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1. Introduction

Let Ω be a bounded domain in RN having a C2-boundary ∂Ω, let a ∈ Ls(Ω) for appropriate s ≥ 1, and 
let f : Ω × R → R be a Carathéodory function. The semilinear elliptic equation with indefinite unbounded 
potential

−Δu + a(x)u = f(x, u) in Ω

has by now been widely investigated under Dirichlet or Neumann boundary conditions; see [10,19]
and [20,22], respectively, besides the references given there. If a(x) ≡ 0 then the case of asymmetric nonlin-
earities f , meaning that t �→ f(x, t)t−1 crosses at least the principal eigenvalue of the relevant differential 
operator as t goes from −∞ to +∞, was also studied; cf. [6,7,24]. From a technical point of view, the Fučik 
spectrum is often exploited [2], which entails that the limits lim

t→±∞
f(x, t)t−1 do exist.
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This work treats equations having both difficulties under Robin boundary conditions. Hence, for a(x)
bounded only from above, s > N , and β ∈ W 1,∞(∂Ω) nonnegative, we consider the problem

⎧⎨
⎩

−Δu + a(x)u = f(x, u) in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω,

(1.1)

where ∂u
∂n := ∇u · n, with n(x) being the outward unit normal vector to ∂Ω at its point x. As usual, 

u ∈ H1(Ω) is called a (weak) solution of (1.1) provided

∫
Ω

∇u · ∇v dx +
∫
∂Ω

βuv dσ +
∫
Ω

auv dx =
∫
Ω

f(x, u)v dx ∀v ∈ H1(Ω).

Our assumptions on the reaction f at infinity are essentially the following.

• There exists k ≥ 2 such that λ̂k ≤ lim inf
t→−∞

f(x, t)
t

≤ lim sup
t→−∞

f(x, t)
t

≤ λ̂k+1,

• lim sup
t→+∞

f(x, t)
t

≤ λ̂1, and lim
t→+∞

⎡
⎣f(x, t)t− 2

t∫
0

f(x, τ)dτ

⎤
⎦ = +∞

uniformly in x ∈ Ω. Here, λ̂n denotes the nth-eigenvalue of the problem

−Δu + a(x)u = λu in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω. (1.2)

It should be noted that a possible interaction (resonance) with eigenvalues is allowed. If an additional 
condition on the behavior of t �→ f(x, t)t−1 as t → 0 holds then we obtain at least two nontrivial C1-solutions 
to (1.1), one of which is positive; see Theorems 3.1–3.3 for precise statements. As an example, Theorem 3.1
applies when

f(x, t) :=
{
bt if t ≤ 1,
λ̂1t−

√
t + (b− λ̂1 + 1)t−1 otherwise,

with λ̂k ≤ b ≤ λ̂k+1 and k > 2 large enough, or

f(x, t) :=

⎧⎪⎨
⎪⎩

b(t + 1) − c if t < −1,
ct if |t| ≤ 1,
λ̂1(t− 1) + c otherwise,

where c > λ̂2. Let us point out that, unlike previous results, the nonlinearities treated by Theorem 3.3 turn 
out to be concave near zero. Finally, Theorem 3.4 gives a third nontrivial C1-solution once

f(x, ·) ∈ C1(R) and sup
t∈R

|f ′
t(·, t)| ∈ L∞(Ω).

Our arguments are patterned after those of [13] (cf. also [12]) where, however, the Dirichlet problem is inves-
tigated, a(x) ≡ 0, but the p-Laplace operator Δpu := div(|∇u|p−2∇u) appears. Moreover, the hypotheses 
on f made there do not permit resonance at any eigenvalue. The approach we adopt exploits variational and 
truncation techniques, as well as results from Morse theory. Regularity of solutions basically arises from [26].
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Problem (1.1) evidently falls inside the more general one

−Δpu + a(x)|u|p−2u = f(x, u) in Ω, |∇u|p−2 ∂u

∂n
+ β(x)|u|p−2u = 0 on ∂Ω.

It will be addressed in a future work but, mainly due to the limited information available at present on the 
associated eigenvalue problem when p �= 2, the matter looks non-standard.

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. Given a set V ⊆ X, write V for the closure of V , ∂V for the 
boundary of V , and int(V ) for the interior of V . If x ∈ X and δ > 0 then Bδ(x) := {z ∈ X : ‖z − x‖ < δ}
while Bδ := Bδ(0). The symbol (X∗, ‖ · ‖X∗) denotes the dual space of X, 〈·, ·〉 indicates the duality pairing 
between X and X∗, while xn → x (respectively, xn ⇀ x) in X means ‘the sequence {xn} converges strongly 
(respectively, weakly) in X’. We say that Φ : X → R is coercive iff lim‖x‖→+∞ Φ(x) = +∞. Φ is called 
weakly sequentially lower semi-continuous when xn ⇀ x in X implies

Φ(x) ≤ lim inf
n→∞

Φ(xn).

Let Φ ∈ C1(X). The classical Cerami compactness condition for Φ reads as follows.

(C) Every sequence {xn} ⊆ X such that {Φ(xn)} is bounded and

lim
n→+∞

(1 + ‖xn‖)‖Φ′(xn)‖X∗ = 0

has a convergent subsequence.

Define, provided c ∈ R,

Φc := {x ∈ X : Φ(x) ≥ c}, Φc := {x ∈ X : Φ(x) ≤ c},
K(Φ) := {x ∈ X : Φ′(x) = 0}, Kc(Φ) := K(Φ) ∩ Φ−1(c).

Given a topological pair (A, B) fulfilling B ⊂ A ⊆ X, the symbol Hq(A, B), q ∈ N0, indicates the qth-relative 
singular homology group of (A, B) with integer coefficients. If x0 ∈ Kc(Φ) is an isolated point of K(Φ) then

Cq(Φ, x0) := Hq(Φc ∩ V,Φc ∩ V \ {x0}), q ∈ N0,

are the critical groups of Φ at x0. Here, V stands for any neighborhood of x0 such that K(Φ) ∩Φc∩V = {x0}. 
By excision, this definition does not depend on the choice of V . Suppose Φ satisfies Condition (C), Φ|K(Φ)
is bounded below, and c < inf

x∈K(Φ)
Φ(x). Put

Cq(Φ,∞) := Hq(X,Φc), q ∈ N0.

The Second Deformation Lemma [8, Theorem 5.1.33] implies that this definition does not depend on the 
choice of c. If K(Φ) is finite, then setting

M(t, x) :=
+∞∑

rankCq(Φ, x)tq, P (t,∞) :=
+∞∑

rankCq(Φ,∞)tq ∀(t, x) ∈ R×K(Φ),

q=0 q=0
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the Morse relation below holds: ∑
x∈K(Φ)

M(t, x) = P (t,∞) + (1 + t)Q(t), (2.1)

where Q(t) denotes a formal series with nonnegative integer coefficients; see for instance [17, Theorem 6.62].

Proposition 2.1. Let h ∈ C1([0, 1] ×X). Assume that:

(i1) h maps bounded sets into bounded sets.
(i2) h(0, ·) and h(1, ·) satisfy Condition (C).
(i3) t �→ h′

t(t, x) is locally Lipschitz continuous. Moreover, there exist α > 0, p ∈ (1, +∞) such that 
|h′

t(t, x)| ≤ α‖x‖p in [0, 1] ×X.
(i4) x �→ h′

x(t, x) is locally Lipschitz continuous and with appropriate a, δ > 0 one has

h(t, x) ≤ a =⇒ (1 + ‖x‖)|h′
x(t, x)| ≥ δ‖x‖p.

Then Cq(h(0, ·), ∞) = Cq(h(1, ·), ∞) for all q ∈ N0.

This result represents a slight generalization of [11, Proposition 3.2]. Therefore, we omit the proof.
Now, let X be a Hilbert space, let x ∈ K(Φ), and let Φ be C2 in a neighborhood of x. If Φ′′(x) turns out 

to be invertible, then x is called non-degenerate. The Morse index d of x is the supremum of the dimensions 
of the vector subspaces of X on which Φ′′(x) turns out to be negative definite. When x is non-degenerate 
and with Morse index d one has

Cq(Φ, x) = δq,dZ, q ∈ N0. (2.2)

The monographs [15,17] represent general references on the subject.
Throughout this paper, Ω denotes a bounded domain of the real euclidean N -space (RN , | · |) whose 

boundary is C2. On ∂Ω we will employ the (N−1)-dimensional Hausdorff measure σ. The Trace Theorem [3, 
Theorem 2.79] ensures that there exists a unique completely continuous linear operator γ : H1(Ω) → L2(∂Ω)
such that

γ(u) = u|∂Ω ∀u ∈ C1(Ω), ker(γ) = H1
0 (Ω).

To simplify notation, we let u in place of γ(u) when no confusion can arise. The symbol ‖ · ‖q with q ≥ 1
indicates the usual norm of Lq(Ω) and

‖u‖ :=
(
‖∇u‖2

2 + ‖u‖2
2
)1/2

, u ∈ H1(Ω),

C+ := {u ∈ C0(Ω) : u(x) ≥ 0 ∀x ∈ Ω}.

Write 2∗ for the critical exponent of the Sobolev embedding H1(Ω) ⊆ Lq(Ω). Recall that 2∗ = 2N/(N − 2)
if 2 < N , 2∗ = +∞ otherwise, and the embedding is compact whenever 1 ≤ q < 2∗. Moreover,

int(C+) = {u ∈ C+ : u(x) > 0 ∀x ∈ Ω}.

Given t ∈ R, u, v : Ω → R, and f : Ω × R → R, define

t± := max{±t, 0}, u±(x) := u(x)±, Nf (u)(x) := f(x, u(x)).

u ≤ v signifies u(x) ≤ v(x) for almost every x ∈ Ω. The meaning of u < v etc. is analogous.
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Remark 2.1. If u ∈ H1(Ω), w ∈ L2(Ω), and β ∈ L∞(∂Ω) then the condition
∫
Ω

∇u(x) · ∇v(x)dx +
∫
∂Ω

β(x)u(x)v(x)dσ =
∫
Ω

w(x)v(x)dx, v ∈ H1(Ω),

is equivalent to

−Δu = w a.e. in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω.

This easily comes out from the nonlinear Green’s identity [8, Theorem 2.4.54]; see for instance the proof of 
[21, Proposition 3].

We shall employ some facts about the spectrum of the operator u �→ −Δu + a(x)u in H1(Ω) with 
homogeneous Robin boundary conditions. So, consider the eigenvalue problem (1.2) where, from now on,

a ∈ Ls(Ω) for some s > N, a+ ∈ L∞(Ω), β ∈ W 1,∞(∂Ω), and β ≥ 0. (2.3)

Define

E(u) := ‖∇u‖2
2 +

∫
Ω

a(x)u(x)2dx +
∫
∂Ω

β(x)u(x)2dσ ∀u ∈ H1(Ω). (2.4)

Lemma 2.1. There exist â, ̂b > 0 such that

E(u) + â‖u‖2
2 ≥ b̂‖u‖2 ∀u ∈ H1(Ω).

Proof. If the conclusion was false, we could construct a sequence {un} ⊆ H1(Ω) fulfilling

E(un) + n‖un‖2
2 <

1
n
‖un‖2, n ∈ N. (2.5)

Set vn := ‖un‖−1un. Since

‖vn‖ = 1 ∀n ∈ N, (2.6)

we may assume that

vn ⇀ v in H1(Ω), vn → v in L2(Ω), and vn → v in L2(∂Ω). (2.7)

Therefore,

E(v) ≤ lim inf
n→+∞

E(vn). (2.8)

From (2.5)–(2.8) it follows v = 0 as well as n‖vn‖2
2 → 0, which implies

lim
n→+∞

‖vn‖ = 0. (2.9)

In fact, on account of (2.5),

0 = E(0) ≤ lim inf
n→+∞

E(vn) ≤ lim sup E(vn) ≤ lim
n→+∞

(
1 − n‖vn‖2

2

)
= 0
n→+∞ n
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and, by (2.7),

0 = lim
n→+∞

E(vn) = lim
n→+∞

‖∇vn‖2
2.

However, (2.9) contradicts (2.6). �
Thanks to the above lemma, letting

(u, v) :=
∫
Ω

∇u · ∇vdx +
∫
Ω

(a(x) + â)uvdx +
∫
∂Ω

β(x)uvdσ ∀u, v ∈ H1(Ω)

produces a scalar product on H1(Ω) equivalent to the usual one. Further, given u ∈ L2(Ω), there exists a 
unique ũ ∈ H1(Ω) such that

(ũ, v) =
∫
Ω

u(x)v(x)dx, v ∈ H1(Ω).

Let K : L2(Ω) → H1(Ω) be defined by

K(u) := ũ for every u ∈ L2(Ω)

and let i : H1(Ω) → L2(Ω) be the embedding map. Obviously, K ◦ i : H1(Ω) → H1(Ω) is linear, compact, 
self-adjoint, while

(K ◦ i(u), v) =
∫
Ω

u(x)v(x)dx ∀u, v ∈ H1(Ω).

Consequently,

(K ◦ i(u), u) = ‖u‖2
2, u ∈ H1(Ω).

Theorem 3.1.57 in [8] ensures that K ◦ i possesses a decreasing sequence {μn} of positive eigenvalues such 
that μn → 0. Then

λ̂n := 1
μn

− â, n ∈ N,

represent the eigenvalues of (1.2) and there exists a corresponding sequence {ûn} ⊆ H1(Ω) of eigenfunctions, 
which turns out to be an orthonormal basis of H1(Ω). For each n ∈ N, denote by E(λ̂n) the eigenspace 
associated with λ̂n. It is known that:

(p1) E(λ̂n) is finite dimensional.
(p2) If u lies in E(λ̂n) and vanishes on a set of positive Lebesgue measure, then u = 0.
(p3) E(λ̂n) ⊆ C1(Ω).
(p4) H1(Ω) = ⊕∞

n=1E(λ̂n). Moreover,

λ̂1 = inf
{
E(u)
‖u‖2

2
: u ∈ H1(Ω), u �= 0

}
, (2.10)

λ̂n = inf
{
E(u)
‖u‖2

2
: u ∈ Ĥn, u �= 0

}
= sup

{
E(u)
‖u‖2

2
: u ∈ H̄n, u �= 0

}
, n ≥ 2,

where Ĥn := ⊕∞
i=nE(λ̂i) and H̄n := ⊕n

i=1E(λ̂i).
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(p5) Elements of E(λ̂1) do not change sign and λ̂1 is simple.
(p6) There exists an L2-normalized eigenfunction û1 ∈ int(C+) associated with λ̂1.
(p7) Each λ̂n with n ≥ 2 possesses nodal eigenfunctions.

In particular, (p2) comes out from [5, Proposition 3], the regularity results of [26, Section 5] imply (p3), 
while (p5) is easily verified through Picone’s identity [17, p. 255] besides (2.10). The same holds true for (p7); 
see, e.g., [17, Section 9.3]. Finally, Theorems 2.5.2 and 5.5.1 in [23] basically yield (p6).

The next characterization of λ̂2 will be used later. Its proof is analogous to that of [21, Proposition 5].

(p8) Write M := {u ∈ H1(Ω) : ‖u‖2 = 1} as well as

Γ1 := {γ ∈ C0([−1, 1],M) : γ(−1) = −û1, γ(1) = û1}.

Then

λ̂2 = inf
γ∈Γ1

max
t∈[−1,1]

E(γ(t)).

A simple argument, based on orthogonality, (p2), and (p4), gives the next result.

Lemma 2.2. Let n ∈ N and let θ ∈ L∞(Ω) \ {λ̂n} satisfy θ ≥ λ̂n. Then there exists a constant c̄ > 0 such 
that

E(u) −
∫
Ω

θ(x)u(x)2dx ≤ −c̄‖u‖2 ∀u ∈ H̄n.

Let n ∈ N and let θ ∈ L∞(Ω) \ {λ̂n} satisfy θ ≤ λ̂n. Then there exists a constant ĉ > 0 such that

E(u) −
∫
Ω

θ(x)u(x)2dx ≥ ĉ‖u‖2 ∀u ∈ Ĥn.

Finally, consider the weighted eigenvalue problem

−Δu + a(x)u = λα(x)u in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω, (2.11)

where α ∈ L∞(Ω) \{0} and α ≥ 0. Arguing as before produces an increasing sequence {λ̂n(α)} of eigenvalues 
for (2.11), which enjoys similar properties. In particular, via the analogue of (p2) we achieve the following 
(cf. [5, Proposition 1]):

(p9) If α1, α2 ∈ L∞(Ω) \ {0}, 0 ≤ α1 ≤ α2, and α1 �= α2 then λ̂n(α2) < λ̂n(α1) for all n ∈ N.

3. Existence results

To avoid unnecessary technicalities, ‘for every x ∈ Ω’ will take the place of ‘for almost every x ∈ Ω’ and 
the variable x will be omitted when no confusion can arise. Define

n0 := inf{n ∈ N : λ̂n ≥ 0}.

Let f : Ω × R → R be a Carathéodory function such that f(·, 0) = 0 and let
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F (x, ξ) :=
ξ∫

0

f(x, t)dt, (x, ξ) ∈ Ω × R. (3.1)

We will posit the following assumptions.

(f1) There exists a0 ∈ L∞(Ω) such that

|f(x, t)| ≤ a0(x)(1 + |t|) ∀(x, t) ∈ Ω × R.

(f2) lim sup
t→+∞

f(x, t)
t

≤ λ̂1 and lim
t→+∞

[f(x, t)t − 2F (x, t)] = +∞ uniformly in x ∈ Ω.

(f3) For some k ≥ max{n0, 2} one has

λ̂k ≤ lim inf
t→−∞

f(x, t)
t

≤ lim sup
t→−∞

f(x, t)
t

≤ λ̂k+1

uniformly with respect to x ∈ Ω and

f(x, t)t− 2F (x, t) ≥ 0 ∀(x, t) ∈ Ω × R
−
0 . (3.2)

(f4) There exist a1, a2 ∈ L∞(Ω) such that λ̂2 < a1 ≤ a2 and

a1(x) ≤ lim inf
t→0

f(x, t)
t

≤ lim sup
t→0

f(x, t)
t

≤ a2(x)

uniformly in x ∈ Ω.

We start by pointing out the next auxiliary results.

Lemma 3.1. Let (f2) be satisfied. Then

lim
t→+∞

[λ̂1t
2 − 2F (x, t)] = +∞

uniformly with respect to x ∈ Ω.

Proof. Given any K > 0, one can find δK > 0 such that f(x, t)t −2F (x, t) > K for all (x, t) ∈ Ω × [δK , +∞). 
Hence,

d

dt

(
F (x, t)

t2

)
>

K

t3
provided t ≥ δK

and, a fortiori,

F (x, ξ)
ξ2 − F (x, t)

t2
> −K

2

(
1
ξ2 − 1

t2

)

whenever ξ ≥ t ≥ δK . Since

lim sup
ξ→+∞

2F (x, ξ)
ξ2 ≤ λ̂1 uniformly in x ∈ Ω,

the above inequality produces λ̂1t
2 − 2F (x, t) ≥ K for every (x, t) ∈ Ω × [δK , +∞). As K was arbitrary, the 

conclusion follows. �
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Lemma 3.2. If (2.3), (f1), and (f4) hold, then every nontrivial solution u0 ≥ 0 of (1.1) belongs to int(C+).

Proof. Using (f1) and (f4) we get c0 > 0 such that |f(x, t)| ≤ c0|t| in Ω ×R. Therefore, the function b : Ω → R

defined by

b(x) := f(x, u0(x))
u0(x) if u0(x) �= 0, b(x) := 0 otherwise,

is essentially bounded. Since u0 turns out to be a weak solution of the problem

−Δu = [b(x) − a(x)]u in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω,

where, because of (2.3), b −a ∈ Ls(Ω) for some s > N , Lemma 5.1 in [26] and the Moser iteration technique 
yield u0 ∈ L∞(Ω). Through [26, Lemma 5.2] we achieve u0 ∈ C1,α(Ω). So, in particular, u0 ∈ C+ \ {0}. 
Finally, from

Δu0(x) ≤
(
‖a+‖∞ + ‖b‖∞

)
u0(x) for every x ∈ Ω

and the Boundary Point Lemma [23, p. 120] it follows u0 ∈ int(C+), as desired. �
To simplify the notation, write X := H1(Ω). The energy functional ϕ : X → R stemming from Prob-

lem (1.1) is

ϕ(u) := 1
2E(u) −

∫
Ω

F (x, u(x)) dx, u ∈ X, (3.3)

with E and F given by (2.4) and (3.1), respectively. One clearly has ϕ ∈ C1(X). Moreover,

Proposition 3.1. Under (2.3) and (f1)–(f3), the functional ϕ satisfies Condition (C).

Proof. Let {un} be a sequence in X such that

|ϕ(un)| ≤ c1 ∀n ∈ N, (3.4)

lim
n→+∞

(1 + ‖un‖)‖ϕ′(un)‖X∗ = 0. (3.5)

We first show that {un} is bounded. This evidently happens once the same holds for both {u+
n} and {u−

n }.

Claim 1. The sequence {u+
n } is bounded.

If the assertion was false then, up to subsequences, ‖u+
n ‖ → +∞. Write vn := ‖u+

n ‖−1u+
n . From ‖vn‖ = 1

it follows, along a subsequence when necessary,

vn ⇀ v in X, vn → v in L2N/(N−1)(Ω) and in L2(∂Ω). (3.6)

Through (3.5) one has 〈ϕ′(un), u+
n 〉 → 0, which, dividing by ‖u+

n ‖2, easily entails

E(vn) ≤ εn +
∫

f(x, u+
n (x))

‖u+
n ‖

vn(x) dx ∀n ∈ N, (3.7)

Ω
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where εn → 0+. Because of (f1) the sequence {‖u+
n ‖−1Nf (u+

n )} ⊆ L2(Ω) is bounded. Via the same reasoning 
made in [17, pp. 317–318] we thus get a function θ ∈ L∞(Ω) such that θ ≤ λ̂1 and

1
‖u+

n ‖
Nf (u+

n ) ⇀ θv in L2(Ω).

Thanks to (3.6)–(3.7) this produces, as n → +∞,

E(v) −
∫
Ω

θ(x)v(x)2dx ≤ 0. (3.8)

If θ �= λ̂1 then, by Lemma 2.2, v = 0. Consequently, on account of (3.6)–(3.7) again, vn → 0 in X, which 
contradicts ‖vn‖ ≡ 1. Otherwise, from (3.8), (2.10), (p5), and (p6) it follows v = tû1 for some t > 0. So, 
u+
n → +∞ a.e. in Ω. Using (f2) and Fatou’s Lemma we thus obtain

lim
n→+∞

∫
Ω

[f(x, u+
n (x))u+

n (x) − 2F (x, u+
n (x))] dx = +∞. (3.9)

On the other hand, (3.4) forces

E(un) −
∫
Ω

2F (x, un(x)) dx ≤ 2c1

while (3.5) easily yields

−E(un) +
∫
Ω

f(x, un(x))un(x) dx ≤ c2.

Therefore, on account of (3.2),
∫
Ω

[f(x, u+
n )u+

n − 2F (x, u+
n )] dx ≤

∫
Ω

[f(x, un)un − 2F (x, un)] dx ≤ 2c1 + c2 ∀n ∈ N,

which contradicts (3.9).

Claim 2. The sequence {u−
n } is bounded.

If the assertion was false then, up to subsequences, ‖u−
n ‖ → +∞. Write, like before, wn := ‖u−

n ‖−1u−
n . 

From ‖wn‖ ≡ 1 it follows, along a subsequence when necessary,

wn ⇀ w in X, wn → w in L2N/(N−1)(Ω) and in L2(∂Ω), w ≥ 0. (3.10)

Through (3.5) one has
∣∣∣∣∣∣
1
2 〈E

′(un), v〉 −
∫
Ω

f(x, un)v dx

∣∣∣∣∣∣ ≤ εn‖v‖ ∀v ∈ X, (3.11)

where εn → 0+. A simple computation based on (f1) and the boundedness of {u+
n } immediately leads to
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∣∣∣∣∣∣
1
2 〈E

′(u+
n ), v〉 −

∫
Ω

f(x, u+
n )v dx

∣∣∣∣∣∣ ≤ c3‖v‖. (3.12)

Since un = u+
n − u−

n , inequalities (3.11)–(3.12) produce, after dividing by ‖u−
n ‖,∣∣∣∣∣∣

1
2 〈E

′(−wn), v〉 − 1
‖u−

n ‖

∫
Ω

f(x,−u−
n )v dx

∣∣∣∣∣∣ ≤ ε′n‖v‖, v ∈ X, (3.13)

with ε′n → 0+. Observe next that, by (f1) besides (3.10),

lim
n→+∞

1
‖u−

n ‖

∫
Ω

f(x,−u−
n )(wn − w) dx = 0.

So, (3.13) written for v := wn − w provides

lim
n→+∞

〈E ′(−wn), wn − w〉 = 0,

whence

lim
n→+∞

wn = w in X (3.14)

because, on account of (3.10) and (2.3),
∫
Ω

a(x)wn(x)(wn(x) − w(x)) dx → 0,
∫
∂Ω

β(x)wn(x)(wn(x) − w(x)) dσ → 0.

Thanks to (f1) the sequence {‖u−
n ‖−1Nf (−u−

n )} ⊆ L2(Ω) is bounded. Using the arguments made in [17, 
pp. 317–318] we thus obtain a function α ∈ L∞(Ω) such that λ̂k ≤ α ≤ λ̂k+1 and

1
‖u−

n ‖
Nf (−u−

n ) ⇀ −αw in L2(Ω).

By (3.13)–(3.14) this implies, as n → +∞,

1
2 〈E

′(w), v〉 =
∫
Ω

α(x)w(x)v(x) dx ∀v ∈ X,

i.e., w turns out to be a weak solution of the problem

−Δu + a(x)u = α(x)u in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω. (3.15)

If α �= λ̂k and α �= λ̂k+1 then (p9) yields

λ̂k(α) < λ̂k(λ̂k) = 1 = λ̂k+1(λ̂k+1) < λ̂k+1(α).

Therefore w = 0, which contradicts ‖w‖ = 1; cf. (3.14). Otherwise, either α = λ̂k or α = λ̂k+1. In both 
cases, via (3.15) one sees that w has to be nodal, against (3.10).
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Summing up, the sequence {un} ⊆ X is bounded. Along a subsequence when necessary, we may thus 
assume

un ⇀ u in X, un → u in L2N/(N−1)(Ω) and in L2(∂Ω),

whence, like before, un → u in X. This completes the proof. �
3.1. Existence of at least two nontrivial solutions

Define, provided x ∈ Ω and t, ξ ∈ R,

f̂+(x, t) := f(x, t+) + ât+, F̂+(x, ξ) :=
ξ∫

0

f̂+(x, t) dt. (3.16)

It is evident that the corresponding truncated functional

ϕ̂+(u) := 1
2
(
E(u) + â‖u‖2

2
)
−

∫
Ω

F̂+(x, u(x)) dx, u ∈ X,

belongs to C1(X) also.

Proposition 3.2. Let (f1)–(f2) be satisfied. Then ϕ̂+ is coercive.

Proof. If the conclusion was false, we may construct a sequence {un} ⊆ X such that ‖un‖ → +∞ but

1
2
(
E(un) + â‖un‖2

2
)
−

∫
Ω

F̂+(x, un(x)) dx ≤ c3 ∀n ∈ N. (3.17)

Write vn := ‖un‖−1un. From ‖vn‖ = 1 it follows, along a subsequence when necessary, (3.6). Moreover, by 
(3.16)–(3.17),

1
2
(
E(vn) + â‖v−n ‖2

2
)
− 1

‖un‖2

∫
Ω

F (x, u+
n (x)) dx ≤ c3

‖un‖2 , n ∈ N. (3.18)

Because of (f1) the sequence {‖un‖−2NF (u+
n )} ⊆ L1(Ω) is uniformly integrable. Via the Dunford–Pettis 

Theorem and the same reasoning made in [17, pp. 317–318] we thus get a function θ ∈ L∞(Ω) such that 
θ ≤ λ̂1 and, up to subsequences,

1
‖un‖2NF (u+

n ) ⇀ 1
2θ(v

+)2 in L1(Ω).

Using (3.18), besides (3.6), this produces, as n → +∞,

E(v) + â‖v−‖2
2 −

∫
Ω

θ(x)v+(x)2dx ≤ 0, (3.19)

whence, in view of Lemma 2.1,

E(v+) ≤
∫

θ(x)v+(x)2dx. (3.20)

Ω
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If θ �≡ λ̂1, then Lemma 2.2 and (3.20) force v+ = 0. From (3.19) and Lemma 2.1 again it follows v− = 0, 
namely v = 0. Since, like before,

1
‖un‖2NF̂+

(un) ⇀ 0 in L1(Ω),

inequality (3.17) combined with Lemma 2.1 yield ‖vn‖ → 0. However, this is impossible. So, suppose θ = λ̂1. 
Gathering (3.20) and (p4)–(p6) together lead to v+ = tû1 for some t ≥ 0. The above argument shows that 
t > 0. Hence, v+ > 0 in Ω, which actually means v = v+ > 0. Recalling the definition of {vn} we thus have 
un(x) = u+

n (x) as well as u+
n (x) → +∞ for every x ∈ Ω. Consequently, by Lemma 3.1 and Fatou’s Lemma,

lim
n→+∞

∫
Ω

[λ̂1un(x)2 − 2F (x, un(x))]dx = +∞. (3.21)

On the other hand, (3.16)–(3.17), besides (2.10), easily give rise to
∫
Ω

[λ̂1un(x)2 − 2F (x, un(x))]dx ≤ 2c3 ∀n ∈ N,

against (3.21). �
Theorem 3.1. Under (2.3), (f1)–(f4), and the assumption that, for appropriate a3 > λ̂1,

2F (x, ξ) ≥ a3ξ
2 in Ω × R

−
0 , (3.22)

Problem (1.1) possesses at least two nontrivial solutions u0 ∈ int(C+) and u1 ∈ C1(Ω).

Proof. A standard argument, which exploits the Sobolev Embedding Theorem and the compactness of the 
trace operator, ensures that ϕ̂+ is weakly sequentially lower semi-continuous. Since, due to Proposition 3.2, 
it is coercive, we have

inf
u∈X

ϕ̂+(u) = ϕ̂+(u0) (3.23)

for some u0 ∈ X. Fix ε > 0. Assumption (f4) yields δ > 0 small such that

F (x, ξ) ≥ a1(x) − ε

2 ξ2 ∀(x, ξ) ∈ Ω × [−δ, δ]. (3.24)

If τ ∈ (0, 1) complies with τ û1 ≤ δ, then by (3.16), the above inequality, (p6), and (f4),

ϕ̂+(τ û1) ≤
τ2

2

⎛
⎝E(û1) −

∫
Ω

(a1 − ε)û2
1 dx

⎞
⎠ = τ2

2

⎛
⎝λ̂1‖û1‖2

2 −
∫
Ω

(a1 − ε)û2
1 dx

⎞
⎠

= τ2

2

⎛
⎝∫

Ω

(λ̂1 − a1)û2
1 dx + ε

⎞
⎠ < 0

as soon as ε <
∫
Ω(a1 − λ̂1)û2

1 dx. Hence,

ϕ̂+(u0) < 0 = ϕ̂+(0),
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which clearly means u0 �= 0. Now, through (3.23) we get ϕ̂′
+(u0) = 0, namely

∫
Ω

∇u0 · ∇v dx +
∫
Ω

(a + â)u0v dx +
∫
∂Ω

βu0v dσ =
∫
Ω

[f(x, u+
0 ) + âu+

0 ]v dx, v ∈ X. (3.25)

Using Lemma 2.1 and (3.25) written for v := −u−
0 produces

b̂‖u−
0 ‖2 ≤ E(u−

0 ) + â‖u−
0 ‖2

2 = −
∫
∂Ω

β(x)u−
0 (x)2dσ ≤ 0,

whence u0 ≥ 0. Therefore, u0 is a nontrivial nonnegative solution to (1.1), because (3.25) becomes
∫
Ω

∇u0 · ∇v dx +
∫
Ω

au0v dx +
∫
∂Ω

βu0v dσ =
∫
Ω

f(x, u0)v dx ∀v ∈ X.

By Lemma 3.2 one has u0 ∈ int(C+) while (3.16) forces ϕ|C+ = ϕ̂+|C+ . Thus, [21, Proposition 3] ensures 
that u0 turns out to be a local minimizer for ϕ. We may evidently assume u0 isolated in K(ϕ), otherwise 
infinitely many solutions there would exist. The same reasoning made in the proof of [1, Proposition 29]
provides here ρ > 0 fulfilling

ϕ(u0) < cρ := inf
u∈∂Bρ(u0)

ϕ(u). (3.26)

From (3.2) it easily follows

lim
τ→−∞

ϕ(τ û1) = −∞.

Thanks to Proposition 3.1, Condition (C) holds true for ϕ. Consequently, the Mountain Pass Theorem gives 
u1 ∈ X \ {u0} such that ϕ′(u1) = 0 and

cρ ≤ ϕ(u1) = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)), (3.27)

where

Γ := {γ ∈ C0([0, 1], X) : γ(0) = −τ û1, γ(1) = u0}

with sufficiently large τ > 0. Obviously, u1 solves (1.1). Through the regularity arguments exploited in the 
proof of Lemma 3.2 we achieve u1 ∈ C1(Ω). Thus, the only thing to check is that u1 �= 0. This will be a 
consequence of the inequality

ϕ(u1) < 0, (3.28)

which, due to (3.27), derives from the claim below.

There exists a path γ̃ ∈ Γ such that ϕ(γ̃(t)) < 0 for all t ∈ [0, 1]. (3.29)

Pick ε > 0 and choose δ > 0 as in (3.24). Combining (p8) with [14, Lemma 2.1] entails

max E(γε(t)) < λ̂2 + ε (3.30)

t∈[−1,1]
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for appropriate γε ∈ C0([−1, 1], C1(Ω)) ∩ Γ1. Since γε([−1, 1]) is compact in C1(Ω) while τ û1, u0 ∈ int(C+)
we can find η > 0 so small that

−τ û1(x) ≤ ηγε(t)(x) ≤ u0(x), |ηγε(t)(x)| ≤ δ

whenever x ∈ Ω, t ∈ [−1, 1]. On account of (3.24), (3.30), and the equality ‖γε(t)‖2 = 1 one has

ϕ(ηγε(t)) = η2

2 E(γε(t)) −
∫
Ω

F (x, ηγε(t)(x)) dx

<
η2

2

⎛
⎝λ̂2 + ε +

∫
Ω

(ε− a1)|γε(t)|2dx

⎞
⎠ <

η2

2

⎛
⎝∫

Ω

(λ̂2 − a1)|γε(t)|2dx + 2ε

⎞
⎠ < 0

provided ε < 2−1 ∫
Ω(a1 − λ̂2)|γε(t)|2dx. Consequently,

ϕ|ηγε([−1,1]) < 0. (3.31)

Next, write a := ϕ̂+(u0). It is evident that a < 0. Further, we may suppose

K(ϕ̂+) = {0, u0},

otherwise the conclusion would be straightforward. Hence, no critical value of ϕ̂+ lies in (a, 0) while

Ka(ϕ̂+) = {u0}.

Due to the Second Deformation Lemma [8, Theorem 5.1.33], there exists a continuous function h : [0, 1] ×
(ϕ̂0

+ \ {0}) → ϕ̂0
+ satisfying

h(0, u) = u, h(1, u) = u0, and ϕ̂+(h(t, u)) ≤ ϕ̂+(u)

for all (t, u) ∈ [0, 1] × (ϕ̂0
+ \ {0}). Let γ+(t) := h(t, ηû1)+, t ∈ [0, 1]. Then γ+(0) = ηû1, γ+(1) = u0, as well 

as

ϕ(γ+(t)) = ϕ̂+(γ+(t)) ≤ ϕ̂+(h(t, ηû1)) ≤ ϕ̂+(ηû1) = ϕ(ηγε(1)) < 0; (3.32)

cf. (3.31) besides (3.16) and Lemma 2.1. Finally, define

γ−(t) := −[tη + (1 − t)τ ]û1 ∀t ∈ [0, 1].

Since through (3.22) we obtain

ϕ(γ−(t)) ≤ 1
2
(
E(γ−(t)) − a3‖γ−(t)‖2

2
)

= 1
2[tη + (1 − t)τ ]2(λ̂1 − a3) < 0, (3.33)

concatenating γ−, ηγε, and γ+ produces a path γ̃ ∈ Γ which, in view of (3.31)–(3.33), fulfills (3.29). �
Remark 3.1. The information u0 > 0 basically derives from (3.23). Instead, u1 turns out to be a mountain 
pass type critical point for ϕ. This merely gives u1 �= 0.
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A variant of Theorem 3.1 that does not change overall problem’s geometry is the one below, where

(f5) There exist m ≥ max{n0, 2} as well as a1, a2 ∈ L∞(Ω) \ {λ̂m, ̂λm+1} such that λ̂m ≤ a1 ≤ a2 ≤ λ̂m+1
and

a1(x) ≤ lim inf
t→0

f(x, t)
t

≤ lim sup
t→0

f(x, t)
t

≤ a2(x)

uniformly in x ∈ Ω.

(f6) f(x, ·) is differentiable at zero and f ′
t(x, 0) = lim

t→0

f(x, t)
t

uniformly with respect to x ∈ Ω. Moreover, 

for appropriate m ≥ max{n0, 2} and a2 ∈ L∞(Ω) \ {λ̂m+1} one has

λ̂m ≤ f ′
t(·, 0) ≤ a2 ≤ λ̂m+1.

Lemma 3.3. If (f1), (f2), (f3), and either (f5) or (f6) hold true then Cq(ϕ, 0) = δq,dm
Z for all q ∈ N0, where 

dm := dim(H̄m).

Proof. 1) Under Condition (f5).
Pick any θ ∈ L∞(Ω) satisfying a1 ≤ θ ≤ a2 and set

ψ(u) := 1
2

⎛
⎝E(u) −

∫
Ω

θ(x)u(x)2dx

⎞
⎠ , u ∈ X.

Thanks to (f5), Lemma 2.2 can be applied. So, u = 0 is a non-degenerate critical point of ψ with Morse 
index dm, which forces

Cq(ψ, 0) = δq,dm
Z ∀q ∈ N0; (3.34)

see (2.2). Now, let h : [0, 1] ×X → R given by

h(t, u) := (1 − t)ϕ(u) + tψ(u), (t, u) ∈ [0, 1] ×X.

We shall prove that there exists r > 0 such that 0 /∈ h([0, 1] × ∂Br). In fact, if not, one might construct two 
sequences {tn} ⊆ [0, 1] and {un} ⊆ X \ {0} with the properties

tn → t ∈ [0, 1], un → 0 in X, h′
u(tn, un) = 0 ∀n ∈ N.

Consequently, letting vn := ‖un‖−1un we have

∫
Ω

(∇vn · ∇w + avnw) dx +
∫
∂Ω

βvnwdσ =
∫
Ω

[
(1 − tn)f(x, un)

‖un‖
+ tnθvn

]
wdx (3.35)

whatever w ∈ X as well as (3.6). Because of (f1) the sequence {‖un‖−1Nf (un)} ⊆ L2(Ω) is bounded. The 
same reasoning made in [17, pp. 317–318] produces a function θ̂ ∈ L∞(Ω) such that a1 ≤ θ̂ ≤ a2 and

1
‖un‖

Nf (un) ⇀ θ̂v in L2(Ω). (3.36)

Thanks to (3.35) besides (3.6) we get, as n → +∞,
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∫
Ω

(∇v · ∇w + avw) dx +
∫
∂Ω

βvw dσ =
∫
Ω

[(1 − t)θ̂ + tθ]vw dx, w ∈ X,

namely v is a weak solution of the problem

−Δu + a(x)u = θt(x)u in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω,

where θt(x) := (1 − t)θ̂(x) + tθ(x). From a1 ≤ θt ≤ a2, assumption (f5), and (p9) it follows

λ̂m(θt) < λ̂m(λ̂m) = 1 = λ̂m+1(λ̂m+1) < λ̂m+1(θt),

whence v = 0. Through (3.6), (3.36), and (3.35) written for w := vn − v we easily infer that vn → 0 in X, 
but this is impossible, because ‖vn‖ ≡ 1. Finally, combining the homotopy invariance property of critical 
groups with (3.34) completes the proof.

2) Under Condition (f6).
Define, like before,

ψ(u) := 1
2

⎛
⎝E(u) −

∫
Ω

f ′
t(x, 0)u(x)2dx

⎞
⎠ , u ∈ X.

Thanks to (f6) and (p4) one has ψ(u) ≤ 0 for all u ∈ H̄m. If ĉ > 0 is furnished by Lemma 2.2 for n := m +1
then

ψ(u) ≥ 1
2

⎛
⎝E(u) −

∫
Ω

a2(x)u(x)2dx

⎞
⎠ ≥ ĉ

2‖u‖
2 > 0 ∀u ∈ Ĥm+1 \ {0},

since f ′
t(x, 0)t2 ≤ a2(x)t2 in Ω ×R. Now, Proposition 2.3 of [25] ensures that (3.34) holds. Due to (f6) again, 

given any ε > 0 we can find δ > 0 fulfilling

|f(x, t) − f ′
t(x, 0)t| ≤ ε|t|, (x, t) ∈ Ω × [−δ, δ].

This entails

|ϕ(u) − ψ(u)| ≤
∫
Ω

⎛
⎜⎝

|u(x)|∫
0

|f(x, t) − f ′
t(x, 0)t|d|t|

⎞
⎟⎠ dx ≤ ε

2‖u‖
2
2

as well as

|〈ϕ′(u) − ψ′(u), v〉| ≤
∫
Ω

|f(x, u) − f ′
t(x, u)u||v|dx ≤ ε‖u‖2‖v‖2 ∀v ∈ X

provided |u(x)| ≤ δ. Consequently, to every ε > 0 there corresponds ρ > 0 such that

‖ϕ− ψ‖C1(Dρ) ≤ ε,

where Dρ := {u ∈ C1(Ω) : ‖u‖C1(Ω) ≤ ρ}. Corollary 5.1.25 of [4] thus yields

Cq(ϕ|C1(Ω), 0) = Cq(ψ|C1(Ω), 0), q ∈ N0,



1838 G. D’Aguì et al. / J. Math. Anal. Appl. 433 (2016) 1821–1845
which actually means Cq(ϕ, 0) = Cq(ψ, 0), because C1(Ω) is dense in X; see, e.g., [18]. Now the conclusion 
directly follows from (3.34). �
Theorem 3.2. Let (2.3), (f1)–(f3), and either (f5) or (f6) be satisfied. Then the same conclusion of Theorem 3.1
holds.

Proof. An argument analogous to that employed in showing Theorem 3.1 provides here two solutions, 
u0 ∈ int(C+) and u1 ∈ C1(Ω). So, it remains to see whether u1 �= 0. By [17, Proposition 6.100] we 
have C1(ϕ, u1) �= 0 while Lemma 3.3 entails C1(ϕ, 0) = δ1,dm

Z. Since dm ≥ 2, the function u1 cannot be 
trivial. �
Remark 3.2. Although (f5) and (f6) look less general than (f4), inequality (3.22) is not taken on.

The next variant of Theorem 3.1 exhibits a different geometry at zero. Indeed, instead of (f4), (f5), or (f6), 
we shall suppose

(f7) There exist a4 > 0, q ∈ (0, 2), and δ > 0 such that

a4|t|q ≤ f(x, t)t ≤ qF (x, t) ∀(x, t) ∈ Ω × [−δ, δ].

Condition (f7) allows to get further information on the critical groups of ϕ at zero. This has previously been 
pointed out in [16] concerning a different problem; cf. also [12].

Lemma 3.4. Under (2.3), (f1), (f7), and the assumption that zero is an isolated critical point of ϕ, one has 
Cq(ϕ, 0) = 0 for all q ∈ N0.

Proof. Let ψ : X → R be defined by

ψ(u) := 1
2
(
E(u) + â‖u‖2

2
)
−

∫
Ω

F (x, u(x))dx, u ∈ X.

Obviously, zero turns out to be an isolated critical point of ψ, because

‖ψ′(u) − ϕ′(u)‖X∗ ≤ â‖u‖2.

Reasoning as in the proof of Lemma 3.3 we get Cq(ϕ, 0) = Cq(ψ, 0). Thus, the conclusion is achieved once

Cq(ψ, 0) = 0, q ∈ N0.

Thanks to (f1) and (f7), given any r ∈ (2, 2∗), there exists c4 > 0 fulfilling

F (x, t) ≥ a4

q
|t|q − c4|t|r and qF (x, t) − f(x, t)t ≥ −c4|t|r in Ω × R. (3.37)

If u ∈ (X \ {0}) ∩ ψ0 then

d

dτ
ψ(τu)|τ=1 = 〈ψ′(u), u〉 ≥ 〈ψ′(u), u〉 − qψ(u)

=
(
1 − q

2

) (
E(u) + â‖u‖2

2
)

+
∫
Ω

[qF (x, u) − f(x, u)u] dx

≥
(
1 − q)

b̂‖u‖2 − c4‖u‖r
2
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by (3.37) besides Lemma 2.1. Consequently

d

dτ
ψ(τu)|τ=1 > 0

whenever ‖u‖ is sufficiently small, say u ∈ (B̄2ρ \ {0}) ∩ψ0 for some ρ > 0. Hence, in particular, τ0 > 0 and 
τ0u ∈ (B̄2ρ \ {0}) ∩ ψ0 imply

d

dτ
ψ(τu)|τ=τ0

= 1
τ0

d

dτ
ψ(ττ0u)|τ=1 > 0.

This means that the C1-function τ �→ ψ(τu), τ ∈ (0, +∞), turns out to be increasing at the point τ provided 
τu ∈ (B̄2ρ \ {0}) ∩ ψ0. So, it vanishes at most once in the open interval (0, 2‖u‖−1ρ). On the other hand, 
(3.37) yields

ψ(τu) ≤ τ2

2
(
E(u) + â‖u‖2

2
)
− a4

τ q

q
‖u‖qq + c4τ

r‖u‖rr,

whence ψ(τu) < 0 for all τ > 0 small enough, since q < 2 < r. Summing up, given any u ∈ B̄2ρ \ {0}, either 
ψ(τu) < 0 as soon as τu ∈ B̄2ρ or

∃ a unique τ̄(u) > 0 such that τ̄(u)u ∈ B̄2ρ \ {0}, ψ(τ̄(u)u) = 0. (3.38)

Moreover, if u ∈ (B̄2ρ \ {0}) ∩ ψ0 then 0 < τ̄(u) ≤ 1 and

ψ(τu) < 0 ∀τ ∈ (0, τ̄(u)), ψ(τu) > 0 ∀τ > τ̄(u) with τu ∈ B̄2ρ.

Let τ : B̄ρ \ {0} → (0, +∞) be defined by

τ(u) :=
{

1 when u ∈ (B̄ρ \ {0}) ∩ ψ0,

τ̄(u) when u ∈ (B̄ρ \ {0}) ∩ ψ0.

We claim that the function τ(u) is continuous. This immediately follows once one knows that τ̄(u) turns 
out to be continuous on (B̄ρ \ {0}) ∩ψ0, because, by uniqueness, u ∈ B̄ρ \ {0} and ψ(u) = 0 evidently force 
τ̄(u) = 1; cf. (3.38). Pick û ∈ (B̄ρ \ {0}) ∩ ψ0. The function φ(t, u) := ψ(tu) belongs to C1(R ×X) and, on 
account of (3.38), we have

φ(τ̄(û), û) = 0, ∂φ

∂u
(τ̄(û), û) = τ̄(û)ψ′(τ̄(û)û).

Since zero turns out to be an isolated critical point for ψ, there is no loss of generality in assuming Kϕ∩B̄ρ =
{0}. So, the Implicit Function Theorem furnishes ε > 0, σ ∈ C1(Bε(û)) such that

φ(σ(u), u) = 0 ∀u ∈ Bε(û), σ(û) = τ̄(û).

Through 0 < τ̄(û) ≤ 1 we thus get 0 < σ(u) < 2 for all u ∈ U , where U ⊆ Bε(û) denotes a convenient 
neighborhood of û. Consequently,

σ(u)u ∈ B̄2ρ \ {0} and ψ(σ(u)u) = 0 provided u ∈ (B̄ρ \ {0}) ∩ ψ0 ∩ U.

By (3.38) this results in σ(u) = τ̄(u), from which the continuity of τ̄(u) at û follows. As û was arbitrary, 
the function τ̄(u) turns out to be continuous on (B̄ρ \ {0}) ∩ ψ0.
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Next, observe that τu ∈ B̄ρ ∩ ψ0 for all τ ∈ [0, 1], u ∈ B̄ρ ∩ ψ0. Hence, if

h(t, u) := (1 − t)u, (t, u) ∈ [0, 1] × (B̄ρ ∩ ψ0)

then h([0, 1] × (B̄ρ ∩ ψ0)) ⊆ B̄ρ ∩ ψ0, namely B̄ρ ∩ ψ0 is contractible in itself. Moreover, the function

g(u) := τ(u)u ∀u ∈ B̄ρ \ {0}

is continuous and one has g(B̄ρ \ {0}) ⊆ (B̄ρ ∩ ψ0) \ {0}. Since

g|(B̄ρ∩ψ0)\{0} = id|(B̄ρ∩ψ0)\{0},

the set (B̄ρ ∩ ψ0) \ {0} turns out to be a retract of B̄ρ \ {0}. Being B̄ρ \ {0} contractible in itself because 
X is infinite dimensional, we get (see, e.g., [9, p. 389])

Cq(ψ, 0) := Hq(B̄ρ ∩ ψ0, (B̄ρ ∩ ψ0) \ {0}) = 0, q ∈ N0,

as desired. �
Remark 3.3. This proof is patterned after that of [12, Theorem 3.1].

Theorem 3.3. Let (2.3), (f1)–(f3), and (f7) be satisfied. Then the same conclusion of Theorem 3.1 holds.

Proof. Reasoning exactly as in the proof of the above-mentioned result yields (3.23) for some u0 ∈ X. 
Furthermore, with (f4) replaced by (f7), one achieves both u0 �= 0 and u0 ∈ int(C+); cf. Lemma 3.2. So, 
u0 turns out to be a local minimizer for ϕ, which entails u0 ∈ K(ϕ). Proposition 3.1 guarantees that ϕ
fulfills Condition (C). Thus, the arguments exploited in the proof of Theorem 3.1 provide a second solution 
u1 ∈ C1(Ω). Thanks to [17, Proposition 6.100] we have C1(ϕ, u1) �= 0. Since C1(ϕ, 0) = 0 by Lemma 3.4, 
the function u1 cannot be zero. �
3.2. Existence of at least three nontrivial solutions

From now on, we shall suppose that f(·, 0) = 0, f(x, ·) ∈ C1(R) for every x ∈ Ω, and

(f ′1) There exists a0 ∈ L∞(Ω) satisfying |f ′
t(x, t)| ≤ a0(x) in Ω × R.

Lemma 3.5. Under (2.3), (f ′1), (f2), and (f3), one has Cq(ϕ, ∞) = 0 for all q ∈ N0.

Proof. Pick μ ∈ (λ̂k, ̂λk+1). Define, provided (t, u) ∈ [0, 1] ×X,

h(t, u) := 1
2E(u) − t

∫
Ω

F (x, u)dx + 1 − t

2
(
â‖u+‖2

2 − μ‖u−‖2
2
)
.

Clearly, h maps bounded sets into bounded sets. On account of Proposition 3.1, both h(0, ·) and h(1, ·)
satisfy Condition (C). Due to (f ′1), the functionals t �→ h′

t(t, u) and u �→ h′
u(t, u) are locally Lipschitz 

continuous. Let us next verify that

∃ a ∈ R, δ > 0 fulfilling h(t, u) ≤ a =⇒ (1 + ‖u‖)‖h′
u(t, u)‖X∗ ≥ δ‖u‖2. (3.39)



G. D’Aguì et al. / J. Math. Anal. Appl. 433 (2016) 1821–1845 1841
If the assertion were false, then we might find two sequences {tn} ⊆ [0, 1], {un} ⊆ X with the properties 
below:

tn → t, ‖un‖ → +∞, h(tn, un) → −∞,

(1 + ‖un‖)‖h′
u(tn, un)‖X∗ <

1
n
‖un‖2 ∀n ∈ N.

(3.40)

Put vn := ‖un‖−1un. Reasoning as in the proof of Lemma 3.3 produces v ∈ X such that vn → v and
∫
Ω

[
∇v · ∇w + avw + (1 − t)âv+w

]
dx +

∫
∂Ω

βvwdσ =
∫
Ω

[
tθv+ − ηtv

−]
wdx (3.41)

for all w ∈ X, where ηt(x) := tη(x) + (1 − t)μ while θ, η ∈ L∞(Ω) comply with θ ≤ λ̂1, λ̂k ≤ η ≤ λ̂k+1. 
Hence, v is a weak solution to the problem

−Δu + a(x)u + (1 − t)âu+ = tθ(x)u+ − ηt(x)u− in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω.

If t = 1 then (3.41) written for w := v+ entails

E(v+) =
∫
Ω

θ(x)v+(x)2dx.

Two situations may now occur:

1) θ �≡ λ̂1. Lemma 2.2 immediately forces v+ = 0. Consequently,

−Δv + a(x)v = η(x)v in Ω,
∂v

∂n
+ β(x)v = 0 on ∂Ω.

Since v �= 0, because ‖v‖ = 1, and λ̂k ≤ η ≤ λ̂k+1, through (p9) we see that v must change sign, which 
is absurd.

2) θ = λ̂1. Likewise the proof of Proposition 3.2, (3.40) give rise to a contradiction.

Therefore, t < 1. Letting w := v+ in (3.41) yields

(1 − t)E(v+) + (1 − t)â‖v+‖2
2 = t

⎡
⎣∫

Ω

θ(v+)2dx− E(v+)

⎤
⎦ .

From Lemmas 2.1–2.2 it thus follows (1 − t)b̂‖v+‖2 ≤ 0, whence v = −v−. Now, (3.41) becomes

−Δv + a(x)v = ηt(x)v in Ω,
∂v

∂n
+ β(x)v = 0 on ∂Ω,

and, as before, v has to be nodal, since λ̂k ≤ ηt ≤ λ̂k+1 by the choice of μ. However, this is impossible. 
Thus, (3.39) holds true. Via Proposition 2.1 we obtain

Cq(ϕ,∞) = Cq(h(1, ·),∞) = Cq(h(0, ·),∞) ∀q ∈ N0. (3.42)

Observe next that
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Cq(h(0, ·),∞) = Cq(h(0, ·), 0). (3.43)

In fact, if u ∈ K(h(0, ·)) then

∫
Ω

(
∇u · ∇v + auv + âu+v

)
dx +

∫
∂Ω

βuvdσ = −μ

∫
Ω

u−vdx, v ∈ X. (3.44)

Choosing v := u+ furnishes E(u+) + â‖u+‖2
2 = 0, namely u+ = 0; cf. Lemma 2.1. So, (3.44) actually means

−Δu + a(x)u = μu in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω,

and, a fortiori, u = 0, because λ̂k < μ < λ̂k+1. This shows that K(h(0, ·)) = {0}, from which (3.43) follows 
at once.

Let us finally compute Cq(h(0, ·), 0). Consider the homotopy

ĥ(t, u) := h(0, u) + t

∫
Ω

u(x)dx ∀(t, u) ∈ [0, 1] ×X.

We claim that

ĥ′
u(t, u) �= 0, (t, u) ∈ [0, 1] × (X \ {0}). (3.45)

By contradiction, suppose there exists (t, u) ∈ (0, 1] × (X \ {0}) fulfilling h′
u(t, u) = 0. The same arguments 

exploited above produce here u ≤ 0 and

−Δu + a(x)u = μu− t in Ω,
∂u

∂n
+ β(x)u = 0 on ∂Ω.

Hence, likewise the proof of Lemma 3.2, u ∈ − int(C+). Define, for every v ∈ int(C+),

R(v,−u) := |∇v|2 −∇(−u) · ∇
(

v2

−u

)
.

Using Picone’s identity [17, Proposition 9.61] yields

0 ≤
∫
Ω

R(v,−u)(x)dx = ‖∇v‖2
2 −

∫
Ω

(−Δu)v
2

u
dx−

∫
∂Ω

βu
v2

−u
dσ

= ‖∇v‖2
2 +

∫
Ω

av2dx +
∫
∂Ω

βv2dσ − μ

∫
Ω

v2dx + t

∫
Ω

v2

u
dx

< ‖∇v‖2
2 +

∫
Ω

av2dx +
∫
∂Ω

βv2dσ − μ

∫
Ω

v2dx.

On account of (p6) this entails, for v := û1,

0 < λ̂1 − μ < 0,

which is clearly absurd. Thanks to (3.45) and Theorem 5.1.2 in [4] we have, for ρ > 0 small enough,
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Hq(ĥ(1, ·)0 ∩Bρ, ĥ(1, ·)0 ∩Bρ \ {0}) = 0 (3.46)

while the homotopy invariance of singular homology forces

Hq(ĥ(0, ·)0 ∩Bρ, ĥ(0, ·)0 ∩Bρ \ {0}) = Hq(ĥ(1, ·)0 ∩Bρ, ĥ(1, ·)0 ∩Bρ \ {0}). (3.47)

Since ĥ(0, ·) = h(0, ·), (3.46)–(3.47) provide

Cq(h(0, ·), 0) = 0 ∀q ∈ N0. (3.48)

Gathering (3.42), (3.43), and (3.48) together yields the conclusion. �
Theorem 3.4. Let (2.3), (f ′1), (f2), (f3), and (f6) be satisfied. Then Problem (1.1) admits at least three 
nontrivial solutions u0 ∈ int(C+), u1, u2 ∈ C1(Ω).

Proof. The same arguments adopted in the proofs of Theorems 3.1–3.2 give u0 and u1. Moreover,

Cq(ϕ, u0) = δq,0Z ∀q ∈ N0, (3.49)

because u0 is a local minimizer for ϕ, while u1 turns out to be a mountain pass type critical point of ϕ. 
Observe next that ϕ ∈ C2(X) and one has

〈ϕ′′(u1)(v), w〉 =
∫
Ω

[∇v · ∇w + avw − f ′
t(x, u1)vw] dx +

∫
∂Ω

βvwdσ, v, w ∈ X. (3.50)

If the Morse index of u1 is zero then, by (3.50),

‖∇v‖2
2 +

∫
∂Ω

βv2dσ ≥
∫
Ω

[f ′
t(x, u1) − a] v2dx in X. (3.51)

Two situations may now occur.

1) (f ′
t(·, u1) − a)+ = 0. Given u ∈ ker(ϕ′′(u1)), from (3.50) we immediately infer

‖∇u‖2
2 +

∫
∂Ω

βu2dσ ≤ 0,

whence, on account of (2.3), the function u must be constant.
2) (f ′

t(·, u1) − a)+ �≡ 0. Inequality (3.51) entails λ̂1(α) ≥ 1, where α := (f ′
t(·, u1) − a). So, due to (3.50), 

λ̂1(α) = 1 as soon as u ∈ ker(ϕ′′(u1)) \ {0}.

Consequently, in either case, dim(ker(ϕ′′(u1))) ≤ 1, and Corollary 6.102 of [17] yields

Cq(ϕ, u1) = δq,1Z ∀q ∈ N0. (3.52)

Finally, if K(ϕ) = {0, u0, u1} then the Morse relation written for t = −1, Lemma 3.3, (3.49), (3.52), besides 
Lemma 3.5 would imply

(−1)dm + (−1)0 + (−1)1 = 0,
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which is impossible. Thus, there exists u1 ∈ K(ϕ) \ {0, u0, u1}, i.e., a third nontrivial solution to (1.1). 
Standard regularity arguments (see the proof of Lemma 3.2) ensure that u1 ∈ C1(Ω). �
Example 3.1. Let k > max{n0, 2} and let b ∈ [λ̂k, ̂λk+1]. The function f : Ω × R → R defined by, for every 
(x, t) ∈ Ω × R,

f(x, t) :=
{
bt if t ≤ 1,
λ̂1t−

√
t + c log t + d otherwise,

where c := b − λ̂1 + 2−1 and d := b − λ̂1 + 1 satisfies all the assumptions of Theorem 3.4.
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