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Abstract. SET (Secure Electronic Transaction) is a suite of protocols proposed by a consortium

of credit card companies and software corporations to secure e-commerce transactions. The

Purchase part of the suite is intended to guarantee the integrity and authenticity of the payment

transaction while keeping the Cardholder’s account details secret from the Merchant and his choice

of goods secret from the Bank. This paper details the first verification results for the complete

Purchase protocols of SET. Using Isabelle and the inductive method, we show that their primary

goal is indeed met. However, a lack of explicitness in the dual signature makes some agreement

properties fail: it is impossible to prove that the Cardholder meant to send his credit card details to

the very payment gateway that receives them. A major effort in the verification went into digesting

the SET documentation to produce a realistic model. The protocol’s complexity and size make

verification difficult, compared with other protocols. However, our effort has yielded significant

insights.

Key words: electronic commerce, security protocols, inductive definitions, deductive verification,

Isabelle.

1. Introduction

Recent years have seen substantial progress in the formal verification of security

protocols. Detailed analysis of cryptographic primitives, verification of Internet

standards, and substantial progress in the automation of model checking and new

automatic verification tools have boosted a field that outsiders believe populated

by BYet-Another-Look-at-Needham-Schroeder^ papers. The Internet Key Ex-

change protocol [23], the Cybercash protocol [18], and TLS (the latest version of

SSL) [31] have all yielded to automatic or semi-automatic tools. The full analysis

of SET Y the Secure Electronic Transaction protocol, developed by Visa and

Mastercard Y has proved to be the toughest challenge.

1.1. THE CHALLENGES OF SET

Why is SET such a challenge for formal verification? The first hurdle is the sheer

size of the documentation [19Y22], which amounts to over 1,000 pages. The
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second, more substantial obstacle is the protocol’s complexity. Academic

protocols are typically short, almost straight-line programs; they seldom go

beyond two levels of encryption and generate few secrets. Internet protocols such

as IKE and TLS use cryptography rather sparingly compared to SET. SET has

many features that make its verification hard:

Y Multiple-nested encryptions and duplicate message fields require abbrevia-

tions. Most proof tools must expand abbreviations in order to reason about

them, but for SET this yields huge expressions.
Y Ubiquitous generation of random numbers and keys can cause a state-space

explosion in finite state methods. The standard model-checking technique

of allowing only a handful of nonces and keys would not even allow a

single execution to complete, let alone two or more parallel ones.
Y Many other protocol paths make it hard to single out the few key roles

used either by manual analysis (as in the strand space model) or by model

checkers to restrict the search space.

SET’s use of alternative protocol paths is not bad design but is driven by real

requirements. For example, security-aware Cardholders may have preregistered

with a financial institution and thus secured their credit cards against the

Merchant’s eyes. Other Cardholders may decide to trust the Merchant and thus

be content with a transaction secured against the outside world. From a Merchant’s

perspective, all Cardholders should be able to conclude a purchase, whether they

bothered to preregister or not.

The complex structure of SET makes it a benchmark for security protocol

design and verification, whether or not it is a commercial success. For example,

digital envelopes [33] are used in all practical public key protocols such as PGP,

and understanding what formal guarantees they offer is vital. If verification

techniques are ever to have industrial applicability, then they must be evaluated

on major protocols such as SET.

1.2. OUR CONTRIBUTION

We have devoted approximately 6 man-years to a research project on ver-

ifying the SET protocol using the inductive method and the Isabelle proof as-

sistant. In previous papers, we have published an overview of our project

[7], brief [8] and detailed [6] analyses of SET’s Registration protocols, and a

brief analysis of SET’s Purchase protocols [5]. The present paper completes

the presentation of the project with a full, detailed analysis of SET’s Purchase

protocols.

We have followed the guidelines set out in the previous papers for a careful

simplification of SET to make its analysis tractable (the full protocol has hundreds

of fields) while retaining the most important mechanisms. Our simplified version
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is still one of the most complex protocols ever to be analyzed formally. Particular

attention is devoted to the protocol’s key construct: the dual signature. This

mechanism lets the Cardholder agree the order details with the Merchant while

hiding those details from the bank. At the same time, it lets the Cardholder share

his credit card details with the bank while hiding them from the Merchant. The

purpose is simply privacy: there is no reason for the bank to know what sort of

goods the Cardholder buys, any more than there is a need for the Merchant to

know the Cardholder’s bank details. The dual-signature mechanism can be used

in other multiparty protocols, as it does not require complicated group-

cryptography.

We found that, on the whole, dual signatures work. Credit card details do

remain confidential; all parties can be sure that they are dealing with the same

transaction, even if they have only partial information. However, SET omits an

important field from the dual signature, violating Abadi and Needham’s [2]

explicitness principle. So, some guarantees are weaker than they should be Y
particularly for the Payment Gateway, who is supposed to authorize transactions.

It is impossible to prove that the Cardholder intended to share his credit card

details with the Payment Gateway who is participating in the protocol to

authorize the payment. A Merchant, in cooperation with a Payment Gateway,

could cause payment to take place through a different Payment Gateway without

the Cardholder’s knowledge or consent. Although this scenario is not an attack

on SET’s main objectives of integrity, authenticity, and privacy, it violates the

Cardholder’s expectations. A simple change to the protocol can fix this problem.

From a verification perspective, our result shows that the inductive method

(supported by a powerful prover such as Isabelle) can scale up to protocols as

complex as SET. However, we are near the limit of tractability for our approach.

Better automation or user interfaces are needed for more complex protocols or

more detailed models of SET.

In the next sections we present an overview of SET (Section 2) and of its

Purchase protocols (Section 3). We discuss the formal model, presenting the

protocol rules in Isabelle syntax (Section 4). Then we discuss successful and

failed proofs (Sections 5 and 6). Changing perspective, we consider the difficulty

of the proofs purely as automated reasoning problems (Section 7). The paper

continues with a discussion of related work (Section 8) and concludes with some

suggestions for future research (Section 9).

2. SET Overview

Most Internet Merchants use the SSL protocol to prevent eavesdroppers from

learning Cardholders’ account details, adopting the classical idea that bad persons

are always outsiders. This arrangement has two major limitations:

Y Cardholders must trust Merchants to keep these details secure, when

Merchants may be dishonest or incompetent [27].
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Y Merchants must trust Cardholders, when Cardholders can repudiate their

purchases or submit stolen credit card numbers.

Visa and Mastercard designed the SET protocol to solve these problems by

keeping sensitive information confidential and by authenticating Cardholders and

Merchants to financial institutions and to one another [20, page 6]. To achieve

these goals, SET comprises five main subprotocols:

Y Cardholder Registration allows a Cardholder to register a credit card with

a Certification Authority. The request includes the Cardholder’s public

signature key and a secret nonce. The outcome of registration is a public-

key certificate that includes the hash of the credit card number (called the

primary account number or PAN) and of a secret nonce (PANSecret), with

the same role of the PIN for physical cards. This phase is expected to run

only once during the enrolment of the Cardholder.
Y Merchant Registration allows a Merchant to register both a signature key

and an encryption key. Once again this phase should be run only once for

each credit card brand.
Y Purchase Request allows Cardholders to place orders with Merchants.

Normally, this should take place after both Cardholder and Merchant have

registered. The specification leaves this option open for Cardholders who

wish to Purchase without having registered a public key.
Y Payment Authorization follows or is combined with Purchase Request. It

allows a Merchant to verify the Cardholder’s details with a Payment Gate-

way, which authorizes the transactions.
Y Payment Capture is used by Merchants for the actual funds transfer at the

end of the protocol suite.

Here is the protocol in brief. Cardholders and Merchants should register with

Certificate Authorities before making purchases. Known fraudsters may be

blocked at this stage. Registered principals can then engage in business. During

the Purchase protocols, a combination of digital signatures and hashes allows the

Cardholder to make purchases without sharing account details with the Merchant

and without sharing order information with the Payment Gateway.

3. The SET Purchase Protocols

Before going into details, let us point out some distinctive features in the design

of the Purchase protocols.

The first idea is to use Digital Envelopes. Asymmetric encryption is too slow

to be used for anything other than key distribution. Symmetric encryption is fast

and can handle bulk data, but it is bidirectional and offers no proof of origin. So,

if Alice wants to send a long message M to Bob, she generates a symmetric key

K, encrypts K using Bob’s public key, and encrypts the message M using K.
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Some types of digital envelope bundle K with an additional short message m and

with the hash of M, or the hash of both m and M, and so on. The intuition is that a

digital signature binding the symmetric key encrypting M with the hash of M
yields a proof of origin also for M. The SET Books [22] and the PKCS Standard

[33] discuss the implementation and the cryptographic security of digital envelopes.

The second idea is the Dual Signature. This combination of hashes and digital

signatures lets several parties agree on a transaction without giving each of them

a complete view of the transaction. It avoids resorting to general cryptographic

access structures.

Suppose that Alice wants to sign two documents O (for Order) and P (for Pay-

ment) but wants to show to Bob only the O part of the transaction and to Charlie

only the P part. Then she sends to Bob O, the hash of P, and the dual signature,

namely, the signature of the concatenation of the hash of P with the hash of O.

Clearly Bob can verify the signature because he has the hash of P and can

generate the hash of O. Then, she sends to Charlie P and the hash of O, together

with the same signature, which he can verify. Although Charlie does not know

what is in O and Bob does not know what is in P, they can agree that Alice

signed O and P.

Using a further level of encryption, we can use Bob to forward the message to

Charlie: Bob receives O, the hash of P, and the dual signature, plus P encrypted

with Charlie’s public key (so that Bob cannot read it). Then Bob checks the

signature as before and forwards to Charlie the hash of O, the dual signature, and

the encrypted part P. Charlie can remove the encryption layer and verify the

signature. Still Bob does not know P and Charlie does not know O. In summary,

the protocol runs as follows:

1. A! B: O, Hash(P), SignpriSK A(Hash(O), Hash(P)), CryptpubEK C(P)
2. B! C: Hash(O), SignpriSK A(Hash(O), Hash(P)), CryptpubEK C(P)

This protocol does not protect Alice from Bob’s or Charlie’s misbehaving.

She must trust Bob and Charlie not to exchange O and P covertly. SET observes

the trust assumptions of the credit card domain. In particular, it assumes that

merchants and banks will obey privacy regulations, if only because it is in their

commercial interest. Because SET authenticates the parties, anybody who does

break the law can be positively identified.

REMARK 1. In the real world, digital envelopes and dual signatures speed

the underlying cryptography. In the formal model, they complicate symbolic

analysis by introducing duplications.

Since the symbolic hash of M is not shorter than M (formally M is a subterm

of Hash(M)), sending the symmetric encryption of M with the asymmetric

encryption of the hash of M duplicates the symbolic term describing the message

M.
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To make the presentation readable Y both below and in the formal specifica-

tions Y we introduce many abbreviations. The messages blow up dramatically

when abbreviations are unfolded. Yet, without abbreviations the protocol would

be unreadable. Hence, as we have noted already, automated support for handling

abbreviations and automatically folding or unfolding them on demand is a must

for formal analysis of such large scale protocols.

The Purchase protocols are considerably more complicated than the de-

scription given above. They involve interaction among three parties and several

different protocol paths. Purchase Requests may be signed or unsigned, de-

pending on whether the Cardholder has run the Registration protocol. Payment
Authorization may be invoked during Purchase Request, or authorizations may

be batched for processing later. Other complications include split shipments and

payment by instalments.

Here, we combine Purchase Request with Payment Authorization, yielding in

effect a six-step protocol.

REMARK 2. For sake of readability, the version presented in this section is

simpler even than the one that we modeled and verified in Isabelle: certificates

are omitted, and the PKCS digital envelopes [33] are replaced by simple public-

key encryption. Readers interested in a realistic model of digital envelopes

should consider using the Isabelle model detailed in Section 4.

Reducing the SET Purchase protocols to our formal model has not been

trivial. A number of tricky issues in the modeling are discussed elsewhere [8].

Our model provides both signed and unsigned versions of Purchase Request

and of the main round of Payment Authorization: Authorization Request and

Authorization Response.

3.1. INITIAL SHOPPING AGREEMENT

The Cardholder and Merchant agree on the order description (Order-Desc) and

the purchase amount (PurchAmt). This agreement step, called the SET Initiation
Process in the Programmer’s Guide [22, page 45], is not part of SET and occurs

just before it. There are suggestions in the SET External Interface Guide [19],

but they are not part of the official protocol: the SET Initiation Process is not

defined in the Formal Protocol Definition, and the Programmer’s Guide [22,

page 45] expects that Bstandards will be developed to address how this

information is exchanged and how the SET protocol is initiated.^
SET’s system of transaction identifiers is elaborate. The Programmer’s Guide

states that the Merchant originally identifies the transaction from the identifier

LID_M (if the Cardholder sends it) or out of band otherwise [22, page 310].

After that, the parties use a different transaction identifier, XID: BXID is a

transaction ID that is usually generated by the Merchant system, unless there is
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no [Purchase Initialization Response, Section 3.3], in which case it is generated

by the Cardholder system^ [22, page 267]. In the latter case, the Merchant

identifies the order by scanning the order description according to out-of-band

agreements.

We decided to resolve SET’s complicated system of transaction identifiers by

Y requiring presence of the initial message where the Cardholder sends

LID_M, so that
Y the Merchant is responsible for generating XID, which is used to identify

the current transaction.

Should the Merchant fail to choose a globally unique XID, a dishonest

Cardholder could collude with a dishonest Merchant and have a transaction

authorized by a Payment Gateway. The dishonest Cardholder could purchase the

same goods from an honest Merchant by replaying the Gateway’s authorization

from the other session. The honest Merchant would commit to sending the goods

but receive no payment.

3.2. PURCHASE INITIALIZATION REQUEST

The Cardholder sends the Merchant a freshness challenge (Chall_C) and a local

transaction identifier (LID_M).

C! M : LID-----M;Chall-----C ð1Þ

3.3. PURCHASE INITIALIZATION RESPONSE

The Merchant replies with a signed message that includes a freshness challenge

(Chall_M) and generates a nonce that serves as the globally unique transaction

identifierj XID. Also returned (but omitted below) is the public-key certificate

of a Payment Gateway, which is determined by the Merchant’s bank and the card

brand. In our formalization, a certificate is merely a message containing an

agent’s name and public key, signed by the Root Certification Authority.

M! C : SignpriSK M LID-----M; XID; Chall-----C; Chall-----M
� �

ð2Þ

3.4. PURCHASE REQUEST

The Purchase Request is the most interesting message in SET. The Merchant and

Payment Gateway must agree on the Cardholder’s purchase, although each of

j Ba randomly generated 20 byte variable that is globally unique (statistically)^ [22, p. 267].
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them gets only partial information: the Merchant should not know the card

details, and the Payment Gateway should not know what is being bought. To

meet this objective, SET uses a dual signature: the Cardholder signs the

concatenation of the hashes of the Payment Instructions PIData and the Order

Information OIData. He combines this with the card details PANData, including

the PAN and other secret numbers, CardSecret and PANSecret, which help to

authenticate him. Then he encrypts everything using the Payment Gateway’s

public key, pubEK P. He sends this to the Merchant, along with the Order

Information and the hash of the Payment Instructions.

C! M : PIDualSign;OIDualSign ð3Þ

Here, C has computed

HOD ¼ Hash OrderDesc;PurchAmtð Þ
PIHead ¼ LID-----M;XID;HOD; PurchAmt;M;Hash XID;CardSecretð Þ
OIData ¼ LID-----M;XID;Chall-----C;HOD;Chall-----M

PANData ¼ PAN;PANSecret

PIData ¼ PIHead;PANData

PIDualSign ¼ SignpriSK C HashðPIDataÞ;Hash OIDatað Þð Þ;
CryptpubEK P PIHead;Hash OIDatað Þ;PANDatað Þ

OIDualSign ¼ OIData;Hash PIDatað Þ

An unsigned Purchase Request Y formally modeled but not shown here Y
obviously lacks this combination of digital signatures and hashing. It authenti-

cates the Cardholder by using the hash of the PANSecret. Though it does not

offer the guarantees of a digital signature in terms of proof of origin, it is still

better than sending the credit card details to the Merchant.

3.5. AUTHORIZATION REQUEST

After receiving the Purchase Request, the Merchant seeks authorization from a

Payment Gateway. First, he verifies the dual signature, using the hash from the

Payment Instructions. He also verifies the Order Information. He takes the

Payment Instructions (which he cannot read) and combines them with

transaction identifiers and the hash of the Order Information. This combination

is signed by the Merchant and then encrypted by using the Payment Gateway’s

public key.

M! P : CryptpubEK P

�
SignpriSK M

LID-----M;XID;Hash OIDatað Þ;HOD; PIDualSign
� ��

ð4Þ
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3.6. AUTHORIZATION RESPONSE

The Payment Gateway verifies the dual signature using the hash from the Order

Information. Then, he checks that the Cardholder and Merchant agree on the Order

Description and Purchase Amount by comparing certain hash values.j Finally, he

verifies the Cardholder’s secret account information, using the Cardholder’s

certificate. If satisfied, he confirms authorization to the Merchant by signing a

brief message containing the transaction identifier and purchase amount.

P! M : CryptpubEK M

�
SignpriSK P

LID-----M;XID;PurchAmt;AuthCode
� �� ð5Þ

What if authorization is denied? In SET, the Payment Gateway always responds

to the inquiries of the Merchant, even when authorization is denied. Thus, the

actual authCode field may be a Byes,’’ a Bno,’’ a Bcontact-human-at-800-SET-

HELP,^ and so forth. For simplicity, our model assumes that principals return

only Fyes_ answers and otherwise abandon the session. Other researchers might

analyze the security of the protocol when both Byes’’ and Bno’’ answers may be

returned.

3.7. PURCHASE RESPONSE

The Merchant now sends a similar signed message to the Cardholder. It contains

the hash of the Purchase Amount, which the Cardholder can verify. Disputes are

resolved out of band.

M! C : SignpriSK M LID-----M;XID;Chall-----C;Hash PurchAmtð Þ
� �

ð6Þ

4. The Formal Model

We use the Isabelle proof assistant [26] with the inductive method of protocol

verification introduced by Paulson [29] and extended by Bella [9]. The

operational semantics assumes an infinite population of agents obeying the

protocol and a dishonest agent (the Spy) who can steal messages intended for

other agents, decrypt them using any keys at his disposal, and send new messages

as he pleases. Some agents are compromised, meaning the Spy has full access to

their secrets.

Each agent has two asymmetric key pairs, one for signature and one for

encryption. Apart from the Spy, agents are of four kinds:

Y Certificate Authorities, which sign certificates for other agents, are written

CA i (for i Q 0).

j He compares the HOD he receives by message 4 signed by the Merchant with the one he

receives in the dual-signature PIDualSign.
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Y Cardholders are written Cardholder i .
Y Merchants are written Merchant i .
Y Payment Gateways are written PG i .

The Root Certificate Authority is CA 0 . It is abbreviated as RCA , and the

model assumes it to be uncompromised. Any other agents may be under the

Spy’s control. Protocol properties can usually be expected to hold only if

the agents involved are uncompromised, though many compromised agents may

be present.

A protocol is modeled by the set of all possible traces of events that it can

generate. Events are of three forms:

Y Says A B means A sends message X to B .
Y Gets A X means A receivesj message X
Y Notes A X means A stores X in its internal state.

Each protocol step consists of many preconditions (typically referring to previous

messages being received or fresh keys being generated) and a postcondition

(some new messages are sent or stored).

The Purchase protocols are specified in about 230 lines of Isabelle text,

including some comments but excluding the general SET public-key model

(which totals nearly 1,700 lines). Unsigned purchases add several rules to the

specification, namely, the unsigned Purchase Request itself and its handling by

the Merchant and Payment Gateway.

4.1. PROTOCOL RULES FOR INITIATING A PURCHASE

We devoted much thought to modeling the SET Initiation Process (see also

Section 3.1). This was essential because to prove that all parties agree on the

details of a transaction at the end of a run, we must be precise about what

transaction is being made at the start of the run. Two issues were particularly

delicate.

The first issue is modeling the transaction identifier. Once the identifier is

fixed, one can state claims such as Bif the Cardholder signed a transaction

identified by X, then the Merchant record of the transaction identified by X
matches with the record of the Cardholder.^

REMARK 3. The problem of identifying a transaction in e-commerce

protocols is similar to that of of identifying a run in authentication protocols.

Identifying a run has been considered tricky in the literature, and a number of

papers in the mid-1990s have set out contrasting opinions: for example, Lowe

j Since all messages can be intercepted and redirected by the intruder that manipulate the

network, we ignore the sender field in the received message.
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[17] and Gollmann [13]. After over a decade of discussion, it is now accepted

that nonces or keys created in an authentication protocol are the run identifiers.

Our efforts confirm that the most appropriate identifier for a transaction of SET’s

Purchase protocols is the Merchant’s choice of XID.
The second issue is the choice of the agent responsible for labeling the

transaction with the identifier. This choice has major implications for the

underlying trust assumptions. If Alice is responsible for assigning transaction

identifiers, then all proofs about the authenticity of the transactions must assume

that Alice is honest, since otherwise she could simply assign the same identifier

to two different transactions.

As remarked above (Section 3.1), we had to

Y find a way to bootstrap the SET Initiation Phase by out-of-band means,
Y find an identifier for the transaction, and
Y find the agent responsible for identifying the transaction.

The first step is less trivial than it seems. If we assume that initiation takes

place over the network, it becomes impossible to prove anything: the intruder

could have changed the details of the transaction from the outset. In practice, the

initiation phase might be protected by a weaker protocol, such as SSL.

We have modeled the bootstrapping step with two simultaneous events that

are not sent over the network: one from the Cardholder and one from the

Merchant. Each stores LID_M together with the transaction details; the Merchant

also stores the Payment Gateway’s name. We have chosen XID for the identifier

and mandated the first two messages (optional in the specification), making the

Merchant is responsible for generating XID appropriately [22, page 267]. Recall

the discussion in Section 3.1 and Section 3.3.

Figure 1 presents three rules of the inductive definition, as they are given to

Isabelle, showing how we model the SET Initiation Process and the SET system

of transaction identifiers.

The first rule, Start , shows how we formally model the out-of-band agree-

ment that we have informally described above. The Cardholder C and Merchant

M somehow agree on a Transaction specified by OrderDesc and PurchAmt .

No messages are sent, but both parties simultaneously record the transaction

using a Notes event each. The rule refers to a given trace, here called

evsStart . The trace evsStart is a possible sequence of events that happened

so far. The constant set--pur denotes the set of traces belonging to the SET

purchase. So, by evsStart 2 set--pur we simply denote the fact that this trace

must belong to the set of traces of the protocol. Assumptions of the form LID--M

=2 range . . . help Isabelle’s simplifier and are acceptable because a transaction

identifier can be discerned by its length from the credentials, CardSecret and

PANSecret , that the Cardholder obtained from the Registration protocol [6].

Similar assumptions are made about Chall--C and XID in the next two rules.

The second rule, PInitReq , formalizes the actual beginning of the protocol. It

VERIFYING THE SET PURCHASE PROTOCOLS 15



sees the Cardholder simply send LID--M paired with a nonce challenge. The third

rule, PInitRes , formalizes the Merchant’s response, where he chooses and

sends XID . The signature primitive has the obvious definition.

signKX ¼¼ X ; CryptK Hash X Þð j gjf

We tried various ways of formalizing the initial bootstrapping phase, and

other researchers may make different choices. For example, in a previous version

of our model, XID was generated by using an uninterpreted injective function

from the transaction details. This model simplified many proofs, essentially

because it was not possible for a bad agent to use the same identifier for different

Figure 1. Start, initialization request/response in Isabelle syntax.

16 GIAMPAOLO BELLA ET AL.



transaction. Loosely speaking, the same Order and the same Purchase Amount

always yielded the same identifier and the unique identification of the transaction

was guaranteed by construction. Yet, even in this simplified model, we could not

eliminate from many theorems the assumption that the Merchant was honest.

This disturbing fact led us to a more sophisticated model where responsibility

for choices of identifiers and transactions details were made explicit. In the

refined model, the reason behind the trust assumption is clearer. For example,

the need for trusting the Merchant in theorems about agreement between the

Cardholder and Payment Gateway appears in step Start : the Merchant is

responsible for choosing the Payment Gateway for future protocol steps. This

admits the possibility of undesirable collusion with the Payment Gateway Y see

the later discussion in Section 6 Y though opinions differ on whether it is an error

on the part of SET’s designers.

4.2. THE SIGNED PURCHASE REQUEST

Figure 2 presents part of the rule modeling the signed purchase request. Let us go

through it in some detail. The rule refers to a given trace, here called evsPReqS .

Condition C ¼ Cardholder k defines a local abbreviation: C stands for the

Figure 2. Signed purchase request in Isabelle syntax.
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kth Cardholder. He is the active principal in this rule. Recall that we have no

limit to the number of Cardholders. The condition CardSecret k m 0 checks

that this kth Cardholder is registered: the CardSecret field belongs to the

certificates exchanged by the Merchant and the Cardholder. It is fixed to 0 if the

Cardholder did not bother to register his public key with a certification authority.

The conditions Key KC2 =2 used evsPReqS and KC2 2 symKeys say that KC2

is a fresh symmetric key.

The next line, Transaction = . . . refers to the transaction details agreed by

the Cardholder and the Merchant in the Start rule. The next several lines,

starting with HOD and ending with OIDualSigned , express the construction of

the dual signature. To this purpose, the general SET model defines the EXcrypt

construct as follows:

EXcrypt K EK M m ¼¼ Crypt K M ;Hashm jg; Crypt EK KeyK; m jj gf jj gfjf

Here EK is a public encryption key, K is a symmetric key, and M and m are

fields Y note that m appears twice. Next come the rule’s preconditions: the

Cardholder agreed on the transaction details with the Merchant (the Notes C

event), he sent the Purchase Initialization Request to the Merchant (the SaysC M

event), and finally he received the Purchase Initialization Response (the Gets C

event). These steps are those described in the actual SET protocol (see Section

3). Skipping to the conclusion, we find the current trace being extended with a

SaysC M event, whereby C sends the dual signature, and a Notes C event,

whereby he notes down the fresh symmetric key and its recipient.

4.3. PROTOCOL RULES FOR COMPLETING A PURCHASE

Figure 3 presents the Isabelle formalization of the next two messages, which

belong to the separate Authorization Request protocol. Let us briefly examine

AuthReq , in which the Merchant contacts the Payment Gateway. By Key KM

=2 usedevsPReqs and KM 2 symKeys we pick a fresh symmetric key. Next,

through Transaction = . . . , we refer to the stored transaction details; then we

calculate HOD to be the hash of the Order Description and Purchase Amount and

calculate the Order Information evsPReqs from various known quantities. The

Gets M event refers to the Merchant’s reception of the Purchase Request. If all

is well, then the trace is extended with a Says event from the Merchant to the

Payment Gateway. This event uses the EncB primitive, which stands for

encapsulation with baggage. It is defined in terms of the simple encapsulation

primitive Enc as follows:

EncB SK K EK M b ¼¼ Enc SK K EK M ; Hash M ; bj jf g;M ; bj jf g
EncSK K EK M ¼¼ Crypt K sign SK Mð Þ;Crypt EK Key Kð Þj jf g
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Take particular note of the condition

CardSecretk 6¼ 0!
P--I ¼ signðpriSK CÞ HPIData ; Hash OIDataj jf g;encPANData jg;jf

If this Cardholder is registered, then we verify the dual signature by checking

that the signed hash HPIData equals the hash sent as the third component of

Figure 3. Authorization request and response.
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the Purchase Request, and verify that the second component of the dual signature

equals the hash of OIData . These essential checks can be neatly expressed

without resorting to equality tests in the precondition of the rule: where two

fields have to agree, we simply give them the same variable name. The same

technique is used to express the Payment Gateway’s verification of the dual

signature.

Figure 4 contains the Purchase Response sent from the Merchant to the

Cardholder. It is very simple, containing the transaction identifiers, Cardholder’s

nonce challenge, and hashed Purchase Amount, all digitally signed by the

Merchant.

During the moding stage, the support for equational reasoning in Isabelle

allows one to express messages like Purchase Request succinctly. Unfortunately,

Isabelle’s simplifier expands equations during proofs, producing subgoals many

pages long. Handling such huge formulas requires additional memory and

processor time and makes great demands on the human verifier. (See further

discussion in Section 9.)

4.4. AN ASIDE ON DIGITAL ENVELOPES

Equations are necessary in our SET formalization because messages have many

repeated fields. We have seldom used them before, even for complex protocols

such as TLS or Kerberos. A message containing both M and Hash M involves a

repetition of M when it is treated formally.

Figure 4. Purchase response.
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Further repetitions arise from the EXcrypt digital envelope, as observed in

the previous section. We could simplify this to a simple public-key encryption, as

we have done in our informal presentation of the SET Purchase protocols on

Section 3. Our first proofs made this very simplification. They were useful for

identifying the main guarantees to be verified. However, the simplification

resulted in a considerable loss of precision. The digital envelope not only admits

the possibility of the symmetric key’s being compromised but binds the message

components more loosely. If we model the digital envelope by the direct

encryption Crypt EK {jM , m j}, then M and m can only be compromised

together. In the model, one can lose the symmetric key, thus disclosing M to the

spy, without disclosing m . This difference in the security level is also witnessed

by the difference of importance between M and m in the actual SET protocol.

The message M , protected by a symmetric key, merely contains the order

information (so what if the spy discovers your bad taste in music?), while m ,

protected by a public key encryption, contains the credit card details (deserving

of stronger protection). The current formalization includes full digital envelopes,

which makes the proofs considerably more complicated.

5. Verified Properties

The Formal Protocol Definition [21] does not formally specify the goals of SET.

All we have are the explicit but imprecise requirements from the Business
Description [20, page 6], which we quote here:

1. Provide confidentiality of payment information

2. Ensure integrity of all transmitted data

3. Provide authentication that a Cardholder is a legitimate user of a branded

payment card account

4. Provide authentication that a Merchant can accept branded payment card

transactions.

Such goals are of course broader than the ones that can be actually

formalized, as they include business notions such as existence of trust relations.

At this stage, a modeling decision must be made. We have used our judgment to

transform these vague goals into a possible equivalent notion in the formal

domain. Other researchers might have chosen different formalizations. We

address the first two business requirements as follows:

1. Provide confidentiality of the PAN and the PANSecret between (uncompro-

mised) cardholders and payment gateways, because this is the relevant

payment information that remains in our modelj

j For instance, we have dropped the Bank Information, assuming that it is encoded in the PAN.
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2. Ensure integrity of all transmitted data that is signed by some uncompro-

mised party

These intermediate requirements are expressed as a number of theorems,

which are presented below. Note that the second requirement implies that every

message that appears to come from a certain party actually does come from that

party, or else that party has been compromised.

Dealing with the last two business goals requires the combination of the

results in this paper and our account on the cardholder and merchant registration

phases [6]. To provide authentication that a cardholder is a legitimate user of a

credit card brand means that there is a chain of trust from the cardholder digital

credentials (PAN and signature key) and the credit card Issuer. For merchants,

providing evidence that they can accept branded credit cards means that there is

chain of trust from their digital credentials (public key for encrypting data sent to

them, and private key signing data sent by them) to the corresponding SET

authorities.

In the SET registration paper, we showed that Cardholders and Merchant can

safely register their keys and that the confidentiality of the PAN coming from the

SET Certification Gateway is also protected. If a Cardholder has a valid

certificate from a SET Root, then he is a legitimate user of a credit card. Here, we

start from the public/private key pairs of Cardholders and Merchants and

combine the results of the previous paper with those of this paper each time we

state in the hypothesis of a theorem that Cardholders or Merchants are not

compromised.

Back to the formal model, our proofs followed the usual pattern suggested by

Paulson [29]: possibility properties, regularity properties, secrecy properties, and

finally the integrity and authenticity guarantees for the SET participants, namely,

the Cardholder, Merchant, and Payment Gateway.

Possibility properties affirm that the protocol can run from start to finish and

therefore that message formats are consistent between rounds. Possibility

properties are logically trivial but are nontrivial to verify because of the size of

the protocol. They say nothing about security but constitute a vital sanity check

on the protocol definition. They are essential for protocols as complex as SET,

where human experts cannot even read the complete view of the entire detailed

and unfolded protocol. The formalized protocol may be secure simply because it

cannot be run! Many researchers appear to ignore this sanity check. For the

Purchase transaction, we proved possibility properties for both the signed and

unsigned message flows.

Regularity properties are obvious consequences of the model: private keys

cannot become compromised during a run, certificates signed by the Root

Certification Authority are correct, and so forth. Their proofs are usually

straightforward applications of induction followed by simplification and a small

amount of classical reasoning.
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As for secrecy properties, first we must prove that the symmetric keys used in

digital envelopes are secure. From this lemma, we can prove that nonces

encrypted using those keys are secure. Using these two lemmas, we can show

that the first business requirement Y confidentiality of the payment data Y is

satisfied. In particular, we have proved that both the PANSecret and the

Cardholder’s PAN remain secure. In one sense, these proofs require significant

effort because their proof scripts occupy a substantial part of the proof script.

However, thanks to Isabelle’s level of automation, we proved them easily by

building on our previous work on the Registration protocols [6]. Here is one

example. A similar theorem expressing confidentiality of the PANSecret is not

shown.

THEOREM 1 (PAN Secrecy, Signed). If the Spy can get the PAN of a registered
Cardholder, then the Cardholder has previously issued a Purchase Request
involving a compromised Payment Gateway.

Recall that compromised means under the Spy’s control. This theorem is

presented formally to illustrate how properties are specified in Isabelle.

By analzðknows Spy evsÞ we denote the set of all messages that the Spy

can deduce from his knowledge of the events of the generic trace evs. The

inequality CardSecret kÞ m 0 expresses that Cardholder k is registered. The

existentially quantified variables refer to the unknown (and irrelevant) items in

the Purchase Request that was sent to the bad Payment Gateway (called P ).

Referring to the format of the Signed Purchase Request in Section 3 and in

Figure 2, we see that the only relevant detail is PANData .

The proof, a typical confidentiality argument, involves induction followed by

heavy equational simplification and the automatic elimination of trivial cases. It

relies on a lemma on PANs that is proved by similar methods. The version for

unsigned Cardholders must be stated and proved separately because the Purchase

Request message has a different format.

The remaining theorems are essentially integrity and authentication proper-
ties. We adopted as a general guideline that the Cardholder, Merchant, and

Payment Gateway should agree on all relevant details of the transaction. The

Payment Gateway knows the Purchase Amount and credit card details. The
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Merchant knows about the Order Description and Purchase Amount. The

Cardholder knows both sets of information.

Most of these guarantees involve verifying digital signatures. Some of them

also apply to unsigned purchases. On the whole, they are easily proved by

induction; the most difficult ones rely on lemmas also proved by straightforward

inductions. The main results appear below. Note that assumptions of the form A

=2 bad state that agent A is uncompromised. In some cases they are reasonable:

when stating a guarantee for a Merchant, it is realistic to assume that the

Merchant himself is uncompromised. In this case we do not mention it. In all

other cases they mark an important assumption on our trust model: who, beside

the partners of a message exchange, must be trusted for the protocol to be secure.

THEOREM 2. When the Merchant receives Authorization Response from a
trusted Payment Gateway, he knows that the Payment Gateway signed it,
including the transaction identifiers and the purchase amount, which the
Merchant can separately confirm.

Here is the Isabelle formulation:

Notice the condition PG j =2 bad : if the Merchant can trust the jth Payment

Gateway to be uncompromised (in both his data and his private keys), then

Authentication Responses allegedly from the jth Payment Gateway do indeed

come from him. The first conjunct in the conclusions of the theorem also tells us

that the Payment Gateway has received the message with the authorization

request and the corresponding XID.

The statement BWhen the Merchant receives Authorization Response^ is not

modeled literally, which would require a Gets event. Instead, we use the

following condition:

Crypt ð priSK ð PG jÞÞ ðHash MsgAuthResÞ 2 parts ðknows Spy evsÞ
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In plain English, it says BWhen the relevant part of the Authorization

Response appears in the traffic.^ Indeed, knows Spy evs represents all past

traffic, and parts denotes all parts of messages present there Y whether they are

visible to the Spy or not. This condition is necessary for the proof because,

otherwise, the inductive hypothesis would be too weak.

Unfortunately, this theorem does not let us conclude that the Payment

Gateway associates the transaction with this particular Merchant: the variable M

in the conclusion is existentially quantified. That is because the Authorization

Response message does not refer to M ; abstractly, it is encrypted using M ’s

public key, but the digital envelope weakens that linkage. As so often in SET,

signed messages lack explicitness: they should name the relevant parties rather

than relying on the uniqueness of session identifiers.

THEOREM 3. When the Merchant sees a dual signature from an uncompro-
mised Cardholder, he can check (using LID _M ) that it was intended for him and
was issued by the Cardholder.

Here is the formal version of this statement:

Notice the condition C =2 bad : The Merchant must assume that the

Cardholder is uncompromised. This assumption may seem dubious, but it makes

sense here. The intuition is that if a Cardholder has been compromised, her keys

could be used by the Spy to sign arbitrary messages. No protocol can

authenticate a user whose private keys are in the hands of hackers.

The remaining main theorems are for the Payment Gateway and the

Cardholder and concern the last steps of the protocol.

THEOREM 4. When a Payment Gateway sees a dual signature from
uncompromised Cardholder and Merchant, he can verify that it originated with
the given Cardholder for a transaction with the given Merchant. He can also
verify that the Merchant intended him to handle the transaction.

The formal version makes clear the requirement that the Merchant and

Cardholder must be uncompromised. The conclusion asserts the existence of the
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Merchant’s Notes event from the initial shopping agreement and confirms the

Cardholder’s sending a signed Purchase Request.

THEOREM 5. When the Cardholder receives Purchase Response from an
uncompromised Merchant, he knows that the Merchant sent it. He also knows
that the Merchant received a message signed by a Payment Gateway chosen by
the Merchant to authorize the purchase.

In the formal version, we see that the Merchant must be uncompromised. The

conclusion asserts that the Merchant has participated in the initial shopping

agreement, received an instance of Authorization Response, and sent an instance

of Purchase Response.

6. Failed Properties

What cannot be proved suggests potential vulnerabilities. It is impossible to

prove that the Cardholder and Payment Gateway agree on the latter’s identity.
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Unless he trusts the Merchant, the Payment Gateway has no reason to believe

that the Cardholder intended him to take part in the transaction. This lack of

agreement occurs because the Cardholder does not sign anything that specifies

the Payment Gateway.

If the original Payment Gateway is bad and can collude with a bad Merchant,

then he can remove the encryption from the dual signature and communicate the

Cardholder’s allegedly confidential data to the Merchant, who can then send a

new Authorization Request to an honest Payment Gateway. We do not expect to

see this attack in the real world, primarily because a bad Payment Gateway has

more lucrative crimes to commit. No amount of tinkering with SET can reduce

the need for trust in Payment Gateways, who see the Cardholders’ confidential

account details. However, SET allows the Cardholder’s software to abort the

transaction before sending these confidential details if the proposed Payment

Gateway is not certified by the same credit card company that issued the

Cardholder’s certificate [22, page 314]. This indicates that Cardholders are not

expected to trust all Payment Gateways. It also confirms our view that the name

of the Payment Gateway is an essential element of the transaction. Since we

require all parties to agree on all essential elements, we certainly want them to

agree on the choice of the Payment Gateway. The flaw can easily be fixed by

inserting his identity into PIData.

It might be an interesting research issue to investigate what guarantees can

be derived if the abortion of the protocol by the Cardholder in presence of a

Bwrong’’ Payment Gateway certificate is modelled.

Digital envelopes complicated the proofs in various ways and further weakened

our results for Payment Gateways. The simplified version of SET shown in Section

3 just uses public-key encryption, but our Isabelle model is closer to SET itself:

public-key encryption is applied to a symmetric key, which is used to encrypt the

bulk of the message. We had to prove secrecy of these symmetric keys, and the

double encryptions caused case splits in subgoals. Also, we found it hard to prove

that the symmetric keys were received intact. This may seem a peculiar thing to

worry about because these keys are part of the security mechanism and not part of

the data being transmitted. Still, it would be odd if Alice sent a digital envelope

sealed with key K and Bob received this envelope but sealed with K 0. These

envelopes use hashing to establish a link between the two parts; recall the

definition of EXcrypt near the end of Section 4. Again this problem is due to

lack of explicitness: the key is not included in the hash, and it should be.

To summarize, the Payment Gateway can confirm neither the identity of the

intended Payment Gateways nor the original symmetric key used in the Payment

Information. This state of affairs is formalized as an ugly and unsatisfactory

theorem.

THEOREM 6. When a Payment Gateway receives an Authorization Request
with a dual signature, he knows that Cardholder and Merchant packaged a

VERIFYING THE SET PURCHASE PROTOCOLS 27



Payment Instruction (not necessarily the one just received) for some Payment
Gateway (not necessarily him) with some digital envelope (not necessarily the
one just opened) where they agreed on certain details that he can check. Even if
Purchase Amount is seen only by the Cardholder and not by the Merchant, both
parties separately compute the hash of Order Description and Purchase Amount,
and the Payment Gateway can compare them.

Figure 5 presents the Isabelle formulation. The variables P _I ’, P _I ’’, KC ’,

j ’, and so forth are necessary because we cannot prove that they are equal to the

corresponding variables P _I, KC, j, and so forth. If we could prove these

equalities, then we could simplify the form of the theorem considerably.

Theorem 4 should not be confused with Theorem 6. The former concerns a

guarantee between Merchant and Payment Gateway; the latter concerns a

guarantee between the Cardholder and the Payment Gateway. As we already

explained, this asymmetry exists because the Payment Gateway is chosen by the

Merchant and never mentioned by the Cardholder.

Other properties are customarily proved for authentication protocols. For

instance, one can scan Lowe’s [17] or Gollmann’s [13] classification and check

what variant of agreement is verifiable. This is a tricky question: we have

eliminated fields that are immaterial to the main goals of the protocol as listed in

the Business Description but that may be essential for other security properties.

Figure 5. P is (almost) assured that C and M agree: Theorem 6 in Isabelle syntax.
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For instance, we have eliminated requestYresponse identifiers that are recom-

mended by Gong and Syverson [14] to make authentication protocols more robust

and secure. Our weakened version of the protocol is sufficiently detailed for a

careful verification of some properties, namely, the main properties that we

identified in the specifications (see again Section 5). We do not claim that attacks

against our abstract model necessarily work in full SET. If a researcher is

interested in verifying sophisticated authentication properties, he should not use

our model as is but should reconsider the steps that we have simplified.

7. Theorem-Proving Aspects

Verifying a large protocol places enormous demands on the theorem prover and

its human user. The formulas tend to be large, complex, and unintelligible.

Isabelle can simplify such formulas using rewrite rules, but the main weapon

against such formulas is Isabelle’s classical reasoner [28, 30]. This is essentially

a tableau prover, but it applies known lemmas in addition to the basic rules of

first-order logic. The user invokes the classical reasoner via tactics such as blast
(pure tableau reasoning), auto (classical reasoning combined with rewriting to

break up all subgoals), and force (a brute-force combination of classical rea-

soning and rewriting that attempts to prove a subgoal) and a number of user-

defined tactics.

The verification of SET comprises six Isabelle theories totaling over 4,300

source lines. Two of these theories concern Cardholder and Merchant

Registration. The other four are as follows.

MessageSET.thy contains a theory of messages for cryptographic protocol analy-

sis, based on the one used in prior work but adapted for SET. The major

modification is that we break down agents into Cardholders, Merchants,

Payment Gateways, and Certification Authorities. We also introduce a new

type (distinct from nonces) for PANs.
EventSET.thy describes the general theory of protocol events, building on the

previous theory. The only SET-specific adaptation is to specify that the root

certification authority is not compromised.
PublicSET.thy describes the complicated world of public keys, digital certifi-

cates, digital envelopes, and similar constructs used in SET. It defines 19

different functions and abbreviations.
Purchase.thy specifies and verifies Purchase Request and Payment Authoriza-

tion, regarded as a single protocol.

Table I presents a number of summary statistics. As one can see from the

table, the fully automatic proof tactics (blast , auto , force ) are not sufficient

to tame the problem even when given the required lemmas. Our proof strategy is
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usually the following: identify the required form of induction; give the resulting

subgoals to automatic tactics; try splitting up any remaining subgoals into

separate cases; and look for ways to improve simplification. We may conclude

that a lemma must be proved by induction, requiring a recursive application of

the strategy.

In this section, we consider three difficult inductions in more detail. In each,

we devote attention to one particular subgoal: the one corresponding to a signed

Purchase Request. This is the most interesting message, and it illustrates the

problem of abbreviations getting expanded in proofs.

The first example is a lemma required to prove the secrecy of symmetric keys.

Similar lemmas are discussed in earlier papers [6, 29], but the proof dramatically

blows up with the Purchase protocols. As always, the form of the theorem

involves quantification and embedded implications (expressed using!), as well

as set operators.

Recall that induction generates a subgoal for every protocol step and also for

the base case, the case for the spy, and a few other cases. We get 13 subgoals in

all, each containing a copy or copies of the induction formula. Prior to

simplification, we prepare some of the subgoals by adding certain facts that

hold in those cases (these are consequences of existing assumptions). At this

point, the Isabelle proof state displayed to the user is 418 lines long, the Purchase

Request case taking up 93 lines of this. Such huge subgoals defy comprehension.

Table I. Script statistics

MessageSET EventSet PublicSET Purchase

Proved theorems 128 14 48 59

Total tactics 266 25 77 250

blast tactic 67 0 16 35

auto , force tactics 60 14 20 38

simp tactic 88 10 19 14

Inductions 47 6 4 30

Adding auto rules 42 1 23 47

Removing rules 1 2 0 7

New tactics defined 3 1 1 0
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They can be tackled only by tools that prove them outright or at least break them

down to a few manageable parts.

Here, simplification is the obvious step. Simplification is particularly taxing in

secrecy proofs because the necessary rewrite rules tend to cause a lot of case

splits. Simplification of this large proof state takes about 16 s (on a 2.5 GHz

Apple G5 processor). The simplified Purchase Request case becomes compre-

hensible: it is 23 lines long and contains no complex expressions. Figure 6

displays this subgoal exactly as it appears to the Isabelle user. Six subgoals

(comprising 191 lines) survive simplification. The one concerning the Spy is

proved automatically by a special tactic dedicated to that purpose. The other five

subgoals, including Purchase Request, are proved automatically by Isabelle’s

blast tactic. The total runtime to prove the six subgoals is under 1 s.

Now consider the proof of the secrecy of the PAN, Theorem 1. It differs from

the previous secrecy proof in several respects. One obvious difference is the need

for existential quantifiers in the induction formula. Prior to simplification, the

Isabelle proof state is approximately as large and complicated as in the proof

described above. Simplification takes only 8 s and leaves only three subgoals.

Unfortunately, the Purchase Request case has blown up to an unintelligible 136

lines: the expansion of abbreviations did not lead to further simplifications.

Fortunately, blast can prove this subgoal. Appropriate tactics prove the other

two subgoals automatically, in a fraction of a second.

For a third example, consider Theorem 2. Although the proof is by induction,

it is a regularity property. Such theorems tend to have simpler proofs than those

involving secrecy. Just before simplification, although the proof state as a whole

is unusually large, the Purchase Request case is only 55 lines long. Simplification

Figure 6. Secrecy proof: the purchase request subgoal, simplified.
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proves this case and leaves only two subgoals. Figure 7 presents one of these

subgoals as it is displayed to the user. It is rather incomprehensible compared

with the one appearing in Figure 6. Fortunately, blast proves the two remaining

subgoals automatically.

Given the complexity of these proofs, the attraction of fully automatic

verifiers is obvious. The advantage of using a general-purpose tool such as

Isabelle is its generality: we can change the formalization to model new types of

protocols and new security environments.

8. Related Work

Only few others have attempted to verify SET. Stoller [34] has proposed a

theoretical framework for the bounded analysis of e-commerce protocols but has

considered only a hugely simplified description of the payment protocols of SET.

Meadows and Syverson [25] have proposed a language for describing SET

specifications but have not actually verified the protocol. They have used the

temporal language NPATRL (the NRL Protocol Analyser Temporal Require-

ments Language) for specifying a number of SET’s requirements. Some

requirements are technical, such as Bhonest principals will faithfully execute

the protocol,^ while others directly address the protocol goals. The paper is not

about verifying those requirements, which is left as future work. Instead, it

concentrates on the difficulties in specifying them formally, an issue that

concerns us, too.

Figure 7. The Spy subgoal, simplified.
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Kessler and Neumann [16] have extended an existing belief logic with

predicates and rules to reason about accountability. Although accountability is

not a stated goal of SET, it is clearly desirable. They concentrate on the

Merchant’s ability to prove to a third party that the Order Information originated

with the Cardholder. Using the calculus of the logic, they conclude by pen and

paper that the goal is met, so the Cardholder cannot repudiate the transaction. We

have an equivalent result in Theorems 3 and 4: if a Merchant receives a dual

signature from the network, then the Cardholder sent it (unless the Cardholder is

compromised).

Most automatic protocol verification tools rely on finite-state model checking. In

contrast, the inductive approach to verifying security protocols can deal with

unbounded numbers of protocol participants, nonces, interleaved sessions, and so

forth. This feature, combined to the mechanical support offered by the proof

assistant Isabelle, turns out to be important in analyzing huge protocols such as SET.

For example, a careful analysis of the data underlying the customary table

reporting new and old bugs on the ClarkYJacob library in model checking papers

reveals that serious limitations were imposed on the number of agents, sessions,

nonces, and keys. Our simplified SET protocol requires eight nonces and

symmetric keys for a single protocol run from start to end. This is two or three

times more than the number of fresh values allowed by the best finite state

model-checkers. Parallel sessions would require an order of magnitude more

nonces than what is currently feasible. Yet, failure of agreement on the identity

of the Payment Gateway (Section 6) would remain invisible if we allowed for

only one Gateway.

Recent work by Basin et al. [3] makes significant improvements over

traditional model-checking. Infinite elements are represented by using lazy data-
types: constructors that build data-types without evaluating their arguments. The

potentially infinite messages that the Spy can introduce are treated using a

dedicated symbolic representation. The resulting method is tested on a number of

classical protocols and on two real protocols, IKE and SET. Unfortunately, a

closer comparison with our contribution is impossible because details about their

SET analyses had not been published at the time of this writing.

Many other formal approaches to protocol verification do not impose finite

bounds. These include strand spaces [12], the Spi-calculus [1], and the work of

Bozzano and Delzanno [10], who adopt a general-purpose bottom-up evaluation

scheme for first-order linear logic. Meadows surveys many such approaches [24].

Methods such as the strand space or the Spi-calculus are useful for gaining

insights into security protocol theory, but not for verifying real-world protocols.

The method by Bozzano and Delzanno is promising, but it imposes certain

conditions on the protocol theory that may not apply to SET. It seems clear that

no pencil-and-paper method can verify real-world protocols.

We also mention Hui and Lowe’s work [18]. They have proposed a general

theory to transform a complex protocol into a simpler protocol while preserving
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any faults. However, they limited their analysis to the Cybercash protocol.

Furthermore, they offer no guidelines for the determination of the safe

simplifying transformation. Only for authentication protocol is there a sufficient

condition. When applied to SET, this would lead to either no simplification (all

nonces and session keys are retained) or a trivial protocol (only the PAN is

retained).

9. Conclusions

Until now, the most complex protocols analyzed by using the inductive method

were Kerberos IV [9], TLS (the successor to SSL) [31], ShoupYRubin (which

adopts smartcards) [4], and the Registration protocols of SET [6]. The

verification of the Purchase protocols of SET has still been an open problem.

We succeeded in analyzing an abstract, but still highly complex, version of

SET’s Purchase protocols. The difficulty consisted in digesting the specification

and scaling up. This is a major result: our methods scale to a level of complexity

where intuition falters. However, the proofs often generated huge subgoals

spanning several pages of text, stretching the human interaction with the prover.

Where do we go from here? The analysis of more complex protocols probably

requires further advances, either in automation or in user interfaces. Isabelle is a

general-purpose proof assistant; a specialized protocol verifier might be able to

do better. For example, the visualization of intermediate proof steps would be

improved if we could avoid expanding abbreviations, with the consequent

exponential blowup. No other protocols that we have seen make such heavy use

of abbreviations, but they will become increasingly common as people try to

verify industry standards. Research is therefore needed on how to reason in the

presence of abbreviations.

A theory of abstraction and compositionality might allow the proof of a big

protocol to be divided into smaller parts. We should be able to separate the

correctness proof for digital envelopes from that of a protocol that uses digital

envelopes. Both automatic and manual verifiers would benefit. The problem of

compositionality is being tackled for manual analysis by Guttman et al. [15,

Section 6] using strand spaces and by Durgin et al. [11] using a specialized

protocol logic. The development and exploitation of such a theory are a major

research problem, and we can expect any correctness proof for digital envelopes

to impose conditions on how the protocol uses them. This still should lead to

simpler proofs than at present, where we simply expand out the definitions of the

envelopes.

The hardest task in our verification of SET has been that of digesting and

abstracting the specifications. For us, the Formal Protocol Definition [21] is

misleadingly named; it appears to consist of the Programmer’s Guide [22] minus

the information on how messages are handled. It should include explicit, formal

statements of the protocol’s goals. Complex protocols should be specified as
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refinements of more abstract protocols, whereas at present protocol verifiers have

to discover the abstract protocols themselves. It is a waste of effort, for the

design must have evolved from an abstract protocol.

The myth that protocol verification is prohibitively expensive can be laid to

rest. The cost of our efforts is small compared with the total cost of the SET

design. The verification would have been cheaper and easier if we could have

received the essential protocol directly from the designers. Verification should be

an integral part of the design process.

From a security standpoint, it is customary to expect that every protocol is

either correct or else vulnerable to attacks. However, SET lies in neither extreme.

We were able to prove the most important goals, thereby giving grounds for

reasonable confidence in SET. Yet, in the issue of agreement between the

Cardholder and Payment Gateway on the latter’s identity, we found that the

property fails. This flaw is easy to fix.
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