MULTIPLE SOLUTIONS TO A DIRICHLET EIGENVALUE PROBLEM WITH p-LAPLACIAN

Salvatore A. Marano - Dumitru Motreanu - Daniele Puglisi

Abstract

The existence of a greatest negative, a smallest positive, and a nodal weak solution to a homogeneous Dirichlet problem with p-Laplacian and reaction term depending on a positive parameter is investigated via variational as well as topological methods, besides truncation techniques.

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 3$, with a smooth boundary $\partial \Omega$, let $1<p<+\infty$, and let $j: \Omega \times \mathbb{R} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a Carathéodory function. Consider the homogeneous Dirichlet problem:

$$
\begin{cases}-\Delta_{p} u=j(x, u, \lambda) & \text { in } \Omega, \tag{1.1}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Δ_{p} denotes the p-Laplace differential operator $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. As usual, a function $u \in W_{0}^{1, p}(\Omega)$ is called a (weak) solution to (1.1) provided

$$
\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) d x=\int_{\Omega} j(x, u(x), \lambda) v(x) d x \quad \text { for all } v \in W_{0}^{1, p}(\Omega) .
$$

[^0]The literature concerning (1.1) is by now very wide and many existence, multiplicity, or bifurcation-type results are already available. In particular, a meaningful case occurs when

$$
\begin{equation*}
j(x, t, \lambda):=\lambda|t|^{q-2} t+|t|^{r-2} t, \quad(x, t, \lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+} \tag{1.2}
\end{equation*}
$$

with $1<q<p<r<p^{*}$. If $p=2$ then (1.2) reduces to a so-called concaveconvex nonlinearity and, after the seminal paper [1], the corresponding problem has been thoroughly investigated. A similar comment can also be made when $p \neq 2$, in which case we cite [2]. The work [6] treats jumping nonlinearities not explicitly depending on λ, i.e.
(1.3) $j(x, t, \lambda):=a\left(t^{+}\right)^{p-1}-b\left(t^{-}\right)^{p-1}+g(x, t) \quad$ for all $(x, t, \lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+}$,
where $(a, b) \in \mathbb{R}^{2}$ lies above the Cuesta-de Figueiredo-Gossez [7] curve \mathcal{C} in the Fučik spectrum of $-\Delta_{p}$ while the Carathéodory function $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{g(x, t)}{|t|^{p-1}}=0 \quad \text { uniformly in } x \in \Omega \tag{1.4}
\end{equation*}
$$

besides some standard growth condition. Under the assumption that a negative sub-solution \underline{u} and a positive super-solution \bar{u} to (1.1) are available, the existence of at least three nontrivial solutions, one negative, another positive, and the third nodal, within the order interval $[\underline{u}, \bar{u}]$ is established. If $a=b=\lambda$ then (1.3) becomes

$$
\begin{equation*}
j(x, t, \lambda):=\lambda|t|^{p-2} t+g(x, t) \tag{1.5}
\end{equation*}
$$

The same conclusion as before still holds without requiring sub-super-solutions, provided $\lambda>\lambda_{2}$, the second eigenvalue of $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$, while g turns out to be bounded on bounded sets, fulfils (1.4), and

$$
\begin{equation*}
\lim _{|t| \rightarrow+\infty} \frac{g(x, t)}{|t|^{p-2} t}=-\infty \quad \text { uniformly in } x \in \Omega \tag{1.6}
\end{equation*}
$$

see [5, Theorem 4.1]. Finally, [10] investigates the existence of multiple, both constant-sign and nodal, solutions to (1.1) whenever λ is small enough, while [13] contains a bifurcation theorem, describing the dependence of positive solutions to (1.1) on the parameter $\lambda>0$, where the reaction term j takes the form

$$
j(x, t, \lambda):=\lambda h(x, t)+g(x, t), \quad(x, t, \lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+},
$$

for suitable $g, h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$.
Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that

$$
\begin{gathered}
|f(x, t)| \leq a_{1}\left(1+|t|^{p-1}\right) \quad \text { for all }(x, t) \in \Omega \times \mathbb{R} \\
\limsup _{|t| \rightarrow+\infty} \frac{f(x, t)}{|t|^{p-2} t} \leq 0 \quad \text { uniformly in } x \in \Omega
\end{gathered}
$$

and, moreover, there exists $a_{2}, A_{2}>0$ satisfying

$$
\begin{equation*}
a_{2} \leq \liminf _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t} \leq \limsup _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t} \leq A_{2} \quad \text { uniformly in } x \in \Omega \tag{1.8}
\end{equation*}
$$

Setting $j(x, t, \lambda):=\lambda f(x, t)$, Problem (1.1) becomes

$$
\begin{cases}-\Delta_{p} u=\lambda f(x, u) & \text { in } \Omega \tag{1.9}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

In this paper we prove that (1.9) possesses at least three nontrivial solutions, one greatest negative v_{λ}, another smallest positive u_{λ}, and the third nodal u_{0}, with $v_{\lambda} \leq u_{0} \leq u_{\lambda}$, provided λ is sufficiently large; vide Theorem 5.1 as well as, regarding an explicit estimate of λ, Remark 4.2. It should be noted that, for fixed $\lambda>0$, the nonlinearity (1.5) fulfils (1.7)-(1.8) once (1.4) and (1.6) hold true, whereas (1.7)-(1.8) do not imply neither (1.4) nor (1.6). As an example, take
$g(x, t):= \begin{cases}|t|^{p-3} \sin (t|t|) & \text { if }|t| \leq 1, \\ \lambda|t|^{p-2} t(\sin (t|t|)-2)-\lambda s(t)(\sin (s(t))-2)+\sin (s(t)) & \text { otherwise, }\end{cases}$
where $p>1$ and $s(t)$ denotes the signum function.
Very recently, in [3], the same conclusion has been achieved supposing $p>N$, the function f independent of x, and $\lambda>0$ small enough. Significantly, no condition at infinity is taken on, but one requires that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{f(t)}{|t|^{p-2} t}=L \in \mathbb{R}^{+} \tag{1.10}
\end{equation*}
$$

besides a suitable condition for $F(z):=\int_{0}^{z} f(t) d t$ near zero. Obviously, (1.10) forces (1.8).

Our results are obtained via variational and topological methods, as well as truncation arguments. Some of these techniques have already been employed in [5]. Possible extensions to non-smooth settings will be addressed in a future work.

2. Basic assumptions and auxiliary results

Let $(X,\|\cdot\|)$ be a real Banach space. Given a set $V \subseteq X$, write \bar{V} for the closure of $V, \partial V$ for the boundary of V, and $\operatorname{int}(V)$ for the interior of V. If $x \in X$ and $\delta>0$ then

$$
B_{\delta}(x):=\{z \in X:\|z-x\|<\delta\}
$$

The symbol $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ denotes the dual space of $X,\langle\cdot, \cdot\rangle$ indicates the duality pairing between X and X^{*}, while $x_{n} \rightarrow x$ (respectively, $x_{n} \rightharpoonup x$) in X means 'the sequence $\left\{x_{n}\right\}$ converges strongly (respectively, weakly) in X '.

The next elementary but useful result [13, Proposition 2.1] will be used in Section 3.

Proposition 2.1. Suppose $(X,\|\cdot\|)$ is an ordered Banach space with order cone C. If $x_{0} \in \operatorname{int}(C)$ then to every $z \in X$ there corresponds $t_{z}>0$ such that $t_{z} x_{0}-z \in C$.

A function $\Phi: X \rightarrow \mathbb{R}$ fulfilling

$$
\lim _{\|x\| \rightarrow+\infty} \Phi(x)=+\infty
$$

is called coercive. We say that Φ is weakly sequentially lower semi-continuous when $x_{n} \rightharpoonup x$ in X implies $\Phi(x) \leq \liminf _{n \rightarrow \infty} \Phi\left(x_{n}\right)$. Let $\Phi \in C^{1}(X)$. The classical Palais-Smale condition for Φ reads as follows.
(PS) Every sequence $\left\{x_{n}\right\} \subseteq X$ such that $\left\{\Phi\left(x_{n}\right)\right\}$ is bounded and $\left\|\Phi^{\prime}\left(x_{n}\right)\right\|_{X^{*}}$ $\rightarrow 0$ possesses a convergent subsequence.
Define, for every $c \in \mathbb{R}$,

$$
\Phi^{c}:=\{x \in X: \Phi(x) \leq c\}, \quad K_{c}(\Phi):=K(\Phi) \cap \Phi^{-1}(c)
$$

where, as usual, $K(\Phi)$ denotes the critical set of Φ, i.e. $K(\Phi):=\{x \in X$: $\left.\Phi^{\prime}(x)=0\right\}$.

An operator $A: X \rightarrow X^{*}$ is called of type $(\mathrm{S})_{+}$if

$$
x_{n} \rightharpoonup x \quad \text { in } X, \quad \limsup _{n \rightarrow+\infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle \leq 0
$$

imply $x_{n} \rightarrow x$. The next simple result is more or less known and will be employed in Section 4.

Proposition 2.2. Let X be reflexive and let $\Phi \in C^{1}(X)$ be coercive. Assume $\Phi^{\prime}=A+B$, where $A: X \rightarrow X^{*}$ is of type $(\mathrm{S})_{+}$while $B: X \rightarrow X^{*}$ is compact. Then Φ satisfies (PS).

Proof. Pick a sequence $\left\{x_{n}\right\} \subseteq X$ such that $\left\{\Phi\left(x_{n}\right)\right\}$ turns out to be bounded and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\Phi^{\prime}\left(x_{n}\right)\right\|_{X^{*}}=0 \tag{2.1}
\end{equation*}
$$

By the reflexivity of X, besides the coercivity of Φ, we may suppose, up to subsequences, $x_{n} \rightharpoonup x$ in X. Since B is compact, using (2.1) and taking a subsequence when necessary, one has

$$
\lim _{n \rightarrow+\infty}\left\langle A\left(x_{n}\right), x_{n}-x\right\rangle=\lim _{n \rightarrow+\infty}\left(\left\langle\Phi^{\prime}\left(x_{n}\right), x_{n}-x\right\rangle-\left\langle B\left(x_{n}\right), x_{n}-x\right\rangle\right)=0
$$

This forces $x_{n} \rightarrow x$ in X, because A is of type $(\mathrm{S})_{+}$, as desired.
Throughout the paper, Ω is a bounded domain of the real Euclidean N-space $\left(\mathbb{R}^{N},|\cdot|\right)$ with a smooth boundary $\partial \Omega, p \in(1,+\infty), p^{\prime}:=p /(p-1),\|\cdot\|_{p}$ stands
for the usual norm of $L^{p}(\Omega)$, and $W_{0}^{1, p}(\Omega)$ indicates the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. On $W_{0}^{1, p}(\Omega)$ we introduce the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right)^{1 / p}, \quad u \in W_{0}^{1, p}(\Omega)
$$

Write p^{*} for the critical exponent of the Sobolev embedding $W_{0}^{1, p}(\Omega) \subseteq L^{q}(\Omega)$. Recall that $p^{*}=N p /(N-p)$ if $p<N, p^{*}=+\infty$ otherwise, and the embedding is compact whenever $1 \leq q<p^{*}$.

Define $C_{0}^{1}(\bar{\Omega}):=\left\{u \in C^{1}(\bar{\Omega}): u=0\right.$ on $\left.\partial \Omega\right\}$. Obviously, $C_{0}^{1}(\bar{\Omega})$ turns out to be an ordered Banach space with order cone

$$
C_{0}^{1}(\bar{\Omega})_{+}:=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(x) \geq 0 \text { for all } x \in \bar{\Omega}\right\}
$$

Moreover, one has

$$
\operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)=\left\{u \in C_{0}^{1}(\bar{\Omega}): u>0 \text { in } \Omega, \frac{\partial u}{\partial n}<0 \text { on } \partial \Omega\right\}
$$

where $n(x)$ is the outward unit normal vector to $\partial \Omega$ at the point $x \in \partial \Omega$; see, for example, [9, Remark 6.2.10].

Let $W^{-1, p^{\prime}}(\Omega)$ be the dual space of $W_{0}^{1, p}(\Omega)$ and let $A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ be the nonlinear operator stemming from the negative p-Laplacian, i.e.

$$
\begin{equation*}
\langle A(u), v\rangle:=\int_{\Omega}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) d x \quad \text { for all } u, v \in W_{0}^{1, p}(\Omega) \tag{2.2}
\end{equation*}
$$

Denote by λ_{1} (respectively, λ_{2}) the first (respectively, second) eigenvalue of the operator $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$. The following properties of λ_{1}, λ_{2}, and A can be found in [7], [12]; vide also [9, Section 6.2]:
$\left(\mathrm{p}_{1}\right) 0<\lambda_{1}<\lambda_{2}$.
$\left(\mathrm{p}_{2}\right)\|u\|_{p}^{p} \leq\|u\|^{p} / \lambda_{1}$ for all $u \in W_{0}^{1, p}(\Omega)$.
$\left(\mathrm{p}_{3}\right)$ There exists an eigenfunction ϕ_{1} corresponding to λ_{1} such that $\phi_{1} \in$ $\operatorname{int}\left(C_{0}^{1}(\bar{\Omega})_{+}\right)$as well as $\left\|\phi_{1}\right\|_{p}=1$.
$\left(\mathrm{p}_{4}\right)$ If $S:=\left\{u \in W_{0}^{1, p}(\Omega):\|u\|_{p}=1\right\}$ and $\Gamma_{0}:=\left\{\gamma \in C^{0}([-1,1], S):\right.$ $\left.\gamma(-1)=-\phi_{1}, \gamma(1)=\phi_{1}\right\}$, then $\lambda_{2}=\inf _{\gamma \in \Gamma_{0}} \max _{u \in \gamma([-1,1])}\|u\|^{p}$.
$\left(\mathrm{p}_{5}\right)$ The operator A is maximal monotone and of type $(\mathrm{S})_{+}$.
Finally, put, provided $t \in \mathbb{R}, t^{-}:=\max \{-t, 0\}, t^{+}:=\max \{t, 0\}$.
If $u, v: \Omega \rightarrow \mathbb{R}$ belong to a given function space X and $u(x) \leq v(x)$ for almost every $x \in \Omega$ then we set

$$
[u, v]:=\{w \in X: u(x) \leq w(x) \leq v(x) \text { a.e. in } \Omega\} .
$$

Likewise, $\Omega(u(x)<t):=\{x \in \Omega: u(x)<t\}$, etc. From now on, to avoid unnecessary technicalities, 'for every $x \in \Omega$ ' will take the place of 'for almost
every $x \in \Omega^{\prime}$ and the variable x will be omitted when no confusion can arise. Moreover, we shall write

$$
X:=W_{0}^{1, p}(\Omega), \quad C_{+}:=C_{0}^{1}(\bar{\Omega})_{+}
$$

Let $\lambda>0$. If $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the conditions:
$\left(\mathrm{f}_{1}\right) f(\cdot, t)$ is measurable for all $t \in \mathbb{R}$ while $f(x, \cdot)$ is continuous for every $x \in \Omega$,
(f_{2}) there exists $a_{1}>0$ such that $|f(x, t)| \leq a_{1}\left(1+|t|^{p-1}\right)$ in $\Omega \times \mathbb{R}$,
then the functional $\Phi_{\lambda}: X \rightarrow \mathbb{R}$ given by

$$
\Phi_{\lambda}(u):=\frac{1}{p}\|u\|^{p}-\lambda \int_{\Omega} F(x, u(x)) d x, \quad u \in X
$$

where, as usual,

$$
\begin{equation*}
F(x, \xi):=\int_{0}^{\xi} f(x, t) d t \quad \text { for all }(x, \xi) \in \Omega \times \mathbb{R} \tag{2.3}
\end{equation*}
$$

turns out to be well defined and continuously differentiable. Obviously, critical points of Φ_{λ} are weak solutions to (1.9), and vice-versa.

We shall assume also that
(f_{3}) $\limsup _{|t| \rightarrow+\infty} \frac{f(x, t)}{|t|^{p-2} t} \leq 0$ uniformly in $x \in \Omega$, and
$\left(\mathrm{f}_{4}\right)$ for suitable $a_{2}, A_{2}>0$ one has

$$
a_{2} \leq \liminf _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t} \leq \limsup _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t} \leq A_{2}
$$

uniformly in $x \in \Omega$.

3. Extremal constant-sign solutions

THEOREM 3.1. If $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ hold true then, for every $\lambda>0$ sufficiently large, problem (1.9) possesses a smallest positive solution $u_{\lambda} \in \operatorname{int}\left(C_{+}\right)$and a greatest negative solution $v_{\lambda} \in-\operatorname{int}\left(C_{+}\right)$.

Proof. Put $f_{+}(x, t):=f\left(x, t^{+}\right), F_{+}(x, \xi):=\int_{0}^{\xi} f_{+}(x, t) d t$, and define, provided $\lambda>0, u \in X$,

$$
\Phi_{\lambda,+}(u):=\frac{1}{p}\|u\|^{p}-\lambda \int_{\Omega} F_{+}(x, u(x)) d x
$$

Since X compactly embeds in $L^{p}(\Omega)$, the functional $\Phi_{\lambda,+}$ turns out to be weakly sequentially lower semi-continuous. By $\left(\mathrm{f}_{3}\right)$, for every $\lambda, \varepsilon>0$ we can find $t_{\lambda, \varepsilon}>0$ such that

$$
f(x, t)<\frac{\lambda_{1}}{\lambda} \varepsilon t^{p-1} \quad \text { for all }(x, t) \in \Omega \times \mathbb{R} \text { with } t \geq t_{\lambda, \varepsilon}
$$

Hence, on account of $\left(\mathrm{p}_{2}\right)$,

$$
\Phi_{\lambda,+}(u)>\frac{1-\varepsilon}{p}\|u\|^{p}-a_{3}(\lambda), \quad u \in X
$$

where $a_{3}(\lambda)>0$. Choosing $\varepsilon<1$ guarantees that $\Phi_{\lambda,+}$ is coercive. Let $\widehat{u} \in X$ satisfy

$$
\Phi_{\lambda,+}(\widehat{u})=\inf _{u \in X} \Phi_{\lambda,+}(u)
$$

From $\Phi_{\lambda,+}^{\prime}(\widehat{u})=0$ it follows

$$
\begin{equation*}
\langle A(\widehat{u}), v\rangle=\lambda \int_{\Omega} f_{+}(x, \widehat{u}(x)) v(x) d x, \quad v \in X \tag{3.1}
\end{equation*}
$$

with A as in (2.2). Due to (3.1) written for $v:=-\widehat{u}^{-}$one has $\left\|\widehat{u}^{-}\right\|^{p}=0$. Thus, $\widehat{u} \geq 0$ and, a fortiori, the function \widehat{u} solves (1.9). By (f_{4}) there exists $\delta>0$ fulfilling

$$
\begin{equation*}
f(x, t)>\frac{a_{2}}{2} t^{p-1} \quad \text { for all }(x, t) \in \Omega \times(0, \delta) \tag{3.2}
\end{equation*}
$$

Pick $\tau>0$ so small that $\tau \phi_{1}(x)<\delta$ in Ω. Through (3.2) and (p_{3}) we obtain

$$
\begin{equation*}
\Phi_{\lambda,+}\left(\tau \phi_{1}\right)<\frac{\tau^{p}}{p}\left(\lambda_{1}-\lambda \frac{a_{2}}{2}\right)<0 \tag{3.3}
\end{equation*}
$$

as soon as $\lambda>2 \lambda_{1} / a_{2}$. This evidently forces $\widehat{u} \neq 0$. Standard regularity results [8, Theorems 1.5.5-1.5.6] then yield $\widehat{u} \in C_{+}$. Since, because of (3.2),

$$
\Delta_{p} \widehat{u}(x)=-\lambda f(x, \widehat{u}(x)) \leq 0 \quad \text { in } \Omega(\widehat{u}(x)<\delta)
$$

while (f_{2}) leads to

$$
\Delta_{p} \widehat{u}(x) \leq \lambda\left(\frac{a_{1}}{\delta^{p-1}}+1\right) \widehat{u}(x)^{p-1} \quad \text { for every } x \in \Omega(\widehat{u}(x) \geq \delta)
$$

Theorem 5 in [15] gives $\widehat{u} \in \operatorname{int}\left(C_{+}\right)$. Now, Proposition 2.1 provides $\varepsilon>0$ such that $\varepsilon \phi_{1} \leq \widehat{u}$. Arguing exactly as in the proofs of [4, Lemma 4.23] and [4, Corollary 4.24], and using [15, Theorem 5] once more, we see that the set

$$
S_{\lambda,+}:=\left\{u \in\left[\varepsilon \phi_{1}, \widehat{u}\right]: u \text { satisfies (1.9) }\right\}
$$

possesses a smallest element, say u_{ε}. So, in particular, for every sufficiently large $n \in \mathbb{N}$ there exists a least solution

$$
\begin{equation*}
u_{n} \in \operatorname{int}\left(C_{+}\right) \cap\left[n^{-1} \phi_{1}, \widehat{u}\right] \tag{3.4}
\end{equation*}
$$

to (1.9). Consequently,

$$
\begin{equation*}
A\left(u_{n}\right)=\lambda f\left(\cdot, u_{n}\right) \quad \text { in } W^{-1, p^{\prime}}(\Omega) \tag{3.5}
\end{equation*}
$$

The minimality property of u_{n} gives

$$
\begin{equation*}
u_{n} \downarrow u_{\lambda} \quad \text { pointwise in } \Omega, \tag{3.6}
\end{equation*}
$$

where $u_{\lambda}: \Omega \rightarrow \mathbb{R}$ complies with $0 \leq u_{\lambda} \leq \widehat{u}$. We claim that u_{λ} turns out to be a solution of problem (1.9). In fact, by (3.5), (f_{2}), and (3.4), one has

$$
\left\|u_{n}\right\|^{p}=\left\langle A\left(u_{n}\right), u_{n}\right\rangle=\lambda \int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) d x \leq \lambda a_{1}\left(\|\widehat{u}\|_{1}+\|\widehat{u}\|_{p}^{p}\right)
$$

for all $n \in \mathbb{N}$, i.e. $\left\{u_{n}\right\} \subseteq X$ is bounded. Therefore, up to subsequences, $u_{n} \rightharpoonup u_{\lambda}$ in X. Gathering $\left(f_{1}\right),(3.6),\left(f_{2}\right)$, and (3.4) together we next achieve

$$
\lim _{n \rightarrow+\infty}\left\langle A\left(u_{n}\right), u_{n}-u_{\lambda}\right\rangle=\lim _{n \rightarrow+\infty} \lambda \int_{\Omega} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u_{\lambda}(x)\right) d x=0
$$

Because of $\left(\mathrm{p}_{5}\right)$ this implies $u_{n} \rightarrow u_{\lambda}$ in X. Now, the assertion follows from (3.5). If $u_{\lambda} \equiv 0$ then, by (3.6),

$$
\begin{equation*}
u_{n} \downarrow 0 \quad \text { pointwise in } \Omega \text {. } \tag{3.7}
\end{equation*}
$$

Put $v_{n}:=u_{n} /\left\|u_{n}\right\|$. Since $\left\{v_{n}\right\}$ is bounded, we may suppose (along a relabelled subsequence, when necessary)

$$
\begin{equation*}
v_{n} \rightharpoonup v \quad \text { in } X, \quad v_{n} \rightarrow v \quad \text { in } L^{p}(\Omega) \tag{3.8}
\end{equation*}
$$

as well as
(3.9) $\left|v_{n}(x)\right| \leq w(x) \quad$ for all $n \in \mathbb{N}, \quad v_{n}(x) \rightarrow v(x) \quad$ for almost all $x \in \Omega$, with $w \in L^{p}(\Omega)$. Through (3.5) one has

$$
\begin{equation*}
\left\langle A\left(v_{n}\right), v_{n}-v\right\rangle=\lambda \int_{\Omega} \frac{f\left(x, u_{n}\right)}{u_{n}^{p-1}} v_{n}^{p-1}\left(v_{n}-v\right) d x \tag{3.10}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ and using (3.7), (f_{4}), besides (3.9), yields

$$
\lim _{n \rightarrow+\infty}\left\langle A\left(v_{n}\right), v_{n}-v\right\rangle=0
$$

Hence, as before, $v_{n} \rightarrow v$ in X. The choice of v_{n} forces $v \neq 0$. By (3.5) again we next get

$$
A\left(v_{n}\right)=\lambda \frac{f\left(\cdot, u_{n}\right)}{u_{n}^{p-1}} v_{n}^{p-1} \quad \text { in } W^{-1, p^{\prime}}(\Omega)
$$

Due to (3.7)-(3.9) and $\left(\mathrm{f}_{4}\right)$, this implies

$$
-\Delta_{p} v(x)=\lambda m_{\lambda}(x) v(x)^{p-1} \quad \text { for almost every } x \in \Omega
$$

where

$$
\begin{equation*}
m_{\lambda}(x):=\liminf _{n \rightarrow+\infty} \frac{f\left(x, u_{n}(x)\right)}{u_{n}(x)^{p-1}} \geq m(x):=\liminf _{t \rightarrow 0^{+}} \frac{f(x, t)}{t^{p-1}} \tag{3.11}
\end{equation*}
$$

So, if $\lambda>\lambda_{1}(m)$, with $\lambda_{1}(m)$ being the first eigenvalue of the weighted nonlinear eigenvalue problem

$$
-\Delta_{p} u=\lambda m(x)|u|^{p-2} u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

then $\lambda>\lambda_{1}\left(m_{\lambda}\right)$, because (3.11) gives $\lambda_{1}(m) \geq \lambda_{1}\left(m_{\lambda}\right)$. Via [9, Proposition 6.2.15] we thus see that v changes sign in Ω, which is impossible. Consequently, $u_{\lambda} \geq 0$ but $u_{\lambda} \neq 0$, and Theorem 5 of [15] leads to $u_{\lambda} \in \operatorname{int}\left(C_{+}\right)$.

Let us finally verify that u_{λ} turns out to be minimal. Suppose $u \in \operatorname{int}\left(C_{+}\right)$ solves (1.9). Through Proposition 2.1 one has $n^{-1} \phi_{1} \leq u$ for any sufficiently large n. Without loss of generality we may assume that $u \leq \widehat{u}$, otherwise we replace u by a solution $\widetilde{u} \in \operatorname{int}\left(C_{+}\right)$such that $\widetilde{u} \leq \min \{u, \widehat{u}\}$, whose existence is achieved as in the proof of [4, Corollary 4.24]. Therefore, $u \in\left[n^{-1} \phi_{1}, \widehat{u}\right]$. Since u_{n} was the least solution of (1.9) belonging to $\left[n^{-1} \phi_{1}, \widehat{u}\right]$, from (3.6) it follows

$$
u_{\lambda}(x) \leq u_{n}(x) \leq u(x), \quad x \in \Omega,
$$

i.e. $u_{\lambda} \leq u$, which represents the desired conclusion.

Setting

$$
\Phi_{\lambda,-}(u):=\frac{1}{p}\|u\|^{p}-\lambda \int_{\Omega} F_{-}(x, u(x)) d x \quad \text { for all } u \in X,
$$

where $F_{-}(x, \xi):=\int_{0}^{\xi} f\left(x,-t^{-}\right) d t$, analogous arguments produce a greatest negative solution $v_{\lambda} \in-\operatorname{int}\left(C_{+}\right)$to problem (1.9).

Remark 3.2. The preceding proof shows that the conclusion of Theorem 3.1 holds provided $\lambda>\max \left\{2 \lambda_{1} / a_{2}, \lambda_{1}(m)\right\}$, with m as in (3.11).

4. Nodal solutions

Theorem 4.1. Under assumptions $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$, for every $\lambda>0$ sufficiently large, problem (1.9) possesses a nontrivial sign-changing solution $u_{0} \in C_{0}^{1}(\bar{\Omega})$ such that $v_{\lambda} \leq u_{0} \leq u_{\lambda}$, where u_{λ}, v_{λ} are given by Theorem 3.1.

Proof. Define, provided $x \in \Omega, t, \xi \in \mathbb{R}$,

$$
\begin{align*}
\widehat{f}(x, t) & := \begin{cases}f\left(x, v_{\lambda}(x)\right) & \text { if } t<v_{\lambda}(x), \\
f(x, t) & \text { for } v_{\lambda}(x) \leq t \leq u_{\lambda}(x), \\
f\left(x, u_{\lambda}(x)\right) & \text { when } t>u_{\lambda}(x),\end{cases} \tag{4.1}\\
\widehat{f_{ \pm}}(x, t) & :=\widehat{f}\left(x, \pm t^{ \pm}\right)
\end{align*}
$$

as well as

$$
\widehat{F}(x, \xi):=\int_{0}^{\xi} \widehat{f}(x, t) d t, \quad \widehat{F}_{ \pm}(x, \xi):=\int_{0}^{\xi} \widehat{f}_{ \pm}(x, t) d t
$$

Moreover, put

$$
\begin{align*}
\widehat{\Phi}_{\lambda}(u) & :=\frac{1}{p}\|u\|^{p}-\lambda \int_{\Omega} \widehat{F}(x, u(x)) d x \tag{4.2}\\
\widehat{\Phi}_{\lambda, \pm}(u) & :=\frac{1}{p}\|u\|^{p}-\lambda \int_{\Omega} \widehat{F}_{ \pm}(x, u(x)) d x \tag{4.3}
\end{align*}
$$

for all $u \in X$. The same reasoning made in the proof of Theorem 3.1 ensures here that the functionals $\widehat{\Phi}_{\lambda}, \widehat{\Phi}_{\lambda, \pm}$ are weakly sequentially lower semi-continuous and coercive. Hence, there exists $\bar{u} \in X$ satisfying

$$
\begin{equation*}
\widehat{\Phi}_{\lambda,+}(\bar{u})=\inf _{u \in X} \widehat{\Phi}_{\lambda,+}(u) \tag{4.4}
\end{equation*}
$$

As in the above-mentioned proof we then obtain

$$
\begin{equation*}
\bar{u} \in \operatorname{int}\left(C_{+}\right) . \tag{4.5}
\end{equation*}
$$

Proposition 2.1 furnishes

$$
\begin{equation*}
\tau \phi_{1}(x) \leq \bar{u}(x), \quad x \in \Omega \tag{4.6}
\end{equation*}
$$

for any $\tau>0$ small enough. From $\widehat{\Phi}_{\lambda,+}^{\prime}(\bar{u})=0$ it follows

$$
\begin{equation*}
\langle A(\bar{u}), v\rangle=\lambda \int_{\Omega} \widehat{f}_{+}(x, \bar{u}(x)) v(x) d x \quad \text { for all } v \in X \tag{4.7}
\end{equation*}
$$

with A given by (2.2). Due to (4.7), written for $v:=\left(\bar{u}-u_{\lambda}\right)^{+}$, and (4.1) one achieves

$$
\left\langle A(\bar{u})-A\left(u_{\lambda}\right),\left(\bar{u}-u_{\lambda}\right)^{+}\right\rangle=\lambda \int_{\Omega}\left[\widehat{f}_{+}(x, \bar{u})-f\left(x, u_{\lambda}\right)\right]\left(\bar{u}-u_{\lambda}\right)^{+} d x=0
$$

On account of $\left(\mathrm{p}_{5}\right)$ this implies $\bar{u} \leq u_{\lambda}$. So, owing to (4.1) and (4.7) again, the function \bar{u} turns out to be a solution of (1.9). Since u_{λ} was minimal, we must have $\bar{u}=u_{\lambda}$. Gathering (4.4)-(4.5) together yields that u_{λ} is a $C_{0}^{1}(\bar{\Omega})$-local minimum for $\widehat{\Phi}_{\lambda}$. By [8, Proposition 4.6.10], the function u_{λ} enjoys the same property in the space X. Likewise, replacing the functional $\widehat{\Phi}_{\lambda,+}$ with $\widehat{\Phi}_{\lambda,-}$ one realizes that v_{λ} is a local minimizer of $\widehat{\Phi}_{\lambda}$.

Let $w_{0} \in X$ fulfil $\widehat{\Phi}_{\lambda}\left(w_{0}\right)=\inf _{u \in X} \widehat{\Phi}_{\lambda}(u)$. Through (4.6) and (3.3) we infer

$$
\widehat{\Phi}_{\lambda}\left(w_{0}\right) \leq \widehat{\Phi}_{\lambda}\left(\tau \phi_{1}\right)=\widehat{\Phi}_{\lambda,+}\left(\tau \phi_{1}\right)=\Phi_{\lambda,+}\left(\tau \phi_{1}\right)<0
$$

i.e. $w_{0} \neq 0$, provided $\lambda>2 \lambda_{1} / a_{2}$. Further, $w_{0} \in\left[v_{\lambda}, u_{\lambda}\right]$ because

$$
\begin{equation*}
K\left(\widehat{\Phi}_{\lambda}\right) \subseteq\left[v_{\lambda}, u_{\lambda}\right] \tag{4.8}
\end{equation*}
$$

as a simple computation shows. Thus, w_{0} turns out to be a nontrivial solution of (1.9). Without loss of generality we may suppose $w_{0}=u_{\lambda}$ or $w_{0}=v_{\lambda}$, otherwise the extremality of u_{λ}, v_{λ} established in Theorem 3.1 would force a changing of sign for w_{0}, which completes the proof. So, let $w_{0}=u_{\lambda}$ (a similar reasoning applies when $w_{0}=v_{\lambda}$). We may assume also that v_{λ} is a strict local minimum of $\widehat{\Phi}_{\lambda}$. In fact, if this were false then infinitely many nodal solutions to (1.9) might be found via (4.8) besides the extremality of u_{λ}, v_{λ}, and the conclusion follows. Pick $\rho \in\left(0,\left\|u_{\lambda}-v_{\lambda}\right\|\right)$ such that

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}\left(u_{\lambda}\right) \leq \widehat{\Phi}_{\lambda}\left(v_{\lambda}\right)<\inf _{u \in \partial B_{\rho}\left(v_{\lambda}\right)} \widehat{\Phi}_{\lambda}(u) \tag{4.9}
\end{equation*}
$$

The functional $\widehat{\Phi}_{\lambda}$ is coercive and one has

$$
\left\langle\widehat{\Phi}_{\lambda}^{\prime}(u), v\right\rangle=\langle A(u), v\rangle+\langle B(u), v\rangle \quad \text { for all } u, v \in X
$$

where

$$
\langle B(u), v\rangle:=-\lambda \int_{\Omega} f(x, u(x)) v(x) d x
$$

By $\left(\mathrm{p}_{5}\right)$ the operator A turns out to be of type $(\mathrm{S})_{+}$while $B: X \rightarrow X^{*}$ is compact, because $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$ hold true and X compactly embeds in $L^{p}(\Omega)$. So, Proposition 2.2 guarantees that $\widehat{\Phi}_{\lambda}$ satisfies (PS). Bearing in mind (4.9), the Mountain-Pass Theorem can be applied. Hence, there exists $u_{0} \in X$ complying with $\widehat{\Phi}_{\lambda}^{\prime}\left(u_{0}\right)=0$ and

$$
\begin{equation*}
\inf _{u \in \partial B_{\rho}\left(v_{\lambda}\right)} \widehat{\Phi}_{\lambda}(u) \leq \widehat{\Phi}_{\lambda}\left(u_{0}\right)=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \widehat{\Phi}_{\lambda}(\gamma(t)) \tag{4.10}
\end{equation*}
$$

where

$$
\Gamma:=\left\{\gamma \in C^{0}([0,1], X): \gamma(0)=v_{\lambda}, \gamma(1)=u_{\lambda}\right\} .
$$

Due to (4.8) and (4.1) the function u_{0} solves (1.9). By (4.9)-(4.10) one has $u_{0} \notin\left\{u_{\lambda}, v_{\lambda}\right\}$, while standard regularity arguments provide $u_{0} \in C_{0}^{1}(\bar{\Omega})$. The proof is thus completed once we verify that $u_{0} \neq 0$. This immediately comes out from

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}\left(u_{0}\right)<0 \tag{4.11}
\end{equation*}
$$

which, in view of (4.10), holds whenever we construct a path $\widehat{\gamma} \in \Gamma$ satisfying

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}(\widehat{\gamma}(t))<0 \quad \text { for all } t \in[0,1] \tag{4.12}
\end{equation*}
$$

Owing to $\left(\mathrm{p}_{4}\right)$, there exists $\gamma \in \Gamma_{0}$ such that

$$
\max _{t \in[-1,1]}\|\gamma(t)\|^{p}<\lambda_{2}+\frac{a_{2}}{2^{p+1}}
$$

Define $S_{C}:=S \cap C_{0}^{1}(\bar{\Omega})$ and consider on S_{C} the topology induced by that of $C_{0}^{1}(\bar{\Omega})$. Clearly, S_{C} is a dense subset of S. So, we can find $\gamma_{0} \in C^{0}\left([-1,1], S_{C}\right)$ such that $\gamma_{0}(-1)=-\phi_{1}, \gamma_{0}(1)=\phi_{1}$, and

$$
\max _{t \in[-1,1]}\left\|\gamma(t)-\gamma_{0}(t)\right\|^{p}<\frac{a_{2}}{2^{p+1}} .
$$

This evidently forces

$$
\begin{equation*}
\max _{t \in[-1,1]}\left\|\gamma_{0}(t)\right\|^{p}<2^{p-1} \lambda_{2}+\frac{a_{2}}{2} \tag{4.13}
\end{equation*}
$$

Assumption (f_{4}) yields

$$
\begin{equation*}
F(x, \xi) \geq \frac{a_{2}}{2 p}|\xi|^{p} \quad \text { provided }|\xi| \leq \delta \tag{4.14}
\end{equation*}
$$

where $\delta>0$. Pick $\varepsilon_{0}>0$ fulfilling

$$
\begin{equation*}
\varepsilon_{0} \max _{x \in \bar{\Omega}}|u(x)| \leq \delta \quad \text { for all } u \in \gamma_{0}([-1,1]) \tag{4.15}
\end{equation*}
$$

Since $u_{\lambda},-v_{\lambda} \in \operatorname{int}\left(C_{+}\right)$, to every $u \in \gamma_{0}([-1,1])$ and every bounded neighbourhood V_{u} of u in $C_{0}^{1}(\bar{\Omega})$ there corresponds $\nu_{u}>0$ such that

$$
u_{\lambda}-\frac{1}{m} v \in \operatorname{int}\left(C_{+}\right), \quad-v_{\lambda}+\frac{1}{n} v \in \operatorname{int}\left(C_{+}\right) \quad \text { whenever } m, n \geq \nu_{u}, v \in V_{u}
$$

Through the compactness of $\gamma_{0}([-1,1])$ in $C_{0}^{1}(\bar{\Omega})$ we thus obtain $\varepsilon_{1}>0$ satisfying

$$
\begin{equation*}
v_{\lambda}(x) \leq \varepsilon u(x) \leq u_{\lambda}(x) \quad \text { for all } x \in \Omega, u \in \gamma_{0}([-1,1]), \varepsilon \in\left(0, \varepsilon_{1}\right) \tag{4.16}
\end{equation*}
$$

The function $t \mapsto \gamma_{0}(t), t \in[-1,1]$, is a continuous path in S_{C} joining $-\phi_{1}$ with ϕ_{1}. Moreover, if $0<\varepsilon<\min \left\{\varepsilon_{0}, \varepsilon_{1}\right\}$ then (4.13), (4.16), (4.15), and (4.14) give

$$
\begin{align*}
\widehat{\Phi}_{\lambda}\left(\varepsilon \gamma_{0}(t)\right) & =\frac{\varepsilon^{p}}{p}\left\|\gamma_{0}(t)\right\|^{p}-\lambda \int_{\Omega} \widehat{F}\left(x, \varepsilon \gamma_{0}(t)(x)\right) d x \tag{4.17}\\
& \leq \frac{\varepsilon^{p}}{p}\left(2^{p-1} \lambda_{2}+\frac{a_{2}}{2}\right)-\lambda \frac{a_{2}}{2 p} \varepsilon^{p} \int_{\Omega}\left|\gamma_{0}(t)(x)\right|^{p} d x \\
& =\frac{\varepsilon^{p}}{p}\left(2^{p-1} \lambda_{2}+\frac{(1-\lambda) a_{2}}{2}\right)<0
\end{align*}
$$

for all $t \in[-1,1]$, whenever $\lambda>\left(2^{p} \lambda_{2}+a_{2}\right) / a_{2}$.
Now, set $a:=\widehat{\Phi}_{\lambda,+}\left(u_{\lambda}\right), b:=\widehat{\Phi}_{\lambda,+}\left(\varepsilon \phi_{1}\right)$, and observe that $a<b<0$. In fact, as the reasoning made below (4.4) actually shows, u_{λ} is the unique global minimizer for $\widehat{\Phi}_{\lambda,+}$. Consequently, $a<b$, while (4.17) written for $t=1$ yields $b<0$. Thus, in particular,

$$
K_{a}\left(\widehat{\Phi}_{\lambda,+}\right)=\left\{u_{\lambda}\right\}
$$

Since $K\left(\widehat{\Phi}_{\lambda,+}\right) \subseteq\left[0, u_{\lambda}\right]$ and, by Theorem 3.1, u_{λ} turns out to be the smallest positive solution of (1.9), no critical value of $\widehat{\Phi}_{\lambda,+}$ lies in $(a, b]$. So, by the second deformation lemma [9, Theorem 5.1.33], there exists a continuous function $h:[0,1] \times\left(\widehat{\Phi}_{\lambda,+}\right)^{b} \rightarrow\left(\widehat{\Phi}_{\lambda,+}\right)^{b}$ fulfilling

$$
h(0, u)=u, \quad h(1, u)=u_{\lambda}, \quad \text { and } \quad \widehat{\Phi}_{\lambda,+}(h(t, u)) \leq \widehat{\Phi}_{\lambda,+}(u)
$$

for all $(t, u) \in[0,1] \times\left(\widehat{\Phi}_{\lambda,+}\right)^{b}$. Let $\gamma_{+}(t):=h\left(t, \varepsilon \phi_{1}\right)^{+}, t \in[0,1]$. Then $\gamma_{+}(0)=$ $\varepsilon \phi_{1}, \gamma_{+}(1)=u_{\lambda}$, as well as
(4.18) $\widehat{\Phi}_{\lambda}\left(\gamma_{+}(t)\right)=\widehat{\Phi}_{\lambda,+}\left(\gamma_{+}(t)\right) \leq \widehat{\Phi}_{\lambda,+}\left(h\left(t, \varepsilon \phi_{1}\right)\right) \leq \widehat{\Phi}_{\lambda,+}\left(\varepsilon \phi_{1}\right)<0 \quad$ in $[0,1]$.

In a similar way, but with $\widehat{\Phi}_{\lambda,-}$ in place of $\widehat{\Phi}_{\lambda,+}$, we can construct a continuous function $\gamma_{-}:[0,1] \rightarrow X$ such that $\gamma_{-}(0)=v_{\lambda}, \gamma_{-}(1)=-\varepsilon \phi_{1}$, and

$$
\begin{equation*}
\widehat{\Phi}_{\lambda}\left(\gamma_{-}(t)\right)<0 \quad \text { for all } t \in[0,1] \tag{4.19}
\end{equation*}
$$

Concatenating $\gamma_{-}, \varepsilon \gamma_{0}$, and γ_{+}we obtain a path $\widehat{\gamma} \in \Gamma$ which, in view of (4.17)(4.19), satisfies (4.12). This shows (4.11), whence $u_{0} \neq 0$.

Remark 4.2. Through Remark 5.3, the above proof, and (p_{1}) one realizes that the conclusion of Theorem 4.1 holds provided

$$
\lambda>\max \left\{\frac{2^{p} \lambda_{2}}{a_{2}}+1, \lambda_{1}(m)\right\}
$$

with m given by (3.11).

5. Existence of multiple solutions

Gathering Theorems 3.1 and 4.1 together directly yields the following result.
Theorem 5.1. Assume $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ hold true. Then (1.9) has a smallest positive solution $u_{\lambda} \in \operatorname{int}\left(C_{+}\right)$, a biggest negative solution $v_{\lambda} \in-\operatorname{int}\left(C_{+}\right)$, and a sign-changing solution $u_{0} \in C_{0}^{1}(\bar{\Omega})$ such that $v_{\lambda} \leq u_{0} \leq u_{\lambda}$ for any sufficiently large $\lambda>0$.

A meaningful special case occurs when the nonlinearity $(x, t) \mapsto f(x, t)$ is odd in t.

Theorem 5.2. If $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$ are satisfied, $f(x, \cdot)$ turns out to be odd for all $x \in \Omega$ and, moreover,
$\left(\mathrm{f}_{3}^{\prime}\right) \limsup _{t \rightarrow+\infty} \frac{f(x, t)}{t^{p-1}} \leq 0$ uniformly in $x \in \Omega$,
$\left(\mathrm{f}_{4}^{\prime}\right)$ there exist $a_{2}, A_{2}>0$ such that

$$
a_{2} \leq \liminf _{t \rightarrow 0^{+}} \frac{f(x, t)}{t^{p-1}} \leq \limsup _{t \rightarrow 0^{+}} \frac{f(x, t)}{t^{p-1}} \leq A_{2}
$$

uniformly in $x \in \Omega$,
then the same conclusion of Theorem 5.1 holds, with $v_{\lambda}=-u_{\lambda}$.
REmark 5.3. Unlike most of the multiplicity results for elliptic problems with odd nonlinearities available in the literature (see for instance [11, Section 11.3] and the references therein), due to (f_{2}), the function f does not fulfil the classical Ambrosetti-Rabinowitz condition:
(AR) There are $\theta>p, r>0$ such that $0<\theta F(x, \xi) \leq \xi f(x, \xi)$ provided $x \in \Omega$ and $|\xi| \geq r$.

Hence, the Symmetric Mountain-Pass Theorem [11, Theorem 11.5] cannot be applied here.

Remark 5.4. Hypothesis (f_{4}^{\prime}) guarantees that $F\left(x, \xi_{0}\right)>0$ for some $\xi_{0}>0$, with F being as in (2.3).

Theorem 5.2 positively answers under $\left(f_{4}^{\prime}\right)$ the following question, posed to the second author by Prof. B. Ricceri [14]. Let $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be an odd function. Suppose f_{0} is continuous and satisfies:

$$
\lim _{t \rightarrow+\infty} \frac{f_{0}(t)}{t}=0, \quad \int_{0}^{\xi_{0}} f_{0}(t) d t>0 \quad \text { for some } \xi_{0}>0
$$

Is there a $\mu>0$ such that, for each $\lambda>\mu$, the problem:

$$
-\Delta u=\lambda f_{0}(u) \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

possesses a sign-changing weak solution?
Finally, to give an idea of possible applications, consider e.g. the case when $p \geq 2$ and

$$
f(x, t):=|t|^{p-2} \sin t, \quad(x, t) \in \Omega \times \mathbb{R} .
$$

A simple verification shows that $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ are fulfilled with $a_{1}=a_{2}=1$. Further, $\lambda_{1}(m)=\lambda_{1}$ because $m(x)=1$ for all $x \in \Omega$, where m is defined in (3.11). Since $\lambda_{2}>\lambda_{1}$ by $\left(\mathrm{p}_{1}\right)$, Theorem 5.1 and Remark 4.2 assert that the Dirichlet problem:

$$
-\Delta_{p} u=\lambda|u|^{p-2} \sin u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

has two extremal constant-sign solutions and a nodal solution provided $\lambda>$ $2^{p} \lambda_{2}+1$.

A similar comment remains true for

$$
f(x, t):=|t|^{p-2}\left((-1)^{[t]}+c\right) \sin t, \quad(x, t) \in \Omega \times \mathbb{R} .
$$

Here $p>2$, the symbol $[t]$ denotes the greatest integer less than or equal to t, while $c>1$. It is worth noting that $f(x, \cdot)$ does not satisfy (1.10).

References

[1] A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[2] A. Ambrosetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242.
[3] P. Candito, S. Carl and R. Livrea, Multiple solutions for quasilinear elliptic problems via critical points in open sublevels and truncation principles, J. Math. Anal. Appl. 395 (2012), 156-163.
[4] S. Carl, V.K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer Monogr. Math., Springer, New York, 2007.
[5] S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal. 68 (2008), 2668-2676.
[6] S. Carl and K. Perera, Sign-changing and multiple solutions for the p-Laplacian, Abstr. Appl. Anal. 7 (2002), 613-625.
[7] M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212-238.

Multiple Solutions to a Dirichlet Eigenvalue Problem with p-Laplacian 291
[8] L. Gasiński and N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman \& Hall/CRC, Boca Raton, FL, 2005.
\qquad , Topics in Nonlinear Analysis, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[10] S. Hu and N.S. Papageorgiou, Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J. 62 (2010), 137162.
[11] Y. Jabri, The Mountain Pass Theorem: Variants, Generalizations and some Applications, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 2003.
[12] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), 1057-1099.
[13] S.A. Marano and N.S. Papageorgiou, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal. 12 (2013), 815-829.
[14] B. Ricceri, personal communication.
[15] J.L. VÁzQUEz, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Salvatore A. Marano

Dipartimento di Matematica e Informatica Università degli Studi di Catania
Viale A. Doria 6
95125 Catania, ITALY
E-mail address: marano@dmi.unict.it

Dumitru Motreanu
Départment de Mathématiques
Université de Perpignan
52 Avenue Paul Alduy
66860 Perpignan, FRANCE
E-mail address: motreanu@univ-perp.fr

Daniele Puglisi
Dipartimento di Matematica e Informatica
Università degli Studi di Catania
A. Doria 6

95125 Catania, ITALY
E-mail address: dpuglisi@dmi.unict.it

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J92, 49J40.
 Key words and phrases. Dirichlet eigenvalue problem, p-Laplacian, constant-sign solutions, nodal solutions.

