
Int. J. Inf. Secur. (2010) 9:83–97
DOI 10.1007/s10207-009-0097-y

REGULAR CONTRIBUTION

The principle of guarantee availability for security protocol
analysis

Giampaolo Bella

Published online: 9 December 2009
© Springer-Verlag 2009

Abstract Conformity to prudent design principles is an
established approach to protocol correctness although it is
not free of limitations. We term goal availability a design
principle that is often implicitly followed, prescribing proto-
cols to aim at principal-centric goals. Adherence to a design
principle is normally established through protocol analysis
that is an evaluation of whether a protocol achieves its goals.
However, the literature shows that there exists no clear guid-
ance on how to conduct and interpret such an analysis, a pro-
cess that is only left to the analyzer’s skill and experience.
Goal availability has the desirable feature that its supporting
protocol analysis can be precisely guided by what becomes a
principle of realistic analysis, which we call guarantee avail-
ability. It prescribes that the outcome of the analysis, which
is the set of guarantees confirming the protocol goals, be
practically applicable by the protocol participants. In conse-
quence, the guarantees must be based on assumptions that the
principals have the capacity to verify. Our focus then turns
entirely to protocol analysis, because an analysis conforming
to guarantee availability signifies that the analyzed protocol
conforms to goal availability. Existing analysis of (both clas-
sical and deployed) protocols has been reconsidered with
the aim of studying their conformity to guarantee availabil-
ity. Some experiments clarify the relationships between goal
availability and the existing design principles, with particular
reference to explicitness. Other experiments demonstrate that
boosting an analysis with guarantee availability generally

G. Bella (B)
Dip. Matematica e Informatica, Università di Catania,
Viale A.Doria 6, 95125 Catania, Italy
e-mail: giamp@dmi.unict.it

G. Bella
Software Technology Research Lab, De Montfort University,
The Gateway, Leicester LE1 9BH, UK

makes it deeper, unveiling additional protocol niceties that
depending on the analyzer’s skills may remain overseen oth-
erwise. In particular, an established claim about a protocol
(made using a well-known formal method) can be subverted.

Keywords Formal analysis · Theorem proving · Network
protocol · Trust

1 Introduction

Security protocols are fundamental security measures for dis-
tributed communications. They are designed to achieve a set
of goals, such as authentication and confidentiality, but expe-
rience shows that they may unexpectedly fail. Protocol anal-
ysis, which is the process of establishing whether a protocol
meets its goals, has therefore become particularly impor-
tant. A popular approach to protocol analysis is to adopt
some formal method to develop abstract protocol models
and variously study them. Among the seminal methods of
formal analysis is the BAN logic and its derivations, which
formulate as logical predicates the beliefs that the protocol
principals derive while they are executing the protocol, and
treat these beliefs using dedicated inference rules [12,13].
Another method entirely relies on mathematical induction
both for specification and for verification purposes [7,27].
Yet, another one uses the process algebra CSP to get com-
pact protocol models, and adopts various proof techniques to
study a variety of protocol goals [28,29]. This list is truncated
by necessity.

Another popular approach to protocol analysis advances a
number of general principles for prudent protocol design and
informally studies conformity of protocols to them. Although
these principles are neither necessary nor sufficient for a pro-
tocol to meet its goals, they have contributed to unveiling a

123

84 G. Bella

number of protocol subtleties [2,4]. Some design principles
concern, for example, the appropriate use of encryption, and
point out that “extra encryption” is not necessarily the same
as “extra security”. Others pertain to timeliness, pointing out
how to use a nonce for freshness purposes. But the principles
that have been most often appealed to perhaps are those about
explicitness. They prescribe that each message be explicit
about its contents, otherwise the principals would be forced
to heuristic interpretations that typically become points of
convergence of attackers’ efforts. It is recommended to take
a cautionary look at these principles [32].

Our research proceeds from the delineation of a princi-
ple of protocol design, goal availability, requiring a proto-
col to specifically aim at principal-centric goals rather than
protocol-centric (also said god-centric) ones. For example,
key distribution that a protocol delivers a session key to its
peers has a well-known principal-centric version called key
confirmation of Y to X, holding “if entity X is assured that
the second entity Y actually has possession of a particular
secret key” [31], which in this paper is always a session
key. The relationship of goal availability with the existing
design principles, explicitness in particular, is not obvious,
and hence this paper unfolds it through examples. It boils
down to the topic of the principle, which with goal avail-
ability is the protocol goals rather than the features of the
protocol messages.

Following the conventional practice of checking adher-
ence of a protocol to a principle by informal analysis, we
soon realize that with goal availability, the supporting anal-
ysis can be given specific guidance, which we define as a
principle of realistic protocol analysis. Named guarantee
availability, its abstract version simply prescribes the anal-
ysis to focus on principal-centric goals. More specifically,
guarantee availability prescribes the development of guar-
antees that protocol participants can use in practice, which
are guarantees based on assumptions that the protocol par-
ticipants can verify by themselves to a large extent in some
adequate threat model. Our main finding is that guarantee
availability turns out to significantly deepen the analyses.
For example, we shall see how this principle helps to inter-
pret protocol guarantees systematically and therefore answer
questions of the form: is this guarantee sufficient to let us
conclude that the protocol meets that specific goal?

Using formal methods is widely accepted as the gold stan-
dard approach to protocol analysis. Our research originally
combines the prudent principle approach with the formal
method approach to protocol analysis: it provides the evi-
dence in support of the new principle of design, goal avail-
ability, by means of formal, rather than informal analysis.
Guarantee availability is profitably applied to such formal
analysis.

The findings of an analysis that fail to conform to guaran-
tee availability may generally be of little use to the principals

because the principals may be unable to appeal to them.
For example, suppose that an electronic merchant vows in
front of a notary public that he will ship the goods if he
receives the relevant payment. If an electronic client pays for
the goods but fails to receive them, she cannot easily sue the
merchant on the sheer basis of his promise. A judge may be
seen as the analyzer of the controversy. He would face the
problem of verifying whether the precondition of the prom-
ise holds, namely that the merchant receives the payment,
for the promise to be beneficial to the controversy. The for-
mal analysis of protocols often produces similar conditional
guarantees. Guarantee availability equally insists that a for-
mal guarantee is beneficial to a principal only if the principal
can verify (most of) its preconditions. Therefore, although
our conceptual contribution is a pair of principles, one for
protocol design and one for analysis, in practice we can only
work with the latter: an analysis conforming to guarantee
availability indicates that the analyzed protocol conforms to
goal availability.

Moreover, our experiments show that adherence to guar-
antee availability adds significance to an analysis by reveal-
ing additional protocol niceties. In particular, we argue that
checking conformity of the analysis of the asymmetric cryp-
tography Needham–Schroeder protocol to guarantee avail-
ability would have anticipated the discovery of the lack of
explicitness leading to Lowe’s attack. A similar finding arises
from the Shoup–Rubin smartcard protocol, thus supporting
the claim that checking an analysis for guarantee availabil-
ity, which checks a protocol for goal availability, may help
to discover lack of explicitness in the design. However, guar-
antee availability has a broader impact. Its application to the
analysis of the deployed Kerberos protocol ultimately reveals
the need for a simple though subtle environmental condition,
which the protocol documentation fails to mention, for the
protocol to reach one of its primary goals. Upon the analy-
sis of the protocol, our work reveals that strengthening one
message is sufficient for the protocol to achieve key confir-
mation of B to A. By contrast, as we shall detail later, this
was previously claimed impossible, by means of the BAN
logic, because of intrinsic limitations of the design.

This paper reformulates a previous conference paper in a
more detailed yet accessible manner [5], and presents addi-
tional case studies. Most importantly, it provides more formal
definitions and clarifies the relationship of our principles with
the existing design principles. We begin our treatment with
a brief account on the limitations of any security claim, due
to a clear understanding of the underlying threat model and
of the required properties (Sect. 2). Then, we formalize the
principle of guarantee availability (Sect. 3), and hint at its
past incarnations (Sect. 4). Hence, we outline the method of
formal protocol analysis used for our experiments (Sect. 5),
and discuss a few significant applications of our principle
(Sect. 6). Finally, we derive some conclusions (Sect. 7).

123

The principle of guarantee availability 85

2 Limitations of security claims

At least the last three decades of computer security have
taught us that not only are security claims limited to a threat
model, but they must also be clearly defined. However, this
is perhaps never stated sufficiently.

For example, the mentioned principles of prudent proto-
col design make no exception and must be interpreted within
what was the standard threat model of their times, due to
Dolev and Yao [15]. It consists of a powerful spy who is
capable of monitoring the entire network traffic creating mes-
sages at will. By contrast, honest principals only see their
own traffic. Encryption is typically assumed to be perfect,
so that no cryptanalysis is possible. For the sake of dem-
onstration, let us consider the popular asymmetric Need-
ham–Schroeder protocol in Fig. 1. It is presented using the
standard A → B : m notation, whereby A sends a mes-
sage m to B. Also, message concatenation is denoted by a
comma, while fat braces delimit the body of encryption under
a key that is written as an index. Looking at the protocol, it
is difficult to conclude straight away whether it conforms
to the explicitness principle. Lowe’s middle-person attack to
the protocol confirms that the second message lacks explic-
itness because it fails to mention the identity of the sender.
That identity is “essential to the meaning of the message”
[2] because its absence causes—within Dolev–Yao’s threat
model—A’s misinterpretation of the originator of the second
message and then the attack.

It is interesting to reconsider this argument under different
threat models. The original protocol does not seem to lack
explicitness within other, more optimistic than Dolev–Yao’s,
threat models. For example, one is a model where the spy is
not a registered principal, hence cannot initiate the protocol.
Another one features the spy’s inability to interleave protocol
sessions, forcing her to engage in only a session at a time.
A trivial one sees the spy as a passive eavesdropper. Assum-
ing these models clearly prevents A’s misinterpretation about
the second message. Therefore, that identity is not “essential
to the meaning of the message” [2] in such threat models,
namely the second message does not lack explicitness, and
thus Lowe’s attack cannot succeed.

In summary, as with any security statement, establishing
whether or not a protocol holds to the explicitness principle
is subordinated to the given threat model. The sequel of the
paper shall also illustrate how the threat model influences

Fig. 1 The asymmetric Needham–Schroeder protocol

conformity of a design to goal availability or of an analysis
to guarantee availability.

The general guideline given in the opening of this sec-
tion requires that a security claim be defined without
ambiguity. In this vein, Gollmann’s account on the meaning
of authentication [16] is emblematic. By elaborating on the
various understandings of this goal, it demonstrates that also
a clear specification of the term “authentication” is relevant
to a security analysis. For example, if authentication merely
means that a principal is “indeed present and taking part
in the protocol” [16], then even the original Needham–
Schroeder protocol meets authentication of A with B under
Dolev–Yao’s threat model. This is no longer the case if we
take a more stringent and appropriate definition of authenti-
cation requiring that “the responder verifies the source of the
challenge it replied to, rather than the source of the reply to
its own challenge” [16].

3 Guarantee availability

Let us begin with the intuition behind the guarantee avail-
ability principle of realistic protocol analysis.

The design of a protocol is a specification of the protocol
steps and of the goals the protocol is expected to achieve.
The analysis of a protocol is the evaluation of whether a
protocol in fact achieves its expected goals. Goals may typi-
cally take either a protocol-centric form—for example, con-
fidentiality: the protocol keeps the session-key from those
not intended to know it—or a principal-centric form—for
example, confidentiality: the protocol peers know that the
session key received through the protocol is kept from those
not intended to know it. We address goals of the latter form,
where the subject of the goal definition is one or both protocol
peers, as available goals.

Some goals, such as authentication, are more naturally
specified in a principal-centric form that is they are intrin-
sically meant to be available. (However, this is sometimes
forgotten through claims such as: the protocol guarantees
authentication of the initiator to the responder. This leaves
unspecified what evidence the responder should seek). Some
goals have both forms in use, such as key distribution and
key confirmation (Sect. 1). Other goals, such as confidenti-
ality, are usually treated only by their protocol-centric form
because the principal-centric one is somewhat subsumed: if
a protocol keeps a message confidential, then a peer may
consider it so from the point in time he gets it.

We argue that all the goals that a protocol aims at should be
available (to the protocol peers), which means that all those
goals should be achieved in their principal-centric form. We
name this principle of protocol design as goal availability.
Once a new principle is stated, the style of the seminal paper
on prudent design principles [2] is to then give examples

123

86 G. Bella

of informal analysis to support the new principle. This is
meant to provide evidence that adherence to the principle
may improve the designs of the protocols. Incidentally, our
innovation is to provide that evidence using formal, rather
than informal, analysis. However, independently of the use
of formal methods, we realize that some guidance is in turn
possible and necessary to conduct the analysis with the aim
of establishing conformity of a design to goal availability.
That guidance is guarantee availability, a principle of proto-
col analysis.

Once the analysis provides the necessary evidence, the
goal availability principle of protocol design can be accepted.
We shall see that the byproduct we are left with, the princi-
ple of protocol analysis, is most important because it lets
us, by itself, deepen the analyses considerably. We first
introduce an abstract version of our principle of protocol
analysis.

Principle 1 (Guarantee availability—abstract) The analysis
of a protocol should focus on principal-centric goals that is
establish whether a protocol achieves available goals, and
hence consist of available guarantees.

The principle states that the protocol analyzer should study
available goals by establishing available guarantees. The lat-
ter are yet to be defined precisely, but it is intuitive to think
of guarantees that are established from the principals’ view-
points and are therefore based on facts that the principals can,
to a large extent, evaluate by themselves.

An example may help to specify an abstract presentation.
Let us consider the toy protocol in Fig. 2. It aims at distrib-
uting confidential session keys to its peers with the help of a
trusted third principal, the server S. Each principal owns a
long-term symmetric key and shares it with the server alone.
Upon A’s request, the server issues a session key Kab and
sends it off to both peers within the encrypted tickets,

{|A, B, Kab|}Kb and {|A, B, Kab|}Ka,

respectively. Admitting a Dolev–Yao attacker, we conduct
an informal analysis of the confidentiality goals of the proto-
col as an attempt to boost the reader’s intuition on guarantee
availability.

It can be seen that the server sends the session key pro-
tected under the principals’ long-term keys. It is easy to
informally convince ourselves that if the principals A and
B keep their long-term keys from the spy, and the server
sends a session key Kab within the tickets {|A, B, Kab|}Kb

Fig. 2 A toy protocol

and {|A, B, Kab|}Ka, then that session key remains confiden-
tial. There is an implicit assumption that the server is secure,
that is, it cannot be compromised. However, guarantee avail-
ability tells us that if this is as far as our confidentiality
guarantee can go, then it is of no use to A, for example.
When she receives the ticket {|A, B, Kab|}Ka from the net-
work, she cannot appeal to the guarantee stated above in
italic because, even after the ticket inspection, nothing is
telling her that it was the server who sent that very ticket.
In general, never during her participation in a protocol can
A verify what is happening at other ends of the network. In
particular, A cannot witness that the server sent her the ticket
she just received, which means that she cannot verify that the
second precondition of our informal guarantee of confiden-
tiality holds. Therefore, that guarantee is not available to A
as it stands.

Another guarantee may help: if A keeps her long-term
key from the spy, and receives the ticket {|A, B, Kab|}Ka, then
it was the server who sent her that ticket. In fact, the first
precondition of this guarantee ensures that no one but A or
the server can use A’s long-term key. By composing the two
guarantees just given in italic, a guarantee available to A
unfolds: if the principals A and B keep their long-term keys
from the spy, and A receives the ticket {|A, B, Kab|}Ka, then
the session key Kab is confidential. Principal A can easily
check the second precondition of this guarantee—the first
precondition is discussed later. It means that A is entitled to
consider the session key confidential as soon as she receives
a message that has a specific form and contains the key. By
contrast, the first guarantee only has theoretical importance
if considered from A’s viewpoint: it is in fact stated for the
server. In conclusion, our analysis has reached a guarantee
available to A of session key confidentiality, meaning that
the protocol makes session key confidentiality available to A.
A homologous guarantee can be developed for principal B.

Having now provided the necessary intuition, and
observed the role that the threat model plays, we can refine
Principle 1 accordingly.

Principle 2 (Guarantee availability—refined) The analysis
of a protocol should consist of guarantees that are available
to a protocol peer within a realistic threat model.

The main requirement that Principle 2 sets signifies that a
guarantee should only rely on assumptions that a peer is able
to verify, otherwise he cannot apply it. If none of the existing
guarantees about a goal for a peer meets such a requirement,
then we say that “the analysis cannot make the guarantees
about the goal available to the peer”, or that “the analysis fails
to conform to the principle of guarantee availability for the
given guarantees”, or similar statements. We then conclude
that “the protocol fails to achieve availability of that goal for
that peer” or that “the protocol fails to make that goal avail-
able to that peer”. As we shall see, such a conclusion bears

123

The principle of guarantee availability 87

vast potential for the peer to be attacked. However, other
guarantees about the same goal may exist and be available
to the other peer. Also, the principle is strongly dependent
on the chosen threat model, so that some guarantee might be
available to a peer within a model though unavailable to the
same peer within a more realistic model.

It seems didactic to demonstrate here how guarantee avail-
ability can confirm protocol insights that we already know by
intuition—more significant applications obtaining unknown
insights will be discussed (Sect. 6). Let us consider the flawed
variant of the toy protocol of Fig. 2 such that the third mes-
sage is not encrypted. Even informal reasoning easily con-
cludes that if the principal B keeps his long-term key from
the spy, and the server sends a session key Kab within the
ticket {|A, B, Kab|}Kb but does not send the third message,
then that session key remains confidential. Guarantee avail-
ability warns us that we must not be content with such a guar-
antee of confidentiality because A cannot apply it: A cannot
make sure that the server does not send the third message. (In
practice, satisfying that precondition would even prevent key
distribution). It is impossible to weaken the preconditions of
the guarantee and still maintain its conclusion, because the
precondition that the server sends the ticket serves to pin-
point the session key. So, we have come to the strongest con-
fidentiality guarantee even for A, namely the confidentiality
guarantee cannot be developed any further. In consequence,
this analysis cannot make the guarantees of session key con-
fidentiality available to A, and this indicates that the variant
toy protocol cannot make session key confidentiality avail-
able to A. An analogous negative conclusion can be reached
for B: neither B can ever make sure that the server does not
send the third message. Therefore, in prescribing analysis
from each principal’s viewpoint, guarantee availability also
guides (even naive) analyzers by helping with the interpreta-
tion of the guarantees.

Before we complete the presentation of the principle by
defining the concept of available guarantee more precisely, it
is useful to reconsider the first precondition of the confidenti-
ality guarantee for A on the toy protocol of Fig. 2. Never can
A verify that her peer is not disclosing his own long-term key
at the other end of the network. Hence, even the final guar-
antee demands from A the indispensable, minimal trust that
its first precondition holds. Also, in the following, a protocol
model is generically referred to as an abstract description of
the protocol, its goals and the assumed threats.

Definition 1 (Available guarantee) Let P be a security pro-
tocol, P be a model for P, and A be a principal’s name.
A guarantee in P is available to A in P if it is established on
the basis of assumptions that A is able to verify in P within
her minimal trust.

The network events that an honest principal can realis-
tically verify in a typical protocol model are exclusively

whether he sent a specific message to another principal, or
whether he received some other specific message from some
principal. For example, by Definition 1, a guarantee relying
on some principal’s sending or receiving a session key should
not be considered available to any other honest principal
in a protocol model comprising Dolev–Yao’s threat model,
because this assumes that the spy is the only principal who
can monitor the entire traffic.

Detailed protocol models also describe a number of facts
that pertain to the environment in which the protocols are
executed and that the principals can never verify. For exam-
ple, no principal can verify that his and his peer’s worksta-
tions are secure from trojan horse attacks that would disclose
all their secrets. Likewise, no principal can make sure that
his remote peer keeps from colluding with intruders or that
a random point-to-point connection is not broken forever.
Therefore, these facts form what we name the principal’s
minimal trust, something that an honest principal can only
take for granted. In other words, because no honest princi-
pal has complete control over the environment except for his
own incoming/outgoing traffic, he can only make assump-
tions about the rest, which in fact form his trust. If the min-
imal trust turned out not to hold, then no principal would
benefit from engaging in any classical security protocol—
with non-repudiation protocols, a principal’s minimal trust
does not include his peer’s honesty. Note that Definition 1
tolerates the minimal trust within an available guarantee.

Definition 2 (Minimal trust) Let P be a security protocol, P
be a model for P, and A be a principal’s name. The minimal
trust of A is the set of environmental facts described in P
whose truth values A needs to know but can never verify in
practice.

In brief, Definition 2 calls minimal trust of a principal the
set of environmental facts whose truth values the principal
needs to establish in order to enjoy the protocol guarantees,
although he can only establish them on the sheer basis of his
trust because he cannot get adequate evidence. Modulo the
minimal trust, the assumptions of a guarantee that we require
a principal to be able to verify for the guarantee to be avail-
able remain only those concerning the protocol messages. It
is known that the form of the protocol messages fundamen-
tally influences the strengths and weaknesses of the entire
protocol: the analyzer’s focus is directed toward them.

In this paper, we adopt a threat model based on Dolev–
Yao’s where, in addition, principals’ collusion with the spy is
explicitly admitted. Hence, in our model, a principal’s min-
imal trust comprises that his peer is neither the spy nor a
spy’s accomplice, and that encryption is perfect. The mini-
mal trust may be extended in case-specific protocols, such as
those based on smartcards, require extensions to the threat
model itself. In general, a large minimal trust may character-
ize a detailed model, while less realistic models, such as one

123

88 G. Bella

that precludes collusion with the spy, often take the minimal
trust for granted and omit it.

Let us briefly summarize. Guarantee availability tells us
that the protocol guarantees must be studied from the princi-
pals’ viewpoints to check if the peers can apply them within
their minimal trust. We shall see how tuning protocol anal-
yses with guarantee availability obtain for us novel protocol
insights, and ultimately inspire significant updates to the pro-
tocols.

4 Past incarnations of guarantee availability

Although guarantee availability has never been formalized
into a principle thus far, it is certain to have influenced some
previous works, perhaps implicitly. Here, we advance some
comments that are necessarily incomplete due to the large
number of formal methods developed in the last decade. As
a general remark, the fact that a protocol is specified from
each principal’s standpoint does not necessarily imply that
any guarantees about that protocol model comply with guar-
antee availability. Such compliance entirely depends on the
very statement of the guarantee, which can be influenced by
the proof technique in use. Therefore, the analyzer must con-
tinuously bear in mind this principle while his work unfolds.

For example, an inductive protocol specification of
Paulson is a set of rules, each expressing a fragment of
a specific principal’s operation. However, his initial proof
experiments by induction and theorem proving had to pri-
marily focus on developing proof strategies for the confiden-
tiality guarantee, leaving less consideration for the theorem
assumptions [25]. Some of the early proof releases unsurpris-
ingly featured assumptions about the responder that were
hardly justifiable from the initiator’s viewpoint [35]. Each
honest principal’s view of the network traffic clearly is lim-
ited to what he alone sends or receives. Only later, in studying
the authenticity of the cipher texts exchanged in symmetric
cryptography protocols did he point out that “agents need
guarantees (subject to conditions they can check) confirm-
ing that their certificates are authentic” [26], which exactly
sounds as a call for guarantee availability. After spelling out
the new principle fully, we checked all existing inductive
statements against it and therefore had to upgrade a number
of statements and corresponding proofs. It is fair to state that
the current proof release [34] only features guarantees that
are compliant with guarantee availability unless otherwise
stated. The upgrade process brought forward some interest-
ing insights that form the examples discussed in this paper.

The compact analysis by BAN logic published by
Burrows et al. [13] indeed is conducted from each princi-
pal’s viewpoint and accurately weighs up the preconditions
of each formal statement. This is exactly in the spirit of
guarantee availability. For example, their work points out

what seem to be inexplicable assumptions for certain proofs
to proceed: the analysis of the symmetric cryptography
Needham–Schroeder protocol [13] reveals that it is “unusual”
and “dubious” that the responder B can merely assume that
the received session key is fresh. The same does not apply to
the protocol initiator. Because B cannot verify that assump-
tion, we conclude that the analysis fails to make the guaran-
tees of freshness of the session key available to B, that is, the
protocol fails the corresponding goal. In consequence, (it is
well known that) an intruder can mount a replay attack on
the session key against B [14].

The importance of the principals’ viewpoints appears to
be implicit in the analyses by CSP and model checking.
For example, Lowe’s influential contribution was initially
oriented to only finding attacks [20,21]. Only later was
the method tailored to proving protocol goals, and it was
natural to define the process formalizing each principal’s
sending signals solely on those channels that the princi-
pal can access. This process-centric style of specifying the
protocol models implicitly shows sensitivity to guarantee
availability, although our principle pertains to the actual guar-
antees. It would seem that the proof methods that were sub-
sequently adopted, such as equivalence checking and trace
equivalence, inherently comply with guarantee availability
[28], but a deeper investigation, currently beyond our aims,
appears worthwhile.

The principle of guarantee availability appears to be
naturally embedded in Thayer et al.’s [33] analyses by
strand spaces. That method lets the analyzer study proto-
col properties over a bundle, which is exactly a collection of
actions performed by a single peer. Also, recent advances [3]
obtained using the provable security approach of Bellare and
Rogaway [11] seem to proceed in the direction of guarantee
availability: principals are divided into clients and servers
and the security properties are defined with respect to each.
Approaches whose proofs of correctness are based on equiv-
alence checking, such as the Spi-calculus [1], only implicitly
embed each principal’s viewpoint in purely declarative prop-
erty specifications. However, adherence to guarantee avail-
ability must be explicitly studied to gain unknown protocol
insights, as we shall see later.

An anonymous referee of this manuscript suggested that,
at the level of design, goal availability generalizes the notion
of fail-stop protocol by Gong and Syverson [17]. A fail-stop
protocol is such that an attacker’s active tampering with a
protocol message causes the protocol to later halt with-
out compromising confidentiality of sensitive components.
Therefore, the analysis of fail-stop protocols can safely
reduce to passive attackers only. We appreciate some sim-
ilarity in spirit between the fail-stop property and goal
availability limited to the confidentiality goal, although their
applications slightly differ. Our principle boils down to spe-
cific features of the analysis, which can in turn be guided

123

The principle of guarantee availability 89

by guarantee availability. The notion of fail-stop demands
some rigorous preprocessing before the analysis to reduce
its scope.

5 The inductive method of protocol analysis

The inductive method of protocol analysis was invented by
Paulson in 1996 [25] and developed with the author of the
present paper ever since [7]. As its name says, the peculiar-
ity of the method is a thorough use of inductive techniques
to specify the protocols, and of the related inductive prin-
ciples to prove the protocol properties. However, also other
methods appeal to induction to prove properties that a proto-
col preserves [22]. For example, this practice is common to
Meadows’s NRL Protocol Analyzer to limit the state space
for exhaustive search [23] and to Schneider’s Rankanalyzer
to treat confidentiality [18].

The analysis of a protocol using the inductive method is
developed using the proof assistant Isabelle [24] and there-
fore can be executed mechanically once the human analyzer
has finalized it. Isabelle can be freely downloaded from the
internet with its repository of proofs [34]. Generality and
mechanical support perhaps are the major strengths of the
method, which has been applied successfully to a variety of
protocols, ranging from deployed ones such as TLS [27], to
e-commerce ones such as SET [10], to non-repudiation ones
such as the Zhou–Gollmann protocol [9].

Here, there is only room for a brief overview of the method.
An unlimited population of principals is defined by a data-
type agent over the natural numbers. The datatype includes
a spy, who monitors the entire network traffic and in conse-
quence knows who sends and who receives which messages.
It implements the Dolev–Yao threat model described earlier
(Sect. 2). There also exists an unspecified set of compro-
mised principals who have colluded with the spy by reveal-
ing their long-term secrets, while the remaining principals
are honest. We shall see that honesty of the peers is a mini-
mal precondition to most guarantees for them. A server also
belongs to the datatype of principals: it formalizes the trusted
third party that many protocols require.

Another datatype intuitively formalizes the events repre-
senting the protocol execution. Two are the main events. One,

Says A B m

signifies that principal A sends message m to principal
B. Another one,

Gets B m

expresses B’s reception of m. No bound is set on the number
of events that each principal can trigger, so that any principal,
including the spy, is entitled to initiate at will an unlimited
number of sessions of the protocol that is being specified.

The network traffic exactly develops according to the
events performed by the principals while they are executing
the given protocol. A history of the network is represented
by a trace, the list of events occurred throughout that history.
The set of all possible traces is the formal model for the given
protocol and is defined inductively by specific rules drawn
from the protocol. For example, if the protocol prescribes
that B sends A a message m′ upon reception of m, then the
model features a rule that may extend a generic trace by the
event Says B A m′ each time the trace contains the event
Gets B m. Therefore, the events occur via the firing of the
inductive rules. But, as prescribed by induction, no rule is
forced to fire, so no event is forced to occur. An extra rule is
added to each protocol model in order to formalize the spy’s
participation in the protocol.

Our binary function knows formalizes the knowledge that
principals derive from observing a trace [7]. So, knows A evs
is the set of messages that principal A either sends or receives
on trace evs. Should A be the spy, the set would include all
messages that anyone ever sends or receives on the trace.
The unary function parts extracts all components (portions
of clear-text messages and bodies of cipher texts) from a set
of messages; analz is the same but only opens those cipher
texts whose encrypting key is available. So, for any set H ,
we always have that analz H ⊆ parts H . Confidentiality of
a message component m in a trace evs is expressed as

m /∈ analz(knows Spy evs)

whereas appearance of m in the network traffic over trace evs
is expressed as

m ∈ parts(knows Spy evs).

Principals’ long-term symmetric keys that are shared with
the server are indicated by function shrK. Likewise, pub-
lic keys are denoted by function pubK. The language is
strongly typed, so that for example a cryptographic message
{|A, B, Kab|}Ka is formalized as

Crypt(shrK A){|Agent A, Agent B, Key Kab|}.
The event whereby the server sends that message to A is
formalized as

Says S A (Crypt(shrK A){|Agent A, Agent B, Key Kab|}).
The formal guarantees, which are the focus of guarantee

availability, are theorems expressed over a generic trace and
are developed under Isabelle’s assistance. A typical inductive
proof involves checking that each rule—both for base and for
inductive steps—of an inductive protocol model preserves a
given conjecture. The rule formalizing the spy’s operation
often requires a dedicated treatment by a specialized proof
tactic.

123

90 G. Bella

6 Applying guarantee availability

We reviewed in the light of guarantee availability all exist-
ing protocol analyses conducted using the inductive method.
This section discusses our main findings about four proto-
cols: asymmetric Needham–Schroeder (§6.1), Shoup–Rubin
(§6.2), Kerberos (§6.3) and Otway–Rees (§6.4). Applying
guarantee availability in these cases always strengthened the
analyses and ultimately suggested modifications to the pro-
tocol designs.

Also, the very first finding deserves being outlined here:
the analysis of the symmetric Needham–Schroeder proto-
col was strengthened without impact on the protocol design.
Precisely, its guarantee of authentication of the initiator with
the responder, named B_trusts_NS5, as published in earlier
releases of Isabelle up to Isabelle98-1 [35], assumes among
other facts that the responder sends an instance of the last-
but-one message of the protocol. Applying our principle of
analysis, we found this assumption to be entirely superfluous
to the proof of the theorem, and therefore removed it. The
updated version of the theorem can be inspected from the
current release of Isabelle [34].

This first finding is enlightening for the practical impli-
cations of guarantee availability. Because the guarantee con-
tinued to hold with just one assumption fewer, the process
inspired no modifications to the protocol design. By contrast,
when the removal of the assumptions targeted by guarantee
availability falsifies a guarantee, it will inspire modifications
to the protocol design in order to enforce the same guarantee
despite the missing assumptions. The applications described
in the sequel of this section demonstrate this.

To keep the focus on the main argument being accom-
plished, this paper omits the complete definitions of the pro-
tocol models, sometimes simplifies the theorem statements
and purposely only sketches the proof details at the end of
each subsection—the complete treatment can be found in
full elsewhere [7] and is freely released with Isabelle [34].
Also, this paper always specifies which file in the release the
treatment comes from.

6.1 The asymmetric Needham–Schroeder protocol

Our initial aim was to investigate the relationship between
analyzing protocols in the light of guarantee availability, that
is, designing them according to goal availability on one hand,
and designing protocols in the light of explicitness on the
other hand. We reconsider the analysis of the asymmetric
cryptography Needham–Schroeder protocol, shown in Fig. 1
above (§2), and found a clear connection.

Both the original version, subject to Lowe’s attack, and
the version fixed by Lowe were studied inductively by
Paulson within Dolev–Yao’s threat model [34]. Let the con-
stant ns denotes the model for the original, flawed protocol.

Its inductive definition is omitted here. Lowe’s attack against
B proceeds from Nb’s disclosure to the spy, and hence it is
interesting to study whether the guarantee of Nb confidenti-
ality can be made available to B. A relevant guarantee that
can be proved is Theorem 1: it is the strongest because its
preconditions cannot be relaxed without compromising the
conclusion. It comes with file NS_Public_Bad.thy of the latest
release of proofs [34].

Theorem 1 (Spy_not_see_NB) If A and B are honest and
evs, belonging to ns, contains

Says B A (Crypt(pubK A){|Nonce Na, Nonce Nb|})
but does not contain, for any C,

Says A C (Crypt(pubK C)(Nonce Nb))

thenevs is such that Nonce Nb /∈ analz(knows Spy evs).
��

While honesty of the peers belongs to B’s minimal trust, A’s
refraining from sending any instance of the second message
certainly does not. By definition 1, the guarantee of Nb con-
fidentiality is not available to B, who can never check his
peer’s activity. Intuitively, non-availability of the guarantee
signifies that the existing guarantees of Nb confidentiality
are of no use to B. Not surprisingly, when the assumption
about A’s activity is not verified in practice, Nb indeed loses
confidentiality, hence the spy can mount the known man-in-
the-middle attack.

Lowe’s corrected protocol mentions B in the second mes-
sage. The analogous reasoning for this protocol, modeled by
the constant nsl, is in Theorem 2. It comes with file NS_Pub-

lic.thy of the latest release of proofs [34]. It is not problematic
that theorems 1 and 2 have the same name because they lie in
different files. Neither is it accidental: they express the same
guarantee for two protocol variants.

Theorem 2 (Spy_not_see_NB) If A and B are honest and
evs, belonging to nsl, contains

Says B A (Crypt(pubK A){|Nonce Na, Nonce Nb, Agent B|})
thenevs is such that Nonce Nb /∈ analz(knows Spy evs).

��
This theorem signifies that the analysis of the corrected pro-
tocol makes a guarantee of Nb confidentiality available to B,
because he can check all its assumptions within his minimal
trust. Then, B is guaranteed within his minimal trust that his
nonce is kept secret (hence, Lowe’s attack cannot succeed).

The details of these protocols were known before the
present research. However, we are confident that studying
availability of the confidentiality guarantee to B would have
helped to discover the lack of explicitness in the second
message. Faced with Theorem 1, the human analyzer would

123

The principle of guarantee availability 91

have pragmatically checked if any extra explicitness reduced
B’s assumptions either to verifiable ones or to minimal trust
assumptions. Without guarantee availability, it is less easy to
evaluate whether Theorem 1 conveys a satisfying guarantee.

To advance just a few proof details, it is interesting to
notice that both theorems can be proved routinely. The
main assumptions, which concern the Says events, are first
inserted in the inductive formula by appealing to the rule of
reverse modus ponens. Theorem 1 features two such precon-
ditions and so requires two such appeals, while Theorem 2
can do with one. Then, the classical applications of induction
and simplification follow. Isabelle now leaves two subgoals
for the human analyzer to solve. One can be terminated rou-
tinely by application of the specialized tactic addressing the
spy’s operation. The last one requires a lemma that honest
users generate fresh nonces.

6.2 The Shoup–Rubin protocol

We already published an inductive analysis of the Shoup–
Rubin smartcard protocol [6]. We look back at that analysis
with the aim of gaining extra insights using our guarantee
availability principle. Shoup–Rubin, which is named after
its authors, is 11 complex messages long and aims at session
key confirmation [19,30]. Each principal stores his own long-
term secrets in a smartcard, hence there is no risk of human
leak of such sensitive information, even under corruption.
Each card can compute a session key using a public algorithm
and implements basic encryption/decryption functionalities.

For the sake of formal analysis, a new event denoting card
output is defined, Outputs (Card A) A m, and another for
card input, omitted here. Following the protocol authors’
threat model, we extend Dolev–Yao’s as follows: any princi-
pal can lose session keys to the spy by accident, and the spy
can use all smartcards unless they are safe—a simplification
for this paper of the actual sets of stolen and of cloned cards
[6]. Absence of accidents and card safety clearly belongs to
any honest principal’s minimal trust. We address this as the
original threat model. Moreover, to investigate how the pro-
tocol messages are linked among themselves, we additionally
assume that all cards are compromised so that they may omit
some outputs, repeat others, and schedule all outputs ran-
domly, namely independently from the input schedule. We
address this as the extended threat model. It can be naturally
embedded in the inductive definition of the formal protocol
model, where each inductive rule may fire indefinitely at any
time [6].

Phase IV of the protocol is in Fig. 3. It sees B query
his card Cb to obtain a session key for use with A. Pre-
cisely, B inputs his peer’s name and a nonce Na previously
obtained from the network. The nonce cannot be used to iden-
tify A because it traversed the network in the clear. The card
outputs a fresh nonce Nb, the session key, and two tickets

Fig. 3 Phase IV of the Shoup–Rubin protocol

that bind the two nonces together. They are encrypted under
a key πab, whose history we omit for brevity, which is only
known to A and B’s smartcards, not to the principals—this
will be important below. Encryption is symmetric. Our model
formalizes πab as pairK(A, B). We remark that the proto-
col itself prescribes that principals know no long-term keys,
which substantiates the crucial role played by the cards. Also,
the protocol assumes that the means between each principal
and his card are secure in terms of confidentiality and authen-
tication. Therefore, messages 6 and 7 are unintelligible to
the spy.

Let the constant sr denotes the formal model for the
protocol. Its inductive definition is omitted here. In study-
ing the principal-centric version of session key confiden-
tiality, we find out that the strongest relevant guarantee is
Theorem 3: it is impossible to weaken its assumptions with-
out compromising its conclusion. Incidentally, proving this
theorem is computationally expensive because all 11 mes-
sages must be verified to preserve confidentiality. It comes
with file ShoupRubin.thy of the latest release of proofs [34].

Theorem 3 (Confidentiality_B) If A and B are honest, their
both cards are safe, Kab is not leaked by accident, and evs,
belonging to sr, contains

Outputs (Card B) B {|Nonce Nb, Key Kab, Cert,

Crypt(pairK(A, B))(Nonce Nb)|}
thenevs is such that Key Kab /∈ analz(knows Spy evs). ��

Does this theorem qualify as a guarantee available to B of
session key confidentiality? The assumptions that are stated
in prose clearly belong to B’s minimal trust. The point here
is whether B can verify the main assumption of the theorem,
namely that his card outputs a message of a specific form.
Although B can verify that his card sends him an output, he
cannot verify the form of the fourth component of the output
because this is encrypted under a key, pairK(A, B), that he
ignores. In consequence, the theorem is not available to B in
the extended threat model even within his minimal trust.

To design an equivalent guarantee that is available to B in
the extended threat model, inspection of the fourth compo-
nent should be unnecessary. We realize that doing so hides
the identity of B’s peer, who instead must be explicit because
she needs to be assumed not to be the spy and her card needs
to be assumed safe for the session key to remain confidential.
Hence, we realize that keeping the conclusion of the theo-
rem without checking the fourth component of the output
requires:

123

92 G. Bella

– either assuming everyone (thus including B’s peer, who-
ever he might be) not to be the spy and his card to be
safe;

– or making B’s peer explicit in the output so that the peer
alone can be assumed not to be the spy and his card alone
to be safe.

The guarantee resulting from the first strategy would still
be unavailable to B because he would be unable to check
all its assumptions within his minimal trust. As we realize
that the guarantee resulting from the second strategy would
instead be available to B, it can be appreciated how the check
for guarantee availability serves as a check for explicitness
also with this protocol. Our reasoning therefore indicates that
message 7 fails to tell B the peer with whom the session key
is to be used, and hence lacks explicitness in the extended
threat model. We realize that this affects also key confirma-
tion of A to B: Theorem B_keydist_to_A [34], omitted here,
concludes that A knows the session key upon similar assump-
tions to those of Theorem 3. It means that the guarantee of key
confirmation of A to B is not available to B in the extended
threat model. Thus, an attack becomes possible whereby B
associates the session key with a wrong peer (who, in B’s
minimal trust, is not the spy and has a safe card) and ends
up with a non-confidential session key because the real peer
is either the spy or his card is not safe. This is both a key
confirmation and a confidentiality attack.

In consequence, we update the protocol so that A’s iden-
tity is mentioned as second component of message 7. The
resulting protocol is modeled by srb. The strongest confi-
dentiality guarantee about it is Theorem 4. It comes with
file ShoupRubinBella.thy of the latest release of proofs [34].
The same remark made in the previous section applies to
Theorems 3 and 4: they bear the same name as they are
expressing the same guarantee in two different files, respec-
tively, about two protocol variants.

Theorem 4 (Confidentiality_B) If A and B are honest, both
their cards are safe, Kab is not leaked by accident, and evs,
belonging to srb, contains

Outputs (Card B) B {|Nonce Nb, Agent A, Key Kab,

Cert1, Cert2|}
thenevs is such that Key Kab /∈ analz(knows Spy evs). ��
Notice that Theorem 4 no longer needs to inspect the form of
the fourth component and features no assumptions beyond
B’s minimal trust. It therefore qualifies as a guarantee that is
available to B because its assumptions are either verifiable or
contained in the minimal trust. In consequence, the analysis
of the upgraded protocol makes a guarantee of session key
confidentiality available to B in the extended threat model.
The same can be said of key confirmation of A to B, thanks

to the updated version of Theorem B_keydist_to_A [34]. An
equivalent reasoning can be conducted from A’s viewpoint.

It was only after our protocol modifications inspired
by the analysis in terms of guarantee availability that we
realized that Theorem 3 is in fact available to B in the orig-
inal threat model—this observation is not even published in
the full analysis [6]. In that model, B may safely associate
the session key received by his card, without inspecting the
fourth component of the output, to the last principal name
he input the card with. Once more, the relativeness of our
claims to the assumed threat model (§2) is demonstrated.

The two theorems discussed in this section succumb to
similar proofs. However, the custom steps of each proof ter-
minate with the preparation of the inductive formula and the
application of induction. Simplification in fact requires two
specific rewriting rules for the analz operator that are eas-
ier to express as formulae than in prose. One says that if a
cryptographic key can be analyzed from the union of a set
of messages and another key, then either the two keys match
or the first key can be analyzed from the set of messages
alone. Another one states that if a message component can
be analyzed from a set of messages, then expanding the set of
messages with that component will not make any difference
in terms of what can be analyzed. A number of applications
of three lemmas are indispensable before and after simplifi-
cation. They correspond to the three smartcard outputs that
this protocol prescribes. Whenever portions of these outputs
are implicit, such as Cert, Cert1 or Cert2 from the Theorem
preconditions, applying the lemmas can open them up and
express their forms explicitly.

6.3 The Kerberos protocol

The considerations presented so far support the claim that
non-availability of a confidentiality guarantee ultimately
indicates lack of explicitness in the design. However, this
claim does not always hold, as confirmed by the following
observations about the Kerberos protocol. We already stud-
ied Kerberos IV in detail [8] and now reconsider its analysis
in the light of our new principle. We will show that no guar-
antee of session key confidentiality can be made available to
the protocol responder in a realistic model, although this is
not due to lack of explicitness.

Kerberos is essentially a key distribution protocol. We out-
line its main details here. The protocol relies on the Kerberos
system, a dual server containing the Kerberos Authentica-
tion Server (Kas in short), and the Ticket Granting Server
(Tgs in short). While Kas is responsible for authenticating
the users to the system, Tgs serves to authorize authenticated
users’ access to kerberised services. Each principal owns a
long-term key, and his minimal trust says that the key is
shared with Kas.

123

The principle of guarantee availability 93

Fig. 4 The Kerberos protocol

The protocol is in Fig. 4. The first two messages form
phase I concerning authentication of an initiator to Kas. The
third and fourth messages form phase II, concerning authori-
zation from Tgs to the initiator. The last two messages form
phase III, concerning the initiator’s access to the required
service. The authorization ticket, {|A, Tgs, authK, Ta|}Ktgs,
along with the authorization key, authK , are delivered to
A during phase I and serve for phase II. Likewise, the ser-
vice ticket, {|A, B, servK, Ts|}Kb, along with the service key,
servK , are delivered to A during phase II and serve for
phase III.

Notice the timestamp Ta associated to authK . It has a
lifetime of hours, corresponding to the period of time a user
can use a workstation session. By contrast, the timestamp Ts
associated to servK has a lifetime of minutes, correspond-
ing to the period of time during which a user can finalize
access to a network resource. Other timestamps, T2 and T3,
are issued by the senders of messages 3 and 5, respectively,
so that a receiver can check that they are fresh messages.
Their lifetime is in the order of seconds.

Kerberos relies on timestamps to convey freshness guar-
antees. From the perspective of formal analysis, this requires
extensions to the basic Dolev–Yao threat model in terms of
risks for the various session keys. Will they remain confiden-
tial forever? A realistic modeling choice was to assume that
any session key can be lost to the spy by accident only when
its corresponding lifetime expires [8]. Conversely, assuming
that no session key can be leaked by accident while it is valid
belongs to any principal’s minimal trust.

In this threat model, interesting insights originated from
studying availability of servK confidentiality to the pro-
tocol responder. Here, the protocol model is denoted by
the constant kerberos. Its inductive definition is omitted
from this paper. Theorem 5 is the strongest relevant guar-
antee. It is based on the homonymous theorem that comes
with file KerberosIV.thy of the latest release of proofs [34],
but this very version is unpublished. It explicitly refers to
the events whereby B learns his ticket and the Kerberos
servers publish A’s. It is more readable than the version
published in the release, where the three events are eas-
ily transformed into appearance of their three tickets in the
traffic.

Theorem 5 (Confidentiality_B_unpublished) If A and B are
honest and evs, belonging to kerberos, contains

Gets B {|Crypt(shrK B){|Agent A, Agent B, Key servK,

Number Ts|}, X |}
and

Says Tgs A (Crypt authK{|Key servK, Agent B,

Number Ts, servTicket|})
and

Says Kas A (Crypt(shrK A){|Key authK, Agent Tgs,

Number Ta, authTicket|})
and

¬expiredAK Ta evs and ¬expiredSK Ts evs

thenevs is such that Key servK /∈ analz(knows Spy evs).
��

Notice the last two assumptions, which state that both the
authorization key and the service key are still valid, namely
not yet expired on the given trace. Let us study whether B
can verify the assumptions of this theorem within his minimal
trust. He can check to have received the service ticket con-
taining a timestamp that has not expired, which means he can
verify the first and fifth assumptions. Peers’ honesty belongs
to B’s minimal trust. However, B cannot verify the remaining
three assumptions, which pertain to protocol phases he does
not even participate in. Aiming at guarantee availability, we
would like to relax these assumptions, which together signify
that the authorization key encrypting the service key whose
confidentiality is being proved has not expired. At an attempt
to relax any of them, the prover leaves us with a subgoal that
cannot be proved, hence the theorem is falsified. The subgoal
describes the realistic scenario where the authorization key
expires is then lost to the spy, and this by mere decryption
also leaks the service key.

Because its assumptions cannot be relaxed, Theorem 5 is
the strongest guarantee to confirm service key confidential-
ity to B. So, this guarantee is not available to B within our
threat model. With the experience gained thus far in apply-
ing our principle, we observe that an attack against B can be
built by falsifying exactly those assumptions that the princi-
pal cannot verify. In this case, B may accept a valid service
key that is lost to the spy because it was encrypted under an
expired, compromised authorization key. During the lifetime
of the service key, B will encrypt data he cannot expect will
be read by the spy. This is an attack against B.

Enforcing guarantee availability in this case does not
appear to be a matter of adding explicitness to the protocol.
By contrast, because Tgs is a trusted server, it is reasonable
to temporally constrain its issuing of service keys as follows:

a service key can be issued only if it is not going to
expire later than the authorization key that encrypts it.

123

94 G. Bella

From a principal’s viewpoint, this is an environmental
assumption that must be part of the minimal trust. The
upgraded protocol assures that, should an authorization
key become lost, the corresponding service keys would be
expired. It is then possible to prove a version of Theorem
5 that omits all assumptions that B cannot verify: the two
Says assumptions and the expiredAK assumption. There-
fore, it qualifies as an available guarantee.

The experiments on this protocol teach us that studying
confidentiality availability does not merely help to studying
explicitness, but it may also favor unknown protocol insights.
Therefore, studying availability of other goals may also be
important, as the next section demonstrates.

We terminate also this section with some proof details.
The Isabelle release of proofs [34] shows that a lemma of
widespread use easily transforms assumptions of the form

trace evs contains event Says A B X

or of the form

trace evs contains event Gets B X

into X ’s appearance in the traffic over evs, that is

X ∈ parts(knows Spy evs).

Assumptions of this reduced form are the basis of the version
of Theorem 5 that is published in the release. Also, the rest
of the proof develops in a forward style. First, it derives the
confidentiality of the authorization key, as all assumptions to
apply that guarantee hold, including the fact that it has not
yet expired. This rules out the possibility that Tgs’s message
discloses the service key. Various applications of technical
lemmas conclude. The theorem version for the upgraded pro-
tocol also appeals to a lemma stating that if a service key has
not expired, then the authorization key that encrypts it has
not expired either—clearly this does not hold for the original
protocol.

6.4 The Otway–Rees protocol

A version of the Otway–Rees protocol [13], which is named
after its authors, appears in Fig. 5. It aims at key distribution
using symmetric encryption. As with Kerberos, each princi-
pal trusts that his long-term key is shared with the server.

The third message is most important. The server sends B
two tickets sealed under A and B’s long-term keys, respec-

Fig. 5 The Otway–Rees protocol

tively, each containing a copy of the session key. So, B learns
the session key from decrypting the second ticket, and for-
wards the rest to A. Upon reception of the last message,
A learns the session key and binds it to B having seen Na
returned, which she initially associated to B. Similarly, B
binds the session key to A having seen Nb returned, which
he associated to A in the second message. This might have
been an insecure choice because A’s identity arrived in the
clear from the first message, but the server confirms the asso-
ciation matching the contents of the two cypher texts received
in the second message.

In general, a principal can verify the key confirmation goal
out-of-band by probing his peer with session key encrypted
traffic and evaluating the replies. However, this cannot be
considered a proper protocol property as it stands. Analyz-
ing this protocol clearly reveals that no guarantees of key
confirmation of A to B can be made available to B because
he cannot be assured that A will ever receive the last message
over an insecure network. Key confirmation of B to A is more
interesting. The strongest relevant guarantee for A, whose
conclusion is Key Kab ∈ analz(knows B evs), cannot be
proved without assuming that B receives the third message.
In fact, the attempt to relax this assumption in accordance
with guarantee availability highlights that the spy can inter-
cept the third message, building the fourth on her own and
sending it off to A. This scenario, which is depicted in Fig. 6,
clearly subverts the conclusion of the guarantee.

Because of an assumption that A cannot check in our threat
model within her minimal trust, the key confirmation guaran-
tee is not available to A. In attempting to enforce it, we have
to conclude again that extra explicitness would not help. The
violation of key confirmation would derive from the spy’s
acting as B with the third message. This can be prevented if
we give the message some extra integrity by appropriately
nesting the encryption operations. The propagation of the
session key to A is negligibly delayed. This variant, which
is even simpler than what we advanced elsewhere [5], can
be seen in Fig. 7. The outer encryption uses B’s shared key.
We will see that this “extra encryption” does obtain “extra
security” [2].

We denote the model for this protocol by the constant orb,
but omit its inductive definition here. The new form of the
third message allows us to track B’s participation. The spy
cannot masquerade as him because she cannot decrypt the

Fig. 6 Violating key confirmation of B to A

Fig. 7 Our variant to the Otway–Rees protocol

123

The principle of guarantee availability 95

message. More formally, A’s ticket is kept confidential until
B extracts it and sends the last message. Theorem 6 confirms
this. It is clear that assuming the Says event is indispensable
to bind the identity of the responder B. This and the following
theorems in this section come with file OtwayReesBella.thy of
the latest release of proofs [34].

Theorem 6 (analz_hard) If B is honest and evs, belonging
to orb, contains

Says A B {|Nonce M, Agent A, Agent B,

Crypt(shrK A){|Nonce Na, Nonce M,

Agent A, Agent B|}|}
and is such that

Crypt(shrK A){|Nonce Na, Key Kab|}
∈ analz(knows Spy evs)

then evs contains

Says B A {|Nonce M,

Crypt(shrK A){|Nonce Na, Key Kab|}|}.
��

Notice that the theorem fails to hold if we replace analz by
parts because the ticket appears as a component of the traffic
even before B sends the last message. We emphasis that nei-
ther does the theorem hold of the original protocol, where the
assumption evaluates to true even before B’s participation.

The second portion of the key confirmation guarantee is in
Theorem 7. It asserts that an honest principal sends the last
message of the protocol only upon reception of a suitable
instance of the third message.

Theorem 7 (OR4_imp_Gets) If A and B are honest and evs,
belonging to orb, contains

Says B A {|Nonce M,

Crypt(shrK A){|Nonce Na, Key Kab|}|}
then, for some Nb, evs contains

Gets B {|Nonce M,

Crypt(shrK B){|Crypt(shrK A){|Nonce Na,

Key Kab|},
Nonce Nb, Key Kab|}|}.

��
We now have all fragments for A’s guarantee. Upon recep-

tion of the last message of the protocol, A concludes that
the ticket is lost to the spy, who sees the entire traffic. This
means that the second assumption of Theorem 6 holds. By an
appeal to that theorem, A derives that B indeed participated.
Theorem 7 can now be applied, confirming that B received an
intelligible message quoting the same session key received

by A. Certainly, B can decrypt a message sealed under his
key and extract the session key, as stated formally by a few
subsidiary lemmas about analz. This proves the main guar-
antee, Theorem 8. It formally states that the protocol informs
A that the session key she receives is also known to her
peer B.

Theorem 8 (A_keydist_to_B) If A and B are honest and
evs, belonging to orb, contains

Says A B {|Nonce M, Agent A, Agent B,

Crypt(shrK A){|Nonce Na, Nonce M,

Agent A, Agent B|}|}
and

Gets A {|Nonce M, Crypt(shrK A){|Nonce Na, Key Kab|}|}
then

Key Kab ∈ analz(knows B evs).

��
This theorem lets us conclude that our variant of the

Otway–Rees protocol makes the goal of key confirmation of
B to A available to A. Following this conclusion, we looked
back at the analysis of the original protocol by BAN logic,
and spotted the comment: “it is interesting to note that this
protocol does not make use of Kab as an encryption key, so
neither principal can know whether the key is known to the
other” [13]. The claim is that the protocol fails to make the
goal of key confirmation available to its peers because it does
not make use of the session key as an encryption key.

Our variant protocol falsifies this claim. Although it does
not use the session key to encrypt messages, it confirms to A
that her peer knows it. Therefore, we realize that prescribing
no use of a session key after it is delivered must not be taken
as generally undermining availability of key confirmation to
the second principal who receives the key (the responder in
this case).

The proof of Theorem 6 is long. In particular, to terminate
the subgoal arising from the last protocol step, it is necessary
to simplify the assumption

Crypt(shrK A){|Agent B, Nonce M, Nonce Na, Key Kab|}
∈ analz({Key K } ∪ (knows Spy evs)).

Its symbolic evaluation is not trivial because expanding the
traffic over evs with the key K may potentially reveal the
ticket if this appears anywhere in the traffic protected by K .
Fortunately, this is not the case with this protocol, hence a
rewriting rule can be proved to inform the simplifier that no
key is used to re-encrypt a ticket. So, that assumption can
simplify to

Crypt(shrK A){|Agent B, Nonce M, Nonce Na, Key Kab|}
∈ analz(knows Spy evs).

123

96 G. Bella

Theorem 7 can be proved conventionally: insertion of the
main assumption in the inductive formula, induction, a few
applications of a lemma concluding that all items of sent or
received messages appear in the traffic, then simplification
and finally classical reasoning. As we already sketched ear-
lier, proving Theorem 8 reduces to a forward style application
of the previous results.

7 Conclusions

The most obvious protocol design principle is protocol cor-
rectness, namely that a protocol meet its goals. Because this
principle as it stands is difficult to apply, researchers con-
ceived the prudent design principles hoping that they would
be easier to check and that they would guarantee confor-
mity to the most obvious design principle. However, both
hopes turned out to be badly put. On one hand, many design
principles remain difficult to check—for example, it remains
difficult to establish when “the identity of a principal is essen-
tial to the meaning of a message” [2]. On the other hand, it
is now understood that the principles are neither necessary
nor sufficient to protocol correctness. They are not sufficient
because they fail to cover the variety of strategies inspiring
modern designs. They are not necessary because the mes-
sage features as prescribed by some principles counter cer-
tain goals—for example, explicitness often counters privacy.
The examples discussed in this paper show that goal avail-
ability often implies explicitness. However, that is the case
only when explicitness is necessary for a protocol to meet its
goals, otherwise the implication does not hold. We argue that
the same considerations can be made by reading any of the
existing design principles [2] in the place of explicitness. In
consequence, by being formulated in terms of goal achieve-
ment rather than of message features, goal availability might
be the sole design principle to use.

Most importantly, being simply the principal centric
version of protocol correctness, goal availability has the
extremely useful feature that, contrarily to the existing design
principles, the analysis in its support is very easy to guide:
just attempt to relax all assumptions that a principal can-
not realistically check. This is guarantee availability, which
originates as the necessary guidance to analyses in support
of goal availability. It is not surprising because all princi-
ples of protocol design require supporting evidence that is
customarily obtained by protocol analysis. Guarantee avail-
ability therefore is a principle of realistic protocol analysis,
whether this is formal or informal, whether this is machine
assisted or not. The human analyzer should establish in a
realistic threat model that the protocol goals are achieved on
the basis of assumptions that the principals can verify within
their minimal trust.

Protocol analyses often end up in strengthened protocol
designs. In this vein, we have also shown that analyses con-
forming to guarantee availability become deeper, and may
therefore inspire additional, significant design modifications
that would perhaps be neglected otherwise. The protocols
will ultimately become more robust. Additionally, guaran-
tee availability is rather mechanical to check, as the analyzer
merely needs to evaluate what a principal can or cannot estab-
lish to hold in the given threat model and what belongs to
the principal’s minimal trust. This is possible because it is
recognized that a threat model must be specified before con-
formity to the principle can be claimed.

Guarantee availability has never been spelled out com-
pletely thus far although it must have influenced the proto-
col verification community in the last 20 years—it certainly
guided our own inductive treatments [7]. In this paper, we
have detailed its application to four emblematic formal anal-
yses we had conducted before, but expect significant out-
comes from application to all protocol analyses.

Acknowledgments The research was supported by the Engineer-
ing and Physical Sciences Research Council [grant number
GR/R01156/R01]. Colin Boyd, Dieter Gollmann, Andy Gordon, Larry
Paulson, Peter Ryan and the anonymous referees gave invaluable advice.

References

1. Abadi, M., Gordon, A.: Reasoning about cryptographic protocols
in the spi calculus. In: Mazurkiewicz, A.W., Winkowski, J. (eds.)
Proceedings of the 8th International Conference on Concurrency
Theory (CONCUR’97), LNCS 1243, pp. 59–73. Springer (1997)

2. Abadi, M., Needham, R.M.: Prudent engineering practice for cryp-
tographic protocols. IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

3. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based
authenticated key exchange in the three-party setting. IEE Proc.
Inf. Secur. 153(1), 27–39 (2006)

4. Anderson, R., Needham, R.M.: Robustness principles for public
key protocols. In: Coppersmith, D. (ed.) Proceedings of Advances
in Cryptography (CRYPTO’95), LNCS 963, pp. 236–247. Springer
(1995)

5. Bella, G.: Availability of protocol goals. In: Panda, B. (ed.) Pro-
ceedings of the 18th ACM Symposium on Applied Computing
(ACM SAC’03), pp. 312–317. ACM Press (2003a)

6. Bella, G.: Inductive verification of smartcard protocols. J. Comput.
Secur. 11(1), 87–132 (2003b)

7. Bella, G.: Formal Correctness of Security Protocols. Information
Security and Cryptography. Springer, Berlin (2007)

8. Bella, G., Paulson, L.C.: Kerberos Version IV: inductive analysis of
the secrecy goals. In: Quisquater, J.J., Deswarte, Y., Meadows, C.,
Gollmann, D. (eds.) Proceedings of the 5th European Symposium
on Research in Computer Security (ESORICS’98), LNCS 1485,
pp. 361–375. Springer (1998)

9. Bella, G., Paulson, L.C.: Accountability protocols: formalized and
verified. ACM Trans. Inf. Syst. Secur. 9(2), 1–24 (2006)

10. Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET registra-
tion protocols. IEEE J. Sel. Areas Commun. 21(1), 77–87 (2003)

11. Bellare, M., Rogaway, P.: Provably secure session key distribu-
tion—the three party case. In: Proceedings of the 27th ACM SIG-
ACT Symposium on Theory of Computing (STOC’95), pp. 57–66.
ACM Press (1995)

123

The principle of guarantee availability 97

12. Brackin, S.: A HOL extension of GNY for automatically crypto-
graphic protocols. In: Proceedings of the 9th IEEE Computer Secu-
rity Foundations Workshop (CSFW’96), pp. 62–76. IEEE Press
(1996)

13. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentica-
tion. Proc. R. Soc. Lond. 426, 233–271 (1989)

14. Denning, D.E., Sacco, G.M.: Timestamps in key distribution pro-
tocols. Commun. ACM 24(8), 533–536 (1981)

15. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE
Trans. Inf. Theory 2(29), 198–208 (1983)

16. Gollmann, D.: On the verification of cryptographic protocols—a
tale of two committees. In: Schneider, S., Ryan, P.Y.A. (eds.) Pro-
ceedings of the Workshop on Secure Architectures and Information
Flow, ENTCS 32, pp. 42–58. Elsevier (2000)

17. Gong, L., Syverson. P.: Fail-stop protocols: an approach to design-
ing secure protocols. In: Iyer, R.K., Morganti, M., Fuchs, W.K.,
Gligor, V. (eds.) Proceedings of the 5th International Working
Conference on Dependable Computing for Critical Applications
(DCCA’95), pp. 79–100. IEEE Press (1998)

18. Heather, J., Schneider, S.: Towards automatic verification of
authentication protocols on an unbounded network. In: Proceed-
ings of the 13th IEEE Computer Security Foundations Workshop
(CSFW’00), pp. 132–143. IEEE Press (2000)

19. Jerdonek, R., Honeyman, P., Coffman, K., Rees, J., Wheeler, K.:
Implementation of a provably secure, smartcard-based key distri-
bution protocol. In: Quisquater, J.J., Schneier, B. (eds.) Proceedings
of the 3rd Smartcard Research and Advanced Application Confer-
ence (CARDIS’98), pp. 229–235. (1998)

20. Lowe, G.: Breaking and fixing the Needham–Schroeder public-
key protocol using CSP and FDR. In: Margaria, T., Steffen, B.
(eds.) Proceedings of the 2nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TA-
CAS’96), LNCS 1055, pp. 147–166. Springer, Berlin (1996)

21. Lowe, G., Roscoe, A.W.: Using CSP to detect errors in the TMN
protocol. IEEE Trans. Softw. Eng. 3(10), 659–669 (1997)

22. Meadows, C.: Invariant generation techniques in cryptographic
protocol analysis. In: Proceedings of the 13th IEEE Computer
Security Foundations Workshop (CSFW’00), pp. 159–169. IEEE
Press (2000)

23. Meadows, C.A.: The NRL protocol analyzer: an overview. J. Log.
Program. 26(2), 113–131 (1996)

24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, LNCS Tutorial 2283
(2002)

25. Paulson, L.C.: Proving properties of security protocols by
induction. In: Proceedings of the 10th IEEE Computer Security
Foundations Workshop (CSFW’97), pp. 70–83. IEEE Press (1997)

26. Paulson, L.C.: The inductive approach to verifying cryptographic
protocols. J. Comput. Secur. 6, 85–128 (1998)

27. Paulson, L.C.: Inductive analysis of the internet protocol
TLS. ACM Trans. Comput. Syst. Secur. 2(3), 332–351 (1999)

28. Ryan, P.Y.A., Schneider, S., Goldsmith, M., Lowe, G., Roscoe,
A.W.: Modelling and Analysis of Security Protocols. Addison-
Wesley (2001)

29. Schneider, S.: Verifying authentication protocols with CSP. In: Pro-
ceedings of the 10th IEEE Computer Security Foundations Work-
shop (CSFW’97), pp. 3–17. IEEE Press (1997)

30. Shoup, V., Rubin, A.: Session key distribution using smartcards. In:
Maurer, U. (ed.) Advances in Cryptology (Eurocrypt’96), LNCS
1070, pp. 321–331. Springer (1996)

31. Song, B., Kim, K.: Two-pass authenticated key agreement pro-
tocol with key confirmation. In: Roy, B.K., Okamoto, E. (eds.)
Proceeings of 1st International Conference in Cryptology in India,
Indocrypt 2000, LNCS 1977, pp. 237–249. Springer (2000)

32. Syverson, P.F.: Limitations on design principles for public key pro-
tocols. In: Proceedings of the 15th IEEE Symposium on Security
and Privacy (SSP’96), pp. 62–72. IEEE Press (1996)

33. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving
security protocols correct. J. Comput. Secur. 7, 191–220 (1999)

34. URL (2009a) Isabelle download page. http://www.cl.cam.ac.uk/
Research/HVG/Isabelle/download.html

35. URL (2009b) Old Isabelle releases. http://www.cl.cam.ac.uk/
Research/HVG/Isabelle/download_past.html

123

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download_past.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download_past.html

	The principle of guarantee availability for security protocol analysis
	Abstract
	1 Introduction
	2 Limitations of security claims
	3 Guarantee availability
	4 Past incarnations of guarantee availability
	5 The inductive method of protocol analysis
	6 Applying guarantee availability
	6.1 The asymmetric Needham--Schroeder protocol
	6.2 The Shoup--Rubin protocol
	6.3 The Kerberos protocol
	6.4 The Otway--Rees protocol

	7 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

