple spectrophotometric assay [46]. GOx 

activity was monitored on the Full+SSC sample, on the Full-NO SSC step sample and on the sample 

that underwent only GOx deposition without previous surface functionalization (only GOx). The 

results are summarized in Figure 5. All data were normalized to the real area of the sample. 

 

Figure 5.  Glucose oxidase activity as a function of time for: bulk SiO2 samples Fully 

processed (red squares), fully processed without SSC (blue circles, -NO SSC step), with 

only GOx (green triangles). 

 



Sensors 2009, 9                            

 

 

3478

They show an increase in the enzymatic activity when the oxide activation is carried out before 

silanization (red squares) with respect to the Full-NO SSC step sample (blue circles). The only-GOx 

sample (green triangles) exhibited an enzymatic activity lower than the one measured for both the 

samples that underwent chemical immobilization. The comparison of the absorbance values with those 

obtained from the free enzymes in solution, allowed us to estimate a concentration of active GOx on 

the SiO2 samples of about 0.002 U mL-1.  

In order to optimize the immobilization protocol also the immobilization step parameters must be 

studied. In particular, we tested solutions differing for the enzyme concentration in a range from  

100 μg/mL up to 2 mg/mL and immersion times ranging from 2 h to 48 h. These parameters have a 

great importance when a large scale production is performed. In fact, to immobilize the enzyme on 

large surfaces, larger amounts of solution must be prepared. Moreover, immobilization for times 

longer than needed will causes a reduction in the production rate. The results, obtained measuring the 

enzymatic activity are summarized in Figure 6. 

 

Figure 6.  Glucose oxidase activity as a function of time for samples immersed in: 2 

mg/mL for 12 h (red rhombuses) or 2 h (green squares); 500 μg/mL for 24 h (black stars) 

or 12 h (dark blue circles); 100 μg/mL for 48 h (light blue symbols) or 12 h (magenta 

triangles). 

 
 

The data clearly show that similar absorbance values are obtained regardless of the immobilization 

time for solutions of 500 μg/mL and 100 μg/mL, while more than a factor two increase is obtained for 

2mg/mL solutions. For this concentration is interesting to observe that there is no difference for 

immersion times of 2 and 12 h, thus suggesting that a strong reduction in the immobilization time can 

be obtained.  

To fabricate a sensing layer using GOx as sensitive element, it is fundamental to understand the 

device shelf life and to determine the best storage conditions. To this purpose the enzymatic activity of 

the fully processed sample, stored either in buffer solution (PBS, 0.1M pH 6.5) at 4°C or in air at RT, 

was monitored. The results of these measurements are summarized in Figure 7 where the red circles 
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represent the sample stored in PBS, while the green squares represent the sample stored in air. Both 

samples were monitored immediately after immobilization and after 1, 2 and 3 months. The 

absorbance values reported in Figure were detected 60 min after the reaction started. The samples 

stored in PBS retained their activity over longer periods of time. On the other hand, the samples stored 

in air showed an immediate decrease in the enzymatic activity, already after the first month of aging.  

 

Figure 7.  Glucose oxidase activity as a function of storage time for bulk SiO2 samples 

stored in PBS at 4°C (red dots) and in air at RT (green squares). 

 
 

Another important test is the dependence of the layer efficiency on the SiO2 surface characteristics. 

To this purpose, we thermally grow a thin Si layer (see Section 3 for the fabrication details) on various 

Si substrates having different doping and impurity concentrations and on quartz. The results, not 

shown, indicate that the surface immobilization efficiency is not affected by the doping and impurity 

concentration of the Si substrate.  

A modified surface can be used to improve the device performances (in particular its sensitivity). 

As an example porous silicon dioxide can be fabricated. Measurements we performed on porous SiO2 

fully processed samples demonstrate the enzyme presence within the pores and an enhanced enzymatic 

activity, due to the higher surface/volume ratio. An increase in sensitivity of one order of magnitude 

was obtained using a 3 μm thick layer of porous SiO2. The results are reported in [46]. A further 

improvement in the device sensitivity can be obtained by micropatterning of the surface. In particular, 

we demonstrated that a strong increase in the enzymatic activity was observed by ink-jet printing the 

GOx on a planar SiO2 surface [47]. The result so far reported indicated that the final device 

performances will strongly depend on the fabrication method and on the final device structure, hence it 

is not possible to infer the final device sensitivity only from the results here reported.  

Finally, to check that both DNA strands and MTs keep their characteristics once immobilized, 

different measurements were performed. DNA single strands were tested electrically monitoring their 

ability to hybridize the complementary strands (see later).  
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The MT activity on immobilized samples was tested by measuring with XPS the spectra of fully 

processed samples after Ag salts soaking (Figure 8). The XPS characterization clearly shows the 

presence of Ag on the sample surface after immersion. In fact, the Ag 3d spectrum of one of them  

(500 μg/mL) is shown in Figure 8 (red line). The reference sample (blue line) doesn’t exhibit traces of 

Ag after immersion in the same solution. This result indicated that the proteins maintained their ability 

in getter heavy metals also after the immobilization process. A careful description of the method and 

the results is provided in [42]. 

 

Figure 8.  XPS spectra of Ag 3d regions for the samples: full MT (500 μg/mL, red line) 

reference (blue line) after Ag soaking. 

 
 

Also spectrophotometric results can provide information on immobilized MT activity, as 

demonstrated in Figure 9, where the comparison between two solutions of 100 μg of MT/ml at 

different pH is reported.  

 

Figure 9.  Absorbance spectra of a 100 mg/mL MT solution at different pH: 2.89 (green 

line) and 2.00 (red line). 
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At pH above 2.5, MTs getter Cd and a shoulder in the absorbance spectrum at 250 nm is clearly 

visible. When the pH is reduced below the 2.5 threshold, by adding hydrochloric acid, MTs release the 

metallic ions captured and the shoulder disappears. Experiments are in progress, on quartz samples, to 

test the mechanism on immobilized proteins.  

 

2.2. Electrical Testing  

 

As mentioned in the introduction, the possibility of obtaining an electrical signal as a result of the 

transduction mechanism can greatly expand the miniaturization potentiality of biosensors. In this 

perspective electrolyte-insulator-semiconductor (EIS) structures are quite intriguing. Their working 

principle is straightforward: the recognition event, occurring at the insulator/electrolyte interface, 

causes a change in the charge (potential) at that interface and it can, in principle, be detected. The 

capacitance in a EIS structure can be described as the built-up of several capacitors in series. The total 

capacitance (Ctot) is the series of: the semiconductor capacitor (CSi); the insulator capacitor (Cox) and 

the capacitor provided by the layer given by the sensitive element (Cbio) [19]. The recognition event 

will produce a change in the capacitance of Cbio, that will produce also a change in the surface 

potential. Hence, a shift in the flat band voltage (VFB), associated to the flat band capacitance (CFB), 

may be detected.  

The MOS-like devices were prepared as described in the experimental section, in which all the 

fabrication details are reported, and the immobilization procedure already described was used. After 

immobilization, the samples were dried under a gentle Nitrogen flow and measured using capacitance-

voltage (CV) measurements at 1 MHz, with a repetition frequency of 10 Hz and the curves were 

acquired during 100s of measurements. The results are shown in Figure 10 for the reference sample.  

 
Figure 10.  Capacitance voltage measurements carried out on reference sample. The first 

measure is reported in green cross. In the inset, the VFB extracted from the CV curves as a 

function of time (aging). 
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The measurement reproducibility was tested on each set of measurements and on at least three 

samples per type. The data reproducibility and the absence of oxide aging were tested. If oxide aging 

was present, a shift in the flat band voltage (VFB) had to be observed as a function of time, having a 

direction depending on the trapped charges. The VFB values as a function of time, as extracted from   

C-V measurements, and reported in the inset of Figure 10, did not change during measurements, 

indicating that no oxide aging was present [41,48]. For all measurements, the capacitance was 

normalized to Cox, measured in the device accumulation region (negative biases). A constant value 

of -0.50±0.05 V was detected for the VFB of the reference samples and used for the comparison with 

the immobilized samples. 

Once verified the measurement reproducibility, GOx immobilized samples were tested. Also in this 

case no dielectric (Cbio) aging was detected, but a clear shift of VFB towards negative biases was 

monitored, as shown in Figure 11, where the C-V of both the reference (green line) and the GOx fully 

immobilized (green line) samples are compared. The VFB approaches to -1.07±0.04 V (average value), 

hence, a shift of 0.57 V, well above the measurements indetermination (±0.05 V), was detected. This 

result confirmed that GOx immobilized on the dielectric surface introduced a positive charge as 

already observed by Wang et al. [49]. The most important conclusion that can be drawn from these 

data is that this device is very sensitive to the presence of organic layers, hence it is a promising 

candidate for the fabrication of fully electric (MOS-based) glucose sensors.  

 

Figure 11.  C-V measurements of the reference sample (red line) and of a GOx 

immobilized sample (green line).  

 
 

The VFB behavior when ssDNA is immobilized on the SiO2 surface is quite different. Two different 

set of measurements were carried out to discriminate the different effects. In a first set of 

measurements the dependence of measurement from the solution parameters was tested. In fact, the 

solution parameters, pH and ionic concentration, can strongly affect the measurement, since they may 

give a contribution to the value of Cbio, thus reducing the sensor performances [19]. C-V measurements 

were carried out on the reference samples as a function of the solution pH. An example is shown in 

Figure 12. The curves perfectly overlap (within the experimental errors) regardless of the buffer 
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solution pH, from 3.0 (red line) up to pH 8 (light blue line). It should be mentioned we tested solutions 

ranging from pH 3 to pH 9 (data are not shown) and obtained the same results. Please note that the 

horizontal scale was expanded in the -0.5 region to better show the curves overlap. 

It is known that SiO2 exhibits a pH dependence of ~ 30 mV/pH in the observed pH range. Since no 

shift was observed, within the experimental errors, in the measured curves it is reasonable to assume 

that the SiO2 surface was perfectly passivated. In fact, it is known that the pH sensitivity depends on 

the density of OH groups at the SiO2/solution surface. The oxidation process employed to prepare the 

sample used in this work was in a dry ambient, hence the number of OH- groups is strongly reduced. 

Moreover, since no permanent VFB shift was observed as a function of time, also stressing the samples 

we may conclude that there was no dielectric aging during the measurements [41,48]. Finally, a PBS 

solution with the complementary oligonucleotide was spotted on the reference sample and the C-V 

measured to verify if the presence of the additional negative charge in solution cold cause a VFB shift. 

The data, also shown in Figure 12 as circles, demonstrate that the C-V was not affected by the various 

pH or the DNA presence in the PBS solution.  

 

Figure 12.  Normalized Capacitance Voltage curves of the reference sample as a function 

of the electrolyte pH (3.0 red line, 5.0 green line, 6.5 black line, 8 light blue line) and in 

presence of complementary ssDNA at pH of 6.5 (dark blue circles). 

 
 

The second set of measurement we performed was aimed to verify if an electrical transduction 

could be achieved from DNA hybridization. The reference and the two fully processed samples were 

electrically characterized and the results are compared in Figure 13. The first test was carried out on 

reference samples (SiO2/Si, light blue line) and a VFB constant value of -0.41±0.03 V was detected 

during the entire measurement time. Since there was no oxide aging, any shift in VFB eventually 

detected must be attributed to the organic layer deposited on the oxide surface. Quite different is the 

VFB behaviour when ssDNA is immobilized on the SiO2 surface. The fully processed ssDNA sample 

(red line) and the same sample after the hybridization process (green line) exhibited a clear shift in the 

VFB values. The data show that VFB approached to +0.06±0.01 V after the device full processing. DNA 

molecules have negative charges derived from the phosphate groups in aqueous solutions, hence a 
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negative charge was trapped on the sample surface, as expected. The negative charge presence on the 

oxide caused positive VFB shift, with respect to the reference sample, as already observed using 

different structures [14]. In particular, a +0.47±0.04 V shift on VFB was detected.  

The DNA immobilization causes a visible difference in the CMin value. The reduction in the CMin 

value (CDNA) to 0.7 of the Cox can be attributed to the presence of the extra layer on the SiO2 surface. 

Knowing that Ctot is the series of CSi, Cox and Cbio and that Cref/Cox is 0.8 while CDNA/Cox is 0.7, with 

simple calculations the biological layer thickness can be evaluated, assuming a dielectric constant for 

the biological layer of 3 [12]. A value of ~5.6 nm was obtained, in good agreement with the ssDNA 

length (6.8 nm). The final set of measurements of Figure 13 was aimed to demonstrate the device 

sensitivity to DNA hybridization. The hybridization caused a further shift of 0.07±0.02 V, always in 

the same direction, since more negative charges are immobilized on the surface. The VFB approached 

to 0.13±0.01 V. The results are shown as a solid line. The shifts from the reference did not linearly 

increase, in fact the hybridized sample did not exhibit a shift double with respect to the ssDNA as one 

could assume at the first glance. This could be due to two effects: not all the DNA hybridizes and the 

well known counter-ion effect [20] takes place.  

 

Figure 13.  Normalized Capacitance Voltage curves of the reference sample (light blue 

line), fully processed ssDNA (red line) and of the hybridized dsDNA (green line). The 

arrow underlines the direction of the VFB shift. 

 
 

3. Experimental Section  
 
3.1. Sample preparation 

 

Si oxide thin layers were grown on 6 inch p-type CZ Si wafers (~2 Ω×cm), n-type CZ and epitaxial 

Si wafers (~2 Ω×cm), p+-type CZ Si wafers (~0.001 Ω×cm), using two different processes. Samples to 

test the immobilization protocol were prepared by thermal oxidation in an O2 environment at 900°C for 

30 min. The oxidation time was chosen to grow a thin oxide layer, 6.5 nm thick, as measured by XPS 
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[31,40]. Samples to be used as MOS like structures were prepared by thermal oxidation at 950°C for 

30 min, to grow 15 nm thick oxide. The final MOS-like structure is given by a thick CZ Si  

layer (~ 500 μm) B doped to a concentration of ~ 1.5×1015 B/cm3. The SiO2 layer was 15 nm thick, as 

measured by TEM microscopy (not shown). The upper contact was provided by a Phosphate buffer 

solution (PBS) drop of 1.5 μl. The estimated device area was ~ 0.78 mm2 (a circle with 1 mm of 

diameter).  

The biological molecule immobilization procedure consisted of four steps: (1) oxide activation; (2) 

silanization using 3-aminopropyltriethoxysilane (APTES); (3) linker molecule (GA) deposition and (4) 

biological molecule coupling. The solutions used were: 2 mg/mL GOx in PBS, 500 μg/mL MT in PBS, 

100 μM ssDNA probe and 100 μM complimentary DNA strand (ssDNA-c).  

DNA strand used were 20 bases long functionalized at the 5’ end with a NH2-C6 group. The 

sequence used was ATGCATGCATCGTACGTACG. DNA hybridization was monitored utilizing its 

complementary strand (ssDNA-c), having the sequence TACGTACGTAGCATGCATGC.  

Samples for electrical measurements were scratched on the back with a diamond probe and a drop 

of silver paint was used to assure the electrical back contact.  

 

3.2. Enzymatic activity measurements 

 

GOx activity was determined by measuring the amount of H2O2 formed, using a commercial 

spectrophotometric glucose assay kit, purchased from Megazyme®. GOx enzyme catalyzes the 

oxidation of glucose to D-gluconic acid producing hydrogen peroxide (see introduction). In the 

presence of peroxidase (POD), hydrogen peroxide participates in a reaction involving p-

hydroxybenzoic acid and 4-aminoantipyrine (both were provided in the kit) and a quinoneimine dye 

complex is formed, which is measured at 510 nm. GOx was diluted in a homemade PBS buffer 

solution. To test the activity of the enzyme immobilized on the SiO2 samples, they were inserted in 

cuvettes containing the above mentioned peroxide solution.  

 

3.3. Measurement equipment 

 

AFM measurements were performed in air at room temperature using an XE 150 by PSIA scanning 

probe microscope operated in the noncontact mode. AFM scans (typically 1×1 μm) were carried out on 

several surface positions to check the surface uniformity. 

X-ray Photoelectron Spectroscopy (XPS) analyses were carried out using a Kratos AXIS-HS 

spectrometer. In the present study the Mg Kα1,2 radiation of 1253.6eV was used at 10mA and 15keV 

and at pass energy of 40eV of the energy analyzer. High statistics acquisition mode was done at step 

energy of 0.025 eV and 300 ms of acquisition time. 

Absorbance measurements were carried out at 510 nm using a Varian Cary 50 spectrophotometer. 

GOx standard from Megazyme® and GOx in a homemade dilution buffer (see before) were used to 

prepare the calibration curve. Absorbance was measured immediately after the reaction started and 

then every 10 min up to 4 hours. To monitor the immobilized GOx enzymatic activity, functionalized 

silicon samples (both bulk and porous SiO2) were placed in cuvettes containing both POD and  

D-glucose solutions. A cuvette containing only MilliQ water and a cuvette containing an unprocessed 
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Si sample were used as references of GOx solution and of solid samples respectively, and measured 

using the same procedure described above. All measurements were carried out at room temperature. 

The absorbance values were normalized to the sample area. 

Electrical measurements were carried out at RT using drops of PBS buffer solutions to provide the 

upper contact of the MOS-like structure having the SiO2+organic layer as dielectric. The electrical 

signal was generated by a Tektronics AWG2005 wave generator, measured using a BOONTON 

capacitance meter (1 MHz small signal), and collected by a TDS520B oscilloscope (2.5 kS/s, high 

resolution). All data were finally collected by a PC using an home made program implemented using 

the Labview© software. Measurements were repeated to a frequency of 10 Hz in dark, to avoid photo 

induced carried generation. The bias ranged from -3V to +3V. Each set of measurements (consisting in 

120 CV curves) was performed triplicate and the VFB reported are the average on all the 

measurements. 

 

3.4. Reagents 

 

3-Aminopropyltriethoxysilane (APTES), glutaraldehyde solution (GA, grade II), glucose oxidase 

(type X-S, Aspergillus niger, 179,000 U g-1 solid, Sigma), Metallothionein from rabbit liver were 

purchased from Sigma Chemical Co., St Louis (USA). Amino modified single-stranded DNA (ssDNA) 

had 20 bases and a NH2-C6 group attached at the 5’ end. Its sequence was 

ATGCATGCATCGTACGTACG, while its complementary (ssDNA-c), had the sequence 

TACGTACGTAGCATGCATGC. Both were purchased by Operon Biotechnologies GmbH. Silver 

paint was purchased from Touzard & Matignon (France). The other chemicals used were purchased 

from Carlo Erba Reagenti (Italy). A commercial glucose assay kit was purchased from Megazyme®. 

Deionized, MilliQ water, having 18 MΩ resistivity, was used. 

 

4. Conclusions 
 

We optimized a protocol to covalently immobilize biological molecules having a free amino 

terminated group on SiO2 surfaces. The protocol versatility was tested immobilizing the enzyme 

glucose oxidase, amino-terminated DNA strands and the protein metallotyoneine. The protocol we 

used consisted in four steps: (1) oxide activation; (2) silanization using 3-aminopropyltriethoxysilane 

(APTES); (3) linker molecule (GA) deposition and (4) biological molecule coupling. The first was 

introduced to improve the immobilization quality. We determined the biological layer presence and 

uniformity by AFM and XPS measurements. In particular, the biological molecule presence was 

univocally determined monitoring the XPS C 1s signal in the rang 280-294 eV.  

From the enzymatic activity data carried out on GOx fully processed samples we concluded that the 

immobilization procedure on SiO2 bulk supports did not denature or destabilize the enzyme that the 

samples must be always stored in PBS at 4°C so that their activity can be retained for months. 

The electrical characterization of MOS-like capacitors fully processed with GOx exhibited a 

negative shift (~ 0.6 V), typical of positive charges presence, of the VFB, indicating the device 

sensitivity to the enzyme presence. The MOS-like structures tested are also sensitive to DNA 
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immobilization and hybridization, as demonstrated by a positive shift in the VFB of +0.47±0.04 V after 

immobilization and by a further +0.07±0.02 V shift when hybridization occurs. 

Finally, to verify that immobilized MTs were still able to link the heavy metals, we used the XPS 

technique. The measurements show the presence of Ag only in the MT immobilized sample that 

underwent at Ag soaking. 

Preliminary results on GOx immobilized samples suggest that the sensor sensitivity will depend on 

the fabrication characteristics. In fact, we found that the enzymatic activity increased when the 

immobilization layer was given by porous, instead of planar, SiO2. Also the immobilization method, 

immersion or ink-jet printing strongly modifies the enzymatic activity results, thus suggesting different 

sensor sensitivity, while the substrate characteristics (doping and impurity content) do not affect the 

final activity. Hence it is not possible to infer the final device sensitivity only from the results reported 

in this paper. Further experiments are in progress to answer this interesting question. 
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