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1. Introduction

Let AK, be the complete multigraph defined in a vertex-set X, |[X| = v. Let G be a subgraph of AK,,. A G-decomposition
of LK, of order v and index A, is a pair ¥ = (X, 8), where B is a partition of the edge-set of AK, into subsets all of which
yield subgraphs isomorphic to G. A G-decomposition of AK, is also called a G-design, of order v and index X. The classes of
the partition 8 are said blocks. Important and interesting results about G-designs can be found in [5,10,12,13].

A cycle of length 5 with a chordal, i.e. an edge joining two not adjacent vertices of the cycle, will be called an House-graph
and will be denoted by Hs. If Hs = (X, E), where X = {a, b, c,d, e} and E = {{a, b}, {b, ¢}, {c,d}{d, e}, {e, a}, {a, c}}, we
will denote such a graph by [(a), b, (c), d, e].

Let ¥ = (X, 8) be Hs-design of order v and index A or an Hs-decomposition of the complete multigraph AK,. When a
graph Hs = [(a), b, (c), d, e] is a block of X with multiplicity n, it will be indicated by [(a), b, (c), d, e](n). Similar concepts
and symbolism are given in [3].

We say that X' is:

- (1) Cs-perfect if the family of all the C3-cycles having edges {a, b}, {b, c}, {a, c} generates a C3-design X’ of order v and
index u;

- (2) C4-perfect, if the family of all the C4-cycles having edges {a, c}, {c, d}, {d, e}, {e, a} generates a C4-design X’ of
order v and index o;

- (3) Cs-perfect, if the family of all the Cs-cycles having edges {a, b}, {b, c}, {c, d} {d, e}, {e, a} generates a Cs-design X’
of order v and index 7.

In the case (1), we say that X' has indices (X, ©). Similarly, in (2) its indices are (A, ) and in (3) (A, 7). Similar definitions
and symbolism is given in [1,2,6]. For perfect G-designs see also [8,11].

In every case, we say that X’ is a system nested into X, and also that X is nesting X’.

We say that an Hs-design X, which is Cy-perfect, with indices (A, u), and Cy-perfect with indices (A, o), forh, k = 3, 4, 5,
has indices (), i, o), and we will say that it is a (Cy, C)-perfect. Similarly, if X of index X is C3-perfect of index ., C4-perfect
of index o, and also Cs-perfect of index t, we will say that X' is (C3, C4, Cs)-perfect, of indices (A, i, o, 7).

E-mail addresses: bonacini@dmi.unict.it (P. Bonacini), gionfriddo@dmi.unict.it (M. Gionfriddo), Imarino@dmi.unict.it (L. Marino).

http://dx.doi.org/10.1016/j.disc.2015.11.014
0012-365X/© 2015 Elsevier B.V. All rights reserved.



1292 P. Bonacini et al. / Discrete Mathematics 339 (2016) 1291-1299

It is known [4] that:

Theorem 1.1. An Hs-design of order v exists if and only if v = 0, or 1, or 4, or 9 (mod 12), v > 9, with the possible exception
of v=24.

Further, the spectrum of House-designs nesting C4-systems, for every admissible indices, is determined in [3], where the
authors proved that:

Theorem 1.2. There exists a C4-perfect Hs-design of order v and indices (3, 2) ifand only if v =0o0r 1 (mod 4), v > 5.
Theorem 1.3. There exists a C4-perfect Hs-design of order v and indices (6, 4) if and only if v > 5.

Theorem 1.4. There exists a C4-perfect Hs-design of order v, v > 5, and indices (A, ) such that 2). = 3.

In this paper we study the all possible nestings in House-systems, determining completely the spectrum in all the possible
cases.

In what follows, to construct House-systems, we will use often the difference-method. This means that we fix as vertex-set
X = Z, and, defined a base-block [(a), b, (c), d, e], its translates will be all the blocks of type [(a+1i), b+1i, (c+1i), d+1i, e+i],
for everyi € Z,.Fora given v, it willbe D(v) = {|x —y| : X,y € Z,, x # y}.

2. C3-perfect Hs-designs of index (2, 1)

In this section, the spectrum of Cs-perfect Hs-designs of index (2, 1) is completely determined. We begin with the
necessary conditions.

Theorem 2.1. If X = (X, B) is a C3-perfect Hs-design of order v and indices (A, 1), then:
(D)2 =2u
— (v=1).
(2) 18] = 2=,
(3) for u = 1,itisv =1, 3 (mod 6).

Proof. Let ¥ = (X, B) be a C3-perfect Hs-design of order v and indices (A, w).If X’ = (X, B') is the C3-system nested in X,
necessarily: 8 = B’'. Since
|£| — )"v(v—l) |£/| — MU(U_I)
2 6
(1) and (2) follow easily. For (3), consider that X’ is a Steiner triple system of index 1. O
Now we determine the spectrum of Cs-perfect Hs-designs of index (2, 1), examining at first the case v = 6h + 1 and
after the case v = 6h + 3.

Theorem 2.2. For A = 2, u = 1and for every v = 1 (mod 6), v > 7, there exists a C3-perfect Hs-design of order v and indices
2, 1.

Proof. Let v = 1 (mod 6), v > 7. We can consider the following cases:

(1) v =7 (mod 18);

(2) v = 13, (mod 18);

(3)v=1(mod 18), v > 19.

(1) Letv = 7.1tis: D(7) = {1, 2, 3}. Therefore, consider the block: B = [(0), 3, (1), 4, 6]. If B is the collection of all the
translates of B, we can verify that ¥ = (Z;, 8) is an Hs-design of order 7 and indices (2, 1). Further, since in B the differences
{1, 2, 3} cover, exactly one time, the edges of the C3-cycle, it follows that X' is C3-perfect.

Letv = 18k + 7, for k > 1.Since D = {1, 2, ..., 9k + 3}, it is possible to define the following 3k + 1 base-blocks:

Bin =1(0),8k+2h+4,(3h+1),3k+2,3h+ 3], forhe {0,..., k—1};

By =1[(0),6k+h+3,(3h+2),9% +2,3k+3h+2],forhe{0,..., k—1};

Bs, =[(0), 4k +2h+ 4, Bh 4 3), 12k + 5,6k +3h + 4], forh € {0, ..., k — 1};

By =[(0), 7k + 3, 3k + 1), 9k + 3, 18k + 6].

If B is the collection of all the translates of these base-blocks, we can verify that ¥ = (Zg¢.7, B) is an Hs-design having

indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, ..., 9k + 3 cover, exactly one time, the edges of the
C3-cycles. Further, the number of base-blocks is 3k + 1 and every of them generates 18k + 7 translates. It follows that
|8B| = Bk + 1)(18k + 7) and X is C3-perfect.
(2)Letv = 13.1tis: D = {1, 2, ..., 6}. Therefore, it is possible to define the two base-blocks: B; = [(0), 4, (1), 7, 3], B, =
[(0),7, (2),4,5]. If B8 is the collection of all the translates of B; and B,, we can verify that X = (Zq3, 8) is an Hs-design
having indices (2, 1). Further, since in B; and B, the differences {1, 3, 4} and {2, 5, 6} cover, exactly one time, respectively
the edges of the two C3-cycles, it follows that X' is C3-perfect.

Letv = 18k + 13, for k > 1.Since D = {1, 2, ..., 9k + 6}, it is possible to define the following 3k + 2 base-blocks:

Bin =1[(0),4k+2h+4, Bh+1),3k+2,3h+ 3], forh € {0, ..., k— 1};

Byn =1(0),6k+h+5,(3h+2),9% + 8,3k +3h+ 5], forh e {0,...,k— 1};

[

Bsy = [(0),8k+2h +8, 3h + 3), 12k + 8,6k + 3h + 7], forh € {0, ..., k — 1};
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B, = [(0), 6k + 4, 3k + 1), 9k + 6, 3k + 2];

Bs = [(0), 10k + 7, (3k + 2), 6k + 5, 6k + 6].

If B is the collection of all the translates of these base-blocks, we can verify that ¥ = (Zqgry13, B8) is an Hs-design
having indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, ..., 9k 4+ 6 cover, exactly one time, the edges of
the C3-cycles. Further, the number of base-blocks is 3k + 2 and every of them generates 18k + 13 translates. It follows that
|B| = 3k + 2)(18k + 13) and X is C3-perfect.

(3)Letv = 19.1tis: D = {1, 2, ..., 9}. Therefore, it is possible to define the two base-blocks: B; = [(0), 6, (1), 9, 18], B, =
[(0),10,(2),5,7],B3 = [(0),7,(3),9,5]. If 8 is the collection of all the translates of By, By, B3, we can verify that
X = (Z9, 8B) is an Hs-design having indices (2, 1). Further, since in By, B,, B3, the differences {1, 5, 6}, {2, 8, 10}, {3, 4, 7}
cover, exactly one time, respectively the edges of the three C3-cycles, it follows that X' is C3-perfect.

Letv = 18k + 1, for k > 2.Since D = {1, 2, ..., 9k}, it is possible to define the following 3k base-blocks:

Byy =1[(0),4k +2h+2,(3h+1),3k+2,3h 4 3],forh € {0,...,k—1};

By =1[(0),8k+2h+2,(3h+2),9+2,3k+3h+ 2], forh e {0,...,k—1};

B3 =[(0),6k+h+2, Bh+3),12k+ 2,6k — 3h — 2], forh € {0, ..., k — 2};

B, = [(0), 6k + 1, (3k), 9k + 1, 18K].

If B is the collection of all the translates of these base-blocks, we can verify that ¥ = (Z1gy+1, 8) is an Hs-design having
indices (2, 1). Observe that, in the base-blocks, the differences 1, 2, . . ., 9k cover, exactly one time, the edges of the C3-cycles.
Further, the number of base-blocks is 3k and every of them generates 18k + 1 translates. It follows that | 8| = (3k)(18k+ 1)
and X is Cs-perfect. O

Theorem 2.3. For A = 2, u = 1and for every v = 3 (mod 6), v > 9, there exists a C3-perfect Hs-design of order v and indices
2, 1.

Proof. Let v = 3 (mod 6), v > 9. We can consider the following cases:

(1) v =9 (mod 12);

(2)v =3 (mod 12), v > 15.

(1) Let v = 9. Consider the system X = (Zg, 8), where B is the following collection of blocks:

{[(0),2, (1),4,3], [(3),5,(4), 2,11, [(7), 6, (8),2,5], [(0),6, (3),7, 4],
[(1),7,(4),8,5], [(2),8,(5),0,7], [(0), 4, (8),7, 1], [(1), 5, (6), 3, 8],
[(3).2,(7),6,5], [(0),7,(5), 4, 6], [(1),8,(3),2,6], [(2), 4, (6),8,0]}-
It is possible to verify that X' is a Cs-perfect Hs-design of order 9 and indices (2, 1).
Let v = 12k + 9 for k > 1. Let us consider the system X' = (Z+3 X Zs3, 8) having as blocks the following:
Air =[((,0), (i +71,0), ((+ 5, 1), 11,0+ 5,0]fori,r € Zgzandr € {1,...,2k+1};
B; = [((, 0)), (4, 2), (GG, 1)), (i+4k+2,0), (i+ 2k + 2, 1)], fori € Zakys;
Gy =[((. 1), (£.2). (. 1)). (1. 2). (. 2)], for i, j € Zyeys, with i # j;
Di, =[((i+r1,2)), 1 2), ((+ %, 0),(i+r—2k—2,2),(i+2r,0)],fori,r € Zgazandr € {1,...,k+ 1};
Ei = [((i,2)), (i+3k+2,0), ((i+2k+1,2)), ({,0), (i, D], fori € Zgyy3;

Fir = [((i+71,2)), (1,2), (({+ 3,0)), (i+ %r +k+2,1),(+35+2k+2,0)]fori,r € Zgeyzandr € {k+2,..., 2k} if
k> 2.
Examining all the blocks, we can verify that X is a C3-perfect Hs-design of order 12k + 9 and indices (2, 1).

(2) Let v = 12k + 3 for k > 1. Let us consider the system X = (Zs+1 X Z3, 8) having the following base blocks:
Ay =[((I+T1,2)),(1,2), (((+3,0),(+1r—2k—1,2),(+2r,0)] fori,r € Zggandr =1,...,k;
B =[((i+7,2), ({2, ((+5,0), (i+3r+2k+1,1),(+ 5 +2k+1,0)],fori,r € Zgyyrandr =k+1,...,2k
Gj = [(G, D), (B,2), (G, 1), (1,2), G, 2)]., fori, j € Zaeyr and i # j;
D = [((i, 0)), (i, 2), (G, 1)), (i + 2k, 1), (i + 2k, 2)];
Ei = [((i,0)), (i+k, 1), ((i+2k0), 1), >1{+k 0]
Fir =1[(G,0), (+71,0), ((+ 3, 1), (—k 1, +3,0]fori,r €Zyiandr=1,...,2k—1.
Examining all the blocks, we can verify that X is a C3-perfect Hs-design of order 12k + 3 and indices (2, 1). O

Collecting together the results of this section, it follows that:

Theorem 2.4. A Cs-perfect Hs-design of indices (2, 1) exists if and only if v = 1 or 3 (mod 6).



1294 P. Bonacini et al. / Discrete Mathematics 339 (2016) 1291-1299

3. C3-perfect Hs-design with u > 1

In this section we consider Cs-perfect Hs-design of indices (A, i), with ;& > 1, determining all the possible v of their
spectrum. We recall that a transversal T of a latin square of order n is a set of n cells, exactly one cell from each row and
column, such that each of the elements of Z, occurs in a cell of T. Further, remember that [7,9]:

Lemma. (1) An idempotent latin square, defined in Z,, exists for any integer n £ 2.
(2) An idempotent commutative latin square, defined in Z,, exists if and only if n is odd.

Latin squares, which are almost equivalent to the concept of finite quasigroups, will be used in the constructions given
in Theorems 3.1 and 3.5. They are a common tool, since, given a quasigroup (Z,, o), all the edges on the complete graph
defined on Z, are of type {i, i o j}, forany i,j € Z,, i # j.

Now we prove the following results:

Theorem 3.1. A Cs-perfect Hs-design of indices (4, 2) exists if and only if v = 0 or 1 (mod 3).

Proof. It is known that a 2-fold triple system of order v exists if and only if v = 0, 1 (mod 3) [7,9]. Since, for every v = 1 or
3 (mod 6), there exist C3-perfect Hs-design of indices (2, 1) (Theorem 2.2, Theorem 2.3), for such values of v, we can obtain
Cs3-perfect Hs-design of indices (4, 2) by a repetition of blocks, giving to each of them multiplicity 2.

Therefore, to prove the statement, it remains to examine the cases v = 0 or 4 (mod 6). We study at first the case (1)
v = 6k and after the case (2) v = 6k + 4.

(1) Let v = 6. Let us consider the system X = (Zg, 8) such that:

B8 ={[(2), 1, (4),5,0],[(4), 2, (5), 3,01, [(5), 3, (1), 4,01,
[(1).4,(3).2,0],[(3),5,(2), 1,0], [(1), 0, (2), 4,5], [(2), 0, (3), 4, 1],
[(3),0, (4),2,5],[(4),0,(5), 1,31, [(5), 0, (1), 3, 2]}.
We can verify that X is a C3-perfect Hs-design of order 6 and indices (4, 2).

Let v = 6k for k > 2. Let us consider an idempotent quasigroup (Zyy, o) and the system X = (Zy, X Zs3, 8) having the
following blocks:

Ai =[((1,0)), (, 1), ((1,2), (=i+ 1, 1), (=i+ 1, 2)],fori € Zy;

B =1[((,0)), (i, 1), ((G,2)), (=i+1,0), (=i+ 1, 1)], fori € Zy;
Gj=1[((G,0)), (0], 1),((,0), (—i+1,2),(=j+ 1,2)],fori,j € Zy, i < J;
Dij =1((i,0)), Goi, 1), (G,0), (=i+1,2), (—j+ 1,2)],fori,j € Zo, i <
Eij=[(G, 1)), (i0],2),((, 1), (1, 0), G, 0] fori,j € Zoy, i < j;

Fij=1[(G, 1), (Goi, 2), ([, 1), (=i+1,0), (=j+ 1,0)], fori,j € Zo, i <j;
Gij = [((1,2)), (i0],0), (G, 2)), (i, 1), G, D], fori,j € Zy, 1 < J;

Hij =[((,2)), (01i,0), (G, 2), (=i+ 1, 1), (—j+ 1, D], fori,j € Zox i < j.
Examining these blocks, we can verify that X is a C3-perfect Hs-design of order 6k and indices (4, 2).

(2) Let v = 6k 4 4 for k > 1. Let us consider a quasigroup (Z,x+1, ©), idempotent, not necessarily commutative, such that
{(,i4+ 1) | i € Zyky1}is a transversal. Define the system ¥ = ({oo} U Zyry1 X Z3, B) having the following blocks:

Ai = [((1,0)), (i, 1), (G, 2)), 00, (i+ 2, 2)], fori € Zpki1;

B; = [((i, 0)), (i, 1), (0c0), (i+ 1,0), (i + 1, 2)], fori € Zyy11;

G=1[(G,1),(12),(00), ([{+1,0), (i+1,2)],fori € Zyy1;

D; = [((i, 0)), 00, ((i, 2)), 1+ 1,2), (i+ 1, 1)], fori € Zyk+1;
Eij=1((10)),(@0j,1),(G0),(+1,2), G+ 1,2)] fori,j € Zy4q, withi < jandi—j# £1;
F=1[((0)),({+1,0), ((io(i+1),1)),00, i+ 1, 1)] fori € Zi1;

Gij = [((1,0)), Goi, 1), (G, 0)), (i,2), (, 2)], fori,j € Zykt1, withi < j;

Hij = [((G, 1)), (i0]j,2), (G, D), (1 —1,0), G — 1,0)], fori, j € Zaj41, with i < j;
Lj=1[(4,1),G01i,2),((1),30—-1,0),G—1,0)] fori,j € Zy, withi < j;

L =1((, 2)), (i0],0), ((,2)), (—1,1), (=1, D], fori,j € Zojy1, withi < j;

Mi,j = [((l, 2)): (’ oli, 0)1 ((]7 2))7 (lv 1)! O? 1)] for, 17] € ZZkJHv with i <j-

Note that in the blocks in 6, thanks to the hypothesis that {(i,i 4 1) | i € Z41} is a transversal, any vertex (j, 1) with
J € Zyyq is of the type (io (i + 1), 1) for some i € Zy,1. So, examining the system, we can verify that X is a C3-perfect
Hs-design of order 6k + 4 and indices (4, 2).

This completes the proof. O
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Theorem 3.2. A Cs-perfect Hs-design of indices (6, 3) exists if and only if v odd, v > 5.

Proof. It is known that a 3-fold triple system of order v exists if and only if v is odd [7,9].

At first, we consider the two casesv = 5and v = 9.

Let v = 5. Define in Zs the following two base-blocks:

By =[(0), 4, (1), 3, 2], B, = [(0), 3, (2), 1, 4].

If B is the collection of all the translates of By, By, then X' = (Zs, 8) is a C3-perfect Hs-design of order v = 5 and indices
(6, 3).

Let v = 9. Define in Zg the following four base-blocks:

€1 =1000),1,4),5,2],; =1[(0), 2, (3), 4, 1],

G =1[(0), 2, (4), 8, 3], C4 = [(0), 3, (4), 6, 2].

If € is the collection of all the translates of C;, Cy, C3, C4, then X' = (Zg, C) is a C3-perfect Hs-design of order v = 9 and
indices (6, 3).

Letv = 2k + 1,fork > 3, v # 9. Let us consider the cyclic system X' = (Zy,11, B) having as base blocks:

[(0), % (r), 3r, Zr] ,

for everyr € Zyy1, v € {1,...,k}. It is possible to verify that X is a Cs-perfect Hs-design of order 2k + 1 and indices
6,3). O

Theorem 3.3. A Cs-perfect Hs-design of indices (8, 4) exists if and only if v = 0 or 1 (mod 3).

Proof. A 4-fold triple system of order v exists if and only if v = 0 or 1mod 3 [7,9]. So a C3-perfect Hs-design of indices (8, 4)
and order v is such that v = 0 or 1mod 3.

Conversely, given X = (X, 8) a C3-perfect Hs-design of indices (4, 2) (Theorem 3.1), the system X’ = (X, 8’), where
the blocks of 8’ are those of 8B, each repeated twice, is a Cs3-perfect Hs-design of indices (8,4). O

Theorem 3.4. A Cs-perfect Hs-design of indices (10, 5) there exists if and only if v = 1 or 3 (mod 6).

Proof. A 5-fold triple system of order v exists if and only if v = 1 or 3mod 6 [7,9]. So a C3-perfect Hs-design of indices
(10, 5) and order v is such that v = 1 or 3 (mod 6).

Conversely, given X = (X, 8) a Cs-perfect Hs-design of indices (2, 1) (Theorem 2.4), the system X’ = (X, 8’), where
the blocks of B8’ are those of 8, each repeated five times, is a C3-perfect Hs-design of indices (10,5). O

Theorem 3.5. A Cs-perfect Hs-design of indices (12, 6) exists if and only if v > 5.

Proof. Let v be odd. Consider a C3-perfect Hs-design of indices (6, 3) (Theorem 3.2) ¥ = (X, 8).The system X’ = (X, 8"),
where the blocks of B’ are those of B, each repeated twice, is a C3-perfect Hs-design of indices (12, 6).
Let v = 0,4 (mod 6). Consider a C3-perfect Hs-design of indices (4,2) ¥ = (X, 8) (Theorem 3.1). The system
X' = (X, 8’), where the blocks of B’ are those of 8B, each repeated three times, is a C3-perfect Hs-design of indices (12, 6).
Let v = 6k 4 2, for some k > 1. Let us consider an idempotent quasigroup (Z, o) and the system ¥ = ({ooq, 0o} U
Zor X Z3, B) having the following blocks:

Airs =1[((1,0)), (4, 1), (00r), 005, (i, 2)], fori € Zyrand r, s € {1, 2}, 1 #s;
Birs = [((i, 1)), (i, 2), (o0r), 005, (i, 0)], fori € Zyrand r,s € {1, 2}, 1 #s;
Girs = [((1,2)), (i, 0), (cor), 00s, (i, )], fori € Zyrand r, s € {1, 2}, 1 #s;
Di,s = [((i,0)), (i, 1), (o0r), (i, 2), 0os], fori € Zyrand r,s € {1, 2}, 1 #s;
Ei,s = [(G, 1)), (i, 2), (oor), (i, 0), 0os], fori € Zykand r, s € {1, 2}, 1 # 5;
Firs =[((, 2)), (i,0), (o), (i, 1), 00s], fori € Zyrand r,s € {1, 2}, r #s;
Gi = [(001), (i, 0), (002), (i, 2), (i, D), fori € Zyy;

H; = [(001), (i, 1), (002), (i, 0), (i, 2)](2), fori € Zy;

Ii = [(001), (i, 2), (002), (i, 1), (i, 0)]2), for i € Zoi;

Lij = [((,0)), (ioj, 1), (¢, 0)), (i+1,2), G+ 1,2)],fori,j € Zo, i < J;
Kij = [((i,0)), (ioj, 1), (G, 0)), (i, 2), (, 2)]2), fori,j € Zok, i < J

Mij = [((i,0)), Goi, 1), ((,0)), (0, 2), (j, 2)]3), fori,j € Za, i <

Nij =[((G, 1)), (i0],2), (G, 1), (i+1,0), G+ 1,0)], fori,j € Za, i < J;
0ij = [((G, 1), (0], 2), (G, 1), (i—1,0), G—1,0)], fori,j € Zoy, i <J;
Pij = [((0, 1), (i0], 2), (G, 1)), (i,0), (, 0)], for i, j € Zak, i < J;

Qij =[G, 1), Goi,2), (G, 1), (10), (,0)]a), fori,j € Zo, i <j;

Rij =[((,2)), (i0]j,0),(G,2), (i —1,1),(— 1, D], fori,j € Zp, i <J;
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Si,j = [((lv 2))7 (l Oj, 0)’ ((]9 2))9 (17 1)7 (is ])](2)1 for la] € ZZI(si <]v
Ti,j = [((ls 2))s (iO is O)a ((}» 2))3 (l» 1)s (is ])](3)7 for lv] € ZZkvi <]7
Ui = [((,0)), (,2), ((G, 1)), i+ 1,2), (i+ 1, D], fori € Zy;

Vi=1[((0)), (i,2), ((, 1)), (+1,0), (i+1,2)],fori € Zy.
Examining these blocks, we can verify that X is a C3-perfect Hs-design of indices (12, 6). This completes the proof. O

Collecting together all the previous results, with the condition v = 1 or 3 (mod 6) [9], we have that:

Theorem 3.6. A Cs-perfect Hs-design of indices (2u, ) exists if and only if:
v=1or3(mod6),if = 1o0r5 (mod6);
v=0or1(mod3),if =2 or 4 (mod6);
vodd, v > 5,if u =3 (mod6);
v > 5,if u =0 (mod®6).

4. Cs-perfect Hs-designs

In this section, we examine Cs-perfect Hs-designs, determining the spectrum completely, without exceptions, in all the
cases.
At first, we see possible necessary conditions.

Theorem 4.1. If X = (X, B) is a Cs-perfect Hs-design of order v and indices (A, T), then:
(1) 51 = 61;

_ =1
(2) 8] = 221,

Proof. Let ¥ = (X, B) be a Cs-perfect H5-design of order v and indices (A, 7). If ¥’ = (X, B') is the Cs-system nested in X,
necessarily: 8 = B’'. Since
|£| — )\v(v—l) |$/| — .L.v(v—l)
2’ 6
both (1), (2) follow easily. O

From Theorem 4.1 it follows that for every positive integers v, v > 5, the existence of Cs-perfect Hs-designs of order v
and indices (X, t), with 54 = 67, is possible. At first we examine the possible existence for systems having odd order v,
after we see what happens for v even.

Theorem 4.2. For L. = 6, T = 5, and for every v odd, v > 5, there exists a Cs-perfect Hs-design of order v and indices (6, 5).

Proof. Let v = 2k + 1, for k > 2. Consider the following base-blocks, constructed by difference method and defined in
X = Zyg+1, whereD = {1,2,...,k}:

Bi =1[(0),i+ 1, (2i + 1), 2k, i],fori e {1,..., k — 1}

B=1[(0),2, (1), k+1,k].

If B is the collection of all the translates of these base-blocks, we can verify that X = (X, 8) is a Cs-perfect Hs-design
of order v and indices (6,5). O

In conclusion, for v odd, we have that:

Theorem 4.3. For every A, t, such that 5. = 67, and for every v odd, v > 5, there exists a Cs-perfect Hs-design of order v and
indices (A, 7).

Proof. The statement follows from Theorem 4.2. Indeed, if A = 6h, T = 5h, a Cs-perfect Hs-design of order v and indices
(6k, 5k) can be obtained from a Cs-perfect Hs-design of order v and indices (6, 5), by a repetition of blocks, giving to every
block multiplicity h. O

Now, we examine the case v even. At first, we observe that:

Theorem 4.4. If X = (X, B) is a Cs-perfect Hs-design of order v > 6 even and indices (6h, 5h), then h is even.

Proof. In a Cs-design of order v and index t, every vertex is contained in exactly t (v — 1) /2 blocks. Indeed, if we fix a vertex
x, the number of pairs containing x is 7 (v — 1). Since in every block Cs, every vertex has degree two, the number 7 (v — 1)
must be even. But v even implies t = 5h even, hence heven. 0O

Theorem 4.5. For . = 12, t = 10, and for every v even, v > 6, there exists a Cs-perfect Hs-design of order v and indices
(12, 10).
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Proof. Let v = 2k, for k > 3. Further, let X = {oo} U Zy,_1, where oo is a fixed point, co & Zj_1. Consider the system
Y = (X, 8), where 8 is the collection of all the translates of the following base-blocks, constructed by difference method:
B1i =[(0), 2i, (i), 2i+ 1,i+ 1]z, foranyi € {2, ..., k — 2}, with k > 4;
B3 =[(0), 1, (k), k — 1, 00](2);
By = [(0), k, (1), —1, 00];
BS = [(OO), Oa (1)3 35 2](2)'
Examining all the blocks, we can verify that X is a Cs-perfect Hs-design of order v and indices (12, 10). 0O

Collecting together all the results of this section, we have that:

Theorem 4.6. A Cs-perfect Hs-design of order v and indices (6h, 5h) there exists if and only if:
(1) vodd, hodd, v > 5;
(2) heven, v > 5.

Proof. The statement follows from the previous results. O

5. (C3, C4, C5)-perfect Hs-designs

In this section, we determine completely the spectrum of (C3, C4, Cs)-perfect Hs-designs.
At first, we prove the following three Theorems.

Theorem 5.1. An Hs-design, which is (Cs, C4)-perfect, is also Cs-perfect.

Proof. Suppose that ¥ = (X, 8B) is a (C3, C4)-perfect Hs-design, of order v and indices (A, i, o). Since a C3-design of
order v and index u has b’ = pv(v — 1)/6 blocks, a C4-design of order v and index o has b” = ov(v — 1)/8 blocks,
|8| =b=Av(v—1)12,and b = b’ = b”, it follows that:
v(iv—1) v(iv—1) viv—1)
A =W =0 .
12 6 8
From which: /12 = /6 = ¢ /8. Hence, for some h > 1: A = 6h, u = 3h and o = 4h.

Given an edge {x, y} we denote by U({x, y}) the number of blocks of 8 in which {x, y} appears as one of the edges {a, b}
and {b, c} of Hs; we denote by M ({x, y}) the number of blocks of 8 in which {x, y} appears as the edge {a, c}; we denote by
L({x, y}) the number of blocks of 8 in which {x, y} appears as one of the edges {c, d}, {d, e} and {e, a}. For any edge {x, y} it
must be:

U({x, ¥} + M({x,y}) = 3h
M({x, y}) + L({x, y}) = 4h
U(x, ¥y +M{x, ¥} + L({x,y}) = 6h,

so that U({x, y}) = 2h, M({x,¥}) = hand L({x, y}) = 3h for any {x, y}. This implies that X' is Cs-perfect of index 5h. O

Theorem 5.2. An Hs-design, which is (Cs, Cs)-perfect, is also C4-perfect.

Proof. Suppose that ¥ = (X, B) is a (C3, C5)-perfect Hs-design, of order v and indices (A, u, 7). Since a C3-design of
order v and index u has b = pv(v — 1)/6 blocks, a Cs-design of order v and index t has b = tv(v — 1)/10 blocks,
|B| =b=Av(v—1)12,and b = b’ = b”, it follows that:

3| Z)\v(v— 1) =Mv(v— 1) _ Tv(v — l).
12 6 10
So A = 6h, u = 3h and t = 5h for some h > 1. Keeping the previous notation, for any edge {x, y} it must be:
U({x, ¥} +M{x,y}) = 3h
U({x, ¥} +L({x,y}) = 5h
U({x,y) + M{x,y}) + L({x, y}) = 6h,

sothat U({x, y}) = 2h, M({x,¥}) = hand L({x, y}) = 3h for any {x, y}. This implies that X' is C4-perfect of index 4h. O

Theorem 5.3. An Hs-design, which is (C4, Cs)-perfect, is also C3-perfect.
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Proof. Suppose that ¥ = (X, 8) is a (C4, Cs)-perfect Hs-design, of order v and indices (A, o, 7). Since a C4-design of
order v and index o has b” = ov(v — 1)/8 blocks, a Cs-design of order v and index t has b = Tv(v — 1)/10 blocks,
|8] =b=Av(v—1)12,and b = b” = b”, it follows that:

|£| — kv(v—l) — O_v(v—l) — 7:v(v—l)
2 8 0 °
So A = 6h,0 = 4hand t = 5h for some h > 1. Keeping the previous notation, for any edge {x, y} it must be:

M{x, y}) + L({x, y}) = 4h
U({x, ¥} +L({x,y}) = 5h
U(fx, yh) +M{x, y}) + L({x, y}) = 6h,
sothat U({x,y}) = 2h, M({x,¥}) = hand L({x, y}) = 3h for any {x, y}. This implies that X is Cs3-perfect of index 3h. O

At this point, we begin to determine the spectrum of (Cs, C4, Cs)-perfect Hs-designs. At first, we determine some
necessary conditions, after we determine the spectrum.

Theorem 5.4. If X = (X, B) is a (C3, C4, Cs)-perfect Hs-design of order v and indices (A, u, o, T), then:
Hi=Lt=9c=%;
6 345

_ =1
2) | 8] = 220,

Proof. Let 3 = (X, 8) be a (C3, C4, Cs)-perfect Hs-design of order v and indices (A, u, o, 7). Since all the C,-designs nested
in X, for k = 3, 4, 5, have necessarily the same number of blocks, it follows that:

viv—1) v(v—1) v(v—1) v(v—1)
|B| = A = =0 =1 ;
12 6 8 10

and this proves the statements. O

Theorem 5.5. For A = 6, © = 3,0 = 4, T = 5, and for every v odd, v > 5, there exists a (C3, C4, Cs)-perfect Hs-design of
order v and indices (6, 3, 4, 5).

Proof. Let v = 2k+ 1, for some k > 2. Consider the system X = (Zy,+1, 8) having as blocks the translates of the following
base blocks:

1. [(0), 2i, (i), 2k, k + i] foranyi € {1, ...,k — 1}
2. [(0), k, (k+ 1), k+2,1].

We can verify that X is a C3-perfect, C4-perfect and Cs-perfect Hs-design of order v and indices (6, 3,4,5). O
Theorem 5.6. For every A, i, o, T, such that % =L =

3 % = <, and for every v odd, v > 5, there exists a (C3, Cy, Cs)-perfect
Hs-design of order v and indices (A, u, o, T).

Proof. The statement follows by the previous result of Theorem 5.5. Indeed, let . = 6h, u = 3h,0 = 4and t = 5h,
forsome h € Nand let ¥ = (X, 8) a (C3, C4, C5)-perfect Hs-design of order v and indices (6, 3, 4, 5). Then, the system
X' = (X, 8), obtained from X, by a repetition of blocks, each repeated h times, is a (C3, C4, Cs)-perfect Hs-design of order
v and indices (A, u, o0, 7). O

Theorem 5.7. For A = 12, © = 6,0 = 8, t = 10, and for every v even, v > 6, there exists a (C3, C4, Cs)-perfect Hs-design of
order v and indices (12, 6, 8, 10).

Proof. Let v = 2k, for some k > 3. Consider the system X = ({o0} U Zy_1, 8) having as blocks the translates of the
following base blocks:

Bi1 =1[(0), 2i, (i), 2i4+ 1,i+ 1]y fork > 4and foranyi € {2,...,k — 2};

By = [(0), 2, (1), 3, o0](2);

B3 = [(0), o0, (k — 1), k, 1];

B4 = [(OO), 01 (1)1 2s 3]v

BS = [(OO), k5 (O)’ 15 _1]v

Bs =[(0), 1, (k), k+ 1, 2].

Examining the blocks so obtained, we can verify that X is a (Cs, C4, Cs)-perfect Hs-design of order v and indices
(12,6,8,10). O

Theorem 5.8. A (C3, C4, Cs)-perfect Hs-design of order v and indices (6h, 3h, 4h, 5h) there exists if and only if:
(1) vodd, v > 5, hodd;
(2) v =5, heven.
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