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Abstract Security protocols have been analysed focusing on a variety of properties
to withstand the Dolev-Yao attacker. The Multi-Attacker treat model allows each
protocol participant to behave maliciously intercepting and forging messages. Each
principal may then behave as a Dolev-Yao attacker while neither colluding nor shar-
ing knowledge with anyone else. This feature rules out the applicability of existing
equivalence results in the Dolev-Yao model. The analysis of security protocols under
the Multi-Attacker threat model brings forward yet more insights, such as retaliation
attacks and anticipation attacks, which formalise currently realistic scenarios of
principals competing each other for personal profit. They are variously demonstrated
on a classical protocol, Needham-Schroeder’s, and on a modern deployed protocol,
Google’s SAML-based single sign-on protocol. The general threat model for security
protocols based on set-rewriting that was adopted in AVISPA (Armando et al. 2005)
is extended to formalise the Multi-Attacker. The state-of-the-art model checker
SATMC (Armando and Compagna, Int J Inf Secur 6(1):3–32, 2007) is then used
to automatically validate the protocols under the new threats, so that retaliation and
anticipation attacks can automatically be found. The tool support scales up to the
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Multi-Attacker threat model at a reasonable price both in terms of human interaction
effort and of computational time.

Keywords Security protocols · Attacker models · Automated reasoning

1 Introduction

The analysis of security protocols stands among the most attractive niches of research
in computer science, as it has attracted efforts from many communities. It is difficult
to even provide a satisfactory list of citations, which would have to at least include
process calculi [1, 38], strand spaces [23, 26], the inductive method [14, 36] and
advanced model checking techniques [5, 20]. Any meaningful statement about the
security of a system requires a clear specification of the threats that the system is
supposed to withstand. Such a specification is usually referred to as threat model.
Statements that hold under a threat model may no longer hold under other models.
For example, Needham remarked that if the threat model only accounts for attackers
that are outsiders, then Lowe’s famous attack on the Needham-Schroeder Public-
Key (NSPK) protocol cannot succeed [33], and the protocol may be claimed secure.
But the protocol is notoriously insecure under a model that allows the attacker as a
registered principal.

The standard threat model for symbolic protocol analysis is the Dolev-Yao model
(DY in brief), which sees a powerful attacker control the whole network traffic. The
usual justification is that a protocol secure under DY certainly is secure under a less
powerful, perhaps more realistic attacker. By contrast, a large group of researchers
consider DY insufficient because a DY attacker cannot do cryptanalysis, and their
probabilistic reasoning initiated with a foundational paper [19]. This sparked off a
research thread that has somewhat evolved in parallel with the DY research line,
although some efforts exist in the attempt to conjugate them [2, 13, 27]. The present
paper is not concerned with probabilistic protocol analysis. Our main argument is
that security protocols may still hide important subtleties even after they are proved
correct under DY. These subtleties can be discovered by symbolic protocol analysis
under a new threat model that perhaps is more adherent to the present real world
than DY is.

The new model we develop here is the Multi-Attacker (MA in brief), which
features each protocol participant as a DY attacker who does not collude or share
knowledge with anyone else. In MA, it is meaningful to continue the analysis of a
protocol after an attack is mounted, or to anticipate the analysis by looking for extra
flaws before an initiated attack terminates, something that has never been seen in the
relevant literature. This can assess whether additional attacks can be mounted either
by the same principal who attacked in the first place or by different attackers. Even
novel scenarios whereby principals attack each other are supported. A significant
scenario is that of retaliation [18], where an attack is followed by a counterattack.
This paper recasts that scenario into the MA threat model, and expands it. Also, a
completely new scenario is defined, that of anticipation, where a principal’s attack is
anticipated, before its termination, by another attack by some other principal.

The new threat model is used to analyse a classical protocol, Needham-
Schroeder’s public-key protocol, and a modern deployed one, Google’s single sign-
on protocol. Various findings are described about the former, including an exhaustive
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analysis of the malicious activity that may (successfully) follow Lowe’s man-in-the-
middle attack. An attack has recently been reported on Google’s single sign-on
protocol: a malicious service provider may access a client’s resources at Google
[7]. Here, it is found that the attack can be retaliated: Google may then access the
client’s resources at the malicious service provider who attacked first. It becomes
clear that our focus is on protocol niceties that go beyond standard confidentiality or
authentication properties.

The formal language to support our analysis is found in an existing set-rewriting
formalism suited for model checking, which in turn offers the necessary mechanical
support. The language is IF, which can specify inputs to the AVISPA backends
[5] and more specifically to SATMC, a successful SAT-based model checker [9].
After we specified the new threat model and the new properties of interest, we
were prepared to face major performance issues. However, although the efficiency
of SATMC was put at stake by the new properties to validate, the runtimes never
exceeded few minutes. Remarkably, while the tool always validated our pre-existing
informal analysis, it also provided various unknown insights. It then seems fair to
state that the tool supports well the validation of security protocols under modern
everyone-for-themselves threats.

This manuscript conjugates and significantly expands on two recent conference
papers [10, 11]. It is structured as follows. The MA threat model is introduced
(Section 2) and then used to informally analyse the two protocols (Section 3). The
extensions that the new threat model require of the validation method are then
presented (Section 4). After that, the actual validation experiments are described
(Section 5) and the tool performance is outlined (Section 6). Some conclusions
terminate the paper (Section 7).

2 MA: The Multi-Attacker Threat Model

DY can be considered the standard threat model to study security protocols [25]. The
DY attacker controls the entire network although he cannot perform cryptanalysis.
Some historical context is useful here. The model was defined in the late 1970s when
remote computer communications were still confined to military/espionage contexts.
It was then natural to imagine that the entire world would collude joining their forces
against a security protocol session between two secret agents of the same country.
The DY model has remarkably favoured the discovery of significant protocol flaws,
but the prototype attacker has significantly changed today. To become an attacker
has never been so easy as in the present technological setting because hardware
is inexpensive, while security skill is at hand—malicious exploits are even freely
downloadable from the web.

A seminal threat model called BUG [18], which dates back to 2002 [17], must
be recalled here. The name is a permuted acronym for the “Good”, the “Bad”
and the “Ugly”. This model attempts stricter adherence than DY’s to the changed
reality by partitioning the participants in a security protocol into three groups. The
Good principals would follow the protocol, the Bad would in addition try to subvert
it, and the Ugly would be ready to either behaviour. A simple byproduct of this
taxonomy is the chance that a principal may change role and decide to attempt
illegal exploitation of a protocol although he has always conformed to it so far. This
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seems the first account in the literature of formal protocol verification on the chance
that attackers may attempt to attack each other without sharing knowledge. More
recently, Bella observed [15] that the partition of the principals had to be dynamically
updated very often, in principle at each event of a principal’s sending or receiving a
message, depending on whether the principal respected the protocol or not. Thus,
BUG appeared overly detailed, and he simplified it as the Rational Attacker threat
model (RA in brief), which lets any principal make cost/benefit decisions at any time
to either behave according to the protocol or not [15]. After BUG’s inception [17],
homologous forms of rational attackers were specifically carved out in the area of
game theory [3, 21] and therefore are, as such, not directly related to our symbolic
analysis.

Analysing a protocol under the Rational Attacker requires specifying each prin-
cipal’s cost and benefit functions, but this still seems out of reach for the current
mechanised approaches, especially for classical model checking. By abstracting away
the actual cost/benefit analysis, we recently derived a simplified model, the General
Attacker (GA in brief), where any principal may behave as a Dolev-Yao attacker
[11]. The change of perspective in RA or in GA with respect to DY is clear: principals
do not collude for a common aim but, rather, each of them acts for his own personal
sake. By contrast, a pair of colluding DY attackers is equivalent to a single DY
attacker in terms of generated attacks, as confirmed by a formal proof [22]. Although
there is no notion of collusion constraining these threat models, the human protocol
analysers might define specific ones for their particular investigations. Endowing
each principal with the entire potential of a DY attacker signifies that he may send
any of the messages he can form to anyone. Such messages include both the legal
ones, conforming to the protocol in use, and the illegal, forged ones, which he can
build from the analysis of the traffic though without cryptanalysis.

It was recently suggested at an international venue [10] that GA is similar to DY
provided that all principals reveal their secrets to the attacker. Such a threat model,
which we address as DY+ appears equivalent to GA in terms of attacks that can
be found: any illegal message that a principal may send in GA may be sent by the
single DY+ attacker (exactly because he knows everyone’s secrets). However, the
two models do not seem trace-equivalent, as DY+ entangles the interpretation of
attacks where principals attack each other. In fact, the single attacker will always be
the originator of any attack, complicating the identification of the real perpetrator;
for attacks against the attacker, the model will feature the attacker attacking himself,
thus stretching the interpretation of the victim to an extreme. By contrast, as
the sequel of this manuscript demonstrates, perpetrator and victim are naturally
expressed in GA because its gist is exactly to reflect modern everyone-for-themselves
scenarios.

The variety of experiments we have conducted thus far in validating security
protocols under GA have produced a number of insights but also the trivial im-
personation attacks due to a principal’s deliberately revealing his long-term keys to
someone else. This motivates an additional refinement of the model.

The Multi-Attacker (MA) threat model: each principal may behave as a Dolev-
Yao attacker but will never reveal his long-term secrets.

MA can be seen as a refinement of GA with some rationality that avoids the
trivial impersonation attacks. This does not seem restrictive in the present epoch,
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in the sense that it will not rule out significant attack scenarios, as well as DY did not
seem restrictive in the early 1980s. Moreover, MA relates to DY+ as GA does. The
findings obtained under GA [10, 11] of course continue to hold under MA.

As we shall see, analysing protocols under the MA threat model yields unknown
scenarios of retaliation or anticipation. This paves the way for a future, more detailed
analysis under RA. For example, if an attack can be retaliated under MA, such a
scenario will not occur under RA because the cost of attacking clearly overdoes
its benefit, and hence the attacker will not attack in the first place. This argument
is after all not striking: even a proper evaluation of the “realism” of classical
attacks found under DY would have required a proper cost/benefit analysis. A
realistic consequence is that even a deployed protocol suffering an attack that can
be retaliated may perhaps be kept in place.

3 Analysing Protocols under MA

We begin with an informal analysis of a classical protocol (Section 3.1) and of a
modern deployed protocol (Section 3.2) under the new threat model.

3.1 A Classical Protocol

The BUG threat model was demonstrated over the public-key Needham-Schroeder
protocol yielding an indirect retaliation attack [18]. In the sequel of this section, we
recast that analysis under the MA model and extend it with other attacks including
direct retaliation—these concepts are used on the basis of their intuitive meaning
here, but will be formalised later (Section 4.3). The protocol version studied here,
which we address as NSPK++, is its original design terminated with the completion
steps for authenticated money transfers (Fig. 1). Clearly, all symbols in italic are
variable names, as appropriate for a generic description of the protocol. The gist
is that, once the peers authenticate each other, each of them may ask to debit his
account, held at the other one, with someone else as a beneficiary. It can be seen that
principal A issues a fresh nonce Na in message 1, which she sees back in message 2.
Hence, A learns that B acted at the other end of the network because message 1
is encrypted under B’s public key, the nonce was fresh and cryptanalysis cannot be
broken by assumption. Messages 2 and 3 give B the analogous information about A
by means of nonce Nb. Message 4a is a request from A at (bank) B to transfer X1¤
from A’s account Y1’s. Message 4b is the analogous request from B at A towards Y2.

Fig. 1 NSPK++: the NSPK protocol terminated with the completion steps
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Incidentally, the figure also shows a notational convention used throughout this
paper: angle brackets are used to denote messages whose outermost operator is
concatenation. This protocol version is subject to Lowe’s attack [30], as described
in Fig. 2. It can be seen how the attacker C masquerades as A with B to carry out an
illegal money transfer at B (which intuitively is a bank) from A’s to C’s account.

It is known that the problems originated with the confidentiality attack upon the
nonce Nb. Another observation is that there is a second nonce whose confidentiality
is violated—by B, not by C—in this scenario: it is Na. Although it is invented by A
to be only shared with C, also B learns it. This does not seem to be an issue in the
DY model, where all principals except C followed the protocol like soldiers follow
orders. What one of them could do with a piece of information not meant for him
therefore became uninteresting. To what extent this is appropriate to the current
real world, where there often are various attackers with targets of their own, is at
least questionable. Strictly speaking, B’s learning of Na is a new attack because it
violates the confidentiality policy upon the nonces, which are later used to form a
session key. It can be easily captured in the MA threat model, where more than one
principal may act illegally at the same time for their own sake.

We are facing a new perspective of analysis. Principal B did not have to act to
learn a nonce not meant for him, therefore this is named an indeliberate attack [17].
To use a metaphor, B does not know which lock the key Na can open. This is not an
issue in the MA threat model, where each principal just sends out anything he can
send to anyone. Nevertheless, there are at least four methods, which would be worth
of a cost/benefit analysis under the Rational Attacker, to help B practically evaluate
the potential of Na.

1. There often is some proximity relation [16] between the principals executing a
protocol, who can be seen as a community that interacts by means of the pro-
tocol. A community might be a department, a company, a group of companies,
etc. So B has a useful indication that Na can be exploited exactly within the
community, not just everywhere on the Internet, which would be impractical. To
continue with the metaphor, he might then try the key Na at all locks on his floor.

2. Because B sees the entire network traffic, in particular he sees the session be-
tween A and C and therefore realistically makes the right guess about nonce Na.

Fig. 2 Lowe’s attack to the NSPK++ protocol
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3. Principal B may use an out-of-band detection challenge [18] to learn whether
something went wrong with the session upon Na and Nb, which he believes to
have executed with A. Thus, B can attempt the following dull transfer at A for
all principals X:

B(X) → A : {
“Transfer 1¤ from X’s account to B’s”

}
〈Na,Nb〉

As one transfer succeeds—and B can realise this—he detects the attacker C who
mounted Lowe’s attack.

4. A simple alternative is that B merely waits for A’s complaint that she has noticed
a money transfer towards C, which she did not require herself.

The natural consequence of B’s learning Na is the retaliation attack [18] in Fig. 3.
Note that the first method indicated above gives B a reasonable set of target
principals to try retaliation against, while the second one gives him a probabilistic
answer originated from traffic analysis. However, the remaining two methods exactly
tell him who the target for retaliation is.

It is worth remarking once more that a retaliation attack cannot be captured in
the standard DY threat model, where all potential attackers merely collude to form
a super-potent one, but the MA model can support this notion.

An anonymous reviewer observed that the notion of retaliation scenario might be
related to the notion of balanced protocol [29]. Evaluating this formally is beyond
the focus of our paper, but it can be appreciated that a retaliation scenario is more
general as it can be instantiated to any attack. This will become clearer below
(Section 4.3).

Having glimpsed at how B can exploit his knowledge of Na, we may also wonder
whether principal C may at all become a victim. These questions are relevant
today, when hackers routinely attack each other, and can be formally answered in
the MA threat model. We begin informally but systematically by analysing the six
permutations of the three principals involved. They will reveal who can attack whom
using an appropriate instance of the protocol messages 4a or 4b.

The first move is to state the beliefs of principals upon the pair of nonces
(that form a session key) at the end of Lowe’s scenario, that is after the trace
1, 1′, 2′, 2, 3, 3′.

Belief i B believes that the nonce pair is shared with A and not with C. Indeed,
B replied to a session apparently with A and completed the protocol
successfully.

Belief ii A believes that the nonce pair is shared with C and not with B. Indeed,
A chose to initiate a session with C and noticed no irregularity.

Belief iii C believes that the nonce pair is shared with A and with B. Indeed, C
knows the threat model—see below.

Fig. 3 Retaliation attack following Lowe’s attack
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The first two beliefs are rather obvious. The third means that C assumes the worst
case that everyone will attempt exploitation of his knowledge for personal profit. In
particular C himself handed the nonce pair over to B, and therefore knows that B
may attempt to exploit such a knowledge in every possible way.

We are now ready for the second move, a systematic analysis. Here are the six
possible attack attempts in terms of an illegal money transfer, which may follow
Lowe’s scenario. They are obtained by permuting the three involved principals.

Attempt I C(A) → B :
{
Dear B, move 1,000¤ from A’s account to C’s

}
〈Na,Nb〉

Attempt II B(C) → A :
{
Dear A, move 1,000¤ from C’s account to B’s

}
〈Na,Nb〉

Attempt III A(C) → B :
{
Dear B, move 1,000¤ from C’s account to A’s

}
〈Na,Nb〉

Attempt IV B(A) → C :
{
Dear C, move 1,000¤ from A’s account to B’s

}
〈Na,Nb〉

Attempt V C(B) → A :
{
Dear A, move 1,000¤ from B’s account to C’s

}
〈Na,Nb〉

Attempt VI A(B) → C :
{
Dear C, move 1,000¤ from B’s account to A’s

}
〈Na,Nb〉

The concluding move is a number of propositions that establish whether the
mentioned attempts succeed as attacks or not. Because C is the only principal who
acted illegally until the end of Lowe’s scenario, our analysis begins with C’s attack
and the corresponding retaliation. It is useful to recall that given an attack, we can
define its direct retaliation attack, as carried out by the former victim against the
former attacker, and its indirect retaliation attack, as carried out by some former
third party against the former attacker [18].

Proposition 1 Attempt I succeeds as an attack—it is Lowe’s attack [30]. Proof by
Belief i.

Proposition 2 Attempt II succeeds as an attack—it is a published indirect retaliation
attack of Lowe’s attack [18]. Proof by Belief ii.

Proposition 3 Attempt III does not succeed as an attack—it remains an attempt at
direct retaliation of Lowe’s attack. Proof by Belief i.

Proposition 4 Attempt IV succeeds as an attack—it is an unpublished attack that we
name “our attack”. Proof by Belief iii: C cannot discern the real sender.

Proposition 5 Attempt V does not succeed as an attack—it remains an attempt at
indirect retaliation of our attack. Proof by Belief ii.

Proposition 6 Attempt VI succeeds as an attack—it is an unpublished direct retaliation
attack of our attack. Proof by Belief iii: C cannot discern the real sender.

Having analysed exhaustively all possible attacks following Lowe’s man-in-the-
middle scenario, we were confident not to be missing any extra insights in this
scenario, not even under the MA threat model. However, the mechanical validation
that followed taught us that we were wrong (Section 5).
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Moreover, an anonymous reviewer correctly noted that the attack attempts make
sense not only for the permutations of the principals but also for other combinations
where the real sender and the receiver are the same. For example,

A(C) → A : {
Dear A, move 1,000¤ from C’s account to Y’s

}
〈Na,Nb〉

trivially succeeds, and lets A steal money from C’s account for the benefit of any
principal Y’s. For example, A might want to build this message by herself for audit
purposes and feel safe in instructing an illegal money transfer. Of course, it might
even be the case that Y = A. This kind of attack is somewhat simpler to construct
than the previous ones because it only relies on a pair of peers and may therefore
follow a single protocol session, not necessarily Lowe’s scenario. Not surprisingly,
we found out that it can also be validated more quickly, and hence our validation
section (Section 5) omits it for brevity.

3.2 A Modern Deployed Protocol

The work discussed in [7] provides us with a modern and industrially-relevant
security protocol on which to experiment with the MA threat model. The SAML-
based Single Sign-On (SSO) protocol for Google Apps offers Google’s customer
enterprises a direct and transparent access to popular web-based applications like
Gmail or Google Calendar. SAML 2.0 [35] from OASIS is the de-facto standard in
the context of SSO. This is why Google and many other major software providers are
basing their SSO solutions on SAML. The first version of the SAML-based Single
Sign-On (SSO) protocol for Google Apps released by Google in February 2007 is in
Fig. 4, which needs some explanation. In the following, we will refer to this protocol
version as Google SSO. The arrows should be interpreted as follows:

◦→• The channel is confidential for the intended receiver (i.e., its output is
exclusively accessible to the receiver) and weakly authentic for the sender
(i.e., its input is exclusively accessible to a single, yet unknown, sender);

•→◦ The channel is weakly confidential for the intended receiver (i.e., its output is
exclusively accessible to a single, yet unknown, receiver) and authentic for the
sender (i.e., its input is exclusively accessible to the sender);

•→• The channel is confidential for the intended receiver and authentic for the
sender.

Fig. 4 SAML-based SSO protocol for Google Apps
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Three roles are defined: a client C, an identity provider IdP and a service provider
SP. The client C, typically a web browser, wishes to get access to a service or a
resource provided by SP. Then, IdP authenticates C and issues a corresponding
authentication assertion that is consumed by SP to give C access to the requested
resource, which is transmitted confidentially at the end of the protocol.

More in detail, the protocol executes as follows. First, C requests SP to provide
the resource located by its U RI address. SP replies with an authentication request
AuthReq(I D, SP)—where I D uniquely identifies the request—that is redirected by
C to IdP. Then IdP defines an authentication assertion AA = AuthAssert(C, IdP)

based on C valid credentials and builds a response message SP, {|AA|}K−1
IdP

, U RI,

where {|AA|}K−1
IdP

is the assertion digitally signed with K−1
IdP, the private key of IdP.

The response message reaches SP via C, and finally SP can make available at the
fresh address Resource what C originally requested.

It is important to notice that the message exchanged through the protocol pre-
sented above are protected at the transport layer. Inspired by [32], arrows augmented
with empty or filled-in circles indicate the assumptions on the communication
channel. Of course, these assumptions must be carefully considered for any realistic
analysis of the protocol. For example, they have been embedded in a recent valida-
tion work [7]. The same work reported a serious security flaw in Google SSO [7]. The
attack, meanwhile fixed, allowed a (dishonest) service provider to access resources of
Google Apps under the identity of an unaware user. Two critical security properties
the protocol was expected to enforce are thus violated: (1) SP authenticates C, that
is SP has to be sure it has been talking with C; and (2) Resource must be kept secret
between C and SP. The problem was due to the absence of a few but critical fields in
the authentication assertion generated by the IdP.

In experimenting with the MA threat model, we found out that this attack can be
retaliated. Figure 5 shows both the original attack and the four additional messages
that allow the service provider Google, this time, to retaliate by accessing resources
of the initially dishonest service provider. Let us discuss the entire trace in detail.
In the original attack, bob initiates a session of the protocol to access a resource
provided by the service provider i. In parallel, i starts a new session of the protocol
with the service provider google pretending to be bob (indicated as i(bob)) and
mischievously reuses the authentication assertion received by bob (cf. step A4) to
trick google into believing he is bob. The attack terminates with the delivery of the
resource (whose access should be reserved to bob) to i. In the retaliation attack,
google starts another session as a client with the service provider i, pretending to
be bob. By reusing the authentication assertion received by i(bob), google is able
to access a resource reserved to bob provided by i.

A possible business case for this retaliation is discussed hereafter. Let idp be
an enterprise that is appointed to thoroughly evaluate and compare Google Apps
(provided by google) against its competitor market products, including Zimbra
for example (provided by i). A group of experts working at idp, and among them
bob, will deeply inspect one by one these products under the premises that no result
about product P will be disclosed outside the perimeter of P’s provider without P’s
provider authorization. In this context, a SSO solution with idp serving as identity
provider significantly simplifies things. Operationally, Google SSO is the deployed
protocol. Clearly, any service provider, once obtained by idp an authentication
assertion for bob, would be able to access any other service provider under the
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Fig. 5 Original attack on Google SSO and retaliation

identity of bob to have a look at the recent discoveries bob made on competitor
products.

This scenario can be interpreted in a similar fashion as Lowe’s interpretation of his
attack in a banking environment. However, here the victim is the client bob in both
cases, once at each service provider. So, this scenario seems some sort of conjuring
retaliation because a victim, once attacked, can be attacked again by other principals
exploiting the first attack. This concept is formalised below (Section 4.3).

4 Extending the Validation Method over MA

We have used one of the AVISPA backends to perform our experiments under MA:
the SAT-based model checker SATMC [8]. Its core is a procedure that automatically
generates propositional formulae whose satisfying assignments (if any) correspond
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to counterexamples (i.e. execution traces of M that falsify G) of length bounded
by some integer k, which can be iteratively deepened. The length k represents the
maximum number of transitions, which includes both the standard protocol steps and
the actions of the attacker.1 Finding violations (of length k) on protocol properties
boils down to solving propositional satisfiability problems. SATMC accomplishes
this task by invoking state-of-the-art SAT solvers, which can handle in most of the
cases satisfiability problems with hundreds of thousands of variables and clauses.

SATMC has successfully tackled the problem of determining whether the concur-
rent execution of a finite number of sessions of a protocol enjoys certain security
properties in spite of the DY attacker [6, 9]. It is useful to outline that work here.
The security protocol general verification problem is well known to be undecidable.
Still, for many protocols, the verification effort can be limited to a bounded number
of sessions [31]. Moreover, even for those protocols that should be checked under
an unbounded number of concurrent protocol executions, violations in their security
requirements often exploit only a small number of sessions. In addition, when the
number of sessions is bounded, cycles (if any) in the execution of honest agents
may be replaced by a fixed number of steps representing some iterations of the
loop. For these reasons, it is often sufficient to consider a finite number of sessions
in which each agent performs a fixed number of steps. In such situations, the
correspondent protocol insecurity problem belongs to the NP-complete complexity
class [37]. SATMC guarantees termination on this class of protocols while it can be
used as a semi-decision procedure for all other protocols.

Leveraging on that work, we aim at relaxing the assumption of a single, super-
potent attacker to specify the MA threat model, where principals can even compete
each other. As demonstrated above, our aim is to study novel protocol subtleties
that go beyond the violation of standard security properties such as confidentiality
and authentication. Therefore, we shall recast those notions as a model checking
problem in the following.

4.1 Basics of SAT-Based Model Checking

This subsection outlines the basic definitions and concepts underlying SAT-based
model checking. The reader who is familiar with such concepts can skip this. Let us
recall that a model checking problem can be stated as

M |= (
CI ⇒ G

)
(1)

where M is a labelled transition system modelling the initial state of the system
and the behaviours of the principals (including their malicious activity), CI is a
conjunction of LTL formulae capturing assumptions on communication channels,
and G is an LTL formula expressing the security property to be checked.

The states of M are represented as sets of facts i.e. ground atomic formulas of
a first-order language with sorts. If S is a state, then its facts are interpreted as the
propositions holding in the state represented by S, all other facts being false in that
state (closed-world assumption). A state is written down by the convenient syntax of

1Notice that the user may specify an infinite upper bound. In that case the procedure is not
guaranteed to terminate.
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a set of facts separated by the � symbol, as we shall see. The � symbol is used by us as
set constructor.

The transitions of M are represented as set-rewriting rules of the form

(P � N
rl(v1,...,vn)−−−−−−→ R), where P and R are finite set of facts, N is a finite set of negated

facts ¬ f1 � . . . �¬ fn, rl is a rule label, i.e. a function symbol uniquely associated with
the rule, and v1, . . . , vn are the variables occurring in P. It is required that the
variables occurring in N and in R also occur in P. The rule label expresses what
the rule is there for: for example, the label stepi is for a rule that formalises the i-th
legal protocol step, the label overhear is for a rule whereby an attacker reads some
traffic, and so on. We will encounter a number of self-explaining rule labels in the
sequel.

Let S be a set of facts, (P � N
rl(v1,...,vn)−−−−−−→ R) a rewrite rule and σ a substitution of

the variables v1, . . . , vn. We say that rule (instance) ρ = rl(v1σ, . . . , vnσ) is applicable
in state S if and only if Pσ ⊆ S and fσ /∈ S for each f such that ¬ f ∈ N. Intuitively
a rewrite rule can fire in a state anytime its positive facts hold in the state while its
negative ones do not. If ρ = rl(v1σ, . . . , vnσ) is applicable in S, then S′ = appρ(S) =
(S \ Pσ) ∪ Rσ is the state resulting from the execution of ρ in S. A path π is an
alternating sequence of states and rules S0ρ1S1 . . . Sn−1ρnSn such that Si = appρi

(Si−1)

(i.e. Si is a state resulting from the execution of ρi in Si−1), for i = 1, . . . , n. Let I
be the initial state of the transition system; if S0 ⊆ I , then we say that the path is
initialised. Let π = S0ρ1S1 . . . Sn−1ρnSn be a path. We define π(i) = Si and (π, i) =
Siρi+1Si+1 . . . Sn−1ρnSn. Therefore, π(i) and (π, i) are the i-th state of the path and
the suffix of the path starting with the i-th state respectively. Also, it is assumed that
paths have infinite length even if they are defined as a finite alternating sequence of
states and rules. This is obtained by assuming stuttering transitions in the transition
system and it is useful to apply standard LTL semantics in our setting.

The language of LTL used here has facts and equalities over ground terms as
atomic propositions, the usual propositional connectives (namely, ¬, ∨) and the
temporal operators X (next), F (eventually) and O (once). Let π be an initialised
path of M, an LTL formula φ is valid on π , written π |= φ, if and only if (π, 0) |= φ,
where (π, i) |= φ (φ holds in π at time i) is inductively defined as:

(π, i) |= f iff f ∈ π(i) ( f is a fact)
(π, i) |= (t1 = t2) iff t1 and t2 are the same terms
(π, i) |= ¬φ iff (π, i) �|= φ

(π, i) |= (φ1 ∨ φ2) iff (π, i) |= φ1 or (π, i) |= φ2

(π, i) |= Xφ iff (π, i + 1) |= φ

(π, i) |= Fφ iff ∃ j ∈ [i, ∞).(π, j) |= φ

(π, i) |= Oφ iff ∃ j ∈ [0, i].(π, j) |= φ

In the sequel we use (φ1 ∧ φ2), (φ1 ⇒ φ2) and Gφ as abbreviations of ¬(¬φ1 ∨ ¬φ2),
(¬φ1 ∨ φ2) and ¬F¬φ respectively.

The next section (Section 4.2) formalises the novel threat model by specifying
the behaviour of principals using a set-rewriting formalism. This amounts to spec-
ifying the model M of the model checking problem (1). The subsequent section
(Section 4.3) shows how interesting protocol properties can be formalised by means
of LTL formulae, which correspond to G in the model checking problem. For
what concerns CI in the model checking problem (1), we will borrow the same
LTL constraints that are detailed elsewhere [7] in order to capture assumptions
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on communication channels. For example, an authentic channel ch whose input is
intended to be exclusively accessible to a specified sender p can be captured as a
conjunction of LTL constraints

G(sent(rs, a, b , m, ch)⇒(a = p ∧ rs = p))

for each message m and agent b . Additional discussion would be out of the scope of
this paper, while the interested reader may refer to [7].

4.2 Modelling Extensions

We conveniently adopt the IF language as it can specify inputs to the AVISPA back-
ends and more specifically to SATMC, a successful SAT-based model checker [9]
that will be used in the final validation phase. The following syntactical conventions
are adopted in the sequel.

– Lower-case typewriter fonts, such as na, denote IF constants.
– Upper-case typewriter fonts, such as A and KIDP, denote IF variables.
– Lower-case italics fonts of 0 arity, such as s, compactly denote IF terms.
– Lower-case italics fonts of positive arity, such as attack(a, v, s), denote meta-

predicates that aim at improving the readability of this manuscript, but in fact
do not belong to the current IF formalisation.

– Upper-case italics fonts serve two purposes: VARS (t1, . . . , th) conveniently
yields all IF variables occurring in terms t1, . . . , th; LHS yields the set of positive
facts in the left hand side of a given rewriting rule.

To specify the MA threat model, a number of facts are necessary. Incidentally,
facts in this section typically refer to IF terms because of the generality of the
treatment. Some facts, enumerated in Table 1, already exist from previous work
based on DY, and can be reused.

It is useful to expand on the three main facts that are reused here. If S is a set
of facts representing a state, then the state of principal a is represented by the facts
of form stater( j, a, es, s), called state-facts; es will be denoted by (a list of terms
delimited by) square brackets (Section 5). It is assumed that for each session s and

Table 1 Existing facts and their informal meaning

Existing fact Holds when

stater( j, a, es, s) Principal a, playing role r, is ready to execute step j in session s of
the protocol, and has internal state es, which is the list of terms
involved in her future steps.

c(n) Term n is the current value of the counter used to issue fresh terms,
and is incremented as s(n) every time a fresh term is issued.

confidential(m, g) Message m is confidential among the group of principals g.
sent(rs, b , a, m, ch) Principal rs has sent message m on channel ch to principal a

pretending to be principal b .
rcvd(a, b , m, ch) Message m (supposedly sent by principal b) has been received

on channel ch by principal a, but a has not processed it yet.
contains(db , m) Message m is contained into set db . Sets are used, e.g., to share

data between honest principals.
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Table 2 New facts and their
informal meaning

New fact Holds when

nt(a) Principal a is not trustworthy.
priv(m, a) Message m is private for principal a.
ak(a, m) Principal a knows message m.

for each principal a there exists at most one fact of the form stater( j, a, es, s) in S.
This does not prevent a principal from playing different roles in different sessions.

The fact c(n) holds of the current counter n used to generate fresh nonces. For
example, c(0) holds in the initial state, and c(s(0)) after the generation of the first
fresh nonce, which takes the value 0. More generally, if the fact c(na) holds, a fresh
nonce na can be issued producing another state with counter c(s(na)).

The fact, confidential(m, g) is normally used with the single m parameter
in existing work based on DY, assuming that the only entity not meant to know
it is the DY attacker. While DY reduces confidentiality of a message to keeping
it confidential from the attacker, MA requires the original, subtler definition of
confidentiality: “confidentiality is the protection of information from disclosure
to those not intended to receive it” [34]. Thus, confidentiality of a message is
compromised if ever anyone beyond its intended peers learns it. In consequence,
both parameters are meaningful for us: the message that is stated confidential and the
set of the only principals meant to know the message. Clearly, the set g is populated
through occurrences of contains(g, a) for each principal a intended to be in g.

The remaining facts in Table 1 are intuitive. A few more facts, summarised in
Table 2, must be newly defined to reflect the MA threat model. Other new facts will
be introduced later for the specific protocol under scrutiny.

All new facts deserve extra discussion. Under the MA threat model any principal
may behave as a DY attacker. We may nonetheless need to formalise protocols that
encompass trusted third parties, or where a principal loses her trustworthiness due
to a certain event. The nt(a) fact holds of a principal a that is not to be trusted. It
may conveniently be used either statically, if added to the initial state of principals, or
dynamically when introduced by rewriting rules. It is understood that if all principals
but one are declared as trustworthy, then we are back to the DY threat model.

The fact priv(m, a) is useful to implement MA, especially with respect to GA.
It is stated for each principal in the protocol scenario under consideration and for
each existing long-term secret of the principal, such as his long-term key in case of
symmetric cryptography or his private-key in case of asymmetric cryptography.

The dedicated account on the attacker’s knowledge in DY must be extended as
a general account on principals’ knowledge in MA. In practice, what was the ik
fact to represent the DY knowledge is now replaced by ak, which has as an extra
parameter the principal’s identity whose knowledge is being defined. Incidentally,
we conveniently write down the set of facts in a state by enumerating the facts and
interleaving them with a special dot. Here are the general rewriting rules defining
ak, k and k being inverse keys of one another:

ak(a, {m}k) �ak(a, k)
decrypt(VARS (a,k,m))−−−−−−−−−−−−−−→ ak(a, m) � LHS

ak(a, 〈m1, m2〉) decompose(VARS (a,m1,m2))−−−−−−−−−−−−−−−−→ ak(a, m1) �ak(a, m2) � LHS
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ak(a, m) �ak(a, k) �¬priv(m, a)

encrypt(VARS (a,k,m))−−−−−−−−−−−−−−→
ak(a, {m}k) � LHS

ak(a, m1) �ak(a, m2) �¬priv(m1, a) �¬priv(m2, a)

pairing(VARS (a,m1,m2))−−−−−−−−−−−−−−−→
ak(a, 〈m1, m2〉) � LHS

It can be observed that the encrypt and pairing rules only apply to messages
that are not private for the generic principal. This enforces the requirement of the
MA threat model that no principal ever reveals his long-term secrets to anyone. This
restriction does not apply to short-term secrets such as session nonces, because they
are not declared private.

The initial state of the system can then be defined easily in terms of state facts
(state), knowledge facts (ak) and privacy facts (priv) for each principal partici-
pating in the protocol being studied—an example can be found below (Section 5.1.1).
Once the initial state of the protocol is defined, the development of the protocol
(through the execution of the steps it prescribes) is defined by a number of rewriting
rules of the following two forms, respectively for the delivery and the sending of
messages:

sent(rs, b , a, m, ch)
deliver(VARS (rs,b ,a,m,ch,))−−−−−−−−−−−−−−−−−→ rcvd(a, b , m, ch) �ak(a, m)

rcvd(a, b 1, m1, ch1) �stater( j, a, es1, s)

sendi(VARS (a,b 1,b 2,rs,m1,m2,ch1,ch2,es1,es2,s))−−−−−−−−−−−−−−−−−−−−−−−−−−−→
sent(a, a, b 2, m2, ch2) �stater(l, a, es2, s) �ak(a, m2)

The delivery rule models the reception of a message by an honest principal a
supposedly from b when in fact the real sender is rs, whereas the sending rule models
a’s processing of a previously received message. More precisely, the sending rule
states that if principal a playing role r is at step j in session s of the protocol and
she has received message m1 on channel ch1 supposedly from b 1, then she can send
message m2 to b 2 on channel ch2, store that message in her knowledge, and change
her internal state accordingly preparing for step l.

Moreover, the sending rule will take slightly different forms depending on the
protocol step it models. For example, if j = 1 and a sends the first message of
the protocol, the fact rcvd(a, b 1, m1, ch1) does not appear in the left hand side of
the rule, reflecting a’s freedom to initiate the protocol at anytime. Similarly, for
generating and sending a fresh term, c(N) is included in the left hand side of the rule,
while c(s(N)) and ak(a,N) appear in the right hand side to express the incremented
counter and the principal learning the fresh term. A further variant is necessary when
the step involves either a membership test, an update of a set of elements, or a
statement of data confidentiality. In this case, facts such as contains(db , m) and
confidential(m, g) will be appropriately used (Section 5.1.1).
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The malicious activity that any principal c may perform in MA is modelled
rephrasing the standard rules for the DY attacker for a generic c as follows:

nt(c) �ak(c, m) �ak(c, a) �ak(c, b) �ak(c, ch) �¬priv(m, c)
fake(VARS (a,b ,c,m,ch))−−−−−−−−−−−−−−→
sent(c, a, b , m, ch) � LHS

nt(c) �sent(a, b 1, b 2, m, ch)

overhear(VARS (a,b 1,b 2,c,m,ch))−−−−−−−−−−−−−−−−−−−→
rcvd(c, a, m, ch) �ak(c, m) � LHS

nt(c) �sent(a, b 1, b 2, m, ch)

intercept(VARS (a,b 1,b 2,c,m,ch))−−−−−−−−−−−−−−−−−−−−→
rcvd(c, a, m, ch) �ak(c, m) �nt(c)

The rule fake allows a non-trustworthy principal c to send a message imperson-
ating another principal. The rule overhear allows a non-trustworthy principal c to
learn a sent message, increasing their knowledge. The rule intercept allows a non-
trustworthy principal c to learn a sent message, increasing their knowledge, and to
remove the message from the channel.

Although the formalisation of message faking through rule fake is accurate, it
does not yield the best model checking performance. In fact, the rule allows the
forging of messages that will clearly not help to attack the protocol, as they do not
correspond to any of the forms that the protocol prescribes. In other words, forging
messages that no one will ever accept is of no use to any attacker, but expands the
search space. The performance of the model checker improves by replacing that
general rule with more specific ones, for example by introducing a forged message
only if it resembles a protocol message. These are the impersonation rules, which are
already available for DY [24, Section 3.2.4]. They have been first introduced in [28]
where the authors show that a proper combination of decomposing (our decompose
and decrypt), diverting (our intercept), and impersonate rules are sufficient to capture
DY. The authors show that this optimisation preserves the existing attacks and does
not introduce new ones. Impersonate rules can easily be recast in the MA threat
model, as an example demonstrates below (Section 5.1.1), and the intuition behind
their correctness applies also in MA.

Further modelling optimizations can be applied for simple protocols such as
NSPK++. In there, the simplicity of the protocol lets us simplify channels away,
and collapse the two general facts sent and rcvd into a single one, msg. In fact,
distinguishing the action of having received a message (captured by rcvd facts)
from that of having sent one (captured by sent facts) has been proven useful for
us only to capture specific assumptions on communication channels (e.g., unilater
SSL/TLS, resilient, authentic, etc). Protocols such as NSPK++ assume nothing on
the communication channels (i.e., the channel is insecure) and thus do not require
that distinction.2 Receiving and sending a message by an agent becomes for those

2Notice that for these kind of protocols CI would simply be the propositional true value.
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protocols a single atomic transaction where the message is received and sent. As it
is intuitive, msg(rs, b , a, m) signifies that principal rs, formalising the real sender,
has sent message m to principal a pretending that m was sent by principal b . A rule
modelling honest principals in NSPK++ is then of the form:

msg(rs, b 1, a, m1) �stater(i, a, es1, s)

stepl(VARS (a,b 1,b 2,rs,es1,es2,m1,m2,s))−−−−−−−−−−−−−−−−−−−−−−−→
msg(a, a, b 2, m2) �stater( j, a, es2, s) �ak(a, m1) �ak(a, m2)

where l is the protocol step number. In modelling a’s receiving m1 and sending out
m2, the rule demonstrates how to use existing and new facts together to model a
protocol step under MA. It can be seen that the new state registers the facts ak(a, m1)

and ak(a, m2). Also this rule, as the sending rule seen above, may take slightly
different forms depending on the very protocol step it models. Of course, under this
modelling optimization, also the rules capturing the malicious activity of principals
have to be slightly adapted as follows:

nt(c) �ak(c, m) �ak(c, a) �ak(c, b) �¬priv(m, c)

fake(VARS (a,b ,c,m))−−−−−−−−−−−−→
msg(c, a, b , m) � LHS

nt(c) �msg(a, b 1, b 2, m)

overhear(VARS (a,b 1,b 2,c,m))−−−−−−−−−−−−−−−−−−→
ak(c, m) � LHS

nt(c) �msg(a, b 1, b 2, m)

intercept(VARS (a,b 1,b 2,c,m))−−−−−−−−−−−−−−−−−−→
ak(c, m) �nt(c)

4.3 Validation Extensions

One may expect that standard security properties such as confidentiality and authen-
tication can be routinely specified and checked under the MA threat model using
a model checker. Yet, confidentiality deserves particular consideration in what the
MA model differs from the DY one.

In general, the confidentiality of a message m w.r.t. a group of principals g is
guaranteed if and only if m is only known to principals in g. This property is clearly
violated anytime a principal a outside g learns, for any reason, m. However, under
DY, where all principals but the attacker meticulously follow the protocol, the
violation is by design not considered so unless a is the attacker. There are many real
scenarios—ranging from a betrayed person who publishes his/her partner’s credit
card details, to a scenario where a fired employee discloses sensitive information
about its former employer—in which this violation is significant and therefore not
negligible. In the MA model this confidentiality breach is not overlooked. It can be
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checked by the following meta-predicate formalising a violation of confidentiality of
a message m by a principal a who is not in the group of principals g meant to know m:

voc(a, m, g) = F(confidential(m, g) ∧ ak(a, m) ∧ ¬contains(g, a) )

The negation of this meta-predicate corresponds to G in the model checking problem
stated in Section 4.1, and represents the confidentiality property.

What is more interesting is that the MA threat model paves the way to investigate
subtler protocol properties than confidentiality and authentication. We already
observed (Section 3) that retaliation is common in the real world. (Even anyone who
is most peaceful may react under attack—whether this is fortunate or unfortunate
lies outside our focus.) Depending on who reacts against the attacker, retaliation
can be named differently, according to a previous publication [18]: if it is the victim,
then there is direct retaliation; if it is someone else, then there is indirect retaliation.
However, as we shall see in the sequel of this section, retaliation may also take place
in a third scenario, which is unpublished.

Let attack(c, a, b) be a meta-predicate holding if and only if an attacker c has
successfully attacked a victim a (being a �= c and a �= b) with the (unaware) support
of b (if any). Of course, “has successfully attacked” denotes the violation of the
specific property that the protocol under analysis is supposed to achieve. Any
violation of a protocol property should make the predicate hold, and therefore the
predicate should be defined by cases. For example, we shall see below (Section 5.1.2)
how the meta-predicate is defined in terms of various illegal money transfers.

Once an attack is defined, various retaliation scenarios can be defined over two of
its instances as the following meta-predicates:

direct_retaliation_scenario(a, c, b 1, b 2) = F(attack(c, a, b1) ∧ X F attack(a, c, b2))

indirect_retaliation_scenario(a, c, b) = F(attack(c, a, b) ∧ X F attack(b , c, a))

conjuring_retaliation_scenario(a, c, b) = F(attack(c, a, b) ∧ X F attack(b , a, c))

It can be seen that the meta-predicate for a direct retaliation scenario is valid on
those paths where an attacker hits a victim who hits the attacker back. Each attack
can be carried out with the help of potentially different supporters b1 and b2. By
contrast, the meta-predicate for an indirect retaliation scenario shows that who hits
the attacker back is not the victim but the supporter, who perhaps realises what he
has just done and decides to rebel against the attacker. Finally, a conjuring retaliation
scenario, which has never been formalised before, holds when an attack against a
victim is then exploited by the previous supporter against the same victim; it may
then be interpreted as a form of collusion.

A new type of attack scenario, which we call anticipation is possible. The corre-
sponding informal analysis was not given above (Section 3) to reflect the timeline
of our research: the anticipation scenario was not discovered by informal analysis
and then validated but, rather, our validation experiments yielded it. Therefore, only
the gist of anticipation is presented here, while its detailed explanation will follow
(Section 5.1.2).

An anticipation scenario is that of an attack initiated and not yet finalised by a
principal, but exploited by someone else. This is realistic at present, when a successful
attack, instead of consisting of a single move, is an ordered sequence of required
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moves. In consequence, using a self-explaining meta-predicate for the initialisation
of the attack, the anticipation scenario can be defined as:

anticipation_scenario(c, a, b) = F(attack_init(c, a, b) ∧ X F attack(b , c, a))

As it is customary, the attack_init(c, a, b) meta-predicate will meet a specific
definition over an example analysis (Section 5.1.2).

5 Validating Protocols Under MA

This section reports our mechanised validation of the previous informal analysis
(Section 3) of a classical protocol (Section 5.1) and a modern deployed protocol
(Section 5.2).

5.1 A Classical Protocol

5.1.1 Model Outline

Let us illustrate a portion of the specification of the NSPK++ protocol (Section 3.1).
The initial state for a protocol scenario featuring three principals a, b and c, with the
first playing the role of initiator (also said alice) can easily be defined. The portion of
initial state concerning a (the rest is omitted for brevity) is as follows:

nt(a) �nt(b) �nt(c) �
ak(a,a) �ak(a,b) �ak(a,c) �
ak(a,pk(ka)) �ak(a,pk(kb)) �ak(a,pk(kc)) �
ak(a,inv(pk(ka))) �
priv(inv(pk(ka)),a) �
statealice(0,a, [c,ka,kc,set_ac],1) �statealice(0,a, [b,ka,kb,set_ab],2)

The rewriting rules modelling the protocol steps feature IF variables so that they
apply to any principals in the scenario that is defined. For example, the step in which
B receives the first message of the protocol (supposedly) from A and replies with the
second protocol message is modelled by the following rule:

msg(RS,A,B, {A,NA}KB) �statebob(1,B, [A,KA,KB,G],S) �c(NB)

step2(B,A,RS,KA,KB,NA,NB,G,S)−−−−−−−−−−−−−−−−−−→
msg(B,B,A, {NA,NB}KA) �statebob(3,B, [A,KA,KB,NA,NB,G],S) �
ak(B, {A,NA}KB) �ak(B,NB) �contains(G,A) �contains(G,B) �
confidential(NB,G) �c(s(NB))

where G represents the group of principals that are allowed to share the freshly
generated nonce NB.

To provide another example, let us consider the completion step 4b in which
A receives and then executes a money transfer from B. We introduce the fact
transferred(rs, a, b , c) to formalise rs who, in the disguise of a, transferred some
money (the very amount is abstracted away) from a’s account to c’s at b (which
intuitively is a bank) in session s. Another fact is needed, that is belief(a, b , m), to
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formalise that principal a believes message m is associated to principal b . After the
three standard steps of the NSPK protocol (Fig. 1), both participants state what they
believe: in particular, belief(A,B, 〈NA,NB〉) is generated when A sends message 3
and belief(B,A, 〈NA,NB〉) when B receives that message. The protocol step 4b is
then modelled by two rules, one for B’s sending and one for A’s reception. Here is
the latter:

msg(RS,B,A, {tr(B,C,X)}〈NA,NB〉) �belief(A,B, 〈NA,NB〉)
step4_rec(A,B,C,RS,NA,NB,X)−−−−−−−−−−−−−−−−→

ak(A, {tr(B,C,X)}〈NA,NB〉) �ak(A,X) �transferred(RS,B,A,C)

The rule states the fact transferred(RS,B,A,C), which is not to be confused with
{tr(B,C,X)}〈NA,NB〉 — the latter is a message expressing the request of a transfer. This
formalisation simplifies a published version [11] thanks to the newly introduced fact
belief(A,B, 〈NA,NB〉). The current rule is also more general in that it applies to the
reception of step 4a too. Therefore, one pair (rather than two pairs) now suffices to
model the two completion steps.

As mentioned in the general treatment (Section 4.2), the fake rule is in practice
replaced by a number of impersonation rules. For brevity, we only quote one such
rule here. A principal C who, pretending to be A, sends the first message of our
example protocol to B, who is exactly waiting for a message of that form, is modelled
as:

nt(C) �statebob(2,B, [A,KA,KB,G],S) �ak(C,A) �ak(C,NA) �ak(C,KB)

impersonate2(C,A,B,KA,KB,NA,G,S)−−−−−−−−−−−−−−−−−−−−→
msg(C,A,B, {A,NA}KB) �ak(C, {A,NA}KB) � LHS

5.1.2 Validation

In running SATMC over the formalisation of the NSPK++ protocol, we considered
the classical scenario in which a wants to talk with b in one session and with c in
another session. Because the formalisation accounted for the new threat model, we
were pleased to observe that it passed simple sanity checks: SATMC outputs the
known confidentiality attack whereby c learns nb, and the known authentication
attack whereby c impersonates a with b. As these are well known, they are omitted
here. More importantly, the tool also reported what are our major findings: b’s
confidentiality attack upon na, and interesting retaliation attacks, which are detailed
in the following. We argue that this is the first mechanised treatment of these subtle
properties, laying the ground for much more computer-assisted analysis of security
protocols.

We set off by reporting the protocol traces that the tool finds when checking
a violation of confidentiality by the meta-predicate voc(a, m, g) already defined
(Section 4.3). Each trace is obtained by mildly polishing the partial-order plan
returned by SATMC. Each trace element reports the label of the rule that fired,
and hence the trace can be easily interpreted as the history of events leading to the
confidentiality attack.

Figure 6 shows the trace obtained by running SATMC with the formula
voc(b,na,set_ac), where set_ac = {a,c}.
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Fig. 6 Finding b’s confidentiality attack upon na

A full description of the trace requires a glimpse at the protocol formalisation—
each rule label in a trace element must be matched to the actual rule—but we shall
see that the trace can be automatically converted into a more user-friendly version.
Element 0 means that principal a initiates the protocol with principal c. Elements 1, 2
and 3 show c’s illegal activities respectively of getting the message, decrypting it and
forging a well-formed one for principal b. Although c does not need in practice to
overhear a message meant for him, element 1 is due to our monolithic formalisation
of the acts of receiving a message and of sending out its protocol-prescribed reply.
Therefore, for a principal to abuse a message, the principal must first overhear it.
Element 3 reminds that c’s forging of the message for b counts as an attempt to
impersonate a. The last two elements signal b’s legal participation in the protocol by
receiving the message meant for him, and his subsequent deciphering of the nonce.
SATMC now returns because voc(b,na,set_ac) holds (where the set set_ac =
{a,c}).

Of course, the tool also finds the classical confidentiality attack by c upon nb.
Figure 7 presents the output when checking voc(c,nb,set_ab) with set_ab =
{a,b}. The trace can be easily understood as a continuation of the one in Fig. 6
with the four extra elements showing c’s malicious intervention. Precisely, elements
6 and 7 show that b is impersonating c with a, who naively replies to c. The last two
elements confirm that c gets the message from which he can decrypt the nonce nb.
Also, it can be seen that the impersonation rules can be applied by both b and c,
reflecting the MA threat model.

Having validated the confidentiality issues, we can move on to studying retaliation.
It is useful to define an illegal money transfer in terms of the appropriate fact:

illegal_transf er(c, a, b) = transferred(c, a, b , c) ∧ c �= a

It can be seen that the transfers that are illegal are only those where the requester
differs from the source account holder. For simplicity, the requester is defined to

Fig. 7 Finding c’s confidentiality attack upon nb
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Fig. 8 Finding an indirect retaliation scenario

equal the target account holder. Because the attack of interest here is exactly an
illegal money transfer, we define:

attack(c, a, b) = illegal_transf er(c, a, b)

The model checker can now be run on indirect_retaliation_scenario(a, c, b), which
was defined in terms of two attacks (Section 4.3). The tool returns the trace that con-
tinues the one in Fig. 7 as shown in Fig. 8. Element 10 formalises c’s impersonation
of a with b, while the subsequent element confirms that b replies by taking a legal
step. Elements 12 and 13 then identify c’s attack. The latter in particular indicates a
firing of the rule that makes attack(c,a,b) hold. The last two elements witness b’s
retaliation attack by making attack(b,c,a) hold. Therefore, the definition of indirect
retaliation scenario(Section 4.3) is met, that is indirect_retaliation_scenario(a,c,b)

holds, indicating that the tool confirms the retaliation analysis done above (Sec-
tion 3.1).

A graphical illustration of this retaliation scenario is in Fig. 9, and can be easily
built. First, we run a procedure to transform the output of the tool into a more
readable and intuitive version. Then, we coherently associate the significant phrases

Fig. 9 Graphics of b’s indirect retaliation
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of this version to graphical elements, and hence build the image. The behaviours and
interactions of the principals can be observed by looking at the figure from top to
bottom. The overhear and impersonate icons emphasise the significant number of
illegal steps taken by both c and b.

We now turn our attention to validating all six possible attack attempts studied
above in isolation (Section 3.1) rather than paired up into retaliation scenarios. The
fact belief(a, b , 〈na, nb〉) formalising b ’s association of the nonce pair 〈na, nb〉 to
a (Section 5.1.1) is useful here. It lets us build a simple meta-predicate to formalise
Lowe’s scenario in terms of beliefs of principals:

lowe_scenario(a, b , c, na, nb) = belief(a, c, 〈na, nb〉)
∧ ¬belief(a, b , 〈na, nb〉)
∧ belief(b , a, 〈na, nb〉)
∧ ¬belief(b , c, 〈na, nb〉)
∧ belief(c, a, 〈na, nb〉)
∧ belief(c, b , 〈na, nb〉)

All attack attempts (Section 3.1) can then be modelled in a coherent form,
including Lowe’s attack [12] and its indirect retaliation attack [11], that is as a fur-
ther specification of the meta-predicate just defined. Therefore, the meta-predicate
attack(c, a, b) introduced for protocol attacks (Section 4.3) is refined as the following
six meta-predicates:

attack_I(a, b , c, na, nb) = F( lowe_scenario(a, b , c, na, nb)

∧ X F illegal_transf er(c, a, b) )

attack_I I(a, b , c, na, nb) = F( lowe_scenario(a, b , c, na, nb)

∧ X F illegal_transf er(b , c, a) )

attack_I I I(a, b , c, na, nb) = F( lowe_scenario(a, b , c, na, nb)

∧ X F illegal_transf er(a, c, b) )

attack_IV(a, b , c, na, nb) = F( lowe_scenario(a, b , c, na, nb)

∧ X F illegal_transf er(b , a, c) )

attack_V(a, b , c, na, nb) = F( lowe_scenario(a, b , c, na, nb)

∧ X F illegal_transf er(c, b , a) )

attack_V I(a, b , c, na, nb) = F( lowe_scenario(a, b , c, na, nb)

∧ X F illegal_transf er(a, b , c) )

These are the properties to run the tool against. To validate attack I, we launched
the tool with the formula attack_I(a, b , c, na, nb) and obtained as output the partial
order plan that appears polished in Fig. 10.

The trace should be read bearing in mind that the sets set_ac and set_ab
have the conventional definitions already seen above. It can be appreciated that the
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Fig. 10 Finding attack I, Lowe’s attack

trace is the expected continuation of the one in Fig. 7. It is thus the same as the
indirect retaliation trace in Fig. 8 pruned of its last two elements. This provides extra
clarification of retaliation as a pair of attacks, whereas we are currently investigating
all possible instances of a single attack.

We also validated attack attempt II by running SATMC over the formula
attack_I I(a, b , c, na, nb). The output was a trace that only differs from the previous
attack trace in the last two elements, which are given in Fig. 11. This trace is therefore
equal to the indirect retaliation trace of Fig. 8 pruned of its elements 12 and 13. It is
then formally confirmed that the indirect retaliation found above pairs up attacks I
and II.

Another test was to run the tool over attack_IV(a, b , c, na, nb). The output
confirmed our expectations, being a trace identical to that in Fig. 10 except for
the last two elements, given in Fig. 12, which express b’s stealing from a’s account
at c. Precisely, the elements as usual report the labels of the rules that state the
facts behind the target meta-predicate. In particular, the last element says that rule
step4_rec (Section 5.1.1) was applied with specific parameters, thus stating exactly
the illegal money transfer that defines the target attack.

A similar finding derived from running the model checker over the formula
attack_V I(a, b , c, na, nb). It reported a trace that only deviates from the one in
Fig. 10 for the last two elements, pictured in Fig. 13. They indicate in the usual style
that b is stealing from a’s account at c.

When the tool checked attack_I I I(a, b , c, na, nb), it stopped reporting no attacks.
The same outcome was obtained with attack_V(a, b , c, na, nb). Also, when checking
direct_retaliation_scenario(a, c, b , b), the tool output a trace that continues that for
attack IV with the last two elements of that for attack VI: the two attacks clearly form

Fig. 11 Finding attack II, indirect retaliation attack of Lowe’s
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Fig. 12 Finding attack IV, our attack

a direct retaliation scenario. The same consideration applies to conjuring_retaliation_
scenario(a, c, b) concerning attacks I and IV. Therefore, we conclude that SATMC
always confirmed our informal analysis (Section 3.1).

We have seen that all attack attempts can be modelled and validated coherently,
that is as attempts to carry out illegal money transfers upon Lowe’s man-in-the
middle scenario. It seems that the extra burden that the MA threat model causes
upon the model checker is manageable.

This completes the validation phase of our informal analysis of the protocol
(Section 3.1). However, we also run a variety of subsidiary tests to obtain extra
insights, each time adjusting the property to check. In particular, we tried an
alternative definition of the indirect retaliation scenario (Section 4.3) where the X
operator was left out. Somewhat to our surprise, the tool returned a trace leading to
a state where both attacks held, as if retaliation did not need be triggered by another
attack. This called for more attention at the tool output.

It was exactly as a consequence of this test that we observed from element 3 in
Fig. 7 that c initialises his attack very early—precisely, with his impersonation of a
based upon the repetition to b of a’s nonce na. This means that b learns na when
c has not yet learned nb and hence cannot attack yet. To clarify and validate this
intuition, we defined the self-explaining fact nonce_leak(c, a, b).

In the MA threat model, it is plausible that b exploits his knowledge before c
does. This can be interpreted as a scenario in which a potential victim realises that
he is going to be attacked, and therefore reacts successfully before being actually
attacked. We name this anticipation scenario and define it as a meta-predicate
below. To improve performance, we decided to add a rule that introduces the fact
nonce_leak(C,A,B) following the protocol step that initialises the attack:

confidential(NA,G) �ak(B,NA) �¬contains(G,B) �
ak(B,KB−1) �msg(C,A,B, {A,NA}KB)

i_got_you(C,A,B,NA,G)−−−−−−−−−−−−−→
nonce_leak(C,A,B) � LHS

A meta-predicate attack_init(c, a, b) must be introduced to formalise some prin-
cipal c’s act of initialising an attack, which is yet to be carried out, while interleaving

Fig. 13 Finding attack VI, direct retaliation attack of our attack
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sessions with some a and b . In the same fashion as with the attack meta-predicate, we
provide a definition that is appropriate for the attack under analysis, and corresponds
to the nonce leak:

attack_init(c, a, b) = nonce_leak(c, a, b)

SATMC provided the expected output. When the tool was run on the goal
anticipation_scenario(c, a, b), which was defined above (Section 4.3), it produced the
trace reported in Fig. 14.

This trace is not difficult to understand with the experience gained through the
previous experiments. It can be observed that it develops up to element 5 as in the
previous figures, that is up to the point that b gets nonce na. Element 6 indicates
the firing of the rule just presented, which signals the initialization of the attack
making attack_init(c, a, b) hold. The next two elements are already known, as they
indicate that the scenario develops till a takes the third step of the protocol with
c. The last two elements show that before c decrypts the message and finds nb
(as formalised for example by elements 8 and 9 in Fig. 7 or Fig. 10), principal
b can successfully impersonate c with a. The last element in particular makes
attack(b,c,a) hold, so that also anticipation_scenario(c,a,b) holds. It may be useful
to read the development of this scenario from the graphical illustration in Fig. 15,
which was constructed analogously to the previous one.

Our various experiments produced another interesting finding. When we were
checking direct_retaliation_scenario(b , c, a, a), SATMC reported a trace describing
a scenario that may occur under the MA threat model. After a session with b,
principal a discloses to c the nonce pair of the session. After another session with
c, principal a discloses to c the nonce pair of the session. In consequence, both b
and c become capable of attacking each other with a’s support (for example, at bank
a). This reflects the real-world situation in which someone creates strife in a couple
that starts fighting, or more simply a bank’s misuse of its customers’ credentials,
which has not been rare [4]. To the best of our knowledge, this scenario has never
been formally analysed before. The corresponding trace (omitted here) shows that a
uses an impersonation rule to disclose each nonce pair to the other principal. This is

Fig. 14 Finding b’s anticipation attack
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Fig. 15 Graphics of b’s anticipation attack

possible because the MA threat model only constrains each principal to retain long-
term secrets, but not short-term, session secrets.

5.2 A Modern Deployed Protocol

5.2.1 Model Outline

Hereafter we focus on modelling the Google SSO protocol under the MA threat
model. This amounts to adapting the model of the Google SSO protocol detailed
in [7] in the MA setting. Not surprisingly, the Google SSO protocol is more complex
to model than NSPK++. Because of its assumptions on the communication channels,
the rewriting rules are given in terms of sent and rcvd facts, which feature a
parameter formalising the channel (Section 4.2). For example, the protocol step that
sees a service provider SP replying with an authentication request (second message
of Fig. 4) is modelled as follows:

rcvd(SP,C, 〈C,SP,URI〉,CHANC2SP) �
statesp(0,IDP,C, [KIDP,URI],S) �c(ID)

step_spS1A1(SP,IDP,C,URI,ID,KIDP,CHANSP2C,CHANC2SP,S)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
sent(SP,SP,C, 〈IDP,SP,ID,URI〉,CHANSP2C) �ak(SP,ID) �
ak(SP, 〈IDP,SP,ID,URI〉) �
statesp(1,IDP,C, [KIDP,URI,ID],S) �c(s(ID))

This rule differs from the corresponding one presented in [7] for the only addition of
ak in the right-hand-side.
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Similarly, the final step where a service provider SP makes available at the fresh
address resource(SP,N) what C originally requested (last message of Fig. 4) can be
formalised as follows:

rcvd(SP,C, 〈{C,IDP}inv(KIDP),URI〉,CHANC2SP) �
statesp(1,IDP,C, [KIDP,URI,ID],S) �c(N)

step_spA4S2(SP,IDP,C,URI,N,ID,KIDP,CHANSP2C,CHANC2SP,S)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
sent(SP,SP,C,resource(SP,N),CHANSP2C) �ak(SP,N) �
ak(SP,resource(SP,N)) �contains(ac, 〈resource(SP,N),C〉) �
statesp(2,IDP,C, [KIDP,URI,ID,N],S) �c(s(N))

where ac is an overall access control set containing associations between resource
addresses provided by a specific service provider and clients allowed to access them.

For each of these honest participation rules, we also have an impersonate rule in
the same style seen for the NSPK++ model (Section 5.1.1) to improve efficiency with
respect to using the general fake rule (Section 4.2).

5.2.2 Validation

For validation we have used the scenario where bob is a client of two service
providers, called google and i. bob is honest while google and i can both be
malicious. The tool reported our main findings, that the confidentiality attack of i
can be retaliated by a confidentiality attack of google (Section 3.2).

The attack meta-predicate was defined as:

attack(i, c, sp) = contains(ac, 〈resource(sp, n), c〉) ∧
ak(i,resource(sp, n)) ∧
¬contains(ac, 〈resource(sp, n), i〉) ∧
i �= sp

We ran the model checker on conjuring_retaliation_scenario(c, i, sp) to check
whether the original Google attack can be followed by a second attack against bob,
where the original attack is formalised as attack(i,bob,google) and the second as
attack(google,bob,i). The answer is it can, a polished version of the trace is shown
in Fig. 16.

The trace can be understood as follows. Element 0 means that the client bob
initiates the protocol with the service provider i. Elements 1 to 4 show i’s activities
respectively of getting the message, decomposing it and forging a well-formed answer
for the client bob, who receives it. Elements 5 to 8 show the exchange between bob
and the identity provider idp, where bob requests and receives the authentication
assertion. Element 9 shows two activities in parallel: i initiates a session with the
service provider google impersonating bob; and bob forwards the authentication
request to i. Elements 11 to 15 show the continuation of i’s illegal activities, where i
keeps impersonating bob with google, and these end with i’s learning the resource
of bob at google. The original Google attack is now completed, and element 16
shows the detection rule, which fires exactly when attack(i,bob,google) hold,
and serves as an indicator of the first attack. Note that the detection rule has
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Fig. 16 Finding a conspiring retaliation scenario

no parameters because it does not feature variables but only constants. Then,
elements 17 to 23 show the retaliation of google, who completes a session with
the service provider i, impersonating bob and learns the resource of bob at i. This
makes attack(google,bob,i) hold, therefore the definition of conjuring retaliation
scenario(Section 4.3) is met, that is conjuring_retaliation_scenario(bob,i,google)

holds.

6 Tool Performance Outline

In the light of the various experiments conducted thus far, it seems fair to state that
the performance of SATMC is satisfactory: the tool scales up to validating protocols
under the MA threat model. In brief, SATMC translates the model checking problem

Fig. 17 Partial order plan for b’s confidentiality attack on na in NSPK++
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Fig. 18 Runtimes for b’s
confidentiality attack on na in
NSPK++

in a SAT formula and then invokes a SAT solver to determine whether a model for
the formula exists [8]. In line with previous experiments based on the DY threat
model, the total time spent by the SAT solver in order to analyse the formulae
that the tool generates is always negligible with respect to the total time that the
experiment requires. All experiments were conducted on an inexpensive machine, a
2.8GHz Intel Pentium 4 with 2GB RAM.

The experiments with confidentiality violations confirmed our expectations that
the runtimes would not significantly differ from previous homologous experiments
conducted under DY. In particular, the experiment for b’s confidentiality attack
upon nonce na ends in just a few seconds. This is plausible because the search
space was never searched more deeply than at level 10. The average size of the

Fig. 19 Runtimes for attack
VI in NSPK++
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SAT formula was of 9,000 atoms and 30,000 clauses. For example, Fig. 17 shows the
raw partial order plan that expresses b’s confidentiality attack on na in the classical
protocol. Its polished version was given in Fig. 6.

The runtimes that the tool outputs along with this partial order plan are in Fig. 18.
It is easy to read the number of atoms and clauses, the negligible SAT solving time,
and the total time of less than 2 s.

The various attacks discussed about NSPK++, including retaliation and anticipa-
tion, required deepening the search space up to level 16. Because each level causes
an exponential time growth, the total execution time increased up to approximately a
few minutes. Also the size of the SAT formula increases considerably—for example
up to approximately 35,000 atoms and 100,000 clauses for the retaliation experiments.
This puts significant burden on the machine, because the size of the full search space
is exponential in the number of atoms. Figure 19 shows the runtimes for attack VI
in the classical protocol. This experiment generated the highest number of clauses
among all our experiments: 130,385. The total runtime is however just above 2 min.

The early experiments on Google SSO did not terminate overnight. The tool
would approximate depth 20 in the search space without providing an output. We
thus focused on a simplified version of the Google SSO were the client is assumed
to be able to check the content of the messages he received as any other principal.
Rather than a naive browser accepting and redirecting everything, the client is an
Enhanced Proxy Client processing and evaluating the messages he received before
redirecting them. This soon led to good performance, so that the conjuring retaliation
attack was found in 23 s for a trace of depth 24. The size of the SAT formula is indeed
smaller than in the experiments on NSPK++, with approximately 3,500 atoms and
15,000 clauses. This can be appreciated from the runtimes in Fig. 20.

Moreover, SATMC also comes with a pretty-printing facility that expresses
partial-order plans in a more user-friendly notation nearer to readable protocol
traces. Figure 21 demonstrates the instance for the retaliation attack found on

Fig. 20 Runtimes for Google retaliation attack
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Fig. 21 Google retaliation attack

Google SSO. The support that the pretty-printing facility offers to the human
analyser, with such long attack traces especially, is remarkable.

7 Conclusions

This manuscript has shown how to validate classical and modern protocols under the
Multi-Attacker threat model. Its contribution therefore is at least twofold, advancing
both the protocol insights and the validation method.

In terms of protocol insights, various attacks have been found and the retaliation
and anticipation scenarios have been defined and studied.

Retaliation teaches us that we can perhaps live with flawed protocols. We are
used to go back to design when a protocol is found flawed, even if
already deployed. However, an attack that can be retaliated may in
practice convince an attacker to refrain from attacking in the first
place. If the “cost” of attacking overdoes its “benefits” then the
attacker will not be carried out. Retaliation makes that precondition
hold.

Anticipation teaches us to ponder the entire sequence of events underlying an
attack. An attack typically is an interleaving of legal and illegal steps
rather than a single illegal action. Therefore, we may face a scenario,
unreported so far, where a principal mounts an attack by successfully
exploiting for his own sake the illegal activity initiated but not yet
finalised by someone else. For example, this is routine for the present
hackers’ community.

As for the validation method, our work required a number of modifications and
extensions. Concerning the modelling phase, the definition of the single attacker
knowledge was generalised as any principal’s knowledge, which also required a new
fact to distinguish between private and non private knowledge. The validation phase
yielded the innovative definitions of the retaliation and anticipation scenarios, and
of the various attacks on the classical protocol. In particular, the retaliation scenarios
went through various versions and refinements, with the final versions presented
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here advancing on a recent publication [11]. The retaliation scenario can now be
applied to the modern protocol.

On one hand, we were pleased to find out that no modifications were necessary
to the state-of-the-art model checker SATMC, but its performance was seriously put
at stake. The early, raw experiments on the classical protocol run up to 20 min but
are currently reduced to just a few minutes. Performance was even more problematic
with the modern deployed protocol because the early experiments running overnight
did not return in the morning. Switching on a simplified variant of Google SSO allows
us to perform our experiments and to discover the conjuring retaliation attack in only
23 s. So used as we are, as protocol analysers, to reasoning in terms of a DY attacker,
we might think of our novel investigations as unrealistic. However, scenarios of
retaliation and anticipation often appear in our era of computer networks, notably in
the area of intrusion management. With the increasing awareness of computer secu-
rity issues, successful attacks rarely are instantaneous moves without consequences.
Rather, they often involve a combination of smaller illegal achievements or the
breaking of subsequent protection levels to succeed. These are typically monitored
by either administrators or other attackers, and hence attacks can be anticipated or
retaliated. One of our findings is that current machine-assisted techniques of protocol
analysis are adequate to tackling these scenarios. The field of protocol analysis seems
bound to develop much further.
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