Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(1R,5S,8R)-1,8-Dihydroxy-6-oxa-3-azabicyclo-[3.2.1]octan-2-one

Francesco Punzo, ${ }^{\text {a* }} \ddagger$ David J. Watkin, ${ }^{\text {b }}$ Michela lezzi Simone ${ }^{\text {c }}$ and George W. J. Fleet ${ }^{\text {c }}$
${ }^{\text {a }}$ Dipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, ${ }^{\text {b }}$ Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and ${ }^{\text {c }}$ Department of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
\# Current address: Visiting Scientist at the Department of Chemical, Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail:
francesco.punzo@chemistry.oxford.ac.uk

Key indicators

Single-crystal X-ray study $T=190 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.028$
$w R$ factor $=0.069$
Data-to-parameter ratio $=9.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The crystal structure of the title bicyclic lactam, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4}$, has firmly established the stereochemistry of the branched δ-sugar amino acid scaffold.

Comment

Sugar amino acids (SAA) have been extensively investigated as peptidomimetics (Chakraborty et al., 2004). δ-Tetrahydrofuran (THF) SAA have been shown to be dipeptide isosteres (Grotenberg et al., 2004; van Well et al., 2003); in particular, those THF SAA which have the carboxylic acid and amino methyl components cis to each other, as in (1) (see scheme), almost invariably induce β-turn-like structures in their homooligomers (Smith et al., 1998, 2003).

(1)

(2)

(3)

Most such THF SAA have been derived from carbohydrates and all examples previously have contained a linear

Figure 1
The molecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
carbon chain. The branched THF SAA scaffold (2), prepared from a branched sugar lactone (Hotchkiss et al., 2004), spontaneously underwent an intramolecular cyclization to form the crystalline bicyclic lactam (3) (Figs. 1 and 2, and Table 1). A number of stereochemical and structural uncertainties in the synthesis of (2) are removed by the X-ray crystallographic analysis of (3).

Experimental

The bicyclic compound was dissolved in methanol in a flask and then crystallized as the solvent slowly evaporated to give colourless platelike crystals. A suitable piece was cut from a larger crystal.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4}$
$M_{r}=159.14$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.9624$ (1) \AA
$b=10.5889$ (2) \AA
$c=10.7089$ (2) \AA
$V=676.11(2) \AA^{3}$
$Z=4$
$D_{x}=1.563 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan DENZOISCALEPACK
(Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.96, T_{\text {max }}=0.97$
1981 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.069$
$S=1.03$
1158 reflections
119 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation

Cell parameters from 1160
reflections
$\theta=5-30^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=190 \mathrm{~K}$
Block cut from plate, colourless $0.50 \times 0.30 \times 0.20 \mathrm{~mm}$

1158 independent reflections
1158 reflections with no $I / \sigma(I)$ cutoff
$R_{\text {int }}=0.007$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F^{*}\right)+0.035 p^{2}+0.136 p\right] \\
& \quad \text { where } p=\left[\max \left(F_{o}^{2}, 0\right)+2 F_{c}^{2}\right] / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Extinction correction: Larson } \\
& \quad(1970) \\
& \text { Extinction coefficient: } 160(40)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C1-C2	1.5387 (17)	C3-O4	1.4383 (17)
C1-C5	1.5292 (17)	C3-C6	1.5125 (19)
C1-C8	1.5330 (16)	O4-C5	1.4374 (16)
C1-O11	1.4028 (14)	C6-N7	1.4651 (17)
C2-C3	1.5263 (18)	N7-C8	1.3363 (16)
C2-O10	1.4080 (15)	C8-O9	1.2348 (15)
C2-C1-C5	100.65 (10)	C2-C3-C6	110.98 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	107.94 (9)	O4-C3-C6	109.68 (11)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 8$	110.19 (10)	C3-O4-C5	109.17 (10)
C2-C1-O11	115.93 (10)	C1-C5-O4	105.12 (10)
C5-C1-O11	109.32 (9)	C3-C6-N7	110.52 (10)
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{O} 11$	112.17 (10)	C6-N7-C8	125.51 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	98.03 (9)	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{N} 7$	116.23 (10)
C1-C2-O10	114.20 (10)	C1-C8-O9	121.38 (11)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 10$	111.84 (10)	N7-C8-O9	122.35 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	103.70 (10)		

As the data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it

Figure 2
Packing diagram of (3), viewed down the a axis.
was admissible to merge Friedel pairs of reflections. The H atoms were all seen in a difference map but those attached to carbon were placed geometrically. Their positions and $U_{\text {iso }}$ were regularized using slack restraints. The refinement was completed using riding constraints for the H atoms bonded to carbon, and retaining the slack restraints for the other H atoms.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Financial support (to MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Chakraborty, T. K., Srinivasi, P., Tapadar, S. \& Mohan, B. K. (2004). J. Chem. Sci. 116, 187-207.
Grotenberg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. \& Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444-3446.
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. \& Fleet, G. W. J. (2004). Tetrahedron Lett. 45. Accepted. (DOI: 10.1016/j.tetlet.2004.10.086).

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Smith, M. D. Claridge, T. D. W., Sansom, M. P. \& Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647-3655.

organic papers

Smith, M. D., Claridge, T. D. W., Tranter, G. E., Sansom, M. S. P. \& Fleet, G. W. J. (1998). Chem. Commun. pp. 2041-2042.

Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Well, R. M. van, Marinelli, L., Altona, C., Erkelens, K., Siegal, G., van Raaij, M., Llamas-Saiz, A. L., Kessler, H., Novellino, E., Lavecchia, A., van Boom, J. H. \& Overhand, M. (2003). J. Am. Chem. Soc. 125, 1082210829.

