Discrete Mathematics 339 (2016) 1291-1299

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Nesting House-designs

Paola Bonacini, Mario Gionfriddo, Lucia Marino

Department of Mathematics and Computer Science, University of Catania, Italy

ARTICLE INFO

ABSTRACT

Article history: Received 11 December 2014 Received in revised form 17 November 2015 Accepted 18 November 2015 A cycle of length 5 with a *chordal*, i.e. an edge joining two non-adjacent vertices of the cycle, is called a graph H_5 or also an *House-graph*. In this paper, the spectrum of House-systems nesting C_3 -systems, C_4 -systems, C_5 -systems and together (C_3 , C_4 , C_5)-systems, of all admissible indices are completely determined, without exceptions.

© 2015 Elsevier B.V. All rights reserved.

Keywords: Graphs G-decomposizione Nestings

1. Introduction

Let λK_v be the complete multigraph defined in a vertex-set X, |X| = v. Let G be a subgraph of λK_v . A G-decomposition of λK_v , of order v and index λ , is a pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge-set of λK_v into subsets all of which yield subgraphs isomorphic to G. A G-decomposition of λK_v is also called a G-design, of order v and index λ . The classes of the partition \mathcal{B} are said blocks. Important and interesting results about G-designs can be found in [5,10,12,13].

A cycle of length 5 with a *chordal*, i.e. an edge joining two not adjacent vertices of the cycle, will be called an *House-graph* and will be denoted by H_5 . If $H_5 = (X, E)$, where $X = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}, \{a, c\}\}$, we will denote such a graph by [(a), b, (c), d, e].

Let $\Sigma = (X, \mathcal{B})$ be H_5 -design of order v and index λ or an H_5 -decomposition of the complete multigraph λK_v . When a graph $H_5 = [(a), b, (c), d, e]$ is a block of Σ with *multiplicity n*, it will be indicated by $[(a), b, (c), d, e]_{(n)}$. Similar concepts and symbolism are given in [3].

We say that Σ is:

- (1) C_3 -perfect if the family of all the C_3 -cycles having edges {a, b}, {b, c}, {a, c} generates a C_3 -design Σ' of order v and index μ ;

- (2) C_4 -perfect, if the family of all the C_4 -cycles having edges {a, c}, {c, d}, {d, e}, {e, a} generates a C_4 -design Σ' of order v and index σ ;

- (3) C_5 -perfect, if the family of all the C_5 -cycles having edges $\{a, b\}$, $\{b, c\}$, $\{c, d\}$ $\{d, e\}$, $\{e, a\}$ generates a C_5 -design Σ' of order v and index τ .

In the case (1), we say that Σ has indices (λ , μ). Similarly, in (2) its indices are (λ , σ) and in (3) (λ , τ). Similar definitions and symbolism is given in [1,2,6]. For *perfect G*-designs see also [8,11].

In every case, we say that Σ' is a system *nested* into Σ , and also that Σ is nesting Σ' .

We say that an H_5 -design Σ , which is C_h -perfect, with indices (λ, μ) , and C_k -perfect with indices (λ, σ) , for h, k = 3, 4, 5, has indices (λ, μ, σ) , and we will say that it is a (C_h, C_k) -perfect. Similarly, if Σ of index λ is C_3 -perfect of index μ , C_4 -perfect of index σ , and also C_5 -perfect of index τ , we will say that Σ is (C_3, C_4, C_5) -perfect, of indices $(\lambda, \mu, \sigma, \tau)$.

http://dx.doi.org/10.1016/j.disc.2015.11.014

E-mail addresses: bonacini@dmi.unict.it (P. Bonacini), gionfriddo@dmi.unict.it (M. Gionfriddo), Imarino@dmi.unict.it (L. Marino).

⁰⁰¹²⁻³⁶⁵X/© 2015 Elsevier B.V. All rights reserved.

It is known [4] that:

Theorem 1.1. An H_5 -design of order v exists if and only if $v \equiv 0$, or 1, or 4, or 9 (mod 12), $v \geq 9$, with the possible exception of v = 24.

Further, the spectrum of House-designs nesting C_4 -systems, for every admissible indices, is determined in [3], where the authors proved that:

Theorem 1.2. There exists a C_4 -perfect H_5 -design of order v and indices (3, 2) if and only if $v \equiv 0$ or 1 (mod 4), v > 5.

Theorem 1.3. There exists a C₄-perfect H₅-design of order v and indices (6, 4) if and only if $v \ge 5$.

Theorem 1.4. There exists a C_4 -perfect H_5 -design of order v, v > 5, and indices (λ, μ) such that $2\lambda = 3\mu$.

In this paper we study the all possible nestings in House-systems, determining completely the spectrum in all the possible cases.

In what follows, to construct House-systems, we will use often the difference-method. This means that we fix as vertex-set $X = Z_v$ and, defined a base-block [(a), b, (c), d, e], its translates will be all the blocks of type [(a+i), b+i, (c+i), d+i, e+i], for every $i \in \mathbb{Z}_v$. For a given v, it will be $D(v) = \{|x - y| : x, y \in \mathbb{Z}_v, x \neq y\}$.

2. C_3 -perfect H_5 -designs of index (2, 1)

In this section, the spectrum of C_3 -perfect H_5 -designs of index (2, 1) is completely determined. We begin with the necessary conditions.

Theorem 2.1. If $\Sigma = (X, \mathcal{B})$ is a C_3 -perfect H_5 -design of order v and indices (λ, μ) , then:

(1) $\lambda = 2\mu$;

(2) $|\mathcal{B}| = \mu \frac{v(v-1)}{6};$

(3) for $\mu = 1$, it is $v \equiv 1, 3 \pmod{6}$.

Proof. Let $\Sigma = (X, B)$ be a C_3 -perfect H_5 -design of order v and indices (λ, μ) . If $\Sigma' = (X, B')$ is the C_3 -system nested in Σ , necessarily: $\mathcal{B} = \mathcal{B}'$. Since $|\mathcal{B}| = \lambda \frac{v(v-1)}{12}, |\mathcal{B}'| = \mu \frac{v(v-1)}{6}$

(1) and (2) follow easily. For (3), consider that Σ' is a Steiner triple system of index 1.

Now we determine the spectrum of C_3 -perfect H_5 -designs of index (2, 1), examining at first the case v = 6h + 1 and after the case v = 6h + 3.

Theorem 2.2. For $\lambda = 2$, $\mu = 1$ and for every $v \equiv 1 \pmod{6}$, $v \geq 7$, there exists a C₃-perfect H₅-design of order v and indices (2, 1).

Proof. Let $v \equiv 1 \pmod{6}$, v > 7. We can consider the following cases:

(1) $v \equiv 7 \pmod{18}$;

(2) $v \equiv 13$, (mod 18);

(3) $v \equiv 1 \pmod{18}, v \ge 19$.

(1) Let v = 7. It is: $D(7) = \{1, 2, 3\}$. Therefore, consider the block: B = [(0), 3, (1), 4, 6]. If \mathcal{B} is the collection of all the translates of B, we can verify that $\Sigma = (\mathbb{Z}_7, \mathcal{B})$ is an H_5 -design of order 7 and indices (2, 1). Further, since in B the differences $\{1, 2, 3\}$ cover, exactly one time, the edges of the C₃-cycle, it follows that Σ is C₃-perfect.

Let v = 18k + 7, for $k \ge 1$. Since $D = \{1, 2, \dots, 9k + 3\}$, it is possible to define the following 3k + 1 base-blocks:

 $B_{1,h} = [(0), 8k + 2h + 4, (3h + 1), 3k + 2, 3h + 3], \text{ for } h \in \{0, \dots, k - 1\};$

 $B_{2,h} = [(0), 6k + h + 3, (3h + 2), 9k + 2, 3k + 3h + 2], \text{ for } h \in \{0, \dots, k - 1\};$

 $B_{3,h}^{2,n} = [(0), 4k + 2h + 4, (3h + 3), 12k + 5, 6k + 3h + 4], \text{ for } h \in \{0, \dots, k - 1\};$

 $B_4 = [(0), 7k + 3, (3k + 1), 9k + 3, 18k + 6].$

If \mathcal{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma = (\mathbb{Z}_{18k+7}, \mathcal{B})$ is an H_5 -design having indices (2, 1). Observe that, in the base-blocks, the differences $1, 2, \ldots, 9k + 3$ cover, exactly one time, the edges of the C_3 -cycles. Further, the number of base-blocks is 3k + 1 and every of them generates 18k + 7 translates. It follows that $|\mathcal{B}| = (3k + 1)(18k + 7)$ and Σ is C_3 -perfect.

(2) Let v = 13. It is: $D = \{1, 2, ..., 6\}$. Therefore, it is possible to define the two base-blocks: $B_1 = [(0), 4, (1), 7, 3], B_2 = (0), 4, (1), 7, 3]$ [(0), 7, (2), 4, 5]. If \mathcal{B} is the collection of all the translates of B_1 and B_2 , we can verify that $\Sigma = (\mathbb{Z}_{13}, \mathcal{B})$ is an H_5 -design having indices (2, 1). Further, since in B_1 and B_2 the differences $\{1, 3, 4\}$ and $\{2, 5, 6\}$ cover, exactly one time, respectively the edges of the two C_3 -cycles, it follows that Σ is C_3 -perfect.

Let v = 18k + 13, for $k \ge 1$. Since $D = \{1, 2, \dots, 9k + 6\}$, it is possible to define the following 3k + 2 base-blocks:

 $B_{1,h} = [(0), 4k + 2h + 4, (3h + 1), 3k + 2, 3h + 3], \text{ for } h \in \{0, \dots, k - 1\};$

 $B_{2,h} = [(0), 6k + h + 5, (3h + 2), 9k + 8, 3k + 3h + 5], \text{ for } h \in \{0, \dots, k-1\};$

 $B_{3,h} = [(0), 8k + 2h + 8, (3h + 3), 12k + 8, 6k + 3h + 7], \text{ for } h \in \{0, \dots, k - 1\};$

 $B_4 = [(0), 6k + 4, (3k + 1), 9k + 6, 3k + 2];$

 $B_5 = [(0), 10k + 7, (3k + 2), 6k + 5, 6k + 6].$

If \mathscr{B} is the collection of all the translates of these base-blocks, we can verify that $\varSigma = (\mathbb{Z}_{18k+13}, \mathscr{B})$ is an H_5 -design having indices (2, 1). Observe that, in the base-blocks, the differences $1, 2, \ldots, 9k + 6$ cover, exactly one time, the edges of the C_3 -cycles. Further, the number of base-blocks is 3k + 2 and every of them generates 18k + 13 translates. It follows that $|\mathscr{B}| = (3k + 2)(18k + 13)$ and \varSigma is C_3 -perfect.

(3) Let v = 19. It is: $D = \{1, 2, ..., 9\}$. Therefore, it is possible to define the two base-blocks: $B_1 = [(0), 6, (1), 9, 18], B_2 = [(0), 10, (2), 5, 7], B_3 = [(0), 7, (3), 9, 5]$. If \mathcal{B} is the collection of all the translates of B_1, B_2, B_3 , we can verify that $\Sigma = (\mathbb{Z}_{19}, \mathcal{B})$ is an H_5 -design having indices (2, 1). Further, since in B_1, B_2, B_3 , the differences $\{1, 5, 6\}, \{2, 8, 10\}, \{3, 4, 7\}$ cover, exactly one time, respectively the edges of the three C_3 -cycles, it follows that Σ is C_3 -perfect.

Let v = 18k + 1, for $k \ge 2$. Since $D = \{1, 2, ..., 9k\}$, it is possible to define the following 3k base-blocks:

 $B_{1,h} = [(0), 4k + 2h + 2, (3h + 1), 3k + 2, 3h + 3], \text{ for } h \in \{0, \dots, k - 1\};$

 $B_{2,h} = [(0), 8k + 2h + 2, (3h + 2), 9k + 2, 3k + 3h + 2], \text{ for } h \in \{0, \dots, k-1\};$

 $B_{3,h} = [(0), 6k + h + 2, (3h + 3), 12k + 2, 6k - 3h - 2], \text{ for } h \in \{0, \dots, k - 2\};$

 $B_4 = [(0), 6k + 1, (3k), 9k + 1, 18k].$

If \mathcal{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma = (\mathbb{Z}_{18k+1}, \mathcal{B})$ is an H_5 -design having indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, ..., 9k cover, exactly one time, the edges of the C_3 -cycles. Further, the number of base-blocks is 3k and every of them generates 18k + 1 translates. It follows that $|\mathcal{B}| = (3k)(18k + 1)$ and Σ is C_3 -perfect. \Box

Theorem 2.3. For $\lambda = 2$, $\mu = 1$ and for every $v \equiv 3 \pmod{6}$, $v \ge 9$, there exists a C_3 -perfect H_5 -design of order v and indices (2, 1).

Proof. Let $v \equiv 3 \pmod{6}$, $v \ge 9$. We can consider the following cases:

(1) $v \equiv 9 \pmod{12}$;

ſ

(2) $v \equiv 3 \pmod{12}, v \ge 15$.

(1) Let v = 9. Consider the system $\Sigma = (\mathbb{Z}_9, \mathcal{B})$, where \mathcal{B} is the following collection of blocks:

$$\left\{ [(0), 2, (1), 4, 3], [(3), 5, (4), 2, 1], [(7), 6, (8), 2, 5], [(0), 6, (3), 7, 4], \right\}$$

[(1), 7, (4), 8, 5], [(2), 8, (5), 0, 7], [(0), 4, (8), 7, 1], [(1), 5, (6), 3, 8],

 $[(3), 2, (7), 6, 5], [(0), 7, (5), 4, 6], [(1), 8, (3), 2, 6], [(2), 4, (6), 8, 0] \}.$

It is possible to verify that Σ is a C_3 -perfect H_5 -design of order 9 and indices (2, 1).

Let v = 12k + 9 for $k \ge 1$. Let us consider the system $\Sigma = (\mathbb{Z}_{4k+3} \times \mathbb{Z}_3, \mathscr{B})$ having as blocks the following: $A_{i,r} = [((i, 0)), (i + r, 0), ((i + \frac{r}{2}, 1)), (i, 1), (i + \frac{r}{2}, 0)]$, for $i, r \in \mathbb{Z}_{4k+3}$ and $r \in \{1, ..., 2k + 1\}$; $B_i = [((i, 0)), (i, 2), ((i, 1)), (i + 4k + 2, 0), (i + 2k + 2, 1)]$, for $i \in \mathbb{Z}_{4k+3}$; $C_{i,j} = [((i, 1)), (\frac{i+j}{2}, 2), ((j, 1)), (i, 2), (j, 2)]$, for $i, j \in \mathbb{Z}_{4k+3}$, with $i \ne j$; $D_{i,r} = [((i + r, 2)), (i, 2), ((i + \frac{r}{2}, 0)), (i + r - 2k - 2, 2), (i + 2r, 0)]$, for $i, r \in \mathbb{Z}_{4k+3}$ and $r \in \{1, ..., k + 1\}$; $E_i = [((i, 2)), (i + 3k + 2, 0), ((i + 2k + 1, 2)), (i, 0), (i, 1)]$, for $i \in \mathbb{Z}_{4k+3}$; $F_{i,r} = [((i + r, 2)), (i, 2), ((i + \frac{r}{2}, 0)), (i + \frac{3}{2}r + k + 2, 1), (i + \frac{r}{2} + 2k + 2, 0)]$, for $i, r \in \mathbb{Z}_{4k+3}$ and $r \in \{k + 2, ..., 2k\}$ if $k \ge 2$. Examining all the blocks, we can verify that Σ is a C_3 -perfect H_5 -design of order 12k + 9 and indices (2, 1).

(2) Let v = 12k + 3 for $k \ge 1$. Let us consider the system $\Sigma = (\mathbb{Z}_{4k+1} \times \mathbb{Z}_3, \mathcal{B})$ having the following base blocks: $A_{i,r} = [((i + r, 2)), (i, 2), ((i + \frac{r}{2}, 0)), (i + r - 2k - 1, 2), (i + 2r, 0)]$, for $i, r \in \mathbb{Z}_{4k+1}$ and r = 1, ..., k; $B_{i,r} = [((i + r, 2)), (i, 2), ((i + \frac{r}{2}, 0)), (i + \frac{3}{2}r + 2k + 1, 1), (i + \frac{r}{2} + 2k + 1, 0)]$, for $i, r \in \mathbb{Z}_{4k+1}$ and r = k + 1, ..., 2k; $C_{i,j} = [((i, 1)), (\frac{i+j}{2}, 2), ((j, 1)), (i, 2), (j, 2)]$, for $i, j \in \mathbb{Z}_{4k+1}$ and $i \neq j$; $D_i = [((i, 0)), (i, 2), ((i, 1)), (i + 2k, 1), (i + 2k, 2)]$; $E_i = [((i, 0)), (i + k, 1), ((i + 2k, 0)), (i, 1), (i + k, 0)]$; $\Gamma_{i,j} = [((i, 0)), (i + k, 1), ((i + 2k, 0)), (i, 1), (i + k, 0)]$;

 $F_{i,r} = [((i, 0)), (i + r, 0), ((i + \frac{r}{2}, 1)), (i - k, 1), (i + \frac{r}{2}, 0)], \text{ for } i, r \in \mathbb{Z}_{4k+1} \text{ and } r = 1, \dots, 2k - 1.$ Examining all the blocks, we can verify that Σ is a C_3 -perfect H_5 -design of order 12k + 3 and indices (2, 1).

Collecting together the results of this section, it follows that:

Theorem 2.4. A C₃-perfect H₅-design of indices (2, 1) exists if and only if $v \equiv 1$ or 3 (mod 6).

3. C_3 -perfect H_5 -design with $\mu > 1$

In this section we consider C_3 -perfect H_5 -design of indices (λ, μ) , with $\mu > 1$, determining all the possible v of their spectrum. We recall that a *transversal* T of a *latin square* of order n is a set of n cells, exactly one cell from each row and column, such that each of the elements of Z_n occurs in a cell of T. Further, remember that [7,9]:

Lemma. (1) An idempotent latin square, defined in \mathbb{Z}_n , exists for any integer $n \neq 2$.

(2) An idempotent commutative latin square, defined in \mathbb{Z}_n , exists if and only if n is odd.

Latin squares, which are almost equivalent to the concept of finite quasigroups, will be used in the constructions given in Theorems 3.1 and 3.5. They are a common tool, since, given a quasigroup (\mathbb{Z}_n , \circ), all the edges on the complete graph defined on \mathbb{Z}_n are of type { $i, i \circ j$ }, for any $i, j \in \mathbb{Z}_n, i \neq j$.

Now we prove the following results:

Theorem 3.1. A C₃-perfect H₅-design of indices (4, 2) exists if and only if $v \equiv 0$ or 1 (mod 3).

Proof. It is known that a 2-fold triple system of order v exists if and only if $v \equiv 0, 1 \pmod{3}$ [7,9]. Since, for every $v \equiv 1$ or 3 (mod 6), there exist C_3 -perfect H_5 -design of indices (2, 1) (Theorem 2.2, Theorem 2.3), for such values of v, we can obtain C_3 -perfect H_5 -design of indices (4, 2) by a repetition of blocks, giving to each of them multiplicity 2.

Therefore, to prove the statement, it remains to examine the cases $v \equiv 0$ or 4 (mod 6). We study at first the case (1) v = 6k and after the case (2) v = 6k + 4.

(1) Let v = 6. Let us consider the system $\Sigma = (\mathbb{Z}_6, \mathcal{B})$ such that:

 $\mathcal{B} = \{ [(2), 1, (4), 5, 0], [(4), 2, (5), 3, 0], [(5), 3, (1), 4, 0], \\ [(1), 4, (3), 2, 0], [(3), 5, (2), 1, 0], [(1), 0, (2), 4, 5], [(2), 0, (3), 4, 1], \\ [(3), 0, (4), 2, 5], [(4), 0, (5), 1, 3], [(5), 0, (1), 3, 2] \}.$

We can verify that Σ is a C_3 -perfect H_5 -design of order 6 and indices (4, 2).

Let v = 6k for $k \ge 2$. Let us consider an idempotent quasigroup (\mathbb{Z}_{2k}, \circ) and the system $\Sigma = (\mathbb{Z}_{2k} \times \mathbb{Z}_3, \mathcal{B})$ having the following blocks:

 $\begin{aligned} A_{i} &= [((i, 0)), (i, 1), ((i, 2)), (-i + 1, 1), (-i + 1, 2)], \text{ for } i \in \mathbb{Z}_{2k}; \\ B_{i} &= [((i, 0)), (i, 1), ((i, 2)), (-i + 1, 0), (-i + 1, 1)], \text{ for } i \in \mathbb{Z}_{2k}; \\ C_{i,j} &= [((i, 0)), (i \circ j, 1), ((j, 0)), (-i + 1, 2), (-j + 1, 2)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ D_{i,j} &= [((i, 0)), (j \circ i, 1), ((j, 0)), (-i + 1, 2), (-j + 1, 2)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ E_{i,j} &= [((i, 1)), (i \circ j, 2), ((j, 1)), (i, 0), (j, 0)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ F_{i,j} &= [(((i, 1)), (j \circ i, 2), ((j, 1)), (-i + 1, 0), (-j + 1, 0)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ F_{i,j} &= [((i, 2)), (i \circ j, 0), ((j, 2)), (i, 1), (j, 1)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ H_{i,j} &= [((i, 2)), (i \circ i, 0), ((j, 2)), (-i + 1, 1), (-i + 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \end{aligned}$

 $H_{i,j} = [((i, 2)), (j \circ i, 0), ((j, 2)), (-i + 1, 1), (-j + 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k} \ i < j.$ Examining these blocks, we can verify that Σ is a C₃-perfect H₅-design of order 6k and indices (4, 2).

(2) Let v = 6k + 4 for $k \ge 1$. Let us consider a quasigroup $(\mathbb{Z}_{2k+1}, \circ)$, idempotent, not necessarily commutative, such that $\{(i, i+1) \mid i \in \mathbb{Z}_{2k+1}\}$ is a transversal. Define the system $\Sigma = (\{\infty\} \cup \mathbb{Z}_{2k+1} \times \mathbb{Z}_3, \mathcal{B})$ having the following blocks:

- $A_i = [((i, 0)), (i, 1), ((i, 2)), \infty, (i + 2, 2)],$ for $i \in \mathbb{Z}_{2k+1}$;
- $B_i = [((i, 0)), (i, 1), (\infty), (i + 1, 0), (i + 1, 2)], \text{ for } i \in \mathbb{Z}_{2k+1};$

 $C_i = [((i, 1)), (i, 2), (\infty), (i + 1, 0), (i + 1, 2)], \text{ for } i \in \mathbb{Z}_{2k+1};$

 $D_i = [((i, 0)), \infty, ((i, 2)), (i + 1, 2), (i + 1, 1)], \text{ for } i \in \mathbb{Z}_{2k+1};$

 $E_{i,j} = [((i, 0)), (i \circ j, 1), ((j, 0)), (i + 1, 2), (j + 1, 2)], \text{ for } i, j \in \mathbb{Z}_{2k+1}, \text{ with } i < j \text{ and } i - j \neq \pm 1;$

 $F_i = [((i, 0)), (i + 1, 0), ((i \circ (i + 1), 1)), \infty, (i + 1, 1)],$ for $i \in \mathbb{Z}_{2k+1};$

 $G_{i,j} = [((i, 0)), (j \circ i, 1), ((j, 0)), (i, 2), (j, 2)], \text{ for } i, j \in \mathbb{Z}_{2k+1}, \text{ with } i < j;$

 $H_{i,j} = [((i, 1)), (i \circ j, 2), ((j, 1)), (i - 1, 0), (j - 1, 0)], \text{ for } i, j \in \mathbb{Z}_{2k+1}, \text{ with } i < j;$

 $I_{i,j} = [((i, 1)), (j \circ i, 2), ((j, 1)), (i - 1, 0), (j - 1, 0)], \text{ for } i, j \in \mathbb{Z}_{2k+1}, \text{ with } i < j;$

 $L_{i,j} = [((i, 2)), (i \circ j, 0), ((j, 2)), (i - 1, 1), (j - 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k+1}, \text{ with } i < j;$

 $M_{i,j} = [((i, 2)), (j \circ i, 0), ((j, 2)), (i, 1), (j, 1)]$ for, $i, j \in \mathbb{Z}_{2k+1}$, with i < j.

Note that in the blocks in 6, thanks to the hypothesis that $\{(i, i + 1) \mid i \in \mathbb{Z}_{2k+1}\}$ is a transversal, any vertex (j, 1) with $j \in \mathbb{Z}_{2k+1}$ is of the type $(i \circ (i + 1), 1)$ for some $i \in \mathbb{Z}_{2k+1}$. So, examining the system, we can verify that Σ is a C_3 -perfect H_5 -design of order 6k + 4 and indices (4, 2).

This completes the proof. \Box

Theorem 3.2. A C_3 -perfect H_5 -design of indices (6, 3) exists if and only if v odd, $v \ge 5$.

Proof. It is known that a 3-fold triple system of order v exists if and only if v is odd [7,9].

At first, we consider the two cases v = 5 and v = 9.

Let v = 5. Define in \mathbb{Z}_5 the following two base-blocks:

 $B_1 = [(0), 4, (1), 3, 2], B_2 = [(0), 3, (2), 1, 4].$

If \mathcal{B} is the collection of all the translates of B_1 , B_2 , then $\Sigma = (\mathbb{Z}_5, \mathcal{B})$ is a C_3 -perfect H_5 -design of order v = 5 and indices (6, 3).

Let v = 9. Define in \mathbb{Z}_9 the following four base-blocks:

 $C_1 = [(0), 1, (4), 5, 2], C_2 = [(0), 2, (3), 4, 1],$

 $C_3 = [(0), 2, (4), 8, 3], C_4 = [(0), 3, (4), 6, 2].$

If C is the collection of all the translates of C_1 , C_2 , C_3 , C_4 , then $\Sigma = (\mathbb{Z}_9, \mathbb{C})$ is a C_3 -perfect H_5 -design of order v = 9 and indices (6, 3).

Let v = 2k + 1, for $k \ge 3$, $v \ne 9$. Let us consider the cyclic system $\Sigma = (\mathbb{Z}_{2k+1}, \mathcal{B})$ having as base blocks:

$$\left[(0), \frac{r}{2}, (r), 3r, 2r\right],$$

for every $r \in Z_{2k+1}$, $r \in \{1, ..., k\}$. It is possible to verify that Σ is a C_3 -perfect H_5 -design of order 2k + 1 and indices (6, 3). \Box

Theorem 3.3. A C₃-perfect H₅-design of indices (8, 4) exists if and only if $v \equiv 0$ or 1 (mod 3).

Proof. A 4-fold triple system of order v exists if and only if $v \equiv 0$ or 1mod 3 [7,9]. So a C_3 -perfect H_5 -design of indices (8, 4) and order v is such that $v \equiv 0$ or 1mod 3.

Conversely, given $\Sigma = (X, \mathcal{B})$ a C_3 -perfect H_5 -design of indices (4, 2) (Theorem 3.1), the system $\Sigma' = (X, \mathcal{B}')$, where the blocks of \mathcal{B}' are those of \mathcal{B} , each repeated twice, is a C_3 -perfect H_5 -design of indices (8, 4).

Theorem 3.4. A C₃-perfect H₅-design of indices (10, 5) there exists if and only if $v \equiv 1 \text{ or } 3 \pmod{6}$.

Proof. A 5-fold triple system of order v exists if and only if $v \equiv 1$ or $3 \mod 6$ [7,9]. So a C_3 -perfect H_5 -design of indices (10, 5) and order v is such that $v \equiv 1$ or $3 \pmod{6}$.

Conversely, given $\Sigma = (X, \mathcal{B})$ a C_3 -perfect H_5 -design of indices (2, 1) (Theorem 2.4), the system $\Sigma' = (X, \mathcal{B}')$, where the blocks of \mathcal{B}' are those of \mathcal{B} , each repeated five times, is a C_3 -perfect H_5 -design of indices (10, 5).

Theorem 3.5. A C₃-perfect H₅-design of indices (12, 6) exists if and only if $v \ge 5$.

Proof. Let *v* be odd. Consider a C_3 -perfect H_5 -design of indices (6, 3) (Theorem 3.2) $\Sigma = (X, \mathcal{B})$. The system $\Sigma' = (X, \mathcal{B}')$, where the blocks of \mathcal{B}' are those of \mathcal{B} , each repeated twice, is a C_3 -perfect H_5 -design of indices (12, 6).

Let $v \equiv 0, 4 \pmod{6}$. Consider a C_3 -perfect H_5 -design of indices (4, 2) $\Sigma = (X, \mathcal{B})$ (Theorem 3.1). The system $\Sigma' = (X, \mathcal{B}')$, where the blocks of \mathcal{B}' are those of \mathcal{B} , each repeated three times, is a C_3 -perfect H_5 -design of indices (12, 6). Let v = 6k + 2, for some $k \geq 1$. Let us consider an idempotent quasigroup (\mathbb{Z}_{2k}, \circ) and the system $\Sigma = (\{\infty_1, \infty_2\} \cup \mathbb{Z}_{2k} \times \mathbb{Z}_3, \mathcal{B})$ having the following blocks:

$$\begin{aligned} A_{i,r,s} &= [((i, 0)), (i, 1), (\infty_r), \infty_s, (i, 2)], \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ B_{i,r,s} &= [((i, 1)), (i, 2), (\infty_r), \infty_s, (i, 0)], \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ C_{i,r,s} &= [((i, 2)), (i, 0), (\infty_r), \infty_s, (i, 1)], \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ D_{i,r,s} &= [((i, 0)), (i, 1), (\infty_r), (i, 2), \infty_s], \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ E_{i,r,s} &= [((i, 1)), (i, 2), (\infty_r), (i, 0), \infty_s], \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ F_{i,r,s} &= [((i, 2)), (i, 0), (\infty_r), (i, 1), \infty_s], \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ G_i &= [(\infty_1), (i, 0), (\infty_2), (i, 2), (i, 1)]_{(2)}, \text{ for } i \in \mathbb{Z}_{2k} \text{ and } r, s \in \{1, 2\}, r \neq s; \\ G_i &= [(\infty_1), (i, 0), (\infty_2), (i, 2), (i, 1)]_{(2)}, \text{ for } i \in \mathbb{Z}_{2k}; \\ H_i &= [(\infty_1), (i, 2), (\infty_2), (i, 1), (i, 0)]_{(2)}, \text{ for } i \in \mathbb{Z}_{2k}; \\ I_i &= [((i, 0)), (i \circ j, 1), ((j, 0)), (i + 1, 2), (j + 1, 2)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ K_{i,j} &= [((i, 0)), (i \circ j, 1), ((j, 0)), (i, 2), (j, 2)]_{(2)}, \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ M_{i,j} &= [((i, 1)), (i \circ j, 2), ((j, 1)), (i + 1, 0), (j + 1, 0)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ N_{i,j} &= [((i, 1)), (i \circ j, 2), ((j, 1)), (i + 1, 0), (j - 1, 0)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ O_{i,j} &= [((i, 1)), (i \circ j, 2), ((j, 1)), (i , 0), (j, 0)]_{(3)}, \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ P_{i,j} &= [((i, 1)), (i \circ j, 2), ((j, 1)), (i - 0), (j - 1, 0)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ P_{i,j} &= [(((i, 1)), (i \circ j, 0), ((j, 2)), (i - 1, 1), (j - 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ R_{i,j} &= [(((i, 2)), (i \circ j, 0), ((j, 2)), (i - 1, 1), (j - 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ R_{i,j} &= [(((i, 2)), (i \circ j, 0), ((j, 2)), (i - 1, 1), (j - 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ R_{i,j} &= [(((i, 2)), (i \circ j, 0), (((j, 2)), ((i - 1, 1), (j - 1, 1)], \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ R_{i,j} &= [(((i, 2)), (i \circ j, 0), (((j, 2)), ((i - 1, 1), (j - 1, 1)], \text{$$

$$\begin{split} S_{i,j} &= [((i,2)), (i \circ j, 0), ((j,2)), (i, 1), (j, 1)]_{(2)}, \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ T_{i,j} &= [((i,2)), (j \circ i, 0), ((j,2)), (i, 1), (j, 1)]_{(3)}, \text{ for } i, j \in \mathbb{Z}_{2k}, i < j; \\ U_i &= [((i,0)), (i,2), ((i,1)), (i+1,2), (i+1,1)], \text{ for } i \in \mathbb{Z}_{2k}; \\ V_i &= [((i,0)), (i,2), ((i,1)), (i+1,0), (i+1,2)], \text{ for } i \in \mathbb{Z}_{2k}. \\ \text{Examining these blocks, we can verify that } \Sigma \text{ is a } C_3\text{-perfect } H_5\text{-design of indices } (12, 6). \text{ This completes the proof.} \quad \Box \end{split}$$

Collecting together all the previous results, with the condition $v \equiv 1 \text{ or } 3 \pmod{6}$ [9], we have that:

Theorem 3.6. A C₃-perfect H₅-design of indices $(2\mu, \mu)$ exists if and only if:

 $v \equiv 1 \text{ or } 3 \pmod{6}$, if $\mu \equiv 1 \text{ or } 5 \pmod{6}$; $v \equiv 0 \text{ or } 1 \pmod{3}$, if $\mu \equiv 2 \text{ or } 4 \pmod{6}$; v odd, $v \ge 5$, if $\mu \equiv 3 \pmod{6}$; $v \ge 5$, if $\mu \equiv 0 \pmod{6}$.

4. C₅-perfect H₅-designs

In this section, we examine C_5 -perfect H_5 -designs, determining the spectrum completely, without exceptions, in all the cases.

At first, we see possible necessary conditions.

Theorem 4.1. If $\Sigma = (X, \mathcal{B})$ is a C_5 -perfect H_5 -design of order v and indices (λ, τ) , then:

(1) $5\lambda = 6\tau$; (2) $|\mathcal{B}| = \lambda \frac{v(v-1)}{12}$.

Proof. Let $\Sigma = (X, B)$ be a C_5 -perfect H_5 -design of order v and indices (λ, τ) . If $\Sigma' = (X, B')$ is the C_5 -system nested in Σ , necessarily: $\mathcal{B} = \mathcal{B}'$. Since

 $|\mathcal{B}| = \lambda \frac{v(v-1)}{12}, |\mathcal{B}'| = \tau \frac{v(v-1)}{6},$ both (1), (2) follow easily. \Box

From Theorem 4.1 it follows that for every positive integers $v, v \ge 5$, the existence of C_5 -perfect H_5 -designs of order v and indices (λ, τ) , with $5\lambda = 6\tau$, is possible. At first we examine the possible existence for systems having odd order v, after we see what happens for v even.

Theorem 4.2. For $\lambda = 6$, $\tau = 5$, and for every v odd, $v \ge 5$, there exists a C_5 -perfect H_5 -design of order v and indices (6, 5).

Proof. Let v = 2k + 1, for $k \ge 2$. Consider the following base-blocks, constructed by difference method and defined in $X = \mathbb{Z}_{2k+1}$, where $D = \{1, 2, ..., k\}$:

 $B_i = [(0), i + 1, (2i + 1), 2k, i]$, for $i \in \{1, \dots, k - 1\}$

B = [(0), 2, (1), k + 1, k].

If \mathcal{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma = (X, \mathcal{B})$ is a C_5 -perfect H_5 -design of order v and indices (6, 5). \Box

In conclusion, for *v* odd, we have that:

Theorem 4.3. For every λ , τ , such that $5\lambda = 6\tau$, and for every v odd, $v \ge 5$, there exists a C₅-perfect H₅-design of order v and indices (λ, τ) .

Proof. The statement follows from Theorem 4.2. Indeed, if $\lambda = 6h$, $\tau = 5h$, a C_5 -perfect H_5 -design of order v and indices (6k, 5k) can be obtained from a C_5 -perfect H_5 -design of order v and indices (6, 5), by a repetition of blocks, giving to every block multiplicity h. \Box

Now, we examine the case v even. At first, we observe that:

Theorem 4.4. If $\Sigma = (X, \mathcal{B})$ is a C_5 -perfect H_5 -design of order $v \ge 6$ even and indices (6h, 5h), then h is even.

Proof. In a C_5 -design of order v and index τ , every vertex is contained in exactly $\tau(v-1)/2$ blocks. Indeed, if we fix a vertex x, the number of pairs containing x is $\tau(v-1)$. Since in every block C_5 , every vertex has degree two, the number $\tau(v-1)$ must be even. But v even implies $\tau = 5h$ even, hence h even. \Box

Theorem 4.5. For $\lambda = 12$, $\tau = 10$, and for every v even, $v \ge 6$, there exists a C₅-perfect H₅-design of order v and indices (12, 10).

1297

Proof. Let v = 2k, for $k \ge 3$. Further, let $X = \{\infty\} \cup \mathbb{Z}_{2k-1}$, where ∞ is a fixed point, $\infty \notin \mathbb{Z}_{2k-1}$. Consider the system $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is the collection of all the translates of the following base-blocks, constructed by difference method: $B_{1,i} = [(0), 2i, (i), 2i + 1, i + 1]_{(2)}$, for any $i \in \{2, ..., k-2\}$, with $k \ge 4$; $B_2 = [(0), 2, (1), 2k - 2, 2k - 3]$; $B_3 = [(0), 1, (k), k - 1, \infty]_{(2)}$; $B_4 = [(0), k, (1), -1, \infty]$; $B_5 = [(\infty), 0, (1), 3, 2]_{(2)}$. Examining all the blocks, we can verify that Σ is a C_5 -perfect H_5 -design of order v and indices (12, 10).

Collecting together all the results of this section, we have that:

Theorem 4.6. A C_5 -perfect H_5 -design of order v and indices (6h, 5h) there exists if and only if:

(1) v odd, h odd, $v \ge 5$;

(2) *h* even, $v \ge 5$.

Proof. The statement follows from the previous results. \Box

5. (C_3, C_4, C_5) -perfect H_5 -designs

In this section, we determine completely the spectrum of (C_3, C_4, C_5) -perfect H_5 -designs. At first, we prove the following three Theorems.

Theorem 5.1. An H_5 -design, which is (C_3, C_4) -perfect, is also C_5 -perfect.

Proof. Suppose that $\Sigma = (X, \mathcal{B})$ is a (C_3, C_4) -perfect H_5 -design, of order v and indices (λ, μ, σ) . Since a C_3 -design of order v and index μ has $b' = \mu v(v - 1)/6$ blocks, a C_4 -design of order v and index σ has $b'' = \sigma v(v - 1)/8$ blocks, $|\mathcal{B}| = b = \lambda v(v - 1)12$, and b = b' = b'', it follows that:

$$\lambda \frac{v(v-1)}{12} = \mu \frac{v(v-1)}{6} = \sigma \frac{v(v-1)}{8}$$

From which: $\lambda/12 = \mu/6 = \sigma/8$. Hence, for some $h \ge 1$: $\lambda = 6h$, $\mu = 3h$ and $\sigma = 4h$.

Given an edge {x, y} we denote by $U({x, y})$ the number of blocks of \mathcal{B} in which {x, y} appears as one of the edges {a, b} and {b, c} of H_5 ; we denote by $M({x, y})$ the number of blocks of \mathcal{B} in which {x, y} appears as the edge {a, c}; we denote by $L({x, y})$ the number of blocks of \mathcal{B} in which {x, y} appears as the edge {a, c}; we denote by $L({x, y})$ the number of blocks of \mathcal{B} in which {x, y} appears as one of the edges {c, d}, {d, e} and {e, a}. For any edge {x, y} it must be:

$$\begin{split} &U(\{x, y\}) + M(\{x, y\}) = 3h \\ &M(\{x, y\}) + L(\{x, y\}) = 4h \\ &U(\{x, y\}) + M(\{x, y\}) + L(\{x, y\}) = 6h, \end{split}$$

so that $U(\{x, y\}) = 2h, M(\{x, y\}) = h$ and $L(\{x, y\}) = 3h$ for any $\{x, y\}$. This implies that Σ is C_5 -perfect of index 5h. \Box

Theorem 5.2. An H_5 -design, which is (C_3, C_5) -perfect, is also C_4 -perfect.

Proof. Suppose that $\Sigma = (X, \mathcal{B})$ is a (C_3, C_5) -perfect H_5 -design, of order v and indices (λ, μ, τ) . Since a C_3 -design of order v and index μ has $b' = \mu v(v - 1)/6$ blocks, a C_5 -design of order v and index τ has $b''' = \tau v(v - 1)/10$ blocks, $|\mathcal{B}| = b = \lambda v(v - 1)/12$, and b = b' = b''', it follows that:

$$|\mathcal{B}| = \lambda \frac{v(v-1)}{12} = \mu \frac{v(v-1)}{6} = \tau \frac{v(v-1)}{10}.$$

So $\lambda = 6h$, $\mu = 3h$ and $\tau = 5h$ for some $h \ge 1$. Keeping the previous notation, for any edge $\{x, y\}$ it must be:

$$U(\{x, y\}) + M(\{x, y\}) = 3h$$

$$U(\{x, y\}) + L(\{x, y\}) = 5h$$

$$U(\{x, y\}) + M(\{x, y\}) + L(\{x, y\}) = 6h$$

so that $U(\{x, y\}) = 2h, M(\{x, y\}) = h$ and $L(\{x, y\}) = 3h$ for any $\{x, y\}$. This implies that Σ is C_4 -perfect of index 4h. \Box

Theorem 5.3. An H_5 -design, which is (C_4, C_5) -perfect, is also C_3 -perfect.

Proof. Suppose that $\Sigma = (X, \mathcal{B})$ is a (C_4, C_5) -perfect H_5 -design, of order v and indices (λ, σ, τ) . Since a C_4 -design of order v and index σ has $b'' = \sigma v(v - 1)/8$ blocks, a C_5 -design of order v and index τ has $b''' = \tau v(v - 1)/10$ blocks, $|\mathcal{B}| = b = \lambda v(v - 1)/12$, and b = b'' = b''', it follows that:

 $\begin{aligned} |\mathcal{B}| &= b = \lambda v(v-1) 12, \text{ and } b = b'' = b''', \text{ it follows that:} \\ |\mathcal{B}| &= \lambda \frac{v(v-1)}{12} = \sigma \frac{v(v-1)}{8} = \tau \frac{v(v-1)}{10}. \\ \text{So } \lambda &= 6h, \sigma = 4h \text{ and } \tau = 5h \text{ for some } h \ge 1. \text{ Keeping the previous notation, for any edge } \{x, y\} \text{ it must be:} \\ M(\{x, y\}) + L(\{x, y\}) &= 4h \\ U(\{x, y\}) + L(\{x, y\}) &= 5h \\ U(\{x, y\}) + M(\{x, y\}) + L(\{x, y\}) &= 6h, \end{aligned}$

so that $U(\{x, y\}) = 2h, M(\{x, y\}) = h$ and $L(\{x, y\}) = 3h$ for any $\{x, y\}$. This implies that Σ is C_3 -perfect of index 3h.

At this point, we begin to determine the spectrum of (C_3, C_4, C_5) -perfect H_5 -designs. At first, we determine some necessary conditions, after we determine the spectrum.

Theorem 5.4. If $\Sigma = (X, \mathcal{B})$ is a (C_3, C_4, C_5) -perfect H_5 -design of order v and indices $(\lambda, \mu, \sigma, \tau)$, then: (1) $\frac{\lambda}{6} = \frac{\mu}{3} = \frac{\sigma}{4} = \frac{\tau}{5}$;

(1) $_{6}^{-} = _{3}^{-} = _{4}^{-} = _{5}^{-},$ (2) $|\mathcal{B}| = \lambda \frac{v(v-1)}{12}.$

Proof. Let $\Sigma = (X, \mathcal{B})$ be a (C_3, C_4, C_5) -perfect H_5 -design of order v and indices $(\lambda, \mu, \sigma, \tau)$. Since all the C_k -designs nested in Σ , for k = 3, 4, 5, have necessarily the same number of blocks, it follows that:

$$|\mathcal{B}| = \lambda \frac{v(v-1)}{12} = \mu \frac{v(v-1)}{6} = \sigma \frac{v(v-1)}{8} = \tau \frac{v(v-1)}{10};$$

and this proves the statements. \Box

Theorem 5.5. For $\lambda = 6$, $\mu = 3$, $\sigma = 4$, $\tau = 5$, and for every v odd, $v \ge 5$, there exists a (C_3 , C_4 , C_5)-perfect H_5 -design of order v and indices (6, 3, 4, 5).

Proof. Let v = 2k + 1, for some $k \ge 2$. Consider the system $\Sigma = (\mathbb{Z}_{2k+1}, \mathcal{B})$ having as blocks the translates of the following base blocks:

1. [(0), 2i, (i), 2k, k+i] for any $i \in \{1, ..., k-1\}$ 2. [(0), k, (k+1), k+2, 1].

We can verify that Σ is a C₃-perfect, C₄-perfect and C₅-perfect H₅-design of order v and indices (6, 3, 4, 5).

Theorem 5.6. For every λ , μ , σ , τ , such that $\frac{\lambda}{6} = \frac{\mu}{3} = \frac{\sigma}{4} = \frac{\tau}{5}$, and for every v odd, $v \ge 5$, there exists a (C_3 , C_4 , C_5)-perfect H_5 -design of order v and indices (λ , μ , σ , τ).

Proof. The statement follows by the previous result of Theorem 5.5. Indeed, let $\lambda = 6h$, $\mu = 3h$, $\sigma = 4$ and $\tau = 5h$, for some $h \in \mathbb{N}$ and let $\Sigma = (X, \mathcal{B})$ a (C_3, C_4, C_5) -perfect H_5 -design of order v and indices (6, 3, 4, 5). Then, the system $\Sigma' = (X, \mathcal{B}')$, obtained from Σ , by a repetition of blocks, each repeated h times, is a (C_3, C_4, C_5) -perfect H_5 -design of order v and indices $(\lambda, \mu, \sigma, \tau)$. \Box

Theorem 5.7. For $\lambda = 12$, $\mu = 6$, $\sigma = 8$, $\tau = 10$, and for every v even, $v \ge 6$, there exists a (C_3 , C_4 , C_5)-perfect H_5 -design of order v and indices (12, 6, 8, 10).

Proof. Let v = 2k, for some $k \ge 3$. Consider the system $\Sigma = (\{\infty\} \cup \mathbb{Z}_{2k-1}, \mathcal{B})$ having as blocks the translates of the following base blocks:

 $\begin{array}{l} B_{i,1} = [(0), 2i, (i), 2i+1, i+1]_{(2)} \text{ for } k \geq 4 \text{ and for any } i \in \{2, \dots, k-2\};\\ B_2 = [(0), 2, (1), 3, \infty]_{(2)};\\ B_3 = [(0), \infty, (k-1), k, 1];\\ B_4 = [(\infty), 0, (1), 2, 3];\\ B_5 = [(\infty), k, (0), 1, -1];\\ B_6 = [(0), 1, (k), k+1, 2].\\ \text{Examining the blocks so obtained, we can verify that } \Sigma \text{ is a } (C_3, C_4, C_5)\text{-perfect } H_5\text{-design of order } v \text{ and indices}\\ (12, 6, 8, 10). \quad \Box \end{array}$

Theorem 5.8. A (C_3 , C_4 , C_5)-perfect H_5 -design of order v and indices (6h, 3h, 4h, 5h) there exists if and only if:

(1) v odd, $v \ge 5$, h odd;

(2) $v \ge 5$, *h* even.

References

- [1] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems, Discrete Math. 310 (2010) 1979–1985.
- [2] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems with an upper C4-system, J. Statist. Plann. Inference 141 (2011) 2249–2255.
- [3] P. Bonacini, M. Gionfriddo, L. Marino, Balanced house-systems and nestings, Ars Combin. 121 (2015) 429-436.
- [4] D. Bryant, S. El-Zanati, Graph decompositions, in: C. Colbourn-, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, Chapman-Hall/CRC, Boca Raton USA, 2007, pp. 477–484. [5] C.J. Colbourn, A.C.H. Ling, G. Quattrocchi, Minimum embedding of P_3 -designs into $K_4 - e$ -designs, J. Combin. Des. 11 (2003) 352–366. [6] L. Gionfriddo, M. Gionfriddo, Perfect dodecagon quadrangle systems, Discrete Math. 310 (2010) 3067–3071.

- [7] M. Gionfriddo, S. Milazzo, V. Voloshin, Hypergraphs and Designs, Mathematics Research Developments, Nova Science Publishers Inc., New York, 2015. [8] S. Kucukcifci, C.C. Lindner, Perfect hexagon triple systems, Discrete Math. 279 (2004) 325-335.

- [9] S. Kucukici, C.C. Lindner, Perfect nexagor triple systems, Discrete Math. 279 (2004) 525–555.
 [9] C.C. Lindner, C.A. Rodger, D.R. Stinson, Nesting of cycle systems of odd lenght, Discrete Math. 42 (1989) 191–203.
 [11] C.C. Lindner, A. Rosa, Perfect dexagon triple systems, Discrete Math. 308 (2008) 214–219.
 [12] D.B. Stinson, The proceeding Steiner triple systems into Steiner systems S(24.v), Discrete Math. 274 (2004) 199–212.
- [13] D.R. Stinson, The spectrum of nested steiner triple systems, Graphs Combin. 1 (1985) 189–191.