A survey of certain problems in analysis and their status

Biagio Ricceri

Abstract

In this paper, we give a survey of certain problems highlighting their current status. Keywords: Mathematical analysis, variational inequalities, Gevrey spaces, geometry of normed spaces, integral functionals on Sobolev spaces, nonlinear elliptic equations.

MSC2010: 47J20, 46E10, 46B20, 49J45, 35J20.
Dedicated to the memory of Professor Francesco S. De Blasi

In this paper, I wish to offer an overview of some of the numerous problems that I have proposed in the past years. For each one of such problems, I will recall the motivation for studying it and point out its status, in the sense of saying what is known up to date.

1 Variational inequalities

Given a real Hausdorff topological vector space E, a closed convex set $X \subseteq E$, and an operator $\Phi: X \rightarrow E^{*}$, the problem of finding $\hat{x} \in X$ in such a way that

$$
\sup _{y \in X} \Phi(\hat{x})(\hat{x}-y) \leq 0
$$

is said to be the variational inequality associated with X and Φ, denoted by $\operatorname{VI}(X, \Phi)$.
The first basic result, due to P. Hartman and G. Stampacchia [9], is as follows:
Theorem 1.1. Assume that X is compact and finite-dimensional, and that Φ is weakly-star continuous.
Then, $V I(X, \Phi)$ has a solution.

Theorem 1.1 is no longer true when X is infinite-dimensional. In this connection, M. Frasca and A. Villani [7], proved the following very interesting result:

Theorem 1.2. Let $(E,\langle\cdot, \cdot\rangle)$ be any infinite-dimensional Hilbert space. Then, for each closed ball $X \subset E$, there exists some (strongly) continuous affine operator $\Phi: E \rightarrow E$ such that, for every $x \in X$, one has

$$
\sup _{y \in X}\langle\Phi(x), x-y\rangle>0
$$

It is clear how Theorem 1.2 serves to the purpose: one considers E endowed with the weak topology and identify E^{*} with E. So, X is weakly compact and, at the same time, Φ is weakly continuous, being affine and strongly continuous.
In [10], I proved the following:
Theorem 1.3. Assume that the relative interior of X (that is the interior of X in its affine hull) is non-empty, and that Φ is weakly-star continuous. Moreorer, let K, K_{1} be two non-empty compact subsets of X, with $K_{1} \subseteq K$ and K_{1} finite-dimensional, such that, for each $x \in X \backslash K$, one has

$$
\sup _{y \in K_{1}}\langle\Phi(x), x-y\rangle>0
$$

Then, $V I(X, \Phi)$ has a solution lying in K.

In [13], I asked the following:
Problem 1.1. In Theorem 1.3, can one drop the finite-dimensionality assumption on K_{1} ?

Up to date, the only (partial) answer to Problem 1.1 was provided by N. D. Yen in [21] who proved

Theorem 1.4. Let $(E,\langle\cdot, \cdot\rangle)$ be a Hilbert space, let $K \subset E$ be a closed ball and let $\Phi: E \rightarrow E$ be an affine (not necessarily continuous) operator such that

$$
\sup _{y \in K}\langle\Phi(x), x-y\rangle>0
$$

for all $x \in E \backslash K$.
Then, there exists $\hat{x} \in K$ such that $\Phi(\hat{x})=0$.

2 A special Gevrey space

In [12], in connection with linear partial differential equations of infinite order, I introduced a special Gevrey space. Namely, let m, n be two positive integers. Denote by $V\left(\mathbf{R}^{n}\right)$ the space of all functions $u \in C^{\infty}\left(\mathbf{R}^{n}\right)$ such that, for each bounded subset $\Omega \subset \mathbf{R}^{n}$, one has

$$
\sup _{\alpha \in \mathbf{N}_{0}^{n}} \sup _{x \in \Omega}\left|D^{\alpha} u(x)\right|<+\infty
$$

where $D^{\alpha} u=\partial^{\alpha_{1}+\ldots+\alpha_{n}} u / \partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$.
Also, for each $\alpha \in \mathbf{N}_{0}^{n}$, with $|\alpha|=\alpha_{1}+\ldots+\alpha_{n} \leq m$, let $a_{\alpha} \in \mathbf{R}$ be given. Let $P: V\left(\mathbf{R}^{n}\right) \rightarrow V\left(\mathbf{R}^{n}\right)$ be the differential operator defined by putting

$$
P(u)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha} u
$$

for all $u \in V\left(\mathbf{R}^{n}\right)$.
A natural problem arises:
Problem 2.1. Find necessary and sufficient conditions in order that

$$
P\left(V\left(\mathbf{R}^{n}\right)\right)=V\left(\mathbf{R}^{n}\right)
$$

Up to date, the only (very partial) answer to Problem 2.1 is provided by the following result from [12]:

Theorem 2.1. Let $a, b \in \mathbf{R} \backslash\{0\}$ and $h, k \in \mathbf{N}$. For each $u \in V\left(\mathbf{R}^{2}\right)$, put

$$
P(u)=a \frac{\partial^{h} u}{\partial x^{h}}+b \frac{\partial^{k} u}{\partial y^{k}}
$$

Then, one has

$$
P\left(V\left(\mathbf{R}^{2}\right)\right)=V\left(\mathbf{R}^{2}\right)
$$

if and only if $|a| \neq|b|$.
In [16], I asked the following
Problem 2.2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that, for each $u \in V\left(\mathbf{R}^{n}\right)$, the composite function $x \rightarrow f(u(x))$ belongs to $V\left(\mathbf{R}^{n}\right)$.
Then, must f necessarily be affine ?
In [20], by means of an ingenious proof based on the Baire category, M. Romeo gave a complete positive answer to Problem 2.2.

3 Geometry of normed spaces

Let E be a real vector space. A non-empty set $A \subset E$ is said to be totally antiproximinal if, for every norm $\|\cdot\|$ on E, every $x \in E \backslash A$ and every $y \in A$, one has

$$
\|x-y\|>\inf _{z \in A}\|x-z\|
$$

Applying Theorem 4 of [10], one can prove the following
Theorem 3.1. Let X, E be two real vector spaces, C a non-empty convex subset of X, F a multifunction from C onto E, with non-empty values and convex graph. Then, for every non-empty convex set $A \subseteq C$ which is open with respect to the relativization to C of the strongest vector topology on X, the set $F(A)$ is totally antiproximinal.

In view of Theorem 3.1, in [14], I formulated the following conjecture:
Conjecture 3.1. There exists a non-complete real normed space whose totally antiproximinal convex subsets are not rare.

Recently, in [8], F. J. Garcia-Pacheco gave a partial answer to Conjecture 3.1 proving what follows

Theorem 3.2. There exists a non-complete real normed space whose totally antiproximinal absolutely convex subsets are not rare.

Let E be a normed space and let S be the unit sphere of E. The space E is said to have the Kadec-Klee property if, for every sequence $\left\{x_{n}\right\}$ in S weakly converging to some $x \in S$, one has

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0
$$

In [19], I proved the following
Theorem 3.3. Let E be an infinite-dimensional reflexive real Banach space and let $f: S \rightarrow E^{*}$ be a compact function such that

$$
\inf _{x \in S}\|f(x)\|_{E^{*}}>0
$$

Then, there exists $\hat{x} \in S$ such that

$$
f(\hat{x})(\hat{x})=\|f(\hat{x})\|_{E^{*}} .
$$

In [19] again, I also proposed the following
Problem 3.1. Let E be an infinite-dimensional reflexive real Banach space such that, for each compact function $f: S \rightarrow E^{*}$ satisfying

$$
\inf _{x \in S}\|f(x)\|_{E^{*}}>0
$$

there exists $\hat{x} \in S$ for which

$$
f(\hat{x})(\hat{x})=\|f(\hat{x})\|_{E^{*}} .
$$

Then, does E possess the Kadec-Klee property ?
Very recently, J. Saint Raymond informed me that in a forthcoming paper he will give a complete positive answer to Problem 3.1.

4 Integral functionals on Sobolev spaces and nonlinear elliptic equations

In the sequel, $\Omega \subset \mathbf{R}^{n}(n \geq 3)$ is a bounded domain with smooth boundary and X will stand for $H_{0}^{1}(\Omega)$, with the usual norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

For $q>0$, denote by \mathcal{A}_{q} the class of all continuous functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that

$$
\sup _{\xi \in \mathbf{R}} \frac{|f(\xi)|}{1+|\xi|^{q}}<+\infty
$$

For $0<q \leq \frac{n+2}{n-2}$ and $f \in \mathcal{A}_{q}$, put

$$
J_{f}(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} F(u(x)) d x
$$

for all $u \in X$, where

$$
F(\xi)=\int_{0}^{\xi} f(t) d t
$$

So, the functional J_{f} is of class C^{1} on X and one has

$$
J_{f}^{\prime}(u)(v)=\int_{\Omega} \nabla u(x) \nabla v(x) d x-\int_{\Omega} f(u(x)) v(x) d x
$$

for all $u, v \in X$.
Hence, the critical points of J_{f} in X are exactly the weak solutions of the problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u) \quad \text { in } \Omega \tag{f}\\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

One of the classical basic existence results for Problem $\left(P_{f}\right)$ was provided by A. Ambrosetti and P. H. Rabinowitz who in [1] proved

Theorem 4.1. Let $f \in \mathcal{A}_{q}$, with $q<\frac{n+2}{n-2}$, and assume that the following conditions are satisfied:
(a) there are constants $r \geq 0$ and $c>2$ such that

$$
0<c F(\xi) \leq \xi f(\xi)
$$

$$
\text { for all } \xi \in \mathbf{R} \text { with }|\xi| \geq r
$$

(b) $\lim _{\xi \rightarrow 0} \frac{f(\xi)}{\xi}=0$.

Then, Problem $\left(P_{f}\right)$ has a non-zero weak solution.
In [15], I obtained the following
Theorem 4.2. Assume that the assumptions of Theorem 4.1 hold, but (b).
Then, for each $\rho>0$ and each μ satisfying

$$
\begin{equation*}
\mu>\inf _{\|u\|^{2}<\rho} \frac{\sup _{\|v\|^{2}<\rho} \int_{\Omega} F(v(x)) d x-\int_{\Omega} F(u(x)) d x}{\rho-\|u\|^{2}} \tag{4.1}
\end{equation*}
$$

Problem ($P_{\frac{1}{2 \mu} f}$) has at least two weak solutions one of which has norm less that $\sqrt{\rho}$.
Comparing Theorems 4.1 and 4.2 , the following problem naturally arises
Problem 4.1. Is there some $\rho>0$ such that the infimum appearing in 4.1 is less than $\frac{1}{2}$?
A complete answer to Problem 4.1 was provided by G. Anello in [2] who proved
Theorem 4.3. The answer to Problem 4.1 is, in general, "no" if $r>0$, while is "yes" if $r=0$. Moreover, there are f satisfying condition (a) with $r=0$, but not satisfying condition (b).

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function. Set

$$
\Lambda_{f}=\left\{\lambda>0:\left(P_{\lambda f}\right) \text { has a non-zero classical solution }\right\}
$$

The Pohozaev identity tells us that, if u is a classical solution of $\left(P_{\lambda f}\right)$, then one has

$$
\begin{equation*}
\frac{2-n}{2} \int_{\Omega}|\nabla u(x)|^{2} d x+n \lambda \int_{\Omega} F(u(x)) d x=\frac{1}{2} \int_{\partial \Omega}|\nabla u(x)|^{2} x \cdot \nu(x) d s \tag{4.2}
\end{equation*}
$$

where ν denotes the unit outward normal to $\partial \Omega$.
From 4.2, in particular, it follows that, if Ω is star-shaped with respect to 0 (so $x \cdot \nu(x) \geq 0$ on $\partial \Omega)$, then the set Λ_{f} is empty in the two following cases:

$$
\begin{aligned}
& (\alpha) f(\xi)=|\xi|^{p-2} \xi \text { with } n \geq 3 \text { and } p \geq \frac{2 n}{n-2} \\
& (\beta) \sup _{\xi \in \mathbf{R}} F(\xi)=0
\end{aligned}
$$

For $L>0$, denote by \mathcal{C}_{L} the class of all Lipschitzian functions $f: \mathbf{R} \rightarrow \mathbf{R}$, with Lipschitz constant L, such that $\sup _{\xi \in \mathbf{R}} F(\xi)=0$.
In [18], I proved
Theorem 4.4. One has

$$
\inf _{f \in \mathcal{C}_{L}} \inf \Lambda_{f} \geq \frac{3 \lambda_{1}}{L}
$$

I also proposed the following
Conjecture 4.1. If Ω is not star-shaped with respect to 0 , one has

$$
\inf _{f \in \mathcal{C}_{L}} \inf \Lambda_{f}=\frac{3 \lambda_{1}}{L}
$$

X. L. Fan disproved Conjecture 4.1 in [4] and, at the same time, he surprisingly proved, in [5], that a non-autonomous version of it holds with any Ω.
We now recall a problem from [6] which still is completely open:
Problem 4.1. If $\Omega=\left\{x \in \mathbf{R}^{n}: a<|x|<b\right\}$ with $0<a<b$, is there some $f \in \mathcal{C}_{1}$ for which the set Λ_{f} is non-empty ?
In particular, what about this problem when $f(\xi)=-\sin \xi$?
In [6], it only was remarked what follows
Theorem 4.5. Let $\Omega=\left\{x \in \mathbf{R}^{n}: a<|x|<b\right\}$ with $0<a<b$.
Then, for every continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$, satisfying $\sup _{\xi \in \mathbf{R}} F(\xi)=0$, and every $\lambda>0$, problem $\left(P_{\lambda f}\right)$ has no radially symmetric non-zero classical solutions.

If $f \in \mathcal{A}_{q}$, with $q<\frac{n+2}{n-2}$, by the Rellich-Kondrachov theorem, the functional $\Phi: X \rightarrow \mathbf{R}$ defined by

$$
\Phi_{f}(u)=\int_{\Omega} F(u(x)) d x
$$

is sequentially weakly continuous in X.
In [17], I asked the following
Problem 4.2. Are there non-constant $f \in \mathcal{A}_{q}$, with $q<\frac{n+2}{n-2}$, for which the functional Φ_{f} is weakly continuous ?

A complete negative answer to Problem 4.2 was provided by R. Černý, S. Hencl and J. Kolár in [3].

I conclude proposing the following
Conjecture 4.2. Let $f \in \mathcal{A}_{q}$, with $q<\frac{n+2}{n-2}$. Assume also that the functional J_{f} is weakly lower semicontinuous in $H_{0}^{1}(\Omega)$.
Then, one has

$$
\lim _{\|u\| \rightarrow+\infty} J_{f}(u)=+\infty
$$

References

[1] A. AMBROSETTI and P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[2] G. ANELLO, A note on a problem by Ricceri on the Ambrosetti-Rabinowitz condition, Proc. Amer. Math. Soc., 135 (2007), 1875-1879.
[3] C̆ERNÝ, S. HENCL and J. KOLÁß̆R, Integral functionals that are continuous with respect to the weak topology on $W_{0}^{1, p}(\Omega)$, Nonlinear Anal., 71 (2009), 27532763.
[4] X. L. FAN, On Ricceri's conjecture for a class of nonlinear eigenvalue problems, Appl. Math. Lett., 22 (2009), 1386-1389.
[5] X. L. FAN, A remark on Ricceri's conjecture for a class of nonlinear eigenvalue problems, J. Math. Anal. Appl., 349 (2009), 436-442.
[6] X. L. FAN and B. RICCERI, On the Dirichlet problem involving nonlinearities with non-positive primitive: a problem and a remark, Appl. Anal., 89 (2010), 189-192.
[7] M. FRASCA and A.VILLANI, A property of infinite-dimensional Hilbert spaces, J. Math. Anal. Appl., 139 (1989), 352-361.
[8] F. J. GARCÍA-PACHECO, An approach to a Ricceri's conjecture, Topology Appl., 159 (2012), 3307-3313.
[9] P. HARTMAN and G. STAMPACCHIA, On some nonlinear elliptic differential equations, Acta Math., 115 (1966).
[10] B. RICCERI, Un théorème d'existence pour les inéquations variationnelles, C. R. Acad. Sci. Paris, Série I, 301 (1985), 885-888.
[11] B. RICCERI, Images of open sets under certain multifunctions, Rend. Accad. Naz. Sci. XL, 10 (1986), 33-37.
[12] B. RICCERI, On the well-posedness of the Cauchy problem for a class of linear partial differential equations of infinite order in Banach spaces, J. Fac. Sci. Univ. Tokyo, Sec. IA, 38 (1991), 623-640.
[13] B. RICCERI, Basic existence theorems for generalized variational and quasivariational inequalities, in "Variational inequalities and network equilibrium problems", F.Giannessi and A.Maugeri eds., 251-255, Plenum Press, 1995.
[14] B. RICCERI, On some motivated conjectures and problems, Matematiche, 51 (1996), 369-373.
[15] B. RICCERI, On a classical existence theorem for nonlinear elliptic equations, in "Experimental, constructive and nonlinear analysis", M. Théra ed., 275-278, CMS Conf. Proc. 27, Canad. Math. Soc., 2000.
[16] B. RICCERI, Some research perspectives in nonlinear functional analysis, Seminar on fixed point theory, Cluj-Napoca, 3 (2002), 99-110.
[17] B. RICCERI, Three topological problems about integral functionals on Sobolev spaces, J. Global Optim., 28 (2004), 401-404.
[18] B. RICCERI, A remark on a class of nonlinear eigenvalue problems, Nonlinear Anal., 69 (2008), 2964-2967.
[19] B. RICCERI, Existence of fixed points for a particular multifunction, Fixed Point Theory, 11 (2010), 125-128.
[20] M. ROMEO, Superposition operator in a space of infinitely differentiable functions, Z. Anal. Anwend., 27 (2008), 463-467.
[21] N. D. YEN, On a problem of Ricceri on variational inequalities, Fixed point theory and applications. Vol. 5, 163-173, Nova Sci. Publ., 2004.

Biagio Ricceri
Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
E-mail: ricceri@dmi.unict.it

