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a b s t r a c t

A cycle of length 5 with a chordal, i.e. an edge joining two non-adjacent vertices of the
cycle, is called a graph H5 or also an House-graph. In this paper, the spectrum of House-
systems nesting C3-systems, C4-systems, C5-systems and together (C3, C4, C5)-systems, of
all admissible indices are completely determined, without exceptions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let �Kv be the complete multigraph defined in a vertex-set X , |X | = v. Let G be a subgraph of �Kv . A G-decomposition
of �Kv , of order v and index �, is a pair ⌃ = (X, B), where B is a partition of the edge-set of �Kv into subsets all of which
yield subgraphs isomorphic to G. A G-decomposition of �Kv is also called a G-design, of order v and index �. The classes of
the partition B are said blocks. Important and interesting results about G-designs can be found in [5,10,12,13].

A cycle of length 5 with a chordal, i.e. an edge joining two not adjacent vertices of the cycle, will be called an House-graph
and will be denoted by H5. If H5 = (X, E), where X = {a, b, c, d, e} and E = {{a, b}, {b, c}, {c, d} {d, e}, {e, a}, {a, c}}, we
will denote such a graph by [(a), b, (c), d, e].

Let ⌃ = (X, B) be H5-design of order v and index � or an H5-decomposition of the complete multigraph �Kv . When a
graph H5 = [(a), b, (c), d, e] is a block of ⌃ with multiplicity n, it will be indicated by [(a), b, (c), d, e](n). Similar concepts
and symbolism are given in [3].

We say that ⌃ is:
– (1) C3-perfect if the family of all the C3-cycles having edges {a, b}, {b, c}, {a, c} generates a C3-design⌃ 0 of order v and

index µ;
– (2) C4-perfect, if the family of all the C4-cycles having edges {a, c}, {c, d}, {d, e}, {e, a} generates a C4-design ⌃ 0 of

order v and index � ;
– (3) C5-perfect, if the family of all the C5-cycles having edges {a, b}, {b, c}, {c, d} {d, e}, {e, a} generates a C5-design ⌃ 0

of order v and index ⌧ .
In the case (1), we say that⌃ has indices (�, µ). Similarly, in (2) its indices are (�, � ) and in (3) (�, ⌧ ). Similar definitions

and symbolism is given in [1,2,6]. For perfect G-designs see also [8,11].
In every case, we say that ⌃ 0 is a system nested into ⌃ , and also that ⌃ is nesting ⌃ 0.
We say that anH5-design⌃ , which is Ch-perfect, with indices (�, µ), and Ck-perfect with indices (�, � ), for h, k = 3, 4, 5,

has indices (�, µ, � ), andwewill say that it is a (Ch, Ck)-perfect. Similarly, if⌃ of index � is C3-perfect of indexµ, C4-perfect
of index � , and also C5-perfect of index ⌧ , we will say that ⌃ is (C3, C4, C5)-perfect, of indices (�, µ, � , ⌧ ).

E-mail addresses: bonacini@dmi.unict.it (P. Bonacini), gionfriddo@dmi.unict.it (M. Gionfriddo), lmarino@dmi.unict.it (L. Marino).

http://dx.doi.org/10.1016/j.disc.2015.11.014
0012-365X/© 2015 Elsevier B.V. All rights reserved.



1292 P. Bonacini et al. / Discrete Mathematics 339 (2016) 1291–1299

It is known [4] that:

Theorem 1.1. An H5-design of order v exists if and only if v ⌘ 0, or 1, or 4, or 9 (mod 12), v � 9, with the possible exception
of v = 24.

Further, the spectrum of House-designs nesting C4-systems, for every admissible indices, is determined in [3], where the
authors proved that:

Theorem 1.2. There exists a C4-perfect H5-design of order v and indices (3, 2) if and only if v ⌘ 0 or 1 (mod 4), v � 5.

Theorem 1.3. There exists a C4-perfect H5-design of order v and indices (6, 4) if and only if v � 5.

Theorem 1.4. There exists a C4-perfect H5-design of order v, v � 5, and indices (�, µ) such that 2� = 3µ.
In this paperwe study the all possible nestings inHouse-systems, determining completely the spectrum in all the possible

cases.
Inwhat follows, to construct House-systems, wewill use often the difference-method. Thismeans thatwe fix as vertex-set

X = Zv and, defined a base-block [(a), b, (c), d, e], its translateswill be all the blocks of type [(a+ i), b+ i, (c+ i), d+ i, e+ i],
for every i 2 Zv . For a given v, it will be D(v) = {|x � y| : x, y 2 Zv, x 6= y}.

2. C
3

-perfect H
5

-designs of index (2, 1)

In this section, the spectrum of C3-perfect H5-designs of index (2, 1) is completely determined. We begin with the
necessary conditions.

Theorem 2.1. If ⌃ = (X, B) is a C3-perfect H5-design of order v and indices (�, µ), then:
(1) � = 2µ;
(2) |B| = µv(v�1)

6 ;
(3) for µ = 1, it is v ⌘ 1, 3 (mod 6).
Proof. Let ⌃ = (X, B) be a C3-perfect H5-design of order v and indices (�, µ). If ⌃ 0 = (X, B0) is the C3-system nested in ⌃ ,
necessarily: B = B 0. Since

|B| = � v(v�1)
12 , |B 0| = µv(v�1)

6 ,
(1) and (2) follow easily. For (3), consider that ⌃ 0 is a Steiner triple system of index 1. ⇤
Now we determine the spectrum of C3-perfect H5-designs of index (2, 1), examining at first the case v = 6h + 1 and

after the case v = 6h + 3.

Theorem 2.2. For � = 2, µ = 1 and for every v ⌘ 1 (mod 6), v � 7, there exists a C3-perfect H5-design of order v and indices
(2, 1).
Proof. Let v ⌘ 1 (mod 6), v � 7. We can consider the following cases:
(1) v ⌘ 7 (mod 18);
(2) v ⌘ 13, (mod 18);
(3) v ⌘ 1 (mod 18), v � 19.
(1) Let v = 7. It is: D(7) = {1, 2, 3}. Therefore, consider the block: B = [(0), 3, (1), 4, 6]. If B is the collection of all the
translates of B, we can verify that⌃ = (Z7, B) is anH5-design of order 7 and indices (2, 1). Further, since in B the differences
{1, 2, 3} cover, exactly one time, the edges of the C3-cycle, it follows that ⌃ is C3-perfect.

Let v = 18k + 7, for k � 1. Since D = {1, 2, . . . , 9k + 3}, it is possible to define the following 3k + 1 base-blocks:
B1,h = [(0), 8k + 2h + 4, (3h + 1), 3k + 2, 3h + 3], for h 2 {0, . . . , k � 1};
B2,h = [(0), 6k + h + 3, (3h + 2), 9k + 2, 3k + 3h + 2], for h 2 {0, . . . , k � 1};
B3,h = [(0), 4k + 2h + 4, (3h + 3), 12k + 5, 6k + 3h + 4], for h 2 {0, . . . , k � 1};
B4 = [(0), 7k + 3, (3k + 1), 9k + 3, 18k + 6].
If B is the collection of all the translates of these base-blocks, we can verify that ⌃ = (Z18k+7, B) is an H5-design having

indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, . . . , 9k + 3 cover, exactly one time, the edges of the
C3-cycles. Further, the number of base-blocks is 3k + 1 and every of them generates 18k + 7 translates. It follows that
|B| = (3k + 1)(18k + 7) and ⌃ is C3-perfect.
(2) Let v = 13. It is: D = {1, 2, . . . , 6}. Therefore, it is possible to define the two base-blocks: B1 = [(0), 4, (1), 7, 3], B2 =
[(0), 7, (2), 4, 5]. If B is the collection of all the translates of B1 and B2, we can verify that ⌃ = (Z13, B) is an H5-design
having indices (2, 1). Further, since in B1 and B2 the differences {1, 3, 4} and {2, 5, 6} cover, exactly one time, respectively
the edges of the two C3-cycles, it follows that ⌃ is C3-perfect.

Let v = 18k + 13, for k � 1. Since D = {1, 2, . . . , 9k + 6}, it is possible to define the following 3k + 2 base-blocks:
B1,h = [(0), 4k + 2h + 4, (3h + 1), 3k + 2, 3h + 3], for h 2 {0, . . . , k � 1};
B2,h = [(0), 6k + h + 5, (3h + 2), 9k + 8, 3k + 3h + 5], for h 2 {0, . . . , k � 1};
B3,h = [(0), 8k + 2h + 8, (3h + 3), 12k + 8, 6k + 3h + 7], for h 2 {0, . . . , k � 1};
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B4 = [(0), 6k + 4, (3k + 1), 9k + 6, 3k + 2];
B5 = [(0), 10k + 7, (3k + 2), 6k + 5, 6k + 6].
If B is the collection of all the translates of these base-blocks, we can verify that ⌃ = (Z18k+13, B) is an H5-design

having indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, . . . , 9k+ 6 cover, exactly one time, the edges of
the C3-cycles. Further, the number of base-blocks is 3k + 2 and every of them generates 18k + 13 translates. It follows that
|B| = (3k + 2)(18k + 13) and ⌃ is C3-perfect.
(3) Let v = 19. It is: D = {1, 2, . . . , 9}. Therefore, it is possible to define the two base-blocks: B1 = [(0), 6, (1), 9, 18], B2 =
[(0), 10, (2), 5, 7], B3 = [(0), 7, (3), 9, 5]. If B is the collection of all the translates of B1, B2, B3, we can verify that
⌃ = (Z19, B) is an H5-design having indices (2, 1). Further, since in B1, B2, B3, the differences {1, 5, 6}, {2, 8, 10}, {3, 4, 7}
cover, exactly one time, respectively the edges of the three C3-cycles, it follows that ⌃ is C3-perfect.

Let v = 18k + 1, for k � 2. Since D = {1, 2, . . . , 9k}, it is possible to define the following 3k base-blocks:
B1,h = [(0), 4k + 2h + 2, (3h + 1), 3k + 2, 3h + 3], for h 2 {0, . . . , k � 1};
B2,h = [(0), 8k + 2h + 2, (3h + 2), 9k + 2, 3k + 3h + 2], for h 2 {0, . . . , k � 1};
B3,h = [(0), 6k + h + 2, (3h + 3), 12k + 2, 6k � 3h � 2], for h 2 {0, . . . , k � 2};
B4 = [(0), 6k + 1, (3k), 9k + 1, 18k].
If B is the collection of all the translates of these base-blocks, we can verify that ⌃ = (Z18k+1, B) is an H5-design having

indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, . . . , 9k cover, exactly one time, the edges of theC3-cycles.
Further, the number of base-blocks is 3k and every of them generates 18k+1 translates. It follows that |B| = (3k)(18k+1)
and ⌃ is C3-perfect. ⇤

Theorem 2.3. For � = 2, µ = 1 and for every v ⌘ 3 (mod 6), v � 9, there exists a C3-perfect H5-design of order v and indices
(2, 1).

Proof. Let v ⌘ 3 (mod 6), v � 9. We can consider the following cases:
(1) v ⌘ 9 (mod 12);
(2) v ⌘ 3 (mod 12), v � 15.
(1) Let v = 9. Consider the system ⌃ = (Z9, B), where B is the following collection of blocks:

n

[(0), 2, (1), 4, 3], [(3), 5, (4), 2, 1], [(7), 6, (8), 2, 5], [(0), 6, (3), 7, 4],
[(1), 7, (4), 8, 5], [(2), 8, (5), 0, 7], [(0), 4, (8), 7, 1], [(1), 5, (6), 3, 8],
[(3), 2, (7), 6, 5], [(0), 7, (5), 4, 6], [(1), 8, (3), 2, 6], [(2), 4, (6), 8, 0]

o

.

It is possible to verify that ⌃ is a C3-perfect H5-design of order 9 and indices (2, 1).
Let v = 12k + 9 for k � 1. Let us consider the system ⌃ = (Z4k+3 ⇥ Z3, B) having as blocks the following:

Ai,r = [((i, 0)), (i + r, 0), ((i + r
2 , 1)), (i, 1), (i + r

2 , 0)], for i, r 2 Z4k+3 and r 2 {1, . . . , 2k + 1};
Bi = [((i, 0)), (i, 2), ((i, 1)), (i + 4k + 2, 0), (i + 2k + 2, 1)], for i 2 Z4k+3;

Ci,j = [((i, 1)), ( i+j
2 , 2), ((j, 1)), (i, 2), (j, 2)], for i, j 2 Z4k+3, with i 6⌘ j;

Di,r = [((i + r, 2)), (i, 2), ((i + r
2 , 0)), (i + r � 2k � 2, 2), (i + 2r, 0)], for i, r 2 Z4k+3 and r 2 {1, . . . , k + 1};

Ei = [((i, 2)), (i + 3k + 2, 0), ((i + 2k + 1, 2)), (i, 0), (i, 1)], for i 2 Z4k+3;
Fi,r = [((i + r, 2)), (i, 2), ((i + r

2 , 0)), (i + 3
2 r + k + 2, 1), (i + r

2 + 2k + 2, 0)], for i, r 2 Z4k+3 and r 2 {k + 2, . . . , 2k} if
k � 2.

Examining all the blocks, we can verify that ⌃ is a C3-perfect H5-design of order 12k + 9 and indices (2, 1).
(2) Let v = 12k + 3 for k � 1. Let us consider the system ⌃ = (Z4k+1 ⇥ Z3, B) having the following base blocks:
Ai,r = [((i + r, 2)), (i, 2), ((i + r

2 , 0)), (i + r � 2k � 1, 2), (i + 2r, 0)], for i, r 2 Z4k+1 and r = 1, . . . , k;

Bi,r = [((i + r, 2)), (i, 2), ((i + r
2 , 0)), (i + 3

2 r + 2k + 1, 1), (i + r
2 + 2k + 1, 0)], for i, r 2 Z4k+1 and r = k + 1, . . . , 2k;

Ci,j = [((i, 1)), ( i+j
2 , 2), ((j, 1)), (i, 2), (j, 2)], for i, j 2 Z4k+1 and i 6= j;

Di = [((i, 0)), (i, 2), ((i, 1)), (i + 2k, 1), (i + 2k, 2)];
Ei = [((i, 0)), (i + k, 1), ((i + 2k, 0)), (i, 1), (i + k, 0)];
Fi,r = [((i, 0)), (i + r, 0), ((i + r

2 , 1)), (i � k, 1), (i + r
2 , 0)], for i, r 2 Z4k+1 and r = 1, . . . , 2k � 1.

Examining all the blocks, we can verify that ⌃ is a C3-perfect H5-design of order 12k + 3 and indices (2, 1). ⇤

Collecting together the results of this section, it follows that:

Theorem 2.4. A C3-perfect H5-design of indices (2, 1) exists if and only if v ⌘ 1 or 3 (mod 6).
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3. C
3

-perfect H
5

-design with µ > 1

In this section we consider C3-perfect H5-design of indices (�, µ), with µ > 1, determining all the possible v of their
spectrum. We recall that a transversal T of a latin square of order n is a set of n cells, exactly one cell from each row and
column, such that each of the elements of Zn occurs in a cell of T . Further, remember that [7,9]:

Lemma. (1) An idempotent latin square, defined in Zn, exists for any integer n 6= 2.
(2) An idempotent commutative latin square, defined in Zn, exists if and only if n is odd.

Latin squares, which are almost equivalent to the concept of finite quasigroups, will be used in the constructions given
in Theorems 3.1 and 3.5. They are a common tool, since, given a quasigroup (Zn, �), all the edges on the complete graph
defined on Zn are of type {i, i � j}, for any i, j 2 Zn, i 6= j.

Now we prove the following results:

Theorem 3.1. A C3-perfect H5-design of indices (4, 2) exists if and only if v ⌘ 0 or 1 (mod 3).

Proof. It is known that a 2-fold triple system of order v exists if and only if v ⌘ 0, 1 (mod 3) [7,9]. Since, for every v ⌘ 1 or
3 (mod 6), there exist C3-perfect H5-design of indices (2, 1) (Theorem 2.2, Theorem 2.3), for such values of v, we can obtain
C3-perfect H5-design of indices (4, 2) by a repetition of blocks, giving to each of them multiplicity 2.

Therefore, to prove the statement, it remains to examine the cases v ⌘ 0 or 4 (mod 6). We study at first the case (1)
v = 6k and after the case (2) v = 6k + 4.
(1) Let v = 6. Let us consider the system ⌃ = (Z6, B) such that:

B = {[(2), 1, (4), 5, 0], [(4), 2, (5), 3, 0], [(5), 3, (1), 4, 0],
[(1), 4, (3), 2, 0], [(3), 5, (2), 1, 0], [(1), 0, (2), 4, 5], [(2), 0, (3), 4, 1],
[(3), 0, (4), 2, 5], [(4), 0, (5), 1, 3], [(5), 0, (1), 3, 2]} .

We can verify that ⌃ is a C3-perfect H5-design of order 6 and indices (4, 2).
Let v = 6k for k � 2. Let us consider an idempotent quasigroup (Z2k, �) and the system ⌃ = (Z2k ⇥ Z3, B) having the

following blocks:
Ai = [((i, 0)), (i, 1), ((i, 2)), (�i + 1, 1), (�i + 1, 2)], for i 2 Z2k;
Bi = [((i, 0)), (i, 1), ((i, 2)), (�i + 1, 0), (�i + 1, 1)], for i 2 Z2k;
Ci,j = [((i, 0)), (i � j, 1), ((j, 0)), (�i + 1, 2), (�j + 1, 2)], for i, j 2 Z2k, i < j;
Di,j = [((i, 0)), (j � i, 1), ((j, 0)), (�i + 1, 2), (�j + 1, 2)], for i, j 2 Z2k, i < j;
Ei,j = [((i, 1)), (i � j, 2), ((j, 1)), (i, 0), (j, 0)], for i, j 2 Z2k, i < j;
Fi,j = [((i, 1)), (j � i, 2), ((j, 1)), (�i + 1, 0), (�j + 1, 0)], for i, j 2 Z2k, i < j;
Gi,j = [((i, 2)), (i � j, 0), ((j, 2)), (i, 1), (j, 1)], for i, j 2 Z2k, i < j;
Hi,j = [((i, 2)), (j � i, 0), ((j, 2)), (�i + 1, 1), (�j + 1, 1)], for i, j 2 Z2k i < j.

Examining these blocks, we can verify that ⌃ is a C3-perfect H5-design of order 6k and indices (4, 2).
(2) Let v = 6k + 4 for k � 1. Let us consider a quasigroup (Z2k+1, �), idempotent, not necessarily commutative, such that
{(i, i + 1) | i 2 Z2k+1} is a transversal. Define the system ⌃ = ({1} [ Z2k+1 ⇥ Z3, B) having the following blocks:
Ai = [((i, 0)), (i, 1), ((i, 2)), 1, (i + 2, 2)], for i 2 Z2k+1;
Bi = [((i, 0)), (i, 1), (1), (i + 1, 0), (i + 1, 2)], for i 2 Z2k+1;
Ci = [((i, 1)), (i, 2), (1), (i + 1, 0), (i + 1, 2)], for i 2 Z2k+1;
Di = [((i, 0)), 1, ((i, 2)), (i + 1, 2), (i + 1, 1)], for i 2 Z2k+1;
Ei,j = [((i, 0)), (i � j, 1), ((j, 0)), (i + 1, 2), (j + 1, 2)], for i, j 2 Z2k+1, with i < j and i � j 6⌘ ±1;
Fi = [((i, 0)), (i + 1, 0), ((i � (i + 1), 1)), 1, (i + 1, 1)], for i 2 Z2k+1;
Gi,j = [((i, 0)), (j � i, 1), ((j, 0)), (i, 2), (j, 2)], for i, j 2 Z2k+1, with i < j;
Hi,j = [((i, 1)), (i � j, 2), ((j, 1)), (i � 1, 0), (j � 1, 0)], for i, j 2 Z2k+1, with i < j;
Ii,j = [((i, 1)), (j � i, 2), ((j, 1)), (i � 1, 0), (j � 1, 0)], for i, j 2 Z2k+1, with i < j;
Li,j = [((i, 2)), (i � j, 0), ((j, 2)), (i � 1, 1), (j � 1, 1)], for i, j 2 Z2k+1, with i < j;
Mi,j = [((i, 2)), (j � i, 0), ((j, 2)), (i, 1), (j, 1)] for, i, j 2 Z2k+1, with i < j.

Note that in the blocks in 6, thanks to the hypothesis that {(i, i + 1) | i 2 Z2k+1} is a transversal, any vertex (j, 1) with
j 2 Z2k+1 is of the type (i � (i + 1), 1) for some i 2 Z2k+1. So, examining the system, we can verify that ⌃ is a C3-perfect
H5-design of order 6k + 4 and indices (4, 2).

This completes the proof. ⇤
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Theorem 3.2. A C3-perfect H5-design of indices (6, 3) exists if and only if v odd, v � 5.

Proof. It is known that a 3-fold triple system of order v exists if and only if v is odd [7,9].
At first, we consider the two cases v = 5 and v = 9.
Let v = 5. Define in Z5 the following two base-blocks:
B1 = [(0), 4, (1), 3, 2], B2 = [(0), 3, (2), 1, 4].
If B is the collection of all the translates of B1, B2, then ⌃ = (Z5, B) is a C3-perfect H5-design of order v = 5 and indices

(6, 3).
Let v = 9. Define in Z9 the following four base-blocks:
C1 = [(0), 1, (4), 5, 2], C2 = [(0), 2, (3), 4, 1],
C3 = [(0), 2, (4), 8, 3], C4 = [(0), 3, (4), 6, 2].
If C is the collection of all the translates of C1, C2, C3, C4, then ⌃ = (Z9, C) is a C3-perfect H5-design of order v = 9 and

indices (6, 3).
Let v = 2k + 1, for k � 3, v 6= 9. Let us consider the cyclic system ⌃ = (Z2k+1, B) having as base blocks:

h

(0),
r
2
, (r), 3r, 2r

i

,

for every r 2 Z2k+1, r 2 {1, . . . , k}. It is possible to verify that ⌃ is a C3-perfect H5-design of order 2k + 1 and indices
(6, 3). ⇤

Theorem 3.3. A C3-perfect H5-design of indices (8, 4) exists if and only if v ⌘ 0 or 1 (mod 3).

Proof. A 4-fold triple system of order v exists if and only if v ⌘ 0 or 1mod 3 [7,9]. So a C3-perfect H5-design of indices (8, 4)
and order v is such that v ⌘ 0 or 1mod 3.

Conversely, given ⌃ = (X, B) a C3-perfect H5-design of indices (4, 2) (Theorem 3.1), the system ⌃ 0 = (X, B 0), where
the blocks of B 0 are those of B, each repeated twice, is a C3-perfect H5-design of indices (8, 4). ⇤

Theorem 3.4. A C3-perfect H5-design of indices (10, 5) there exists if and only if v ⌘ 1 or 3 (mod 6).

Proof. A 5-fold triple system of order v exists if and only if v ⌘ 1 or 3mod 6 [7,9]. So a C3-perfect H5-design of indices
(10, 5) and order v is such that v ⌘ 1 or 3 (mod 6).

Conversely, given ⌃ = (X, B) a C3-perfect H5-design of indices (2, 1) (Theorem 2.4), the system ⌃ 0 = (X, B 0), where
the blocks of B 0 are those of B, each repeated five times, is a C3-perfect H5-design of indices (10, 5). ⇤

Theorem 3.5. A C3-perfect H5-design of indices (12, 6) exists if and only if v � 5.

Proof. Let v be odd. Consider a C3-perfect H5-design of indices (6, 3) (Theorem 3.2) ⌃ = (X, B). The system ⌃ 0 = (X, B 0),
where the blocks of B 0 are those of B, each repeated twice, is a C3-perfect H5-design of indices (12, 6).

Let v ⌘ 0, 4 (mod 6). Consider a C3-perfect H5-design of indices (4, 2) ⌃ = (X, B) (Theorem 3.1). The system
⌃ 0 = (X, B 0), where the blocks of B 0 are those of B, each repeated three times, is a C3-perfect H5-design of indices (12, 6).

Let v = 6k + 2, for some k � 1. Let us consider an idempotent quasigroup (Z2k, �) and the system ⌃ = ({11, 12} [
Z2k ⇥ Z3, B) having the following blocks:
Ai,r,s = [((i, 0)), (i, 1), (1r), 1s, (i, 2)], for i 2 Z2k and r, s 2 {1, 2}, r 6= s;
Bi,r,s = [((i, 1)), (i, 2), (1r), 1s, (i, 0)], for i 2 Z2k and r, s 2 {1, 2}, r 6= s;
Ci,r,s = [((i, 2)), (i, 0), (1r), 1s, (i, 1)], for i 2 Z2k and r, s 2 {1, 2}, r 6= s;
Di,r,s = [((i, 0)), (i, 1), (1r), (i, 2), 1s], for i 2 Z2k and r, s 2 {1, 2}, r 6= s;
Ei,r,s = [((i, 1)), (i, 2), (1r), (i, 0), 1s], for i 2 Z2k and r, s 2 {1, 2}, r 6= s;
Fi,r,s = [((i, 2)), (i, 0), (1r), (i, 1), 1s], for i 2 Z2k and r, s 2 {1, 2}, r 6= s;
Gi = [(11), (i, 0), (12), (i, 2), (i, 1)](2), for i 2 Z2k;
Hi = [(11), (i, 1), (12), (i, 0), (i, 2)](2), for i 2 Z2k;
Ii = [(11), (i, 2), (12), (i, 1), (i, 0)](2), for i 2 Z2k;
Li,j = [((i, 0)), (i � j, 1), ((j, 0)), (i + 1, 2), (j + 1, 2)], for i, j 2 Z2k, i < j;
Ki,j = [((i, 0)), (i � j, 1), ((j, 0)), (i, 2), (j, 2)](2), for i, j 2 Z2k, i < j;
Mi,j = [((i, 0)), (j � i, 1), ((j, 0)), (i, 2), (j, 2)](3), for i, j 2 Z2k, i < j;
Ni,j = [((i, 1)), (i � j, 2), ((j, 1)), (i + 1, 0), (j + 1, 0)], for i, j 2 Z2k, i < j;
Oi,j = [((i, 1)), (i � j, 2), ((j, 1)), (i � 1, 0), (j � 1, 0)], for i, j 2 Z2k, i < j;
Pi,j = [((i, 1)), (i � j, 2), ((j, 1)), (i, 0), (j, 0)], for i, j 2 Z2k, i < j;
Qi,j = [((i, 1)), (j � i, 2), ((j, 1)), (i, 0), (j, 0)](3), for i, j 2 Z2k, i < j;
Ri,j = [((i, 2)), (i � j, 0), ((j, 2)), (i � 1, 1), (j � 1, 1)], for i, j 2 Z2k, i < j;



1296 P. Bonacini et al. / Discrete Mathematics 339 (2016) 1291–1299

Si,j = [((i, 2)), (i � j, 0), ((j, 2)), (i, 1), (j, 1)](2), for i, j 2 Z2k, i < j;
Ti,j = [((i, 2)), (j � i, 0), ((j, 2)), (i, 1), (j, 1)](3), for i, j 2 Z2k, i < j;
Ui = [((i, 0)), (i, 2), ((i, 1)), (i + 1, 2), (i + 1, 1)], for i 2 Z2k;
Vi = [((i, 0)), (i, 2), ((i, 1)), (i + 1, 0), (i + 1, 2)], for i 2 Z2k.

Examining these blocks, we can verify that ⌃ is a C3-perfect H5-design of indices (12, 6). This completes the proof. ⇤

Collecting together all the previous results, with the condition v ⌘ 1 or 3 (mod 6) [9], we have that:

Theorem 3.6. A C3-perfect H5-design of indices (2µ, µ) exists if and only if:
v ⌘ 1 or 3 (mod 6), if µ ⌘ 1 or 5 (mod 6);
v ⌘ 0 or 1 (mod 3), if µ ⌘ 2 or 4 (mod 6);
v odd, v � 5, if µ ⌘ 3 (mod 6);
v � 5, if µ ⌘ 0 (mod 6).

4. C
5

-perfect H
5

-designs

In this section, we examine C5-perfect H5-designs, determining the spectrum completely, without exceptions, in all the
cases.

At first, we see possible necessary conditions.

Theorem 4.1. If ⌃ = (X, B) is a C5-perfect H5-design of order v and indices (�, ⌧ ), then:
(1) 5� = 6⌧ ;

(2) |B| = � v(v�1)
12 .

Proof. Let ⌃ = (X, B) be a C5-perfect H5-design of order v and indices (�, ⌧ ). If ⌃ 0 = (X, B0) is the C5-system nested in ⌃ ,
necessarily: B = B 0. Since

|B| = � v(v�1)
12 , |B 0| = ⌧ v(v�1)

6 ,
both (1), (2) follow easily. ⇤

From Theorem 4.1 it follows that for every positive integers v, v � 5, the existence of C5-perfect H5-designs of order v
and indices (�, ⌧ ), with 5� = 6⌧ , is possible. At first we examine the possible existence for systems having odd order v,
after we see what happens for v even.

Theorem 4.2. For � = 6, ⌧ = 5, and for every v odd, v � 5, there exists a C5-perfect H5-design of order v and indices (6, 5).

Proof. Let v = 2k + 1, for k � 2. Consider the following base-blocks, constructed by difference method and defined in
X = Z2k+1, where D = {1, 2, . . . , k}:

Bi = [(0), i + 1, (2i + 1), 2k, i], for i 2 {1, . . . , k � 1}
B = [(0), 2, (1), k + 1, k].
If B is the collection of all the translates of these base-blocks, we can verify that ⌃ = (X, B) is a C5-perfect H5-design

of order v and indices (6, 5). ⇤

In conclusion, for v odd, we have that:

Theorem 4.3. For every �, ⌧ , such that 5� = 6⌧ , and for every v odd, v � 5, there exists a C5-perfect H5-design of order v and
indices (�, ⌧ ).

Proof. The statement follows from Theorem 4.2. Indeed, if � = 6h, ⌧ = 5h, a C5-perfect H5-design of order v and indices
(6k, 5k) can be obtained from a C5-perfect H5-design of order v and indices (6, 5), by a repetition of blocks, giving to every
block multiplicity h. ⇤

Now, we examine the case v even. At first, we observe that:

Theorem 4.4. If ⌃ = (X, B) is a C5-perfect H5-design of order v � 6 even and indices (6h, 5h), then h is even.

Proof. In a C5-design of order v and index ⌧ , every vertex is contained in exactly ⌧ (v�1)/2 blocks. Indeed, if we fix a vertex
x, the number of pairs containing x is ⌧ (v � 1). Since in every block C5, every vertex has degree two, the number ⌧ (v � 1)
must be even. But v even implies ⌧ = 5h even, hence h even. ⇤

Theorem 4.5. For � = 12, ⌧ = 10, and for every v even, v � 6, there exists a C5-perfect H5-design of order v and indices
(12, 10).
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Proof. Let v = 2k, for k � 3. Further, let X = {1} [ Z2k�1, where 1 is a fixed point, 1 62 Z2k�1. Consider the system
⌃ = (X, B), where B is the collection of all the translates of the following base-blocks, constructed by difference method:

B1,i = [(0), 2i, (i), 2i + 1, i + 1](2), for any i 2 {2, . . . , k � 2}, with k � 4;
B2 = [(0), 2, (1), 2k � 2, 2k � 3];
B3 = [(0), 1, (k), k � 1, 1](2);
B4 = [(0), k, (1), �1, 1];
B5 = [(1), 0, (1), 3, 2](2).
Examining all the blocks, we can verify that ⌃ is a C5-perfect H5-design of order v and indices (12, 10). ⇤

Collecting together all the results of this section, we have that:

Theorem 4.6. A C5-perfect H5-design of order v and indices (6h, 5h) there exists if and only if:
(1) v odd, h odd, v � 5;
(2) h even, v � 5.

Proof. The statement follows from the previous results. ⇤

5. (C
3

, C
4

, C
5

)-perfect H
5

-designs

In this section, we determine completely the spectrum of (C3, C4, C5)-perfect H5-designs.
At first, we prove the following three Theorems.

Theorem 5.1. An H5-design, which is (C3, C4)-perfect, is also C5-perfect.

Proof. Suppose that ⌃ = (X, B) is a (C3, C4)-perfect H5-design, of order v and indices (�, µ, � ). Since a C3-design of
order v and index µ has b0 = µv(v � 1)/6 blocks, a C4-design of order v and index � has b00 = �v(v � 1)/8 blocks,
|B| = b = �v(v � 1)12, and b = b0 = b00, it follows that:

�
v(v � 1)

12
= µ

v(v � 1)
6

= �
v(v � 1)

8
.

From which: �/12 = µ/6 = �/8. Hence, for some h � 1: � = 6h, µ = 3h and � = 4h.
Given an edge {x, y} we denote by U({x, y}) the number of blocks of B in which {x, y} appears as one of the edges {a, b}

and {b, c} of H5; we denote byM({x, y}) the number of blocks of B in which {x, y} appears as the edge {a, c}; we denote by
L({x, y}) the number of blocks of B in which {x, y} appears as one of the edges {c, d}, {d, e} and {e, a}. For any edge {x, y} it
must be:

U({x, y}) + M({x, y}) = 3h
M({x, y}) + L({x, y}) = 4h
U({x, y}) + M({x, y}) + L({x, y}) = 6h,

so that U({x, y}) = 2h, M({x, y}) = h and L({x, y}) = 3h for any {x, y}. This implies that ⌃ is C5-perfect of index 5h. ⇤

Theorem 5.2. An H5-design, which is (C3, C5)-perfect, is also C4-perfect.

Proof. Suppose that ⌃ = (X, B) is a (C3, C5)-perfect H5-design, of order v and indices (�, µ, ⌧ ). Since a C3-design of
order v and index µ has b0 = µv(v � 1)/6 blocks, a C5-design of order v and index ⌧ has b000 = ⌧v(v � 1)/10 blocks,
|B| = b = �v(v � 1)12, and b = b0 = b000, it follows that:

|B| = �
v(v � 1)

12
= µ

v(v � 1)
6

= ⌧
v(v � 1)

10
.

So � = 6h, µ = 3h and ⌧ = 5h for some h � 1. Keeping the previous notation, for any edge {x, y} it must be:

U({x, y}) + M({x, y}) = 3h
U({x, y}) + L({x, y}) = 5h
U({x, y}) + M({x, y}) + L({x, y}) = 6h,

so that U({x, y}) = 2h, M({x, y}) = h and L({x, y}) = 3h for any {x, y}. This implies that ⌃ is C4-perfect of index 4h. ⇤

Theorem 5.3. An H5-design, which is (C4, C5)-perfect, is also C3-perfect.
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Proof. Suppose that ⌃ = (X, B) is a (C4, C5)-perfect H5-design, of order v and indices (�, � , ⌧ ). Since a C4-design of
order v and index � has b00 = �v(v � 1)/8 blocks, a C5-design of order v and index ⌧ has b000 = ⌧v(v � 1)/10 blocks,
|B| = b = �v(v � 1)12, and b = b00 = b000, it follows that:

|B| = � v(v�1)
12 = � v(v�1)

8 = ⌧ v(v�1)
10 .

So � = 6h, � = 4h and ⌧ = 5h for some h � 1. Keeping the previous notation, for any edge {x, y} it must be:

M({x, y}) + L({x, y}) = 4h
U({x, y}) + L({x, y}) = 5h
U({x, y}) + M({x, y}) + L({x, y}) = 6h,

so that U({x, y}) = 2h, M({x, y}) = h and L({x, y}) = 3h for any {x, y}. This implies that ⌃ is C3-perfect of index 3h. ⇤

At this point, we begin to determine the spectrum of (C3, C4, C5)-perfect H5-designs. At first, we determine some
necessary conditions, after we determine the spectrum.

Theorem 5.4. If ⌃ = (X, B) is a (C3, C4, C5)-perfect H5-design of order v and indices (�, µ, � , ⌧ ), then:
(1) �

6 = µ
3 = �

4 = ⌧
5 ;

(2) |B| = � v(v�1)
12 .

Proof. Let⌃ = (X, B) be a (C3, C4, C5)-perfectH5-design of order v and indices (�, µ, � , ⌧ ). Since all the Ck-designs nested
in ⌃ , for k = 3, 4, 5, have necessarily the same number of blocks, it follows that:

|B| = �
v(v � 1)

12
= µ

v(v � 1)
6

= �
v(v � 1)

8
= ⌧

v(v � 1)
10

;

and this proves the statements. ⇤

Theorem 5.5. For � = 6, µ = 3, � = 4, ⌧ = 5, and for every v odd, v � 5, there exists a (C3, C4, C5)-perfect H5-design of
order v and indices (6, 3, 4, 5).

Proof. Let v = 2k+1, for some k � 2. Consider the system⌃ = (Z2k+1, B) having as blocks the translates of the following
base blocks:

1. [(0), 2i, (i), 2k, k + i] for any i 2 {1, . . . , k � 1}
2. [(0), k, (k + 1), k + 2, 1].
We can verify that ⌃ is a C3-perfect, C4-perfect and C5-perfect H5-design of order v and indices (6, 3, 4, 5). ⇤

Theorem 5.6. For every �, µ, � , ⌧ , such that �
6 = µ

3 = �
4 = ⌧

5 , and for every v odd, v � 5, there exists a (C3, C4, C5)-perfect
H5-design of order v and indices (�, µ, � , ⌧ ).

Proof. The statement follows by the previous result of Theorem 5.5. Indeed, let � = 6h, µ = 3h, � = 4 and ⌧ = 5h,
for some h 2 N and let ⌃ = (X, B) a (C3, C4, C5)-perfect H5-design of order v and indices (6, 3, 4, 5). Then, the system
⌃ 0 = (X, B 0), obtained from ⌃ , by a repetition of blocks, each repeated h times, is a (C3, C4, C5)-perfect H5-design of order
v and indices (�, µ, � , ⌧ ). ⇤

Theorem 5.7. For � = 12, µ = 6, � = 8, ⌧ = 10, and for every v even, v � 6, there exists a (C3, C4, C5)-perfect H5-design of
order v and indices (12, 6, 8, 10).

Proof. Let v = 2k, for some k � 3. Consider the system ⌃ = ({1} [ Z2k�1, B) having as blocks the translates of the
following base blocks:

Bi,1 = [(0), 2i, (i), 2i + 1, i + 1](2) for k � 4 and for any i 2 {2, . . . , k � 2};
B2 = [(0), 2, (1), 3, 1](2);
B3 = [(0), 1, (k � 1), k, 1];
B4 = [(1), 0, (1), 2, 3];
B5 = [(1), k, (0), 1, �1];
B6 = [(0), 1, (k), k + 1, 2].
Examining the blocks so obtained, we can verify that ⌃ is a (C3, C4, C5)-perfect H5-design of order v and indices

(12, 6, 8, 10). ⇤

Theorem 5.8. A (C3, C4, C5)-perfect H5-design of order v and indices (6h, 3h, 4h, 5h) there exists if and only if:
(1) v odd, v � 5, h odd;
(2) v � 5, h even.
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