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The better definition of the mutual sustainment between neoplastic cells and immune 
system has been translated from the bench to the bedside acquiring value as prognostic 
factor. Additionally, it represents a promising tool for improving therapeutic strategies. 
In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in 
tumor developing with consequent therapeutic implications. In this review, we will focus 
on the biological and clinical impact of the study of MDSCs in the settings of lymphoid 
malignancies.
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introduction

The study of microenvironment in hematological malignancies is becoming more and more intriguing. 
New soluble factors and cell-to-cell interactions are under investigation. In this complex network, 
myeloid-derived suppressor cells (MDSCs) represent a central hub. MDSCs are cells with suppressive 
habit, able to silence cytotoxic immune-response. This is due to the expression of two key enzymes, 
Arginase-1 (Arg-1) and the inducible form of nitric oxide synthase (iNOS). As a result, they are able 
to suppress T-cell response and to modulate regulatory T-cells (T-reg) functions. It is a real revolution 
in the field of immunological studies, in particular when applied to onco-hematological diseases.

Pathogenetic and Clinical importance of Tumor 
Microenvironment in Lymphoproliferative Disorders

In order to better understand MDSC role in lymphoproliferative diseases, a brief overview on tumor 
microenvironment is required.

The tumor has been depicted as a mass of neoplastic cells for several years. However, recent studies 
have been demonstrating, both in solid and hematological tumors, an intricate cross-talk between 
neoplastic and inflammatory cells (1–3). Indeed, the immune system is able to create a fertile soil 
where neoplastic cells proliferate (4–7). It is usually composed by Th2 cytokines (such as IL-4, IL-10), 
angiogenetic factors (COX2, VEGF), and chemokines (CXCL12) (4, 8–10).

However, this cross-talk is not always clear and univocal. For example, compared to lymphoid 
hyperplasia, patients suffering from Hodgkin lymphoma (HL) have a greater number of CD4+CD25+ 
cells, T-regulatory (T-reg) markers (11). Additionally, the greater the T-reg amount, the better 
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the prognosis (10, 12, 13). This would be justified by the fact 
that T-reg cells would be able to regulate the immune response, 
thus limiting tumor progression. However, the immune-escape 
and the ability to suppress T-cell response are required for HL 
development (6, 10) and Hodgkin–Reed Sternberg cells are 
themselves able to produce immunosuppressive factors, so that 
the higher the amount of FOXP3 positive cells (a transcription 
factor expressed by T-reg), the poorer the prognosis (14), being 
the mirror of the immune-escape of Hodgkin–Reed Sternberg 
cells. Quite similarly, in multiple myeloma (MM), clinical series 
indicated that the greater the bone marrow (BM) Treg amount, 
the more adverse the prognosis (15). However, there are no clear 
evidences, since in some studies the percentage of Treg into the 
BM is inferior compared to normal subjects (16), while in other 
studies, the number is increased (17). Additionally, in other 
reports, the amount of Treg is greater in the BM than peripheral 
blood (PB) (18). Indeed, a standard definition of MM features 
and Treg phenotype would be of great help in function definition 
(19) and such a perspective study is warranted. It has recently 
highlighted that the only positivity for FOXP3 expression is not 
a definitive and unique marker for Treg, being also characterized 
as CD3+CD4+CD25+CD127low cells (18, 19).

Recently, a new subset of regulatory T-cells have been identified, 
i.e., Th17. The hallmark of these cells is IL-17 and IL-22 production 
and they are strictly dependent on IL-21, IL-22, IL-23, IL-27, and 
IL-6 (16, 20). Th17 amount is augmented in both PB and BM of MM 
patients. Additionally, MM-plasma cells (PC) express on cell surface 
the IL-17R (receptor of IL-17) (16) and its amount relate with lytic 
lesions (21), tumor stage, serum lactate dehydrogenase concentra-
tion, and serum creatinine concentration (22). Additionally, this 
effect is reverted when a Th1 BM enrichment is induced (21).

Apart from the lymphoid axis, an intricate cross-talk exists with 
the myeloid subset, especially with tumor-associated macrophages 
(TAMs). TAMs have a pivotal role in regulating lymphoma behav-
ior in several histotypes, including Hodgkin’s lymphoma (23), non-
Hodgkin lymphoma (NHL), and follicular lymphoma (FL) (24). 
In several hematological tumors, macrophages are able to address 
the behavior of the entire microenvironment and also of neoplastic 
cells, especially in early stages of the disease (10). This fact makes 
these cells as essential for tumor promotion phase. By secreting 
TGF-β and IL-10 (25), suppressing T-cell activation (26), and 
promoting angiogenesis (25, 27), TAMs favor the immune-escape 
of the tumor (25, 28, 29). Many studies correlated the increase of 
TAMs in tumor context with tumor angiogenesis, metastasis, and 
tumor progression (10, 24, 28–30). Additionally, the amount of 
TAMs positively relate with the tumor mass and stage.

Thus, it seems that the microenvironment is essential in the 
early phases of disease development, and continues to guarantee 
a permissible milieu to neoplastic cells during tumor growth. 
Thereafter, neoplastic cells become independent from the 
microenvironment.

Despite initial encouraging observations reported above, 
lack of reproducibility, discordant and not confirmative recent 
studies, and inconsistency of scoring are currently considered 
potential pitfalls for the routine use of TAMs as biomarkers, 
leading some authors to not agree with the prognostic power of 
CD68+ infiltrate (31).

Myeloid-Derived Suppressor Cells and 
Their Role in Tumor Microenvironment

Myeloid-derived suppressor cells have been recently identified 
in solid (32) and hematological (33) cancers as a heterogeneous 
population of immature and mature cells of myeloid origin that 
are home to the tumors and contribute indirectly to angiogenesis, 
growth, and metastasis (34). They originate on the BM, but acquire 
the ability to home into secondary lymphoid organs (35) and also 
in tumors mass (36, 37). Indeed, they are able to migrate into 
liver, inducing a suppressive habit to Kupfer cells (through the 
over-expression of PDL1) able to silence T-cell function through 
Arginase-1 (Arg-1) release. Furthermore, they are able to migrate 
into tumor context where they exhibit the immunosuppressive 
function (35). Interestingly, Arginase activity into tumor context 
is greater than in PB (35).

This homing capability has two important consequences. 
First, marking MDSCs; it is possible to follow the homing phase 
without sacrificing mouse models. Second, MDSCs can be used 
as therapeutic vehicle (38).

Morphologically, two subsets can be identified: granulocytes 
(N-MDSCs) or monocytes (mo-MDSCs) (39, 40), possessing, 
respectively, a polymorphonuclear or monocytic feature. First 
identification of MDSCs markers was from mouse models where 
granulocytic MDSCs are identified as CD11b+ LY6G+ LY6Clow 
cells, while monocytic MDSCs are CD11b+LY6G-LY6Chigh (39, 
41). Due to the lack of LY6G and LY6C on human cells, the 
definition of MDSCs in human is still argued. Basically, mo-
MDSCs are defined as CD14+HLA-DRlow/− and G-MDSCs as 
CD11b+CD33+CD14−HLA-DRlow/− (CD15 and/or CD66b can 
also be positive) (32, 40). Prior studies introduced also a subset 
of immature MDSCs CD34+ (im-MDSCs) (42).

Apart from morphological and immunophenotipic identification, 
the definition of MDSCs relies on their functional properties and 
suppressive activities. MDSCs can induce T-cell tolerance through 
the expression of Arg-1. In fact, starving lymphocytes, depleting 
Arginine, reduce significantly their function leading to a cell cycle 
arrest in G0/G1 stage, due to a repression of cyclin production. 
Contrarily, treatment with Nor-NOHA or NOHA (an Arg-I 
inhibitor) is able to revert the immune-suppressive ability of MDSCs. 
Interestingly, this pathway is more pronounced in G-MDSCs (43), 
while Mo-MDSCs deplete the available arginine through NOS2 
activity (39). The overproduction of nitric oxide leads to augmented 
levels of peroxynitrite and nitrotyrosine. This is peculiar to silence 
TCR pathways and thus T-cell function (32, 39, 44), promoting the 
escape from immune-surveillance (34, 45). T and NK cell dysfunction 
induced by MDSCs can in turn favor the aberrant MDSCs dismissing 
in a pathological loop (32, 34, 41, 45). Lately, recent investigations 
suggested that MDSCs are also the progenitors of TAMs in the BM 
(32, 46). MDSCs can also produce a large amount of cytokines, able 
to drive the microenvironment toward a pro-tumoral background 
ambient (35, 46). Producing IL-10, MDSCs can decrease the amount 
of IL-6 and TNF-α, increasing NO.

The elaborate cross-talk between macrophages, MDSCs, and 
tumor cells result in differential production of IL-6, IL-10, TNF-α, 
and NO, suggesting that the interaction between these cells has the 
potential to significantly alter the inflammatory milieu within the 
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tumor microenvironment (2, 3, 40, 47). This fact makes MDSCs 
noteworthy to be studied in hematological tumor. Additionally, 
they would represent a valid and reliable marker to be used in 
these malignancies since their presence in PB is guaranteed by 
the homing ability.

Clinical Progress in MDSC Study and 
Applications

Studies on MDSCs in hematological malignancies are increasing 
since the better definition of this cellular subtype and its functional 
analysis. The peculiar MDSCs function and activity, together with 
the ability to isolate them from BM and PB has led many groups to 
focus on their study (48). Translating these evidences to the clinical 
practice, several studies are emerging with important prognostic 
and therapeutic consequences in both HL and NHL (2, 3).

Pivotal studies by Lin et al. (49) found that a subpopulation 
of CD14+/HLA-DR−/low monocytes exert immunosuppressive 
function in NHL patients by depleting arginine bioavailability 
through Arg-1 activity. In particular, monocytes were able to 
abrogate Th1 lymphocyte activation to antigen stimulation, with 
a fivefold decrease in the secretion of IFN-γ. Interestingly, the 
proliferation rate of patients’ lymphocytes was restored when 
suppressive monocytes were depleted from the medium. The 
monocytes were also impaired itself in their functions, due to 
the reduced levels of pSTAT1 expression and reduced ability to 
produce IFN-γ. Additionally, the higher the amount of suppressive 
monocytes, the more adverse the prognosis. The monocytes were 
also rich in Arg-1 production, and serum from NHL patients 
had higher levels of ARG-1 compared to control. Additionally, 
the levels of Arg-1 related with suppressive monocytes. Later, this 
highlights the identification of MDSCs as central in tumor escape. 
Indeed, in the A20 murine model, Serafini et al. found that the 
immune-escape depends strictly on MDSCs [defined as activity 
that is able to expand selectively Treg (CD25+/FOXP3+)] (50). 
Interestingly, treatment with L-NMMA and/or NOHA reverted 
the immunosuppressive feature by suppressing Arg-1 and/or iNOS 
activity. The combination with both drugs completely reverted the 
immunosuppressive feature.

Among lymphoma subtypes, diffuse large B-cell lymphoma 
(DLBCL) has the greatest amount of suppressive monocytes 
followed by FL and indolent lymphomas (49). Recently, in a 
limited cohort of 23 DLBCL patients, PB mo-MDSCs have been 
evaluated as CD14+/HLA-DR− cells (51). Additionally, DLBCL 
patients have a greater amount of Mo-MDSCs on PB compared 

to healthy control and, when complete remission is achieved, their 
values return to be equal to healthy control. However, the small 
number of patients did not lead the authors to conclude a direct 
correlation between monocytosis and mo-MDSCs. Interestingly, 
only three patients among a total of five patients with monocytosis 
showed augmented levels of Mo-MDSCs.

In HL, the inflammation is the hallmark of the disease (52). HL 
patients have a greater amount of MDSCs compared to healthy 
control (53–55) and, to date, we have been able to identify the 
three main MDSCs subsets, i.e., G-MDSCs, Mo-MDSCs, and 
im-MDSCs. However, only CD34+ cells (im-MDSCs) seem to 
relate with prognosis in HL patients, even though treated up-
front with a risk-adapted therapy (56). At diagnosis, HL patients 
showed higher levels of MDSCs subsets compared to matched 
healthy controls. Additionally, the greater the tumor mass, 
the greater the MDSCs count, reflecting the disease stage and 
aggressiveness. Regarding the clinical outcome, after 34 months 
of follow-up, im-MDSCs were the only subset related to clinical 
outcome. On the contrary, mo-MDSCs and G-MDSCs failed to 
show a prognostic impact. In particular, setting a cut-off level of 
4.5 cells/μL, im-MDSCs showed a sensitivity and specificity >85% 
and a specificity greater than 70% in both early and advanced 
stage disease. Median progression-free survival (PFS) in patients 
with high levels of MDSCs was 14.7 months compared to a not 
reached median of the low count group. The prognostic value of 
im-MDSCs was retained also applying the multivariate analysis. 
In addition, MDSCs count can add information to the most 
important prognostic factor in HD, i.e., positive positron emission 
tomography (PET) after two cycles of chemotherapy (PET-2). An 
additional advantage of im-MDSCs count over PET-2 would be 
the availability at diagnosis. Moreover, the combination of MDSCs 
count and PET-2 evaluation allows to define three different groups 
of patients with different outcome (56).

Conclusion

The study of the immunome has become more and more intricate 
with new factors and cell-to-cell interactions discovered. An 
emerging role is played by the study of the myeloid dysfunction 
as a central hub in the complex network depicting the disease. 
Even if more studied on solid tumors, MDSCs are a reliable tool 
also in hematological malignancies, in particular in the setting 
of lymphoid malignancies. Additionally, the emerging reports in 
clinical settings are making them worth to be studied and used 
as prognostic factor.
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