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Abstract

We prove local and global regularity for the positive solutions of a quasilinear variational degenerate
equation, assuming minimal hypothesis on the coefficients of the lower order terms. As an application we
obtain Holder continuity for the gradient of solutions to nonvariational quasilinear equations.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decades some papers have been devoted to the study of local regularity properties
for linear degenerate elliptic equations. We are interested in the case in which the eigenvalues
associated to the principal part of the operators are controlled by a Muckenhoupt weight of the
class Aj. In this direction previous results are contained in the papers [2,4]. In [2] the authors
study the linear degenerate homogeneous equation

—(aijitx,)x; = 0. (1)
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The equation is degenerate in the following sense
I >0 A wl|E? <aj(0)EE <AwlE]* ae. x € 2 and VE € R”, )

where w is a function in the Muckenhoupt class A;.

For Eq. (1) Harnack inequality and subsequence interior and boundary smoothness results are
proved in [2].

The degenerate equation in which a potential appears, has been treated by Gutierrez in [4].
There he considers the equation

—(ajjux)x; +Vu =0, 3)

where the potential V is assumed to be in a Stummel-Kato type class. For solutions of Eq. (3)
Harnack inequality and Holder continuity have been proved.

Similar regularity results have been obtained in [7] for the following complete linear degen-
erate equation with all the coefficients in some Morrey classes

—(@jjuy; +dju)x; + biuy, +cu= f — (hi)y. “4)

The assumptions on the lower order terms are minimal in the sense that they are necessary too
(see e.g. [1,6] for the linear uniformly elliptic case) at least in some cases.

The purpose of this note is to study the local regularity of weak solutions for quasilinear
degenerate elliptic equations of the following kind

bo
—(@jjuy, +dju)y; + 7w|Du|2 + by, +cu=f — (hi)y. (5)

Here the equation is degenerate in the sense (2) and the lower order terms belong to Morrey
classes. We stress that Eq. (5) has quadratic growth in the gradient.

We obtain our regularity results by showing that positive weak solutions of Eq. (5) satisfy
a Harnack inequality (see Theorem 3.3). As a consequence of Harnack inequality we obtain
interior and boundary Holder continuity of the weak solutions of Eq. (5).

Inspired by the technique in [3,5], we extend the results in [7] to Eq. (5) in which quadratic
growth in the gradient is allowed (bg # 0).

Moreover, we also show C ! estimates for a nondivergence type quasilinear degenerate equa-
tion of the following kind

Qu:aij(x,u,Du)uxixj +b(x,u, Du) =0. (6)
2. Muckenhoupt weights and related Sobolev and Morrey classes
In this section we collect some definitions and known results we will use in the sequel.

Let w be a nonnegative function, locally integrable in R” and 1 < p < +o00. We say that w is
an A, weight and write w € A, if

! d ! _Tlld p_l—C
sgp(mfw(x) x) (mf[a)(x)] x) =Cp < 400,

B B
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where the supremum is taken over all balls B in R". The number Cj is called the A, constant
of w.

Functions in A, enjoy several properties. Denoted by B, (x) the ball centered in x with ra-
dius r, we recall the doubling property, i.e. there exist positive constants Cy > 1 such that

o (Bar (x0)) < Cqo (B (x0)),

for every xg € R, r > 0, where w (B, (x()) = fBr (xp) @A

Any w € A, defines a measure. We can define weighted Lebesgue and Sobolev classes by
using the measure w(x) dx.

Let £2 be an open bounded set in R”.

Definition 2.1. Let w be an A, weight with 1 < p < 0o. We say that a locally integrable function
u belongs to the weighted Lebesgue space L” (2, w) if

lullLr(2.0) = (/ ‘u(x)}pa)(x)dx)p < +o00. (7
2

Let k be a positive integer. We say that a locally integrable function u belongs to the weighted
Sobolev class, Wk’p(.Q, w), if u and its distributional partial derivatives Uy, 1<ji <n,
foralli =1,2,..., k belong to the weighted Lebesgue class L? ($2, w).

lij'"xji s

The weighted Lebesgue classes L”(§2, w) are Banach spaces with respect to the norm (7)
and, in particular, Hilbert space if p = 2. The weighted Sobolev classes WX?(§2, w) are Banach
spaces with respect to the following norm

letllwiop(@,) =l Lr(2.0) + Z Z ety s, 120 (2.0 ®)
{j1,J25eJi}
We denote by W, p (£2, w) the closure of the smooth and compactly supported functions in

WkP (2, w) with respect to the norm (8).

We can define the classes L{Z)C(.Q w) and W1 P(£2, w) in a similar way. We state an embed-

ding theorem for weighted Sobolev spaces.

Theorem 2.1. Let w be an Ay weight. There exist constants Co and § > 0 such that for all
u € Cy°(82) and for all T satisfying 1 <t < .25 +8

”u”L2T(_Q 0) X <Cgq ||VM||L2(Q w)?
where Cg depends only on n, the Ay constant of w and the diameter of §2.

Proof. See Theorem 1.3in [2]. O

Now we define the weighted Morrey classes (see [6]).
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Definition 2.2. For any locally integrable function V in §2 and o € R we set

4R
1 )
Vlieg= sup — f V@)f————%mwwy
g YeR ro ‘ | a)(BS(x))
O0<r<2R {yef2: |x—y|<r} l[x—y|

If ||V]ls.52 1s finite we say that the function V belongs to the class M, (£2, w).

We remark that w = 1 gives back the classical Morrey classes.
The following result will be quite useful in the sequel.

Theorem 2.2. Let V : 2 — R" be a function such that % € My (82, w). Then for any 0 < & < 1
there exists 6 > 0 such that

f|V(x)\u2(x)dx gg/ }W(x)\za)(x)dx+Ce—5/u2(x)a)(x)dx,
2 2

Q
forallu € C3°(82), where C is a constant depending on v, o, n and || % lo.2-

Proof. See Theorem 2.7in[7]. O
3. Harnack inequalities for variational quasilinear equations

In this section first we prove an invariant Harnack inequality for a quasilinear equation with
quadratic growth in the gradient.

Let £2 be a bounded domain of R" and @ a Muckenhoupt A, weight. Let {a;;(x)} be a matrix
of measurable functions in £2 satisfying the following ellipticity condition

I > 0: A w(0)|E]? <aij(0)EE < Ao (x)|E]*  ae. x € L2 and VE e R". 9)

Consider the equation

b
~(aijws, +djw)s; + 30 Dl +biwy, +cw = f — (hi)s,. (10)
where
b \? di\? hi\?
bOER\{O}’ <_) ’£a<_> ’i’<_> EMO’(Q’G))’ 0>O (11)
w w w w w

Definition 3.1. We say that w € Wli)’cz(.Q, w) is a local weak supersolution (subsolution) of (10)
if ¥ € Wy > (£2, ), with ¢ >0

bo
/[(aiij, +djw)ex; + (Twll)wl2 + biwy, +CW><P] dx > (<)/(f¢ + hy@x;) dx.
Q2 Q
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We say that w € WIL’CZ(Q, w) 1s a local weak solution of (10) if w is a supersolution and a
subsolution.

Now we prove

Theorem 3.1. Let w be a weak nonnegative supersolution of Eq. (10) in a ball B3, € §2. Assume
(9) and (11). Let M > 0 be a constant such that w < M in B3,. Then there exists ¢ depending

onn, M, A and the A, constant of w, such that
1
(hi )2 2
w o, B3r .

Proof. We may assume r = 1. Let k = ||£||(,,B3 + (Z?Zl ||(%)2||(,’B3)% and v =w + k. We
take ¢ (x) = n%(x)vP (x)e 1PV B < 0 as test function, where 1 € Cé (B3), n > 0. Since w is
supersolution in B3 of (10) we have

f

w

n
+ (r" E
o, B3r

i=1

B,

a)_l(Bzr)/wa)dxéc{minw—l—rg
B

/[zn(aiiji —|-de — h])nx] vﬁe_|b0|v
B3

+ (—I,Blvﬁ_1 — Ibolvﬁ)nze_w("”(aiiji +djw — hj)uy,

b
+ Towlleznzvﬁe_lb‘)'v + (bjwy, + cw — f)nzv’ge_“"’l”] dx >0,
and

fnze_|b°|”(bovﬂ + 1B1vP ) DvPwdx
Bj

g/nze—'bO'”(|b0|vﬁ+|ﬁ|v/3—‘)|1)v|2wdx
Bs

g)»/nze_wm”(lbolvﬂ—i— Iﬁlvﬁ_])aijvxivxj dx

Bs3
gx/nze—"’olv(wwﬁ—l + |bolvP) (hj — djw)vy, dx
B3
—I—Z)»/n(a,-jvxi —I—djw—hj)nxjvﬁe_w()'”dx—I—/boa)lelznzvﬂe_'bO'”dx
B3 Bj
+k/(b,~vxl. +cw — f)n*vPePolv gyx. (12)
B3

From (12) it follows
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/nze_|b°|”|ﬁ|vﬁ_1|Dv|2wdx
B3

< Af n*e” P (181071 + 1bo vP) (hj — djw)vy, dx

B3

+ 2?»f n(aijvy, +djw — hj)n vPe ™ ax
B3

—i—)»f(wai +cw — fHn*vPePolv gx.
B3

Since v 1s bounded we may drop the exponential to obtain

fn2|ﬁ|vﬂ—1|1)u|2wdx
B3

< c(M, bo) [n f na;jvynx, 0P dx + 1B f |djlvy [P n” dx
B3 Bj

—I-Z)»/|dj|v’3+1nxjndx—|—2)u/|hj|vﬂ77xj77dx+)L/|b,-||vxi|772v’3dx
B3 B3 B3

+Afcn2vﬂ+ldx+kf|f|n2vﬂdx
B3 B3

+)~|,3|/hjvxjvﬂ_1772dx+)»/Idjllvlenzvﬂdxi|.
Bj B3

Now, set

w w

 |bi|? |d; | ! 2x il
V= E —— 4k - E .
+ lc| + E " +kT|fl+k
i=1 j=1 i=1
Use of Young inequality yields

/nzvﬂ_1|Dv|2wdx
B3

2
<c(M, bo,,\)[%%l/vﬁ“u)mzwdwr('mﬂH) fvnzvﬁ“dx].

Bj Bj

We get the thesis arguing as the proof of Theorem 4.1 in [7]. O
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We state the following weak Harnack inequality for subsolutions.

Theorem 3.2. Let w be a weak nonnegative subsolution of (10) in B3, € 2. Assume (9) and
(11). Let M > 0 be a constant such that w < M in B3,. Then there exists ¢ depending on n, M,
A and the Ay constant of w, such that

hi\?

w

1

2
o, B3,

f

w

+ (r“ 2":
" i=1

max w < c{a)_l(Bzr) / wodx +r°
o, B3,
By

The proof closely follows the lines of the previous one.
Putting together our previous results we obtain

Theorem 3.3. Let w be a weak nonnegative solution of (10) in B3, € §2. Assume (9) and (11).
Let M be a constant such that w < M in B3,. Then there exists ¢ depending on n, M, A and the

Ao constant of w such that
) 1
w 0, B3,

Our next step is to show a Harnack inequality near the boundary of £2 for weak supersolutions
and subsolutions to Eq. (10) when d; = 0 and ¢ = 0, namely for the equation

f

w

+ (r(’ Xn:
o, B3,

i=1

maxw < cyminw + r?
B, B,

bo
—(@ijwy)y; + oI DwP + biwy = f = (hi)y;. (13)

Let B, be a ball such that B3, N §2 # (). We define f = 0 and h; = 0 outside £2. If w is a weak
supersolution we set

min{w, m} ifx € 2N By,

'D(x):{m if x € R"\ (2 N By,

where m = infyong,, w.

Theorem 3.4. Ler w € W12(2 N Bs,, w) be a weak nonnegative supersolution of (13) in £2 N
Bs,. Assume (9) and (11). Let M be a constant such that w < M on §2 N B3,. Then there exists

¢ depending on n, M, X, the Ay constant of w such that
2 3
h:
(—’) . (14)
w o, B3,

Proof. We may assume r = 1. Set k = ||£||U,B3 + o ||(%)2||a,33)% and v =W + k. Let
ne Cé (B3) and 1 > 0. For B8 < 0 we take ¢(x) = n?[vf — (m + k)Ple~1olv() ¢ W(}’z(B3, w) as
test function. Since w is a supersolution of (10) we have

f

w

Br o, B3r

a)_l(BZV)/lZ)a)dxéc{minzI)—l—r"
B2r

n
+ (r" Z
i=1
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/nze_w("”[bo(vﬂ —(m+ k)ﬂ) + Iﬂlvﬁ_l]lel%)dx

Bj

< x/ n2e Pl [1bol (v — (m + K)P) + 1BV vy, dx
B3

+2)»/ n(aijvxi —hj)r;xj (vﬂ —(m _|_k)ﬂ)e—|bo|v dx
B3

+ fb0w|Dv|2n2(vﬁ — (m+ k)ﬁ)e—lbolv dx
B3

“/ bive, — (v = m+ k)P )™ dx.
Bs3

Then

fn2e—"’0'”|ﬁ|uﬂ—1|1)v|2wdx

B3

< A/ n2e 0 [bo] (v — (m +k)P) + |BIvF kv, dx

Bj

+ 2)\/ n(aijvxi — hj)f]xj (vﬁ —(m +k)ﬁ)e—|bo|v dx
B3

+A/(bivxi — HHn*(vF — (m +k)P)e~ 0l ax.
Bj

The result follows as Theorem 3.1 since v — (m + k)f <vf. O

Now, let w be a subsolution of (13). We define the function

B(x) = max{w, M} ifx e 2N Bz,
R B if x € R\ (£ N Bs)),

where M = supyonp, W-

Theorem 3.5. Ler w € W12(£2 N By, w) be a weak nonnegative subsolution of (13) in 2 N B3,.
Assume (9) and the conditions (11) for b;, f and h;. Let M be a constant such that w < M on
£2 N B3,. Then there exists ¢ depending on n, M, A and the A, constant of w such that

91,) )

f

w

r

max w < c{a)_l(Bzr) / wwdx +r°
B2r

+ (r" z”:
o,B3,

i=1
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4. Global regularity for variational quasilinear equations

In this section we derive local Holder continuity of weak solutions of (10) as a consequence
of Harnack inequality.

Theorem 4.1. Let w be a locally bounded weak solution of (10) in §2. Assume that (9) and (11)
hold true. Then w is locally Holder continuous in §2.

Proof. Let 2’ € 2 and B, (xg) = B, C 2'. Set M = M (r) = maxp, w, m = m(r) = ming, w.
We note that M — w is a nonnegative bounded solution of

b
—(agijwy; +djw)y; — Toa)llez—l—b,-wxi +cw=cM — f—(Md; — h;)y,

in B,.
We also note that

w w

Mc—f (Md;— fi\*
< f,( : f’) eM,(2,w), o>0.

Moreover

C
Ll —
w

N

HMc—f

OV,Bp U,Bp w O',Bp

and

n

(2)

Md; — £ \?
()

n n
> <’y
i=1 P i=1

o,B 0,B, i=1 0,B,
for every B, C £2'.
By Harnack inequality
. r\’ c f
sup(M —w) < C{inf(M —w) + | = L|— + | =
By By 3 Dl lI@lse

(2)

()

)

M(r)—m(%) <C{M(r)—M<g)+Hr%}, (15)

|6 (g

n
+2)°
2 i=1

g,

and then

where we put
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1 o
S CRC = N o
3 10,02 @102
+ (—) 217 ( —’) +2 ) :
3 i1 w 0 i—1 0,82
Arguing in the same way we obtain

M(%)—m(r)gc{m<g>—m(r)+m%}, (16)

where C and H are as in (15).
Adding (15) and (16) we get

c

w

[Q

()

g,

Set, for p > 0
é(p)=M(p) —m(p),
C—-1
= —
C+1
and
2C
K=———H,
C+1
we have

¢<£> <¢<g> <Op(r)+Kr5, 0<r<R,

and the conclusion follows by Lemma 5.1 in [7]. O

In order to get regularity up to the boundary of the domain we need some geometric assump-
tions.

Definition 4.1. Let £2 be a domain in R” and x( € 9§2. We say that £2 satisfies the condition A,
at xq if there exist positive constants Ry and A such that

(B, (x0)\ 2) _

A, O<r<Ry.
w (B (x0))

We say that £2 satisfies the condition A, if it satisfies the condition at any point of the boundary.
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Condition A, has been already considered in [2]. In the case w = 1 the A, condition gives
back the outer sphere condition.

Using the geometric assumption A, we give an estimate for the oscillation of solutions near
the boundary.
Theorem 4.2. Let 2 be a domain satisfying the A,, condition at xo € 382. Let w € W12(2, )

be a locally bounded weak solution of (13). Then, there exists Ry > O such that for any ball
B, (x0), with 0 < r < Ry we have

0sC wgc{ro’(RO_“ sup |w|>+ 0sC w—|—(rR0)U/4H},
B,N$2 BRomQ BWOBQ

where Ry is the number in Definition 4.1 and H = || % lo.2 + Qo ”(%)2”0,9)%.

Proof. Let M(p) = SUpp N W and m(p) = infp ne w. Letr < Ro/3, the functions M (3r) —w
and w — m(3r) are supersolutions of (13), then by (14) and A,, condition, we have

M(4r) — M < c[M(4r) = M(r) + 172 H]
and
m —m(4r) <c[m() —m@r) + 72 H],

where M = supp, nyo w and m = infp, Ny w.
By addition we obtain

M(r) —m(r) <O[M4r) —m(@dr)] + M —m +cr/*H,
from which applying Lemma 8.23 in [5] we obtain the thesis. O
By the interior regularity Theorems 4.1 and 4.2 we get
Corollary 4.1. Let §2 be a domain satisfying A, condition. Let w be a bounded solution of
(13) in §2. Assume that oScp, (xpna2 W — 0, as r — 0 for all xo € 0§2. Then w is uniformly
continuous in §2.

5. Interior regularity for nonvariational quasilinear equations

In this section we prove Holder continuity estimates for the first derivatives of W22(£2, w)
solutions of the following equation

Qu =a" (x,u, Du)uy,x; +b(x,u, Duy=0 in L. (17)

We assume that the functions a'/ (x,u, p), b(x, u, p) are differentiable in £2 x R x R” and the
following degenerate ellipticity condition to hold true:
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dA > 0: fora.e.x € 2, Vu e R, Vp e R" and V& e R”

W lo@EP <Y a (x,u, p)EE; < o ()€ (18)

ij=1
Theorem 5.1. Let u € Wl%)f (£2, ) be a solution of Eq. (17). We set

aij (x, u(x), Du(x))

f(x)= sup{}af,j (x, u(x), Du(x)) , b(x, u(x), Du(x))|}

and assume that (g)2 € M, (82, w) for some o > 0.
Let B, be a ball in S2. Assume that there exist M and K such that |Du| < M and

ij
12 (x,ua()x(zc,)Du(x))l < K in B,. Then there exists 0 < a < 1 such that |Du| is a-Holder continu-

ous in B, and, for any 0 < p <r we have

0 o
oscuxlgc(—), I=1,2,...,n,
B, r

where oo > 0 depends on A,n, M, K and the A, constant of .
Proof. Letu bea WI%)’Cz(Q, w) solution of (17)and k =1, 2, ..., n, we have
f(aif (¢, 1, D)y, +b(x,u, Du))gpy, =0 Vo € Wy (B, o). (19)
B,
By density argument we may assume u € C>(B,). Then

ij ij ij
/Cl ](xa u, Du)”xixj(ﬁxk dx = /(_axkuxin(p —ay ”xk”xixj(p
B, B,

im ij
- apj uxjxk Uxix,, ® — A juxinXk §0) dx (20)
and

ij — ij ij
_/ajuxinxk(de—/(ajuxjxkﬁaxi +ax,-uxjxk§0
B, B,

+ a;j Uy Uxix P + aymuxmx,- Uxjxy §0) dx, (21)
from (20) and (21) it follows
/ {aijuxkxj Ox; T (all’h/ U xi Wx jxi + ajuxkxj + b;(juxin)(p + b‘/)xk } dx =0, (22)
By

where
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a,,{ —apm(x u, Du)—a’m(x u, Du),

a/—au (x,u, Du)uy, —I—a (x u, Du),

b;{f = —a(x,u, Du)uy, — a)lcjk(X,M,Du)-

Letn>0,ne C (Br), we choose ¢ = u,, n(x), as test function in (22) and we get

ij 1 ij 1 ij
a- UxpxUxpx; T + Ea Ux Nx; + Eam Uxpxi Vx;1
By,

1 ’
+ Eaj Ux; N+ szuxl.xjuxkn + bAun + buy, 1y, } dx =0, (23)

where v = |Du|2.

Set w;r =yuy, +vand w; = —yuy, +vforl=1,...,nand y = 10nM. Now we denote by
w the function wl+. After substituting k =/ and ¢ = n from (23) and (22) we obtain

ij 1 ij 1 [
a uxixkuxkxjn+ Ea wxj+bux,-+§yb8i Nx; dx

r

= _/ {iaféuxmx, Wy, + Eaijj + (Eybéj + b uy +b3ij)“xw }”dx'

r

Then

/(aiijj + 2buy; + yb(Sf)nxi dx
B,

< /{—2r1a)}D2u|2 — g Uy Wy, — T Wy, — (vbi; + 2bf;u, + 2b5; Dy, Jndx

B,
!
< [{-2alp2uP + (L)) 10 +10ulr + Dl s fnas
B, m,i
\f{ ~27 | D2ul? 437 | D2l + Zamwx,)2
B,

21
+27 | Dw|? + f +a7! |D2u\2}ndx

2
<c(K, M) {w|Dw|2—|—f—}ndx. (24)
w

r
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From (24) the function w(x) is a subsolution in B, to the following equation

—(@ijwy,)x; — (K, Do|Dw|* = fg —(FW), ., (25)
where
a;j(x) =a" (x,u(x), Du(x))
and

Fi(x) = =2b(x, u(x), Du(x))uy, (x) — yb(x, u(x), Du(x))é!.

Note that F; <c(M) f,i=1,2,...,n, that implies (%)2 € M, (B,) and

()], <1
w MG<BV>\ w

The function w,; satisfies an inequality similar to (24).

Ma(Q).

Now, fix 0 < p < min{l, %r} and choose r < n such that

oscuy, zoscuy, Vi=1,2,...,n.
B3, Bs),
+ — ot o — apy—
We have (w™ =w,", w™ =w,")

oscw™’ < osc(10nMuy,) + 0sCp,, |Du|2
B3, B3, )

n
2
< lOnM%scuxr + %sc (Zuxl)

30 3\ iz

n
< 10nM oscuy, +2M osc Z”xz' < 12nM oscuy, (26)
B3, B3, P B3,

and

B3, B3,

n
oscw™ > 10nM oscuy, — 0SCp;, <Zui> = 8nM oscuy, .
; B

In the same way

8nMoscuy, <oscw < 12nMoscB3puxr.
B3, B3,
In order to estimate the oscillation of w* and w~, set W* = supg, w; and W~ =
supp, W, . The functions W — w™ and W~ — w™ are supersolutions of (25) and then, by
Theorem 3.1 (writing W — w instead of W — wt or W~ — w™) we easily get
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¢y Y.))

< C(W —supw + ,oa/zL), 27)
By

n
+ <,0" Z
o,B,

i=1

a)_](sz) f (W —w)wdx < c(W —supw + p°
B>y Br

where L is a constant depending on || (g)2 lo.2-
As a consequence of (26) we have

2:(WJ—r —w®) =supw ™ +supw” —2v
+— B3, B3,

>supw +supw” —2supv

B3, B3 Bsp
> sup(10nMu,,) — inf(10nMuy, ) +2inf v — 2supv
Bs, B3, B3y Bs,
1
> 10nM oscuy, —4nM oscuy, > — 0sc wt  Vx e Bs,. (28)
B3, B3, 2 B3,

The following inequality holds true for w™ or w™. Let us write if it is true for w™

1
—oscwt < inf(WJr — w+) < a)_l(ng) / (WﬁL — w+)a)dx
B3, B,
By,

by (27) we give an estimate for the oscillation of w, i.e.

oscw’ < C(W+ —supw™ + pg/zL) < c<osc wT —oscw™ + p"/2L>,
B3y B, Bs, B,

from which

oscwt < (1 =1/c)oscw™ + p?/°L.
By B3,

Now we can apply Lemma 5.1 in [7]. There exist two positive constants & < 1 and k such that

oscwt < kp?,
By

from which

oscuy, <cp* Vi=1,...,n. O
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6. Boundary estimates for nonvariational quasilinear equations

Let 2 C R” be of class C!-! and consider the operator Q satisfying the condition (18) in £2.
Let u € W>2(82, w) be a solution of Qu = 0 such that u = 0 on 352.

Theorem 6.1. Let 952 be of class cll ye w22

low (82, w) be a solution of (17) such that u =0
in 052. Suppose that, set

f(x)= sup”a,ij (x, u(x), Du(x))|, |aij (x, u(x), Du(x))|, |b(x, u(x), Du(x))‘},

(£)? € My (2, ).
Moreover, if Vx € 082 there exists a ball B = Bgr(x) such that |Du| < M and

ij
lap (o). Duo))| < K in BN §2, then Du is Holder continuous in B N §2.

w(x)

Proof. By the hypothesis on 952, it suffices to consider Eq. (17) in the neighborhood B of
a flat boundary portion of £2 such that the hypothesis of the theorem holds true. Let BT =
BN CRL and BN 3R CORL. In BT define v/ = Y '~ uy,|?, w = yuy + v/, with
[=1,2,...,n—1and y € R. It results w =0 on B N d£2 and, as in Section 5, w satisfies
an inequality as (24), that implies that w is a subsolution in B of the equation

2

—(rjwy,)x; — %wﬂ)wﬁ = — — (F),. (29)

Take B,(y) C B with y e BN a2, p < %r and choose r such that for/ =1,2,...,n — 1,
0SCB , (y)NB+Ux, = 0SCpy (yynp+Ux. Set W = SUPg,, (y)npB+ W> aS (28) we obtain the estimate

—~——

(for definition of W — w see Section 3)

~——

a)_l(sz(y)) / (I/I7\—/u))a)dx > a)_l(sz (y)) / (W —-w)wdx
By (y) B, (y)NBT

o +
R AL e AL

By, (y)NB* (B (y))
>c¢ inf (W—w)>c inf (W—uw)
By, (y)NBT B3, (y)NBT

> osc  w,
BTNB3,(y)

since, if y = (y1, y2, ..., p/2) it results
®(B2p(y) N BT) = w(By(3)) = co(Bay (3)) = co(Bap(y))-
Then, using Theorem 3.4 we obtain that for any ball B,(y) C B with y e BNd§2 and p <r

osc  uy, <cp¥, i=12,...,n—1.
BTNB,(y)
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Now, let B @ B, d =dist(B'NBT,0B),xoc B NBT, p<d/3andne Cé(sz(xo)) such
that 0 <n <1, n=11in By(xp), and [Dn| < 2/p. Let C = infp,,(x,) w if Bzp(x0) C BT and
C =0if By, (xp) N 9S2. Consider the function ¢ = n> sup(w — C, 0)elbolsup(w=C.0) — 3,29, plbolv
it results ¢ > 0 in B, 9 € Wy *(B™).

We prove the inequality

/ n2|Dw|2a)dx<c/[n2+|Dn|2v2]a)dx.
{xeBt: w>=C} Bt

Since w is a subsolution in BT of (29) we have

b
f[(aiiji — Fj)ox; — TOwIlezw] dx < f fedx,
Bt

BT
that is
‘/“aujuu,—— ) [2n, v 4 2P0 (1 1 by fv) o, ] d
bo 2 2. |bolv
< Ta)'le + f |n“ve dx.
B+
Then

/ 2elbolv (pov + 1) | D w dx

B+
/nze|b°|”(|bo|v+ 1)|Dv[wdx

BT

/ nze|b°|v(|b0|v + 1)a,-ijl. wy; dx
Bt

Af“ﬂ‘”W%ﬂmww%”+#ﬂﬁ+wwmwﬁwyu
B+

+/bowlDw|2n2Ue|b°|vdx+A/fnzve“’o'”dx,
B+ B+

from which and since v is bounded

/nlevlza)dxécf[(Fj—a,-iji)nnxjv—l—nsz(l+|b0|v)vxj]dx+cffnzvdx
B+ B+ B+
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< (M, bo) f[nIDwIIDnlvw+ Finnx,v + 0> Fjvx, +n* f]dx

BT

FZ
ééfn2|Dv|2wdx+c(M,bo)/|Dn|2v2w—|—fn2(u—i—f)dx.
W
BT

B+ BT

Using Theorem 2.2 we obtain
f 772|Dw|2a)dx <c(M, by, k) f[nz + |Dn|2v2]a)dx.
{xeB*T: w>C} B+

Now, if By, C BT we have

1
/ |Dw|2a)dx < ca)(BJr N sz)(l +— sup v2>
P~ B+tNB,
{xeB,NB*: w>C}

1 2
<co(BTNB 1+—( 0sc w) < cw(By,)p2® 2,

Consider y =1and y =0toobtainforr=1,...,n—1

/ |Du,, Pwdx < 2'/(|Dv/|2 + |Dw|2)a)dx < cw(Byp)p®* 2.
B, B,

If By, N 052 # ( take z € By, M 352 to obtain

f |IDw>wdx < c / [ + 1D (w(x) — w(z)*Jodx
{xeB,NBt: w>0} BY
1 2
<C(1)(B+HB2,O)(1+_2< 0SC w) )
Y B+ﬂsz

< cw(Byp)p** 2,

from which forr=1,...,n—1

f |Du, |Pwdx < 2/(|Dv/|2 + Dw*)wdx < cw(Bay)p™ 2.

B,NB~+ B,

Then we have proved Vy e B NB', p<d/3andr=1,...,n—1

( / |Du |2a)dx)l/2<c(a)(B 1/2 a—1
x < 20)) TP (30)

B,NB+



G. Di Fazio et al. / J. Differential Equations 245 (2008) 2939-2957 2957

Moreover, since uy, x, = _ﬁ(z(i,j)#(n,n) Ajjly;x; + b) the estimate (30) holds also for r = n.

Finally by Holder inequality, inequality (30), definition of A, weights and doubling property

of
% %
/ ‘D2u|dx<< / }D2u|2a)dx) ( / a)_ldx>

B,NB~+ B,NB+ B,NB+
1

oa—1 : —1 2 n+a—1
Scp” w(Byp)? w dx ) <c(d)p :

By
Apply Lemma 7.19 in [3] to obtain that Du is Holder continuous in BN Bt. O

Finally we obtain the global estimate

Theorem 6.2. Let 052 be of class CM and u € W*2(2, w) be a solution of (17) such that u =0

ij
in 992, If (£)? € Mo (2, w) and 0L K and |Du| < M in 2, then Du is Holder
continuous in 2.
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