
Generalized Pattern Search Algorithm for Peptide Structure Prediction

Giuseppe Nicosia and Giovanni Stracquadanio
Department of Mathematics and Computer Science, University of Catania, Catania, Italy

ABSTRACT Finding the near-native structure of a protein is one of the most important open problems in structural biology and
biological physics. The problem becomes dramatically more difficult when a given protein has no regular secondary structure or it
does not show a fold similar to structures already known. This situation occurs frequently when we need to predict the tertiary
structure of small molecules, called peptides. In this research work, we propose a new ab initio algorithm, the generalized pattern
searchalgorithm, basedon thewell-knownclassofSearch-and-Poll algorithms.Weperformedanextensive set of simulationsover
a well-known set of 44 peptides to investigate the robustness and reliability of the proposed algorithm, and we compared the
peptide conformation with a state-of-the-art algorithm for peptide structure prediction known as PEPstr. In particular, we tested the
algorithm on the instances proposed by the originators of PEPstr, to validate the proposed algorithm; the experimental results
confirm that the generalized pattern search algorithm outperforms PEPstr by 21.17% in terms of average root mean-square
deviation, RMSD Ca.

INTRODUCTION

When analyzing the complex structure of a biological sys-

tem, proteins are the most attracting molecular devices. They

are likely involved in all processes of a living organism; they

are responsible for behavioral changes in the cells. Due to the

important role of proteins in a biological system, molecular

biologists are interested in looking for the function of each

protein to understand how they can change the state and

behavior of a cell and, possibly, to use their functions to treat

diseases with specific drugs.

A fundamental feature determining the function of a pro-

tein is its three-dimensional structure, also known as tertiary

structure. Therefore, understanding how the proteins orga-

nize themselves in three dimensions has a central role in

discovering, understanding, and treating diseases. At this

point, it is obvious that a reliable method is necessary that

could help us to predict the three-dimensional structure of a

protein.

There are many chemical approaches to determine the

structure of a protein. Historically, the first one was the x-ray

crystallography (1), which appeared in 1934, when Bernal

and Crowfoot took the first x-ray photograph of a crystalline

globular protein. Later, in 1980, Wuttrich introduced nuclear

magnetic resonance (NMR) (2). Although both of these

techniques are reliable, they have many drawbacks con-

cerning the long period of time required to obtain a complete

definition of a structure, and the high costs required. More

specifically, x-ray crystallography can be applied only if it is

possible to crystallize a protein into a regular lattice, whereas

NMR works with proteins in a solute environment. This

causes the protein to take different conformations, leading to

many difficulties in determining a single good protein model.

There have been many efforts in determining the tertiary

structure of a protein by using computational methods; they

are very attractive because they can provide meaningful

prediction at a fraction of the cost and time of the non-

computational approaches. The computational way is very

interesting, but there are two main problems to be taken into

account: the first is how to formalize the protein structure

prediction (PSP) problem in a manner suitable for the ap-

plication of a given algorithmic method; and the second re-

fers to the choice of a suitable algorithm to face the PSP

problem.

The most common algorithms for protein structure pre-

diction are centered on the thermodynamical hypothesis,

which postulates that the native state of a protein is the state

with the lowest energy value under physiological conditions.

In general, this state corresponds to the lowest basins of a

given energy surface (3).

Since the interactions comprising the energy function are

highly nonconvex, the PSP can be tackled as a global opti-

mization problem and, in particular as a minimization prob-

lem. According to Levinthal’s paradox, an exhaustive search

algorithm would take the present age of the Universe for a

protein to explore all possible configurations and locate the

one with the minimum energy (4).

Generally speaking, we can define a global optimization

problem as

min f ðxÞ; x 2 V4X; (1)

where X¼ fx 2 RnjxL # x# xUg andV¼ fx 2 XjC(x)g, f is
the objective function and C: X / R is the constraint

function. In particular, the general definition is useful if we

are interested in solutions that are not necessarily feasible, but

are allowed to violate the constraints. In this case, we want to

find the solution with the best objective function value that

minimizes the constraint violation. However, if we want to

treat only feasible solutions, the constraint function is defined
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as C: X / [T, F] and we can call it oracular constraint; it

simply states whether a solution is feasible or not.

At this stage, there are three classes of computational ap-

proaches: homology modeling (5,6); threading (7,8); and ab

initio (9,10–17). The first method tries to predict the structure

starting from an experimental existing one with a significant

sequence similarity to the target protein. The second,

threading, tries to fit the target sequence to an experimentally

similar fold when sequence homology between target and

experimental structure is weak. The third, the ab initio ap-

proach, is the most interesting and challenging for computer

scientists and molecular biologists: given a protein sequence

and an energy function, we use an algorithm A, which pro-

duces the corresponding coordinates of all atoms for the

given protein sequence, to find the protein conformation with

the lowest possible potential energy.

Nowadays, these methods are the only useful ones when

the fold to be predicted is totally unknown. This condition is

frequently verified when we try to predict the tertiary struc-

ture of a peptide; peptides are small proteins of length ranging

between 5 and 20 amino acids that control many functions of

a living organism. In particular, there is a great number of

bioactive peptides, and the determination of their three-

dimensional structure is crucial for the production of specific

drugs. Although the secondary structure, rather than the ter-

tiary structure, is the principal factor affecting the binding

properties of a peptide, they are less defined in these small

molecules.

In our research, we introduce a new ab initio method based

on the well-known class of generalized pattern search algo-

rithms (Gps) (18–20) for the peptide structure prediction

problem. Gps algorithms have a robust theoretical back-

ground and they have been successfully applied in several

real-world applications (21–23). According to the thermo-

dynamical hypothesis, we use Gps to minimize the empirical

conformation energy program for peptides (ECEPP/3) po-

tential energy function (24), a well-established potential en-

ergy function, to find the most plausible structure for a

protein sequence.

Firstly, we outline some of the state-of-the-art algorithms

in PSP; then we describe the Gps algorithm and we show a

few results from both theoretical and practical points of view.

Next, we outline the coding scheme, the adopted potential

energy model, and the settings of the algorithm in our ex-

perimental protocol. Finally, we show the obtained results on

a well-known set of proteins.

Computational methods in protein
structure prediction

Due to the great impact of proteins in every field of biology,

in the last 20 years many computational methods have been

proposed to find the near-native tertiary structure of a protein.

The protein structure prediction (PSP) is so challenging that,

from 1992, an ad hoc competition called Critical Assessment

of Techniques for Protein Structure Prediction (CASP) was

created to evaluate the current state of art algorithms for PSP.

Actually, one of the best prediction methods is I-TASSER

(25), also known as Zhang-Server, a multistep algorithm that

combines homology, threading, and ab initio methods. In the

first step, it simply threads the target sequence against a

nonredundant Protein Data Bank (PDB) library to find global

structure templates; subsequently, the templates are re-

assembled using the TASSERMonte Carlo algorithm, where

predictions are recombined using additional information

coming from the predicted accessible surface area and from

the predicted secondary structure information. After clus-

tering all predictions, the centroids are refined by choosing

the conformation with the minimum energy.

An emerging and powerful method for the prediction of

protein structures is the meta-server approach. This strategy

tries to find good structures combining the output of a certain

number of methods. In this class, LOMETS (26) is one of the

best methods; it combines the output of nine of the most used

algorithms in the literature (i.e., FUGUE (5); PROSPECT2

(27); SPARKS2 (28); SP3 (29); SAM-T02 (30); HHSEARCH

(31); PPA1 (26); PPA2 (26); and PAINT (26)). The Robetta

server (14) combines homologymodeling and de novo tertiary

structure prediction with Ginzu homology identification and

with a domain parsing protocol to provide prediction for the

full length of each target. In the homology step, the algorithm

combines consensus score with energetic selection from a

model ensemble; the model ensembles are parametrically

generated using K*Sync (32) for the alignment method for the

template regions and the Rosetta (33) modeling loop for un-

aligned regions. Moreover, the loop regions are based on the

generation of a large number of decoys using the Rosetta

fragment assembly protocol. The filtered ensemble is struc-

turally clustered, and the top five clusters are returned to build

the final prediction. Side chains are added using a backbone-

dependent rotamer library (34) with a Monte Carlo confor-

mational search procedure.

An alternative algorithm is Raptor (35), based on the

mathematical theory of linear programming (LP). It tackles

the PSP using the threading approach, and it formalizes the

protein-threading problem as an LP problem. The main ad-

vantage is the opportunity of using existing powerful LP

algorithms to predict the tertiary structure. At the late CASP

competition, when Raptor was presented in an enhanced

version, its ability of producing high quality solutions was

confirmed.

In the field of peptide structure prediction, to our knowl-

edge, the most effective methods are PEPstr (35), PepLook

(37), and Robetta (14). PEPstr starts from the observation that

b-turn is an important and consistent feature of small pep-

tides in addition to the regular secondary structures. In par-

ticular, it combines regular secondary structures and b-turn,
and generates four models for each peptide: the first one

models the peptide in extended conformation (f ¼ c ¼
180�); the second one uses constrained conformations
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derived from secondary structure information; the third one

extends the second model by introducing b-turn information;

and the last one extends the third model by assigning

x-angles on the basis of the Dunbrack rotamer library (34).

All these models are subject to energy minimization using the

Assisted Model Building and Energy Refinement (AMBER)

Ver. 6 (38).

Generalized pattern search algorithm for
nonlinear optimization

Generalized pattern search algorithms were defined and an-

alyzed by Lewis and Torczon (20) for derivative-free uncon-

strained optimization on continuously differentiable functions,

and they later extended them to bound constrained optimiza-

tion problems.

The Gps for unconstrained or linearly constrained mini-

mization generates a sequence of iterates fxkg in Rn with

nonincreasing objective function values. Each iteration is

divided in two phases: the Search phase and the Poll phase. In

the Search phase, the objective function is evaluated at a fi-

nite number of points on a mesh. Formally, we define a mesh

as a discrete subset of Rn where the fineness is parameterized

by the mesh size parameter Dh . 0. The main task of the

Search phase is to find a new point that has a lower objective

function value than the best current solution, called the in-

cumbent. At least from a theoretical point of view, any

strategy may be used to select the mesh points that are can-

didates to replace the incumbent. When the incumbent is

replaced, i.e., f(xk11) , f(xk), then xk11 is said to be an im-

proved mesh point. Starting from this consideration, we can

introduce a Search procedure based on surrogates (40,41); we

can formalize a surrogate model of the given problem by

tackling the optimization of the surrogate function using

some derivative-based optimization tool or some quadratic

programming procedure, and then moving the solution to a

nearby mesh point, hoping to obtain a better next iterate (40).

This is the approach used in the Boeing Design Explorer

software (21).

When the Search step fails to provide an improved mesh

point, the algorithm calls the Poll procedure. This phase

consists in evaluating the objective function at the neigh-

boring mesh points, to see whether a lower objective function

value can be found. When the Poll fails to provide an im-

proved mesh point, the current incumbent solution is then

said to be a local mesh optimizer. When the algorithm finds a

local mesh optimizer, it refines the mesh by using the mesh

size parameter of

Dk11 ¼ t
wkDk; (2)

where 0, twk , 1; and t . 1 is a real number that remains

constant over all iterations, and wk # �1 is an integer

bounded below by the constant w # �1. When either the

Search or the Poll steps produce an improved mesh point, the

current iteration stops and the mesh size parameter may be

kept constant or increased according to Eq. 2, but with t . 1

and with wk $ 0 being an integer that is bounded above by

w1 $ 0. Using the previous equation, it follows that for any

k $ 0, an integer rk 2 Z exists such that

Dk11 ¼ t
rkD0: (3)

The basic element in the formal definition of a mesh is the set

of positive spanning directions D 2 Rn; in particular, non-

negative linear combinations of the elements of the setD span

Rn. The directions can be chosen using any strategy, but this

must assure that each direction dj 2 D, "j ¼ 1, 2, . . ., jDj, is
the product G�zj of the nonsingular generating matrix G 2
Rn3n by an integer vector �z 2 Zn; it is important to recall that

the same matrix is used for all directions. We let D denote a

real valued matrix n 3 jDj, and similarly, �Z denotes the

matrix whose columns are �zj;"j ¼ 1; . . . ; jDj; at this point
we can defineD ¼ G �Z:Using the Poll procedure, the mesh is

centered around the current iterate xk 2 Rn and its fineness is

parameterized through the mesh size parameter Dk as

Mk ¼ xk 1DkDz : z 2 Z
jDj
1

n o
; (4)

whereZ1 is the set of nonnegative integers. At each iteration,

some positive spanning matrix Dk composed of the columns

of D is used to construct the Poll Set. This consists of the

mesh points neighboring the current iterate xk in the direc-

tions of the columns of Dk, as in the following equation:

Mesh points ¼ fxk 1Dkd : d 2 Dkg: (5)

Theoretical results and real-world applications

In the case of bounded constraint optimization, Audet and

Dennis (19) prove that if there is a convergent subsequence of

the sequence fxkg of iterates produced by the algorithm

(since f f(xk)g is nonincreasing), then it is convergent to a

finite limit if it is bounded below. So, if f is lower semi-

continuously at any limit point �x of the sequence of iterates,
then f ð�xÞ#lim infk f ðxkÞ ¼ limk f ðxkÞ: Moreover, they

show that there is a limit point x̂ of a subsequence of fxkg
consisting of iterates on progressively finer meshes; these

specific iterates of interest are mesh local optimizers in that

they minimize the function on a positive spanning set of

neighboring mesh points. The directional tests that led Gps to

refine the mesh at mesh local optimizers are exactly the dif-

ference quotients that are nonnegative for the Clarke gener-

alized directional derivative x̂: If the Clarke derivatives exist
at x̂; as they will if f is locally Lipschitz at x̂; then these

nonnegative difference quotients pass through the limit to be

nonnegative Clarke derivatives in the used direction. It is

clear that nonnegative directional derivatives in a set of di-

rections are necessary conditions for optimality, but they are

not the usual first-order conditions; to match them, it is as-

sumed that the generalized gradient of f is a singleton. This
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constraint causes the directional optimality conditions to hold

for all directions in their positive cone and, with a right strategy

for choosing directions, it leads to the first-order optimality

conditions.

In addition to the theoretical results, Gps has been largely

applied to a large number of real problems. Zhao et al. (42)

have recently applied pattern search methods for the deter-

mination of a surface structure of nanomaterials (42); in par-

ticular, Gps has been used to fit low energy electron diffraction

data with the experimental data. Although the problem is very

hard, due to the presence of many local minima, Gps works

better than the other state of art algorithms. Allison et al. (22)

have applied Gps algorithms to aircraft design; they developed

a decomposition-based method that is applied on the modeling

of the various parts of an aircraft that share similar compo-

nents. To this purpose, Gps was largely applied as the main

optimization algorithm. Abramson (23) applied Gps for the

optimization of a load-bearing thermal insulation system

(which is characterized by hot and cold surfaces with a series

of heat intercepts and insulators between them). The optimi-

zation problem is represented as a mixed variable program-

ming problem with nonlinear constraints, in which the

objective is to minimize the power required to maintain the

heat intercepts at fixed temperatures so that one surface is kept

sufficiently cold. In many of the faced real-world applications,

Gps outperforms the corresponding state-of-the-art optimiza-

tion algorithms.

METHODS

In this section, we report our main choices about the representation of protein

conformations, the adopted energy function, and the metrics used to assess

the structural qualities of the best protein conformations.

Coding conformations

A nontrivial task that precedes use of any optimization algorithm to tackle the

PSP is the selection of a good representation for the protein conformations.

The packing of amino acids produces a so-called polypeptide chain, where

the backbone atoms are linked through the peptide bond. The fold of peptides

can be described by using angles of internal rotations in the main chain.

Internal rotations around N and Ca atoms, and Ca and C atoms are not re-

stricted by the electronic structure of the bond, but only by possible steric

collisions in the conformations. The side-chain conformations can be ex-

pressed by using angles of internal rotation, denoted by x1,. . ., xn; the

conformation of any side chain corresponding to different combinations of

values of x-angles are called rotamers. In the current work, we use an internal

coordinates representation (torsion angles), which is currently the most

widely used representation model. Each residue type requires a fixed number

of torsion angles to fix the three-dimensional coordinates of all atoms. Bond

lengths and angles are fixed at their ideal values.

In all simulations, all the v-torsion angles are fixed, so the degrees of

freedom of the representation are the main-chain and side-chain torsion

angles (f, c, and xi). The number of x angles depends on the residue type,

and they are constrained in regions derived from the backbone-independent

rotamer library (34). Side-chain constraint regions are of the form: [m – s,

m1 s], wherem and s are the mean and the standard deviation, respectively,

for each side-chain torsion angle computed from the rotamer library. It is

important to note that, under these constraints, the conformation is still highly

flexible and the structure can take on infinite various shapes that are vastly

different from the native shape. In protein structure prediction it is crucial to

know the existence of regular secondary structures; from this information, it

is possible to set tighter bounds on the dihedral angles, which is useful to

guide the algorithm to feasible and high quality solutions.

The secondary structure information, when used, was predicted by the

Scratch prediction server (44), and the relative bounds for the main-chain

dihedral angles are set according to Klepeis and Floudas (16), whereas the

v-angle is fixed to 180�.

Potential energy model

The interactions of the side chains and main chains with each other, with the

solvent and with the ligands, determine the energy of the given protein con-

formation. The folding of a protein is a process that drives the atoms to be

stabilized into a conformation that is better than others, the so-called native

state. The formation of the native state is a global property of a protein, because

the stabilizing interactions involve parts of the protein that are distant in the

polypeptide chain but near in space. In particular, Anfisen et al. (3) states the

native state is the onewith the lowest free energy. From a thermodynamic point

of view, the free energy of a protein depends on the entropy and on the en-

thalpy of the system. Without losing generality, we can assume that a protein

can only be in two states: folded and unfolded; at low temperature, the energy

of the folded state is lower than that of the unfolded state. Since we are in-

terested in the folded state of a protein, we consider as a good candidate

structure the one with lowest energy. Under ordinary conditions, the free en-

ergy of the stabilization of proteins is typically in the range 5–15 kcal/mol (45).

It is clear that computing the free energy of a system in silico is impos-

sible, because we are not able to simulate complex chemical systems that

mutate in the time. So we need an analytical expression that gives infor-

mation about the thermodynamical state of a protein as a function of the

position of the atoms; this is the so-called potential energy function. Most

typical potential energy functions have the form

EðR~Þ ¼ +
bonds

BðRÞ1+
angles

AðRÞ
1+

torsions
TðRÞ1+

nonbonded
NðRÞ; (6)

where R~ is the vector representing the conformation of the molecule,

typically in Cartesian coordinates or in torsion angles.

The first three terms describe the local interactions between atoms that are

separated by one, two or three covalent bonds; many proteins contain co-

valent bonds in addition to those of the polypeptide backbone and of the side

chain. In particular, the first term refers to the bond length stretching, the

second one to the angle bending, and the last one represents the angle

twisting. The last term takes into account the nonlocal interactions between

pairs of atoms that are separated along the covalent structure by at least three

bonds. In particular, one of the main nonbonded actors are the van der Waals

forces; the packing of atoms in a protein contributes to the stability of the

protein itself by excluding the nonpolar atoms from contact with water and

by packing together the atoms of the protein. The literature on proper cost

functions is enormous (46–49). In this work, we use the empirical confor-

mation energy program for peptides (ECEPP) potential energy function

version 3 (24). In this model, the lengths of covalent bonds, along with the

bond angles, are taken to be constant at their equilibrium value, and the

independent degrees of freedom become the torsional angles of the system.

The potential energy function Etot is the sum of the electrostatic term Ec,

Lennard-Jones term ELJ, and the hydrogen-bonding term EHB for all pairs of

peptides, together with the torsion term Etor for all torsion angles. The

function has the form

Etot ¼ EC 1ELJ 1EHB 1Etor; (7)

EC ¼ +
ði;jÞ

qiqj

rij
; (8)
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ELJ ¼ +
ði;jÞ

Aij

r
12

ij

� Bij

r
6

ij

 !
; (9)

EHB ¼ +
ði;jÞ

Cij

r
12

ij

� Dij

r
10

ij

 !
; (10)

Etor ¼ +
l

Ulð16 cosðhlxlÞÞ: (11)

In this model, rij is the distance between atoms i and j, and xl is the torsion

angle for chemical bond l. The bond lengths and bond angles (which are hard

degrees of freedom) are fixed at experimental values, and dihedral angles f,

c, v, and xi are independent variables. The various parameters (qi, Aij, Bij,

Cij,Dij,Ul, and hl) were determined by a combination of a priori calculations

and minimization of the potential energies of the crystal lattices of single

amino acids. As already stated, the free energy of folding of a protein consists

of the sum of contributions from the energy of its intramolecular interactions

and from the free energy of interaction of the molecule with the surrounding

solvent water; however, exact computation of the solvent contribution is very

complex (50–56).

In this study, we use the model proposed by Ooi et al. (57): they assume

that the extent of interaction of any functional group i of a solute with the

solvent is proportional to the solvent-accessible surface area Ai of group i

because the group may interact directly only with the group at this surface.

The total free energy of hydration of a solute molecule is given by

DG
o

h ¼ +
i

giAi; (12)

where the summation extends over all groups of the solute and Ai is the

conformation-dependent accessible surface area of group i, whereas the

constant of proportionality gi represents the contribution to the free energy of

hydration of group i per unit-accessible area.

The model is adopted because it is specifically designed to supplement the

ECEPP algorithm. The free energy of hydration, to be added to the ECEPP

energy, must correspond only to the additional interactions of the atoms of

the solute with water.

All the potential energy calculations have been conducted using the

Simple Molecular Mechanics for Proteins (SMMP) (58), which is a Fortran

package designed for molecular simulation of linear peptides.

Algorithm settings

Gps was tested using the settings reported in Table 1. The Latin hypercube

sampling (59) has been chosen as a method to sample the space of solutions.

In our work, two types of Search phase have been used: the initial search and

the iterative search. The first one uses the search procedure to explore the

landscape of solutions starting from a given initial point; the best point, in

terms of potential energy value, is kept as the initial point for the Gps main

loop as described previously. The second type, the iterative search, is per-

formed during the Gps loop. The number of points generated by the initial

search was set to n3 100, where n is the number of dihedral angles, because

it is crucial to find a good starting point for Gps. In the iterative phase,

however, it was set to n3 2, because it has been shown that the pattern search

phase becomes more effective than the search procedure (60). Moreover, we

use a coarsening exponent fixed to 1, and the refining exponent fixed to �1,

to prevent a rapid convergence of the algorithms and to avoid the possibility

of getting trapped in local optima. The maximum poll size (ps) is the longest

step length that the algorithm can perform; we set it to 27, because it is a good

tradeoff between the probability of making huge jumps in the solution space

and the probability of minimizing the number of discarded solutions due to

the filter constraints approach. The stopping criterion was fixed to the

achievement of a mesh with fineness 0.5; this is justified because we want to

consider only integer dihedral angles.

Metrics

In our research work, to measure the quality of the solutions found, we use a

well-known measure: the root mean-square deviation (RMSD) measured on

all atoms and on Ca atoms of our best solution found against the corre-

sponding structure stored in PDB. Moreover, for each conformation we re-

port the free energy value measured in kcal/mol. Since the RMSDweighs the

distances between all residue pairs equally, a small number of local structural

deviations could result in a high RMSD, even when the global topologies of

the compared structures are similar. Moreover, the average RMSD of ran-

domly related proteins depends on the length of compared structures, which

renders the absolute magnitude of RMSD meaningless. For this reason, the

CASP competition has focused its attention on the necessity of a reliable and

effective metric to assess the quality of the predicted structures; actually, in

CASP7, three metrics are used to evaluate the quality of the solution found:

GDT (61), MaxSub (62), and TM-score (63).

GDT tries to identify any accurately, and not necessarily contiguous,

predicted substructures. This metric attempts to find the maximum number of

predicted residues that can be superimposed over the reference structure

within a given threshold. Unfortunately, the task of finding the largest subset

of residues superposed at a given threshold is a hard problem, hence ap-

proximations need to be used.

MaxSub exploits the principles of GDT, giving a more accurate measure.

The returned value is a normalization of the size of the largest well-predicted

subset and is computed using a variation of a formula suggested by Yona and

Levitt (64). Formally, given two ordered sets of points in a three-dimensional

space, A¼ fa1, a2, . . ., ang and B¼ fb1, b2, . . ., bng, where A is the reference

structure and B is the experimental one: for each residue i, ai, and bi are the

corresponding three-dimensional coordinates. We can define a match as an

ordered set such that M ¼ f(ai, bi)jai 2 A, bi 2 Bg, where jMj # n. A match

defines an optimal transformation T that best superimposes the points of B

over A, such that T minimizes:

RMSðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+ðai;biÞ2Mkai � TðbiÞk2

jMj

s
: (13)

Here kdk2 is the Cartesian distance. The MaxSub score tries to find the

largest subsetM such that kai � TðbiÞk2 is below some threshold; it is largely

accepted to set this threshold to 3.5 Å.

The recently proposed TM-score (Eq.14) overcomes these problems by

exploiting a variation of the Yona and Levitt (64) weight factor that weighs

the residue pairs so that those at smaller distances are relatively stronger than

those at larger distances. Therefore, the TM-score is more sensitive to the

global topology than to the local structural variations. It follows the TM-

score definition

TABLE 1 Gps parameters

Settings Gps

Initial poll size 1

Max poll size 128

Poll directions 2 3 n

Coarsening exponent 1

Refining exponent �1

Search strategy Latin hypercube

Initial search generated points n 3 100

Iterative search generated points n 3 2

Fixed n as the number of dihedral angles for a given protein, the initial poll

size is the initial step length of the algorithm, whereas the max poll size is

the maximum allowed step length; poll directions are defined using the

coordinate search; coarsening and refining exponents are used to increase

the step length due to successful or unsuccessful iteration; the initial and

iterative search generated points are the points generated during the initial

sampling and the poll phase, respectively.
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TM-score ¼ Max
1

LN

+
Lr

i¼1

1

11
di

d0

� �2

2
6664

3
7775; (14)

where LN is the length of the native structure, Lr is the length of the residues

aligned to the reference structure, di is the distance between the ith pair of

aligned residues, and d0 is a scale to normalize the match difference. As

denoted by the Max function, the TM-score is the maximum value after

optimal spatial superposition.

RESULTS

In this section, we show the performances of Gps over a well-

known set of peptides. Our experimental protocol is divided

into two stages.

The first experimentation is concerned with the comparison

of Gps with another state-of-the-art pattern search-based algo-

rithm, known as mesh adaptive direct search (MADS) (60) and

parallel pattern-search swarm (PPswarm) (65), on two classic

testbeds for peptide structure prediction problem: the met-

enkephalin (PDBId.: 1PLW)and themelittin (PDBId.:2MLT).

In the second experimentation, we have tested and com-

pared Gps with PEPstr on a set of 42 bioactive peptides

proposed by Kaur et al. (36), which is the state-of-the-art for

peptide structure prediction.

Met-enkephalin

The first peptide used in our experiments is themet-enkephalin

(PDB Id.: 1PLW) (66). The met-enkephalin is a small peptide

composed of five residues that occur naturally in human brain

and in pituitary gland. This is the peptide (H-Tyr-Gly-Gly-

Phe-Met-OH), which contains 75 atoms that define 24 dihedral

angles. Despite the small length of this molecule, it has been

estimated that ;1011 distinct local minima of the potential

energy function exists for this protein (10). Due to these fea-

tures, this peptide has received a great attention for many

optimization algorithms that try to find the native structure of a

protein through the minimization of a potential energy func-

tion (9,10,67). The peptide does not define any regular sec-

ondary structure, so the bounds for main-chain dihedral angles

f, c-angles were set to�180�# f, c# 180�, and v¼ 180�;

the side-chain dihedral angles are constrained using a well-

known rotamer library (34).

We performed 10 independent runs of the Gps algorithm

starting from 10 different random conformations. The best

conformation found has a potential energy of �42.918 kcal/

mol, which reports an RMSD on Ca atoms of 0.961 Å: the

superposition with the corresponding structure stored in the

PDB is shown in Fig. 1. This prediction reports a TM-score of

0.5765, MaxSub of 0.9341, and GDT of 0.9500, which con-

firm the quality of the predicted structure. The measurements

of all predicted structures using these metrics are presented in

Fig. 2. Over the 10 runs performed, the mean energy confor-

mation is located at �39.294 6 2.37 kcal/mol; the algorithm

reaches this local optimum with an average number of 173.8

iterations, using an average number of 10281 function evalu-

ations. For this peptide the putative energy global minimum is

�11.707 kcal/mol (24). Gps successfully locates this mini-

mum after 384 objective function evaluations.

MADS and PPSwarm performs worse than Gps, as re-

ported in Table 2. MADS reported a conformation with an

energy value of �40.812 kcal/mol while PPSwarm found a

conformation with potential energy value of �37.412 kcal/

mol; the poor quality of the structure is confirmed in both

cases by a high value of RMSD.

We studied the average amount of time needed by Gps to

reach the stopping criterion. All the simulations were con-

ducted on a Pentium IV 3.0 Ghz with 256 Mb of SDRAM,

running a GNU/Linux Debian 3.1 operating system. The av-

erage time, measured using the Unix time command, is 12min

32 s; we believe that we can improve this running time by

developing a parallelGps,where in the Poll phasewe can adopt

a classical parallelization scheme for the pattern search (68).

Clustering analysis

Starting from these results, we want to study how many

distinct and locally optimal conformations have been found

by the algorithm. To obtain this information, we conducted a

cluster analysis of all the conformations produced in the best

Gps run. The clustering takes only proteins with negative

potential energy values into account, because a conformation

with positive energy is considered infeasible. It is clear that

FIGURE 1 A comparison of the structure stored

in the PDB for the met-enkephalin (a) peptide and
the structure predicted by Gps (RMSD Ca ¼ 0.981

Å) (b) and the corresponding structure superposi-

tion (c), where, in light shading, we plot the GPS

predicted structure and in dark shading, the corre-

sponding PDB structure (PDB Id.: 1PLW).
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we need a similarity function that could help us to group

similar structures together. In our work we label each con-

formation according to the Zimmerman conformational code

(69); this is a coding scheme that assigns a letter to each

residue on the basis of the value of main-chain dihedral an-

gles. In our work, for each conformation produced, we assign

the relative Zimmerman code and we group together the

proteins that have an equal code for the three central residues

(9): as a representative member of each cluster, we choose the

protein with the lowest value of the potential energy function.

Out of 12,651 protein conformations predicted, 4486 are

feasible proteins, grouped into 22 distinct clusters, and 8165

are infeasible proteins. In Table 3, we report the first five

ranked clusters. For each of them, we report the Zimmerman

code, the number of conformations that belong to it, the value

of the potential energy of the best conformation in the cluster,

and the corresponding RMSD Ca.

By analyzing the obtained clusters, one may observe that

the biggest cluster is the one which contains the best solu-

tion, in terms of potential energy value, obtained by Gps.

This is not surprising, primarily because Gps starts each

exploratory move from a single point, the best found so far,

and it tries to explore its neighborhood as deeply as possible

hoping to find something better. Moreover, the analysis of

the clusters reveals that the best conformation, in terms of

RMSD Ca, is located in the fifth cluster, where the repre-

sentative conformation has a potential energy of �37.756

kcal/mol; this result confirms that there is not a bijective

correspondence between low potential energy value and

good RMSD value.

Melittin

Melittin (PDB Id:2MLT) is a peptide of 26 amino acids that

has recently received a good deal of attention in computa-

tional protein folding (9,70). In particular, the membrane

portion of this protein has huge number of local minima,

believed to range between 1034 and 1054 (70). The membrane-

TABLE 2 Comparison between pattern-search based

algorithms on the met-enkephalin peptide (PDB Id. 1PLW)

Algorithm

Potential energy

(kcal/mol) RMSD Ca Å

Gps �42.918 0.961

MADS �40.812 3.278

PPSwarm �37.412 3.422

For each algorithm we report the best solution in terms of potential energy,

and its relative RMSD Ca.

TABLE 3 1PLW conformational clustering

Cluster

rank

Zimmerman

code

No.

conformations

Potential

energy

(kcal/mol) RMSD Ca Å

1 E*CA 4330 �42.918 0.961

2 E*HF 51 �20.673 2.010

3 E*DA 27 �38.171 1.237

4 H*CA 15 �39.741 1.364

5 E*BA 13 �37.576 0.776

For each conformation explored, we assign the relative Zimmerman code

(69) and we group together the proteins that have equal code for the three

central residues (Gly-Gly-Phe) (9); as a representative member of each

cluster, we choose the protein with the lowest potential energy value. For

each cluster, we report the number of conformations that belongs to the

cluster, the potential energy function of the representative member, and its

relative RMSD Ca.

FIGURE 2 Evaluation of all conformations

predicted by Gps for the met-enkephalin (PDB

Id.: 1PLW) using RMSD Ca, TM-score, Max-

Sub, and GDT metrics.
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bound portion of the protein is composed of 20 amino acids,

and it defines 84 dihedral angles and 402 atoms.

This peptide has two a-helices connected by a small loop

region; in this case, to study the impact of the constraints

derived from secondary structure, we perform five runs using

a fully extended representation without secondary structure

information, and 10 runs using ad hoc constraints derived

from the secondary structure as defined in Klepeis and

Floudas (16). The best conformation found by Gps using the

extended representation has potential energy of �80.817

kcal/mol, with a RMSD on Ca atoms of 5.8 Å and an average

energy solution of�71.2276 8.678 kcal/mol. One may note

that the predicted conformation is far from the native one,

which is confirmed by the Zimmerman code for the 18 central

residues (AC*CAEDACFCD*DDECEA*E), where it is

observed that the two a-helices are not defined at all. By

inspecting the results obtained using the constrained repre-

sentation, we are able to predict a conformation with a po-

tential energy of �104.349 kcal/mol, with an RMSD Ca of

3.089 Å (Fig. 3). It also reports a TM-score of 0.392, MaxSub

of 0.553, and GDT of 0.725 (Fig. 4). This prediction requires

875 iterations and 83,514 function evaluations; and the av-

erage potential energy value over the 10 runs is �94.81346
13.863 kcal/mol. By inspecting the solvation term of the

energy function, which takes a value of�20.26 kcal/mol, one

may note that the protein is well exposed to the solvent. The

putative energy global minimum of this protein is �91.02

kcal/mol (9). By inspecting the ensemble of conformations

predicted by Gps, this minimum has been located after

27,778 objective function evaluations, and its RMSD on Ca

atoms is 3.329 Å.

In Table 4, it is possible to note that, in this case, MADS

and PPSwarm also perform worse than Gps, both with and

without secondary structure information; MADS reported a

conformation with potential energy of �78.124 kcal/mol

without secondary structure information, and �94.780 kcal/

mol with secondary structure. In all the experiments, PPSwarm

does not find any feasible conformation, because all candidate

solutions have a positive energy. In particular, it traps at

100.312 kcal/mol. The application of cluster analysis to all

conformations predicted during the best run of Gps shows that,

out of 83,514 conformations, only 53,212 are feasible con-

formations, and these are clustered into one group, labeled by

the Zimmerman code AAAAAAAACDB*AAAAAAA. In

Table 5, we report the dihedral angles of the conformationwith

the lowest potential energy value compared with the dihedral

angles predicted by Klepeis et al. (9).

PEPstr benchmark

To prove the effectiveness of the Gps algorithm for the pre-

diction of the three-dimensional structure of a peptide, we

have conducted an extensive series of simulations on the

same test bed proposed by Kaur et al. (36).

This benchmark is composed of 77 experimentally deter-

mined three-dimensional structures of bioactive peptides;

only a few structures are solved using x-ray crystallography,

and most of them have NMR-solved structures. From these

77 structures, the authors excluded 35 peptides stabilized by

disulfide bridges.

The remaining set of 42 molecules can be grouped ac-

cording to their regular secondary structure: 32.3% are

a-helices, 6.9% are b-sheet, and the remaining 34.9% are

b-turns.
The authors validate their algorithm, known as PEPstr, on

this benchmark. They provide four models for each protein,

where the first model is obtained by using an extended con-

formation; the second model by using constrained confor-

mation for f, c-bound based on the regular secondary

structure information; the third model extends the second one

by introducing b-turns information; and the last one adds

side-chain angles from the rotamer library to the third model.

All these models undergo energy minimization and mo-

lecular dynamics calculations using SANDER module with

the AMBER force field, the distance-dependent dielectric

constant, and the nonbonded cutoff value of 8 Å.

In our experiments, we predict a single model, the one with

the lowest potential energy, using no secondary structure

information for peptides with ,15 amino acids; we just use

the extended conformation also when there are defined sec-

ondary structures. Moreover, for each instance, we perform

five independent runs starting from random protein confor-

mations. The results are reported in Tables 6–8, where we

FIGURE 3 A comparison of the structure stored in the PDB for the

melittin (a) peptide (PDB Id.: 2MLT) and the structure predicted by Gps

(RMSD Ca ¼ 3.0891 Å) (b).
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show the best potential energy found, the relative van der

Waals forces and solvent term, and finally the RMSD on Ca

atoms against the corresponding structure stored in the PDB.

One may note that all the structures have a negative potential

energy value, and the negative contribution by the van der

Waals forces assesses that they are feasible conformations.

Moreover, all of them are well exposed to the solvent, as it is

possible to infer from the value of the solvation term.

To compare Gps with PEPstr, we calculate the mean

RMSD Ca on all the 42 instances whereby Gps reports a

value of 3.153 Å as shown in Table 9; if we compare this

result with the best performance obtained by PEPstr, using

model IV, they report an average RMSD Ca of 4.0 Å, that is,

worse than Gps by 21.17%. It is interesting to note that Gps

performs quite well in all the instances, even for peptides that

define coil regions or b-sheet (Fig. 5). Probably, with the

addition of information on b-turns, and in general on the

regular secondary structure information for all peptides, we

can improve this performance, because the Poll phase works

better with tighter constraints.

CONCLUSIONS

The prediction of the three-dimensional structure of a protein

is one of the open problems in structural bioinformatics. In

this research work, we introduced a new ab initio protein

structure prediction approach based on the generalized pat-

tern search approach that has been proved to be effective in

many academic and real-world applications. We modeled the

peptide structure prediction as a nonlinear optimization

problem using the Gps algorithm to minimize a potential

energy function, the Ecepp/3 function, to find the near-native

structure of this kind of molecule, according to the thermo-

dynamical hypothesis.

TABLE 4 Comparison between pattern-search based

algorithms on the melittin peptide (PDB Id. 2MLT)

Algorithm

Secondary

structures

Potential energy

(kcal/mol) RMSD Ca Å

Gps yes �104.349 3.089

MADS yes �94.780 3.378

Gps no �80.817 5.800

MADS no �78.124 6.050

PPSwarm yes 100.312 7.431

PPSwarm no 100.312 7.431

For each algorithm we report the best solution in terms of potential energy,

and its relative RMSD Ca. PPswarm only returns conformations with

positive energy values.

TABLE 5 2MLT

Klepeis et al. (1) Gps

Res f c Res f c Res f c Res f c

1 69 �96 11 �74 �43 1 180 98 11 �134 72

2 �82 �28 12 �76 �30 2 �63 74 12 �101 �95

3 �66 �27 13 �148 78 3 �63 �40 13 �63 �15

4 �69 �27 14 �69 86 4 �67 �38 14 �73 �56

5 �83 �45 15 �154 173 5 �63 �46 15 �67 �28

6 �83 72 16 �57 �31 6 �67 �35 16 �68 �38

7 �64 �40 17 �56 �45 7 �65 �41 17 �65 �41

8 �66 �41 18 �82 �32 8 �63 �44 18 �68 �37

9 �70 �36 10 �68 �33 9 �64 �39 19 �60 �47

10 �76 �28 20 �79 �46 10 �78 �46 20 �76 �41

On the left, the dihedral angles of the configuration found by Klepeis et al.

(1); and on the right, the one found by Gps.

FIGURE 4 Evaluation of all conformations

predicted by Gps for the melittin (PDB Id.:

2MLT) using RMSD Ca, TM-score, MaxSub,

and GDT metrics.
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The algorithm was tested on the same set of peptides used

for the validation of the state-of-the-art algorithm known as

PEPstr; the experiments show that Gps clearly outperforms

PEPstr by 21.17% in terms of average RMSD Ca, and this

result confirms that it is a suitable algorithm for the prediction

of spatial conformations of bioactive molecules.

As future work we are currently investigating several re-

search fronts. The first one is the understanding of how the

bound settings may affect the Gps algorithm performance; in

particular, whether the use of b-turn information can help

Gps in finding good quality structures. Subsequently, we

want to extend the algorithm by using the cluster analysis as a

post-processing procedure to overcome some limitations of

the algorithm; in particular, after the optimization process, we

can apply this analysis to return the representative confor-

mation of each cluster rather than just the conformation with

the lowest potential energy value. This approach gives a

human expert the chance to decide which one is the most

biologically plausible conformation. Another research front

is the use of a more powerful heuristic search procedure than

the Latin hypercube sampling; the main exploring ability of

the algorithm relies on the Search procedure, since the Poll

phase acts as a local optimizer. It is obvious that introducing

an algorithm with a good exploring ability is a crucial point

toward improving the effectiveness of the algorithm. Finally,

we want to smooth the potential energy function landscape

by using a surrogate approach.We are working on a surrogate

definition of the PSP, where we tackle the optimization of the

surrogate function by using some derivative-based optimi-

zation tools or some quadratic programming procedures, and

then by moving the solution to a nearby mesh point, hope-

fully to obtain a better next iterate. This is the approach usedTABLE 7 Testbed 2 (14aa-17aa)

PDB

Id. Length

Energy

(kcal/mol)

van der Waals

(kcal/mol)

Solvation

(kcal/mol) RMSDCa Å

1a13 14 �81.31 �54.59 �42.30 4.480

1gjf 14 �134.76 �64.55 �71.06 4.800

1d7n 14 �82.85 �51.55 �26.33 1.883

1niz 14 �126.73 �54.39 �71.53 4.983

1dn3 15 �148.26 �75.05 �59.58 1.266

1gje 15 �142.22 �81.62 �60.48 3.784

2bta 15 �186.65 �70.24 �100.32 4.595

1akg 16 �114.01 �60.26 �54.13 3.872

1id6 16 �150.92 �73.69 �74.42 4.952

2bp4 16 �229.66 �108.58 �93.42 0.917

1e0q 17 �112.63 �57.65 �59.05 4.256

Results obtained by Gps on the PEPstr benchmark: for each instance, we

report the potential energy, the van der Waals term, and the Solvation energy

term; moreover, we report the RMSD Ca for the best-found conformation in

terms of potential energy.

TABLE 8 Testbed 3 (18aa-20aa)

PDB

Id. Length

Energy

(kcal/mol)

van der Waals

(kcal/mol)

Solvation

(kcal/mol) RMSDCa Å

1b03 18 �151.19 �48.43 �99.56 3.802

1d9m 18 �186.78 �119.02 �61.96 3.471

1hu5 18 �185.00 �78.53 �88.55 2.973

1pef 18 �199.27 �126.92 �51.64 0.595

1rpv 18 �325.44 �104.75 �169.72 1.988

1ien 19 �222.49 �115.12 �85.01 4.588

1jav 19 �222.99 �134.39 �72.91 2.082

1kzv 19 �192.77 �104.29 �71.12 2.087

1p0j 19 �207.27 �109.56 �84.33 2.538

1p0l 19 �217.24 �116.91 �85.23 1.497

1p5k 19 �238.50 �118.71 �93.09 1.581

1d9p 20 �188.79 �123.90 �55.44 2.281

1odp 20 �280.39 �133.94 �110.42 1.712

1sol 20 �204.45 �80.73 �88.919 3.060

Results obtained by Gps on the PEPstr benchmark: for each instance, we

report the potential energy, the van der Waals term, and the Solvation

energy term; moreover, we report the RMSD Ca for the best-found

conformation in terms of potential energy.

TABLE 9 Comparison of PEPstr and Gps results

Algorithm Model

Average

RMSD Ca

PEPstr I 7.1 Å

PEPstr II 4.4 Å

PEPstr III 4.1 Å

PEPstr IV 4.0 Å

Gps — 3.153 Å

PEPstr produces four models: model I uses extended conformations; model

II uses regular secondary states; model III regular states and b-turns; and

model IV extends model III using the xi angles from rotamer library (34).

Gps outputs one model, and it uses secondary structure information only for

instances with at least 15 amino acids. It turns out that Gps outperforms

PEPstr of 21.17% on average RMSD Ca.

TABLE 6 Testbed 1(9aa-13aa)

PDB

Id. Length

Energy

(kcal/mol)

van der Waals

(kcal/mol)

Solvation

(kcal/mol) RMSDCa Å

1egs 9 �46.64 �28.81 �25.30 2.343

1c98 10 �82.40 �46.30 �37.71 3.925

1i83 11 �111.26 �51.80 �60.41 3.978

1i93 11 �134.00 �50.59 �79.21 3.858

1i98 11 �150.67 �54.82 �85.24 4.177

1qs3 11 �113.98 �51.53 �60.60 3.277

1qcm 11 �55.64 �23.63 �36.86 0.720

1m02 12 �118.26 �54.42 �64.08 3.055

1in3 12 �132.88 �60.15 �66.92 3.302

1cnl 12 �127.01 �58.75 �67.62 4.261

1l3q 12 �112.30 �54.51 �52.85 4.635

1d6x 13 �170.07 �78.88 �81.10 3.931

1g89 13 �142.77 �73.163 �66.82 2.501

1hje 13 �90.99 �50.39 �45.28 4.431

1im7 13 �78.73 �51.68 �39.96 4.354

1lcx 13 �160.05 �90.26 �53.26 2.547

1not 13 �123.78 �57.18 �67.22 2.973

1qfa 13 �165.03 �61.62 �95.77 4.295

Results obtained by Gps on the PEPstr benchmark: for each instance, we

report the potential energy, the van der Waals term, and the Solvation

energy term; moreover, we report the RMSD Ca for the best-found

conformation in terms of potential energy.
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in the Boeing Design Explorer software (21), and it is a vi-

sionary research topic for the protein structure prediction

problem.
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