Nesting House-designs

Paola Bonacini, Mario Gionfriddo, Lucia Marino
Department of Mathematics and Computer Science, University of Catania, Italy

ARTICLE INFO

Article history:

Received 11 December 2014
Received in revised form 17 November 2015
Accepted 18 November 2015

Abstract

A cycle of length 5 with a chordal, i.e. an edge joining two non-adjacent vertices of the cycle, is called a graph H_{5} or also an House-graph. In this paper, the spectrum of Housesystems nesting C_{3}-systems, C_{4}-systems, C_{5}-systems and together (C_{3}, C_{4}, C_{5})-systems, of all admissible indices are completely determined, without exceptions.

© 2015 Elsevier B.V. All rights reserved.

Keywords:

Graphs
G-decomposizione
Nestings

1. Introduction

Let λK_{v} be the complete multigraph defined in a vertex-set $X,|X|=v$. Let G be a subgraph of λK_{v}. A G-decomposition of λK_{v}, of order v and index λ, is a pair $\Sigma=(X, \mathcal{B})$, where \mathcal{B} is a partition of the edge-set of λK_{v} into subsets all of which yield subgraphs isomorphic to G. A G-decomposition of λK_{v} is also called a G-design, of order v and index λ. The classes of the partition \mathfrak{B} are said blocks. Important and interesting results about G-designs can be found in $[5,10,12,13]$.

A cycle of length 5 with a chordal, i.e. an edge joining two not adjacent vertices of the cycle, will be called an House-graph and will be denoted by H_{5}. If $H_{5}=(X, E)$, where $X=\{a, b, c, d, e\}$ and $E=\{\{a, b\},\{b, c\},\{c, d\}\{d, e\},\{e, a\},\{a, c\}\}$, we will denote such a graph by $[(a), b,(c), d, e]$.

Let $\Sigma=(X, \mathscr{B})$ be H_{5}-design of order v and index λ or an H_{5}-decomposition of the complete multigraph λK_{v}. When a graph $H_{5}=[(a), b,(c), d, e]$ is a block of Σ with multiplicity n, it will be indicated by $[(a), b,(c), d, e]_{(n)}$. Similar concepts and symbolism are given in [3].

We say that Σ is:

- (1) C_{3}-perfect if the family of all the C_{3}-cycles having edges $\{a, b\},\{b, c\},\{a, c\}$ generates a C_{3}-design Σ^{\prime} of order v and index μ;
- (2) C_{4}-perfect, if the family of all the C_{4}-cycles having edges $\{a, c\},\{c, d\},\{d, e\},\{e, a\}$ generates a C_{4}-design Σ^{\prime} of order v and index σ;
- (3) C_{5}-perfect, if the family of all the C_{5}-cycles having edges $\{a, b\},\{b, c\},\{c, d\}\{d, e\},\{e, a\}$ generates a C_{5}-design Σ^{\prime} of order v and index τ.

In the case (1), we say that Σ has indices (λ, μ). Similarly, in (2) its indices are (λ, σ) and in (3) (λ, τ). Similar definitions and symbolism is given in [1,2,6]. For perfect G-designs see also [8,11].

In every case, we say that Σ^{\prime} is a system nested into Σ, and also that Σ is nesting Σ^{\prime}.
We say that an H_{5}-design Σ, which is C_{h}-perfect, with indices (λ, μ), and C_{k}-perfect with indices (λ, σ), for $h, k=3,4,5$, has indices (λ, μ, σ), and we will say that it is a $\left(C_{h}, C_{k}\right)$-perfect. Similarly, if Σ of index λ is C_{3}-perfect of index μ, C_{4}-perfect of index σ, and also C_{5}-perfect of index τ, we will say that Σ is (C_{3}, C_{4}, C_{5})-perfect, of indices ($\lambda, \mu, \sigma, \tau$).

E-mail addresses: bonacini@dmi.unict.it (P. Bonacini), gionfriddo@dmi.unict.it (M. Gionfriddo), lmarino@dmi.unict.it (L. Marino).
http://dx.doi.org/10.1016/j.disc.2015.11.014
0012-365X/© 2015 Elsevier B.V. All rights reserved.

It is known [4] that:
Theorem 1.1. An H_{5}-design of order v exists if and only if $v \equiv 0$, or 1 , or 4 , or $9(\bmod 12), v \geq 9$, with the possible exception of $v=24$.

Further, the spectrum of House-designs nesting C_{4}-systems, for every admissible indices, is determined in [3], where the authors proved that:

Theorem 1.2. There exists a C_{4}-perfect H_{5}-design of order v and indices $(3,2)$ if and only if $v \equiv 0$ or $1(\bmod 4), v \geq 5$.
Theorem 1.3. There exists a C_{4}-perfect H_{5}-design of order v and indices (6, 4) if and only if $v \geq 5$.
Theorem 1.4. There exists a C_{4}-perfect H_{5}-design of order $v, v \geq 5$, and indices (λ, μ) such that $2 \lambda=3 \mu$.
In this paper we study the all possible nestings in House-systems, determining completely the spectrum in all the possible cases.

In what follows, to construct House-systems, we will use often the difference-method. This means that we fix as vertex-set $X=Z_{v}$ and, defined a base-block $[(a), b,(c), d, e]$, its translates will be all the blocks of type $[(a+i), b+i,(c+i), d+i, e+i]$, for every $i \in \mathbb{Z}_{v}$. For a given v, it will be $D(v)=\left\{|x-y|: x, y \in \mathbb{Z}_{v}, x \neq y\right\}$.

2. \boldsymbol{C}_{3}-perfect \boldsymbol{H}_{5}-designs of index $(2,1)$

In this section, the spectrum of C_{3}-perfect H_{5}-designs of index $(2,1)$ is completely determined. We begin with the necessary conditions.

Theorem 2.1. If $\Sigma=(X, \mathcal{B})$ is a C_{3}-perfect H_{5}-design of order v and indices (λ, μ), then:
(1) $\lambda=2 \mu$;
(2) $|\mathcal{B}|=\mu \frac{v(v-1)}{6}$;
(3) for $\mu=1$, it is $v \equiv 1,3(\bmod 6)$.

Proof. Let $\Sigma=(X, B)$ be a C_{3}-perfect H_{5}-design of order v and indices (λ, μ). If $\Sigma^{\prime}=\left(X, B^{\prime}\right)$ is the C_{3}-system nested in Σ, necessarily: $\mathcal{B}=\mathscr{B}^{\prime}$. Since
$|\mathscr{B}|=\lambda \frac{v(v-1)}{12},\left|\mathscr{B}^{\prime}\right|=\mu \frac{v(v-1)}{6}$,
(1) and (2) follow easily. For (3), consider that Σ^{\prime} is a Steiner triple system of index 1.

Now we determine the spectrum of C_{3}-perfect H_{5}-designs of index $(2,1)$, examining at first the case $v=6 h+1$ and after the case $v=6 h+3$.
Theorem 2.2. For $\lambda=2, \mu=1$ and for every $v \equiv 1(\bmod 6), v \geq 7$, there exists a C_{3}-perfect H_{5}-design of order v and indices (2, 1).
Proof. Let $v \equiv 1(\bmod 6), v \geq 7$. We can consider the following cases:
(1) $v \equiv 7(\bmod 18)$;
(2) $v \equiv 13,(\bmod 18)$;
(3) $v \equiv 1(\bmod 18), v \geq 19$.
(1) Let $v=7$. It is: $D(7)=\{1,2,3\}$. Therefore, consider the block: $B=[(0), 3,(1), 4,6]$. If \mathscr{B} is the collection of all the translates of B, we can verify that $\Sigma=\left(\mathbb{Z}_{7}, \mathcal{B}\right)$ is an H_{5}-design of order 7 and indices $(2,1)$. Further, since in B the differences $\{1,2,3\}$ cover, exactly one time, the edges of the C_{3}-cycle, it follows that Σ is C_{3}-perfect.

Let $v=18 k+7$, for $k \geq 1$. Since $D=\{1,2, \ldots, 9 k+3\}$, it is possible to define the following $3 k+1$ base-blocks:
$B_{1, h}=[(0), 8 k+2 h+4,(3 h+1), 3 k+2,3 h+3]$, for $h \in\{0, \ldots, k-1\}$;
$B_{2, h}=[(0), 6 k+h+3,(3 h+2), 9 k+2,3 k+3 h+2]$, for $h \in\{0, \ldots, k-1\}$;
$B_{3, h}=[(0), 4 k+2 h+4,(3 h+3), 12 k+5,6 k+3 h+4]$, for $h \in\{0, \ldots, k-1\}$;
$B_{4}=[(0), 7 k+3,(3 k+1), 9 k+3,18 k+6]$.
If \mathscr{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma=\left(\mathbb{Z}_{18 k+7}, \mathcal{B}\right)$ is an H_{5}-design having indices $(2,1)$. Observe that, in the base-blocks, the differences $1,2, \ldots, 9 k+3$ cover, exactly one time, the edges of the C_{3}-cycles. Further, the number of base-blocks is $3 k+1$ and every of them generates $18 k+7$ translates. It follows that $|\mathscr{B}|=(3 k+1)(18 k+7)$ and Σ is C_{3}-perfect.
(2) Let $v=13$. It is: $D=\{1,2, \ldots, 6\}$. Therefore, it is possible to define the two base-blocks: $B_{1}=[(0), 4,(1), 7,3], B_{2}=$ $[(0), 7,(2), 4,5]$. If \mathcal{B} is the collection of all the translates of B_{1} and B_{2}, we can verify that $\Sigma=\left(\mathbb{Z}_{13}, \mathcal{B}\right)$ is an H_{5}-design having indices (2, 1). Further, since in B_{1} and B_{2} the differences $\{1,3,4\}$ and $\{2,5,6\}$ cover, exactly one time, respectively the edges of the two C_{3}-cycles, it follows that Σ is C_{3}-perfect.

Let $v=18 k+13$, for $k \geq 1$. Since $D=\{1,2, \ldots, 9 k+6\}$, it is possible to define the following $3 k+2$ base-blocks:
$B_{1, h}=[(0), 4 k+2 h+4,(3 h+1), 3 k+2,3 h+3]$, for $h \in\{0, \ldots, k-1\}$;
$B_{2, h}=[(0), 6 k+h+5,(3 h+2), 9 k+8,3 k+3 h+5]$, for $h \in\{0, \ldots, k-1\}$;
$B_{3, h}=[(0), 8 k+2 h+8,(3 h+3), 12 k+8,6 k+3 h+7]$, for $h \in\{0, \ldots, k-1\}$;
$B_{4}=[(0), 6 k+4,(3 k+1), 9 k+6,3 k+2] ;$
$B_{5}=[(0), 10 k+7,(3 k+2), 6 k+5,6 k+6]$.
If \mathcal{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma=\left(\mathbb{Z}_{18 k+13}, \mathcal{B}\right)$ is an H_{5}-design having indices $(2,1)$. Observe that, in the base-blocks, the differences $1,2, \ldots, 9 k+6$ cover, exactly one time, the edges of the C_{3}-cycles. Further, the number of base-blocks is $3 k+2$ and every of them generates $18 k+13$ translates. It follows that $|\mathcal{B}|=(3 k+2)(18 k+13)$ and Σ is C_{3}-perfect.
(3) Let $v=19$. It is: $D=\{1,2, \ldots, 9\}$. Therefore, it is possible to define the two base-blocks: $B_{1}=[(0), 6,(1), 9,18], B_{2}=$ $[(0), 10,(2), 5,7], B_{3}=[(0), 7,(3), 9,5]$. If \mathscr{B} is the collection of all the translates of B_{1}, B_{2}, B_{3}, we can verify that $\Sigma=\left(\mathbb{Z}_{19}, \mathcal{B}\right)$ is an H_{5}-design having indices (2, 1). Further, since in B_{1}, B_{2}, B_{3}, the differences $\{1,5,6\},\{2,8,10\},\{3,4,7\}$ cover, exactly one time, respectively the edges of the three C_{3}-cycles, it follows that Σ is C_{3}-perfect.

Let $v=18 k+1$, for $k \geq 2$. Since $D=\{1,2, \ldots, 9 k\}$, it is possible to define the following $3 k$ base-blocks:
$B_{1, h}=[(0), 4 k+2 h+2,(3 h+1), 3 k+2,3 h+3]$, for $h \in\{0, \ldots, k-1\}$;
$B_{2, h}=[(0), 8 k+2 h+2,(3 h+2), 9 k+2,3 k+3 h+2]$, for $h \in\{0, \ldots, k-1\}$;
$B_{3, h}=[(0), 6 k+h+2,(3 h+3), 12 k+2,6 k-3 h-2]$, for $h \in\{0, \ldots, k-2\}$;
$B_{4}=[(0), 6 k+1,(3 k), 9 k+1,18 k]$.
If \mathscr{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma=\left(\mathbb{Z}_{18 k+1}, \mathcal{B}\right)$ is an H_{5}-design having indices $(2,1)$. Observe that, in the base-blocks, the differences $1,2, \ldots, 9 k$ cover, exactly one time, the edges of the C_{3}-cycles. Further, the number of base-blocks is $3 k$ and every of them generates $18 k+1$ translates. It follows that $|\mathscr{B}|=(3 k)(18 k+1)$ and Σ is C_{3}-perfect.

Theorem 2.3. For $\lambda=2, \mu=1$ and for every $v \equiv 3(\bmod 6), v \geq 9$, there exists a C_{3}-perfect H_{5}-design of order v and indices (2, 1).

Proof. Let $v \equiv 3(\bmod 6), v \geq 9$. We can consider the following cases:
(1) $v \equiv 9(\bmod 12)$;
(2) $v \equiv 3(\bmod 12), v \geq 15$.
(1) Let $v=9$. Consider the system $\Sigma=\left(\mathbb{Z}_{9}, \mathscr{B}\right)$, where \mathscr{B} is the following collection of blocks:

$$
\begin{aligned}
& \{[(0), 2,(1), 4,3],[(3), 5,(4), 2,1],[(7), 6,(8), 2,5],[(0), 6,(3), 7,4] \\
& \quad[(1), 7,(4), 8,5],[(2), 8,(5), 0,7],[(0), 4,(8), 7,1],[(1), 5,(6), 3,8] \\
& \quad[(3), 2,(7), 6,5],[(0), 7,(5), 4,6],[(1), 8,(3), 2,6],[(2), 4,(6), 8,0]\} .
\end{aligned}
$$

It is possible to verify that Σ is a C_{3}-perfect H_{5}-design of order 9 and indices $(2,1)$.
Let $v=12 k+9$ for $k \geq 1$. Let us consider the system $\Sigma=\left(\mathbb{Z}_{4 k+3} \times \mathbb{Z}_{3}, \mathfrak{B}\right)$ having as blocks the following:
$A_{i, r}=\left[((i, 0)),(i+r, 0),\left(\left(i+\frac{r}{2}, 1\right)\right),(i, 1),\left(i+\frac{r}{2}, 0\right)\right]$, for $i, r \in \mathbb{Z}_{4 k+3}$ and $r \in\{1, \ldots, 2 k+1\}$;
$B_{i}=[((i, 0)),(i, 2),((i, 1)),(i+4 k+2,0),(i+2 k+2,1)]$, for $i \in \mathbb{Z}_{4 k+3}$;
$C_{i, j}=\left[((i, 1)),\left(\frac{i+j}{2}, 2\right),((j, 1)),(i, 2),(j, 2)\right]$, for $i, j \in \mathbb{Z}_{4 k+3}$, with $i \not \equiv j$;
$D_{i, r}=\left[((i+r, 2)),(i, 2),\left(\left(i+\frac{r}{2}, 0\right)\right),(i+r-2 k-2,2),(i+2 r, 0)\right]$, for $i, r \in \mathbb{Z}_{4 k+3}$ and $r \in\{1, \ldots, k+1\}$;
$E_{i}=[((i, 2)),(i+3 k+2,0),((i+2 k+1,2)),(i, 0),(i, 1)]$, for $i \in \mathbb{Z}_{4 k+3}$;
$F_{i, r}=\left[((i+r, 2)),(i, 2),\left(\left(i+\frac{r}{2}, 0\right)\right),\left(i+\frac{3}{2} r+k+2,1\right),\left(i+\frac{r}{2}+2 k+2,0\right)\right]$, for $i, r \in \mathbb{Z}_{4 k+3}$ and $r \in\{k+2, \ldots, 2 k\}$ if
$k \geq 2$.
Examining all the blocks, we can verify that Σ is a C_{3}-perfect H_{5}-design of order $12 k+9$ and indices $(2,1)$.
(2) Let $v=12 k+3$ for $k \geq 1$. Let us consider the system $\Sigma=\left(\mathbb{Z}_{4 k+1} \times \mathbb{Z}_{3}, \mathcal{B}\right)$ having the following base blocks:
$A_{i, r}=\left[((i+r, 2)),(i, 2),\left(\left(i+\frac{r}{2}, 0\right)\right),(i+r-2 k-1,2),(i+2 r, 0)\right]$, for $i, r \in \mathbb{Z}_{4 k+1}$ and $r=1, \ldots, k$;
$B_{i, r}=\left[((i+r, 2)),(i, 2),\left(\left(i+\frac{r}{2}, 0\right)\right),\left(i+\frac{3}{2} r+2 k+1,1\right),\left(i+\frac{r}{2}+2 k+1,0\right)\right]$, for $i, r \in \mathbb{Z}_{4 k+1}$ and $r=k+1, \ldots, 2 k ;$
$C_{i, j}=\left[((i, 1)),\left(\frac{i+j}{2}, 2\right),((j, 1)),(i, 2),(j, 2)\right]$, for $i, j \in \mathbb{Z}_{4 k+1}$ and $i \neq j$;
$D_{i}=[((i, 0)),(i, 2),((i, 1)),(i+2 k, 1),(i+2 k, 2)] ;$
$E_{i}=[((i, 0)),(i+k, 1),((i+2 k, 0)),(i, 1),(i+k, 0)]$;
$F_{i, r}=\left[((i, 0)),(i+r, 0),\left(\left(i+\frac{r}{2}, 1\right)\right),(i-k, 1),\left(i+\frac{r}{2}, 0\right)\right]$, for $i, r \in \mathbb{Z}_{4 k+1}$ and $r=1, \ldots, 2 k-1$.
Examining all the blocks, we can verify that Σ is a C_{3}-perfect H_{5}-design of order $12 k+3$ and indices $(2,1)$.
Collecting together the results of this section, it follows that:
Theorem 2.4. $A C_{3}$-perfect H_{5}-design of indices $(2,1)$ exists if and only if $v \equiv 1$ or $3(\bmod 6)$.

3. \boldsymbol{C}_{3}-perfect \boldsymbol{H}_{5}-design with $\mu>1$

In this section we consider C_{3}-perfect H_{5}-design of indices (λ, μ), with $\mu>1$, determining all the possible v of their spectrum. We recall that a transversal T of a latin square of order n is a set of n cells, exactly one cell from each row and column, such that each of the elements of Z_{n} occurs in a cell of T. Further, remember that [7,9]:

Lemma. (1) An idempotent latin square, defined in \mathbb{Z}_{n}, exists for any integer $n \neq 2$.
(2) An idempotent commutative latin square, defined in \mathbb{Z}_{n}, exists if and only if n is odd.

Latin squares, which are almost equivalent to the concept of finite quasigroups, will be used in the constructions given in Theorems 3.1 and 3.5. They are a common tool, since, given a quasigroup $\left(\mathbb{Z}_{n}, \circ\right)$, all the edges on the complete graph defined on \mathbb{Z}_{n} are of type $\{i, i \circ j\}$, for any $i, j \in \mathbb{Z}_{n}, i \neq j$.

Now we prove the following results:
Theorem 3.1. A C_{3}-perfect H_{5}-design of indices $(4,2)$ exists if and only if $v \equiv 0$ or $1(\bmod 3)$.
Proof. It is known that a 2-fold triple system of order v exists if and only if $v \equiv 0,1(\bmod 3)[7,9]$. Since, for every $v \equiv 1$ or $3(\bmod 6)$, there exist C_{3}-perfect H_{5}-design of indices $(2,1)$ (Theorem 2.2, Theorem 2.3), for such values of v, we can obtain C_{3}-perfect H_{5}-design of indices $(4,2)$ by a repetition of blocks, giving to each of them multiplicity 2.

Therefore, to prove the statement, it remains to examine the cases $v \equiv 0$ or $4(\bmod 6)$. We study at first the case (1) $v=6 k$ and after the case (2) $v=6 k+4$.
(1) Let $v=6$. Let us consider the system $\Sigma=\left(\mathbb{Z}_{6}, \mathscr{B}\right)$ such that:

$$
\begin{aligned}
& \mathscr{B}=\{[(2), 1,(4), 5,0],[(4), 2,(5), 3,0],[(5), 3,(1), 4,0], \\
& \quad[(1), 4,(3), 2,0],[(3), 5,(2), 1,0],[(1), 0,(2), 4,5],[(2), 0,(3), 4,1], \\
& \quad[(3), 0,(4), 2,5],[(4), 0,(5), 1,3],[(5), 0,(1), 3,2]\} .
\end{aligned}
$$

We can verify that Σ is a C_{3}-perfect H_{5}-design of order 6 and indices $(4,2)$.
Let $v=6 k$ for $k \geq 2$. Let us consider an idempotent quasigroup $\left(\mathbb{Z}_{2 k}, \circ\right)$ and the system $\Sigma=\left(\mathbb{Z}_{2 k} \times \mathbb{Z}_{3}, \mathscr{B}\right)$ having the following blocks:
$A_{i}=[((i, 0)),(i, 1),((i, 2)),(-i+1,1),(-i+1,2)]$, for $i \in \mathbb{Z}_{2 k}$;
$B_{i}=[((i, 0)),(i, 1),((i, 2)),(-i+1,0),(-i+1,1)]$, for $i \in \mathbb{Z}_{2 k}$;
$C_{i, j}=[((i, 0)),(i \circ j, 1),((j, 0)),(-i+1,2),(-j+1,2)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$D_{i, j}=[((i, 0)),(j \circ i, 1),((j, 0)),(-i+1,2),(-j+1,2)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$E_{i, j}=[((i, 1)),(i \circ j, 2),((j, 1)),(i, 0),(j, 0)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$F_{i, j}=[((i, 1)),(j \circ i, 2),((j, 1)),(-i+1,0),(-j+1,0)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$G_{i, j}=[((i, 2)),(i \circ j, 0),((j, 2)),(i, 1),(j, 1)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$H_{i, j}=[((i, 2)),(j \circ i, 0),((j, 2)),(-i+1,1),(-j+1,1)]$, for $i, j \in \mathbb{Z}_{2 k} i<j$.
Examining these blocks, we can verify that Σ is a C_{3}-perfect H_{5}-design of order $6 k$ and indices (4, 2).
(2) Let $v=6 k+4$ for $k \geq 1$. Let us consider a quasigroup ($\mathbb{Z}_{2 k+1}, \circ$), idempotent, not necessarily commutative, such that $\left\{(i, i+1) \mid i \in \mathbb{Z}_{2 k+1}\right\}$ is a transversal. Define the system $\Sigma=\left(\{\infty\} \cup \mathbb{Z}_{2 k+1} \times \mathbb{Z}_{3}, \mathscr{B}\right)$ having the following blocks:
$A_{i}=[((i, 0)),(i, 1),((i, 2)), \infty,(i+2,2)]$, for $i \in \mathbb{Z}_{2 k+1}$;
$B_{i}=[((i, 0)),(i, 1),(\infty),(i+1,0),(i+1,2)]$, for $i \in \mathbb{Z}_{2 k+1}$;
$C_{i}=[((i, 1)),(i, 2),(\infty),(i+1,0),(i+1,2)]$, for $i \in \mathbb{Z}_{2 k+1}$;
$D_{i}=[((i, 0)), \infty,((i, 2)),(i+1,2),(i+1,1)]$, for $i \in \mathbb{Z}_{2 k+1}$;
$E_{i, j}=[((i, 0)),(i \circ j, 1),((j, 0)),(i+1,2),(j+1,2)]$, for $i, j \in \mathbb{Z}_{2 k+1}$, with $i<j$ and $i-j \not \equiv \pm 1$;
$F_{i}=[((i, 0)),(i+1,0),((i \circ(i+1), 1)), \infty,(i+1,1)]$, for $i \in \mathbb{Z}_{2 k+1}$;
$G_{i, j}=[((i, 0)),(j \circ i, 1),((j, 0)),(i, 2),(j, 2)]$, for $i, j \in \mathbb{Z}_{2 k+1}$, with $i<j$;
$H_{i, j}=[((i, 1)),(i \circ j, 2),((j, 1)),(i-1,0),(j-1,0)]$, for $i, j \in \mathbb{Z}_{2 k+1}$, with $i<j$;
$I_{i, j}=[((i, 1)),(j \circ i, 2),((j, 1)),(i-1,0),(j-1,0)]$, for $i, j \in \mathbb{Z}_{2 k+1}$, with $i<j$;
$L_{i, j}=[((i, 2)),(i \circ j, 0),((j, 2)),(i-1,1),(j-1,1)]$, for $i, j \in \mathbb{Z}_{2 k+1}$, with $i<j$;
$M_{i, j}=[((i, 2)),(j \circ i, 0),((j, 2)),(i, 1),(j, 1)]$ for, $i, j \in \mathbb{Z}_{2 k+1}$, with $i<j$.
Note that in the blocks in 6 , thanks to the hypothesis that $\left\{(i, i+1) \mid i \in \mathbb{Z}_{2 k+1}\right\}$ is a transversal, any vertex ($j, 1$) with $j \in \mathbb{Z}_{2 k+1}$ is of the type $(i \circ(i+1), 1)$ for some $i \in \mathbb{Z}_{2 k+1}$. So, examining the system, we can verify that Σ is a C_{3}-perfect H_{5}-design of order $6 k+4$ and indices $(4,2)$.

This completes the proof.

Theorem 3.2. $A C_{3}$-perfect H_{5}-design of indices $(6,3)$ exists if and only if v odd, $v \geq 5$.
Proof. It is known that a 3-fold triple system of order v exists if and only if v is odd [7,9].
At first, we consider the two cases $v=5$ and $v=9$.
Let $v=5$. Define in \mathbb{Z}_{5} the following two base-blocks:
$B_{1}=[(0), 4,(1), 3,2], B_{2}=[(0), 3,(2), 1,4]$.
If \mathcal{B} is the collection of all the translates of B_{1}, B_{2}, then $\Sigma=\left(\mathbb{Z}_{5}, \mathscr{B}\right)$ is a C_{3}-perfect H_{5}-design of order $v=5$ and indices $(6,3)$.

Let $v=9$. Define in \mathbb{Z}_{9} the following four base-blocks:
$C_{1}=[(0), 1,(4), 5,2], C_{2}=[(0), 2,(3), 4,1]$,
$C_{3}=[(0), 2,(4), 8,3], C_{4}=[(0), 3,(4), 6,2]$.
If \mathcal{C} is the collection of all the translates of $C_{1}, C_{2}, C_{3}, C_{4}$, then $\Sigma=\left(\mathbb{Z}_{9}, \mathcal{C}\right)$ is a C_{3}-perfect H_{5}-design of order $v=9$ and indices $(6,3)$.

Let $v=2 k+1$, for $k \geq 3, v \neq 9$. Let us consider the cyclic system $\Sigma=\left(\mathbb{Z}_{2 k+1}, \mathscr{B}\right)$ having as base blocks:

$$
\left[(0), \frac{r}{2},(r), 3 r, 2 r\right],
$$

for every $r \in Z_{2 k+1}, r \in\{1, \ldots, k\}$. It is possible to verify that Σ is a C_{3}-perfect H_{5}-design of order $2 k+1$ and indices $(6,3)$.

Theorem 3.3. $A C_{3}$-perfect H_{5}-design of indices $(8,4)$ exists if and only if $v \equiv 0$ or $1(\bmod 3)$.
Proof. A 4-fold triple system of order v exists if and only if $v \equiv 0$ or $1 \bmod 3[7,9]$. So a C_{3}-perfect H_{5}-design of indices $(8,4)$ and order v is such that $v \equiv 0$ or $1 \bmod 3$.

Conversely, given $\Sigma=(X, \mathcal{B})$ a C_{3}-perfect H_{5}-design of indices (4, 2) (Theorem 3.1), the system $\Sigma^{\prime}=\left(X, \mathscr{B}^{\prime}\right)$, where the blocks of \mathscr{B}^{\prime} are those of \mathscr{B}, each repeated twice, is a C_{3}-perfect H_{5}-design of indices $(8,4)$.

Theorem 3.4. $A C_{3}$-perfect H_{5}-design of indices $(10,5)$ there exists if and only if $v \equiv 1$ or $3(\bmod 6)$.
Proof. A 5-fold triple system of order v exists if and only if $v \equiv 1$ or $3 \bmod 6[7,9]$. So a C_{3}-perfect H_{5}-design of indices $(10,5)$ and order v is such that $v \equiv 1$ or $3(\bmod 6)$.

Conversely, given $\Sigma=(X, \mathcal{B})$ a C_{3}-perfect H_{5}-design of indices (2,1) (Theorem 2.4), the system $\Sigma^{\prime}=\left(X, \mathcal{B}^{\prime}\right)$, where the blocks of \mathscr{B}^{\prime} are those of \mathscr{B}, each repeated five times, is a C_{3}-perfect H_{5}-design of indices $(10,5)$.

Theorem 3.5. A C_{3}-perfect H_{5}-design of indices $(12,6)$ exists if and only if $v \geq 5$.
Proof. Let v be odd. Consider a C_{3}-perfect H_{5}-design of indices $(6,3)$ (Theorem 3.2) $\Sigma=(X, \mathscr{B})$. The system $\Sigma^{\prime}=\left(X, \mathcal{B}^{\prime}\right)$, where the blocks of \mathscr{B}^{\prime} are those of \mathscr{B}, each repeated twice, is a C_{3}-perfect H_{5}-design of indices $(12,6)$.

Let $v \equiv 0,4(\bmod 6)$. Consider a C_{3}-perfect H_{5}-design of indices $(4,2) \Sigma=(X, \mathscr{B})$ (Theorem 3.1). The system $\Sigma^{\prime}=\left(X, \mathscr{B}^{\prime}\right)$, where the blocks of \mathscr{B}^{\prime} are those of \mathfrak{B}, each repeated three times, is a C_{3}-perfect H_{5}-design of indices $(12,6)$.

Let $v=6 k+2$, for some $k \geq 1$. Let us consider an idempotent quasigroup $\left(\mathbb{Z}_{2 k}, \circ\right.$) and the system $\Sigma=\left(\left\{\infty_{1}, \infty_{2}\right\} \cup\right.$ $\left.\mathbb{Z}_{2 k} \times \mathbb{Z}_{3}, \mathfrak{B}\right)$ having the following blocks:
$A_{i, r, s}=\left[((i, 0)),(i, 1),\left(\infty_{r}\right), \infty_{s},(i, 2)\right]$, for $i \in \mathbb{Z}_{2 k}$ and $r, s \in\{1,2\}, r \neq s$;
$B_{i, r, s}=\left[((i, 1)),(i, 2),\left(\infty_{r}\right), \infty_{s},(i, 0)\right]$, for $i \in \mathbb{Z}_{2 k}$ and $r, s \in\{1,2\}, r \neq s ;$
$C_{i, r, s}=\left[((i, 2)),(i, 0),\left(\infty_{r}\right), \infty_{s},(i, 1)\right]$, for $i \in \mathbb{Z}_{2 k}$ and $r, s \in\{1,2\}, r \neq s ;$
$D_{i, r, s}=\left[((i, 0)),(i, 1),\left(\infty_{r}\right),(i, 2), \infty_{s}\right]$, for $i \in \mathbb{Z}_{2 k}$ and $r, s \in\{1,2\}, r \neq s$;
$E_{i, r, s}=\left[((i, 1)),(i, 2),\left(\infty_{r}\right),(i, 0), \infty_{s}\right]$, for $i \in \mathbb{Z}_{2 k}$ and $r, s \in\{1,2\}, r \neq s ;$
$F_{i, r, s}=\left[((i, 2)),(i, 0),\left(\infty_{r}\right),(i, 1), \infty_{s}\right]$, for $i \in \mathbb{Z}_{2 k}$ and $r, s \in\{1,2\}, r \neq s$;
$G_{i}=\left[\left(\infty_{1}\right),(i, 0),\left(\infty_{2}\right),(i, 2),(i, 1)\right]_{(2)}$, for $i \in \mathbb{Z}_{2 k}$;
$H_{i}=\left[\left(\infty_{1}\right),(i, 1),\left(\infty_{2}\right),(i, 0),(i, 2)\right]_{(2)}$, for $i \in \mathbb{Z}_{2 k}$;
$I_{i}=\left[\left(\infty_{1}\right),(i, 2),\left(\infty_{2}\right),(i, 1),(i, 0)\right]_{(2)}$, for $i \in \mathbb{Z}_{2 k}$;
$L_{i, j}=[((i, 0)),(i \circ j, 1),((j, 0)),(i+1,2),(j+1,2)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$K_{i, j}=[((i, 0)),(i \circ j, 1),((j, 0)),(i, 2),(j, 2)]_{(2)}$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$M_{i, j}=[((i, 0)),(j \circ i, 1),((j, 0)),(i, 2),(j, 2)]_{(3)}$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$N_{i, j}=[((i, 1)),(i \circ j, 2),((j, 1)),(i+1,0),(j+1,0)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$O_{i, j}=[((i, 1)),(i \circ j, 2),((j, 1)),(i-1,0),(j-1,0)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$P_{i, j}=[((i, 1)),(i \circ j, 2),((j, 1)),(i, 0),(j, 0)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$Q_{i, j}=[((i, 1)),(j \circ i, 2),((j, 1)),(i, 0),(j, 0)]_{(3)}$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$R_{i, j}=[((i, 2)),(i \circ j, 0),((j, 2)),(i-1,1),(j-1,1)]$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$S_{i, j}=[((i, 2)),(i \circ j, 0),((j, 2)),(i, 1),(j, 1)]_{(2)}$, for $i, j \in \mathbb{Z}_{2 k}, i<j ;$
$T_{i, j}=[((i, 2)),(j \circ i, 0),((j, 2)),(i, 1),(j, 1)]_{(3)}$, for $i, j \in \mathbb{Z}_{2 k}, i<j$;
$U_{i}=[((i, 0)),(i, 2),((i, 1)),(i+1,2),(i+1,1)]$, for $i \in \mathbb{Z}_{2 k}$;
$V_{i}=[((i, 0)),(i, 2),((i, 1)),(i+1,0),(i+1,2)]$, for $i \in \mathbb{Z}_{2 k}$.
Examining these blocks, we can verify that Σ is a C_{3}-perfect H_{5}-design of indices (12, 6). This completes the proof.
Collecting together all the previous results, with the condition $v \equiv 1$ or $3(\bmod 6)$ [9], we have that:
Theorem 3.6. $A C_{3}$-perfect H_{5}-design of indices $(2 \mu, \mu)$ exists if and only if:
$v \equiv 1$ or $3(\bmod 6)$, if $\mu \equiv 1$ or $5(\bmod 6)$;
$v \equiv 0$ or $1(\bmod 3)$, if $\mu \equiv 2$ or $4(\bmod 6)$;
v odd, $v \geq 5$, if $\mu \equiv 3(\bmod 6)$;
$v \geq 5$, if $\mu \equiv 0(\bmod 6)$.

4. \boldsymbol{C}_{5}-perfect \boldsymbol{H}_{5}-designs

In this section, we examine C_{5}-perfect H_{5}-designs, determining the spectrum completely, without exceptions, in all the cases.

At first, we see possible necessary conditions.
Theorem 4.1. If $\Sigma=(X, \mathscr{B})$ is a C_{5}-perfect H_{5}-design of order v and indices (λ, τ), then:
(1) $5 \lambda=6 \tau$;
(2) $|\mathfrak{B}|=\lambda \frac{v(v-1)}{12}$.

Proof. Let $\Sigma=(X, B)$ be a C_{5}-perfect H_{5}-design of order v and indices (λ, τ). If $\Sigma^{\prime}=\left(X, B^{\prime}\right)$ is the C_{5}-system nested in Σ, necessarily: $\mathfrak{B}=\mathscr{B}^{\prime}$. Since
$|\mathscr{B}|=\lambda \frac{v(v-1)}{12},\left|\mathcal{B}^{\prime}\right|=\tau \frac{v(v-1)}{6}$,
both (1), (2) follow easily.
From Theorem 4.1 it follows that for every positive integers $v, v \geq 5$, the existence of C_{5}-perfect H_{5}-designs of order v and indices (λ, τ), with $5 \lambda=6 \tau$, is possible. At first we examine the possible existence for systems having odd order v, after we see what happens for v even.

Theorem 4.2. For $\lambda=6, \tau=5$, and for every v odd, $v \geq 5$, there exists a C_{5}-perfect H_{5}-design of order v and indices $(6,5)$.
Proof. Let $v=2 k+1$, for $k \geq 2$. Consider the following base-blocks, constructed by difference method and defined in $X=\mathbb{Z}_{2 k+1}$, where $D=\{1,2, \ldots, k\}$:
$B_{i}=[(0), i+1,(2 i+1), 2 k, i]$, for $i \in\{1, \ldots, k-1\}$
$B=[(0), 2,(1), k+1, k]$.
If \mathscr{B} is the collection of all the translates of these base-blocks, we can verify that $\Sigma=(X, \mathscr{B})$ is a C_{5}-perfect H_{5}-design of order v and indices $(6,5)$.

In conclusion, for v odd, we have that:
Theorem 4.3. For every λ, τ, such that $5 \lambda=6 \tau$, and for every v odd, $v \geq 5$, there exists a C_{5}-perfect H_{5}-design of order v and indices (λ, τ).

Proof. The statement follows from Theorem 4.2. Indeed, if $\lambda=6 h, \tau=5 h$, a C_{5}-perfect H_{5}-design of order v and indices ($6 k, 5 k$) can be obtained from a C_{5}-perfect H_{5}-design of order v and indices $(6,5)$, by a repetition of blocks, giving to every block multiplicity h.

Now, we examine the case v even. At first, we observe that:
Theorem 4.4. If $\Sigma=(X, \mathcal{B})$ is a C_{5}-perfect H_{5}-design of order $v \geq 6$ even and indices $(6 h, 5 h)$, then h is even.
Proof. In a C_{5}-design of order v and index τ, every vertex is contained in exactly $\tau(v-1) / 2$ blocks. Indeed, if we fix a vertex x, the number of pairs containing x is $\tau(v-1)$. Since in every block C_{5}, every vertex has degree two, the number $\tau(v-1)$ must be even. But v even implies $\tau=5 h$ even, hence h even.

Theorem 4.5. For $\lambda=12, \tau=10$, and for every v even, $v \geq 6$, there exists a C_{5}-perfect H_{5}-design of order v and indices $(12,10)$.

Proof. Let $v=2 k$, for $k \geq 3$. Further, let $X=\{\infty\} \cup \mathbb{Z}_{2 k-1}$, where ∞ is a fixed point, $\infty \notin \mathbb{Z}_{2 k-1}$. Consider the system $\Sigma=(X, \mathcal{B})$, where \mathscr{B} is the collection of all the translates of the following base-blocks, constructed by difference method:
$B_{1, i}=[(0), 2 i,(i), 2 i+1, i+1]_{(2)}$, for any $i \in\{2, \ldots, k-2\}$, with $k \geq 4$;
$B_{2}=[(0), 2,(1), 2 k-2,2 k-3]$;
$B_{3}=[(0), 1,(k), k-1, \infty]_{(2)}$;
$B_{4}=[(0), k,(1),-1, \infty]$;
$B_{5}=[(\infty), 0,(1), 3,2]_{(2)}$.
Examining all the blocks, we can verify that Σ is a C_{5}-perfect H_{5}-design of order v and indices $(12,10)$.
Collecting together all the results of this section, we have that:
Theorem 4.6. A C_{5}-perfect H_{5}-design of order v and indices $(6 h, 5 h)$ there exists if and only if:
(1) v odd, h odd, $v \geq 5$;
(2) h even, $v \geq 5$.

Proof. The statement follows from the previous results.

5. $\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-designs

In this section, we determine completely the spectrum of (C_{3}, C_{4}, C_{5})-perfect H_{5}-designs. At first, we prove the following three Theorems.

Theorem 5.1. An H_{5}-design, which is $\left(C_{3}, C_{4}\right)$-perfect, is also C_{5}-perfect.
Proof. Suppose that $\Sigma=(X, \mathcal{B})$ is a $\left(C_{3}, C_{4}\right)$-perfect H_{5}-design, of order v and indices (λ, μ, σ). Since a C_{3}-design of order v and index μ has $b^{\prime}=\mu v(v-1) / 6$ blocks, a C_{4}-design of order v and index σ has $b^{\prime \prime}=\sigma v(v-1) / 8$ blocks, $|\mathcal{B}|=b=\lambda v(v-1) 12$, and $b=b^{\prime}=b^{\prime \prime}$, it follows that:

$$
\lambda \frac{v(v-1)}{12}=\mu \frac{v(v-1)}{6}=\sigma \frac{v(v-1)}{8} .
$$

From which: $\lambda / 12=\mu / 6=\sigma / 8$. Hence, for some $h \geq 1: \lambda=6 h, \mu=3 h$ and $\sigma=4 h$.
Given an edge $\{x, y\}$ we denote by $U(\{x, y\})$ the number of blocks of \mathcal{B} in which $\{x, y\}$ appears as one of the edges $\{a, b\}$ and $\{b, c\}$ of H_{5}; we denote by $M(\{x, y\})$ the number of blocks of \mathcal{B} in which $\{x, y\}$ appears as the edge $\{a, c\}$; we denote by $L(\{x, y\})$ the number of blocks of \mathscr{B} in which $\{x, y\}$ appears as one of the edges $\{c, d\},\{d, e\}$ and $\{e, a\}$. For any edge $\{x, y\}$ it must be:

$$
\begin{aligned}
& U(\{x, y\})+M(\{x, y\})=3 h \\
& M(\{x, y\})+L(\{x, y\})=4 h \\
& U(\{x, y\})+M(\{x, y\})+L(\{x, y\})=6 h
\end{aligned}
$$

so that $U(\{x, y\})=2 h, M(\{x, y\})=h$ and $L(\{x, y\})=3 h$ for any $\{x, y\}$. This implies that Σ is C_{5}-perfect of index $5 h$.
Theorem 5.2. An H_{5}-design, which is $\left(C_{3}, C_{5}\right)$-perfect, is also C_{4}-perfect.
Proof. Suppose that $\Sigma=(X, \mathscr{B})$ is a $\left(C_{3}, C_{5}\right)$-perfect H_{5}-design, of order v and indices (λ, μ, τ). Since a C_{3}-design of order v and index μ has $b^{\prime}=\mu v(v-1) / 6$ blocks, a C_{5}-design of order v and index τ has $b^{\prime \prime \prime}=\tau v(v-1) / 10$ blocks, $|\mathscr{B}|=b=\lambda v(v-1) 12$, and $b=b^{\prime}=b^{\prime \prime \prime}$, it follows that:

$$
|\mathscr{B}|=\lambda \frac{v(v-1)}{12}=\mu \frac{v(v-1)}{6}=\tau \frac{v(v-1)}{10} .
$$

So $\lambda=6 h, \mu=3 h$ and $\tau=5 h$ for some $h \geq 1$. Keeping the previous notation, for any edge $\{x, y\}$ it must be:

$$
\begin{aligned}
& U(\{x, y\})+M(\{x, y\})=3 h \\
& U(\{x, y\})+L(\{x, y\})=5 h \\
& U(\{x, y\})+M(\{x, y\})+L(\{x, y\})=6 h,
\end{aligned}
$$

so that $U(\{x, y\})=2 h, M(\{x, y\})=h$ and $L(\{x, y\})=3 h$ for any $\{x, y\}$. This implies that Σ is C_{4}-perfect of index $4 h$.
Theorem 5.3. An H_{5}-design, which is $\left(C_{4}, C_{5}\right)$-perfect, is also C_{3}-perfect.

Proof. Suppose that $\Sigma=(X, \mathcal{B})$ is a $\left(C_{4}, C_{5}\right)$-perfect H_{5}-design, of order v and indices (λ, σ, τ). Since a C_{4}-design of order v and index σ has $b^{\prime \prime}=\sigma v(v-1) / 8$ blocks, a C_{5}-design of order v and index τ has $b^{\prime \prime \prime}=\tau v(v-1) / 10$ blocks, $|\mathcal{B}|=b=\lambda v(v-1) 12$, and $b=b^{\prime \prime}=b^{\prime \prime \prime}$, it follows that:
$|\mathcal{B}|=\lambda \frac{v(v-1)}{12}=\sigma \frac{v(v-1)}{8}=\tau \frac{v(v-1)}{10}$.
So $\lambda=6 h, \sigma=4 h$ and $\tau=5 h$ for some $h \geq 1$. Keeping the previous notation, for any edge $\{x, y\}$ it must be:

$$
\begin{aligned}
& M(\{x, y\})+L(\{x, y\})=4 h \\
& U(\{x, y\})+L(\{x, y\})=5 h \\
& U(\{x, y\})+M(\{x, y\})+L(\{x, y\})=6 h
\end{aligned}
$$

so that $U(\{x, y\})=2 h, M(\{x, y\})=h$ and $L(\{x, y\})=3 h$ for any $\{x, y\}$. This implies that Σ is C_{3}-perfect of index $3 h$.
At this point, we begin to determine the spectrum of (C_{3}, C_{4}, C_{5})-perfect H_{5}-designs. At first, we determine some necessary conditions, after we determine the spectrum.

Theorem 5.4. If $\Sigma=(X, \mathcal{B})$ is a $\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices $(\lambda, \mu, \sigma, \tau)$, then:
(1) $\frac{\lambda}{6}=\frac{\mu}{3}=\frac{\sigma}{4}=\frac{\tau}{5}$;
(2) $|\mathcal{B}|=\lambda \frac{v(v-1)}{12}$.

Proof. Let $\Sigma=(X, \mathcal{B})$ be a $\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices $(\lambda, \mu, \sigma, \tau)$. Since all the C_{k}-designs nested in Σ, for $k=3,4,5$, have necessarily the same number of blocks, it follows that:

$$
|\mathscr{B}|=\lambda \frac{v(v-1)}{12}=\mu \frac{v(v-1)}{6}=\sigma \frac{v(v-1)}{8}=\tau \frac{v(v-1)}{10}
$$

and this proves the statements.
Theorem 5.5. For $\lambda=6, \mu=3, \sigma=4, \tau=5$, and for every v odd, $v \geq 5$, there exists a $\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices (6, 3, 4, 5).

Proof. Let $v=2 k+1$, for some $k \geq 2$. Consider the system $\Sigma=\left(\mathbb{Z}_{2 k+1}, \mathscr{B}\right)$ having as blocks the translates of the following base blocks:

1. $[(0), 2 i,(i), 2 k, k+i]$ for any $i \in\{1, \ldots, k-1\}$
2. $[(0), k,(k+1), k+2,1]$.

We can verify that Σ is a C_{3}-perfect, C_{4}-perfect and C_{5}-perfect H_{5}-design of order v and indices ($6,3,4,5$).
Theorem 5.6. For every $\lambda, \mu, \sigma, \tau$, such that $\frac{\lambda}{6}=\frac{\mu}{3}=\frac{\sigma}{4}=\frac{\tau}{5}$, and for every v odd, $v \geq 5$, there exists $a\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices $(\lambda, \mu, \sigma, \tau)$.
Proof. The statement follows by the previous result of Theorem 5.5. Indeed, let $\lambda=6 h, \mu=3 h, \sigma=4$ and $\tau=5 h$, for some $h \in \mathbb{N}$ and let $\Sigma=(X, \mathcal{B})$ a $\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices $(6,3,4,5)$. Then, the system $\Sigma^{\prime}=\left(X, \mathscr{B}^{\prime}\right)$, obtained from Σ, by a repetition of blocks, each repeated h times, is a (C_{3}, C_{4}, C_{5})-perfect H_{5}-design of order v and indices $(\lambda, \mu, \sigma, \tau)$.

Theorem 5.7. For $\lambda=12, \mu=6, \sigma=8, \tau=10$, and for every v even, $v \geq 6$, there exists a $\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices $(12,6,8,10)$.

Proof. Let $v=2 k$, for some $k \geq 3$. Consider the system $\Sigma=\left(\{\infty\} \cup \mathbb{Z}_{2 k-1}, \mathcal{B}\right)$ having as blocks the translates of the following base blocks:
$B_{i, 1}=[(0), 2 i,(i), 2 i+1, i+1]_{(2)}$ for $k \geq 4$ and for any $i \in\{2, \ldots, k-2\} ;$
$B_{2}=[(0), 2,(1), 3, \infty]_{(2)}$;
$B_{3}=[(0), \infty,(k-1), k, 1]$;
$B_{4}=[(\infty), 0,(1), 2,3]$;
$B_{5}=[(\infty), k,(0), 1,-1]$;
$B_{6}=[(0), 1,(k), k+1,2]$.
Examining the blocks so obtained, we can verify that Σ is a (C_{3}, C_{4}, C_{5})-perfect H_{5}-design of order v and indices (12, 6, 8, 10).

Theorem 5.8. $A\left(C_{3}, C_{4}, C_{5}\right)$-perfect H_{5}-design of order v and indices $(6 h, 3 h, 4 h, 5 h)$ there exists if and only if:
(1) v odd, $v \geq 5$, h odd;
(2) $v \geq 5$, h even.

References

[1] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems, Discrete Math. 310 (2010) 1979-1985.
[2] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems with an upper C4-system, J. Statist. Plann. Inference 141 (2011) $2249-2255$.
[3] P. Bonacini, M. Gionfriddo, L. Marino, Balanced house-systems and nestings, Ars Combin. 121 (2015) 429-436
[4] D. Bryant, S. El-Zanati, Graph decompositions, in: C. Colbourn-, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, Chapman-Hall/CRC, Boca Raton USA, 2007, pp. 477-484.
[5] C.J. Colbourn, A.C.H. Ling, G. Quattrocchi, Minimum embedding of P_{3}-designs into $K_{4}-e$-designs, J. Combin. Des. 11 (2003) $352-366$.
[6] L. Gionfriddo, M. Gionfriddo, Perfect dodecagon quadrangle systems, Discrete Math. 310 (2010) 3067-3071.
[7] M. Gionfriddo, S. Milazzo, V. Voloshin, Hypergraphs and Designs, Mathematics Research Developments, Nova Science Publishers Inc., New York, 2015.
[8] S. Kucukcifci, C.C. Lindner, Perfect hexagon triple systems, Discrete Math. 279 (2004) 325-335.
[9] C.C. Lindner, C.A. Rodger, Design Theory, CRC Press, Boca Raton, 2009.
[10] C.C. Lindner, C.A. Rodger, D.R. Stinson, Nesting of cycle systems of odd lenght, Discrete Math. 42 (1989) 191-203.
[11] C.C. Lindner, A. Rosa, Perfect dexagon triple systems, Discrete Math. 308 (2008) 214-219.
[12] M. Meszka, A. Rosa, Embedding Steiner triple systems into Steiner systems S(2,4,v), Discrete Math. 274 (2004) 199-212.
[13] D.R. Stinson, The spectrum of nested steiner triple systems, Graphs Combin. 1 (1985) 189-191.

