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Abstract

The linear ordering R<ω
lex is the lexicographic linearization of the tree of R-valued functions defined on a

finite initial segment of ω and ordered by extension. We identify suitable notions of smallness and largeness
for linear orderings that embed into R<ω

lex by using tree representations of chains. Specifically, small linear
orderings are representable by inversely well-founded trees, and large linear orderings are representable by
fully uncountably branching trees. We prove the rather surprising result that all linear orderings embeddable
into R<ω

lex are either small or large. This fact sheds some light on the complicated structure of the linear
ordering R<ω

lex , and can be useful in applications to utility theory and preference modeling.
c⃝ 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Lexicographic ordering; Lexicographic preferences; Tree representation; Small chain; Large chain; Utility
representation

1. Introduction

Embeddings of linear orderings into real lexicographic products have been an object of careful
study in the literature. This is due to their theoretical interest as well as their utility in many
applied sciences. From a theoretical point of view, this topic has been extensively analyzed within
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the theory of linear orderings [4,8,10,11,14,15,17,20]. For what concerns applications to other
fields of research, embeddings into lexicographic products are of major interest in the branch of
mathematical economics called utility theory [2,3,5,6,9,12,16,23]. In this field, researchers have
focused their attention on finding suitable codomains of utility functions (i.e., order-preserving
embeddings of chains), which are “larger” than the usual set of real numbers, thus allowing
a representation of many preference relations which naturally arise in economics (e.g., the
lexicographic plane, the symmetric long line, large spaces of functions, etc.). Further applications
to economics concern the cases in which preference relations are modeled by using any type
of lexicographic ordering (see [7] for an excellent, despite not updated, survey on the topic),
e.g., lexicographic tradeoff structures, where the lexicographic importance of criteria varies
according to suitable thresholds [19].

In this paper we provide some insight into the structure of the family of all linear orderings that
embed into R<ω

lex . The chain R<ω
lex = (R<ω,⊑lex) is the lexicographic linearization of the rooted

tree (R<ω,⊑) of all R-valued functions defined on a finite initial segment of ω and ordered by
extension. Note that several types of dynamic decisions in economics can be naturally modeled
as R-branching trees whose ascending paths are of finite length: see [22] for the original notion of
extensive form, [18] for a classical generalization, and [1] for a recent extension of this approach.
Therefore, apart from its theoretical interest, our analysis of the structure of the linear orderings
embeddable into R<ω

lex may be useful in applications, allowing one to determine the evolution of
decisions which are taken over a time-dependent variable (e.g., states of nature).

We determine suitable notions of smallness and largeness for linear orderings that are
embeddable into R<ω

lex . Specifically, we define the following two classes of chains within the
family of linear orderings that embed into R<ω

lex : (i) small chains, which can be represented as
suitable subsets of an inversely well-founded tree; (ii) large chains, which contain a copy of
a fully uncountably branching tree. Despite the fact that their definition appears to be rather
restrictive, the following dichotomy result holds:

Theorem. Each linear ordering embeddable into R<ω
lex is either small or large.

The paper is organized as follows. Section 2 collects some preliminary terminology and
notions. In Section 3 we use tree representations of chains to define the two classes of small
and large chains within the family of linear orderings that are embeddable into R<ω

lex . Section 4
is devoted to the analysis of a special type of order-theoretic properties of the nodes of a tree. In
Section 5 we use the results obtained in the previous sections to prove the dichotomy theorem.

2. Preliminary notions

Here we recall some basic notions on linear orderings and trees [20,21]; the reader familiar
with these well known notions may decide to skip them. In the last part of this section, we
introduce the notions of (R, ω)-tree, (R, ω)-chain and tree representation, which will be used
throughout the paper.

A chain is a linearly ordered set (L ,≺). A subchain of (L ,≺) is a set M ⊆ L , endowed
with the induced order. For any two subchains A and B of (L ,≺), the notation A ≺ B means
that a ≺ b for each a ∈ A and b ∈ B; in particular, if A = {a}, then we simply write a ≺ B.
Intervals and rays in (L ,≺) are denoted as usual, namely, (a, b)L = {x ∈ L : a ≺ x ≺ b},
(a,→)L = {x ∈ L : a ≺ x}, (←, b]L = {x ∈ L : x ≼ b}, etc.. (The notation x ≼ b stands for
x ≺ b or x = b.) Whenever there is no risk of confusion, we drop the subscript L and simply
write (a, b), (a,→), (←, b], etc.. The interval notation is also used for posets.
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A homomorphism is an order-preserving function f : (L ,≺L) → (M,≺M ) between two
chains, i.e., for each a, b ∈ L , if a≼L b then f (a)≼M f (b). An embedding is an injective homo-
morphism between chains, generically denoted by L ↩→ M ; a chain that embeds into the reals is
called R-embeddable. An isomorphism is a bijective homomorphism between chains, generically
denoted by L ∼= M . As usual, ordinals are the canonical representatives for the isomorphism
classes of well-ordered sets, and they are identified with the set of all ordinals below it; in par-
ticular, ω and ω1 denote, respectively, the first infinite ordinal and the first uncountable ordinal.

Let {(L i ,≺i ) : i ∈ I } be a family of chains indexed by a chain (I, <). The sum of
{(L i ,≺i ) : i ∈ I } is the chain


i∈I L i , whose underlying set is


i∈I {i} × L i , and whose linear

order ≺ is defined by ( j, a j ) ≺ (k, ak) if either j < k, or j = k and a j ≺ j ak in L j . For a
finite sum, we use the notation L1 + L2 + · · · + Ln . If (I, <) is the first infinite ordinal ω, then
we define the lexicographic product of {(Ln,≺n) : n < ω} as the chain

lex
n<ω Ln , whose order

relation ≺lex is defined as follows: for any a = (an)n<ω, b = (bn)n<ω ∈


n<ω Ln , let a≺lex b
if there exists a natural number n0 such that an0 ≺n0 bn0 and an = bn for all n < n0. For the
lexicographic product of n chains, we use the notations L1×lex · · · ×lex Ln and Ln

lex, where in
the second case the n factors are all equal to L . By definition, we set L1

lex := L , and L0
lex := 1

(the chain with one element). Finally, observe that the lexicographic product L ×lex M is equal
to the sum


x∈L Mx , where Mx = M for each x ∈ L .

A tree is a poset (T,≼) whose initial segments (←, t) := {x ∈ T : x ≺ t} are all well-ordered
by≼ for each t ∈ T . The elements of a tree are called nodes. For each two distinct nodes s, t ∈ T ,
the notation s ⊥ t stands for incomparability between s and t , i.e., s ⋠ t and t ⋠ s. A tree T is
rooted if it has a minimum element, called the root of T . (All trees considered in this paper are
rooted.) A maximal node of a tree is also called a terminal node. An immediate successor of a
node t ∈ T is a node u ∈ T such that t ≺ u and the open interval (t, u) ⊆ T is empty. The set of
immediate successors of t ∈ T is denoted by Succ(t, T ) (or simply by Succ(t) in unambiguous
cases). A subtree of T is a subposet T ′ ⊆ T such that for each t, t ′ ∈ T , if t ′ ∈ T ′ and t ≼ t ′,
then t ∈ T ′. A path of T is a subtree P of T , which is linearly ordered by the induced order. An
antichain of T is a set of nodes A ⊆ T such that any two distinct elements in it are incomparable.
Let t ∈ T be a node of a tree (T,≼). The open cone above t is the set (t,→) := {x ∈ T : t ≺ x};
similarly, the closed cone above t is the set [t,→) := {x ∈ T : t ≼ x}. The height of t in T is
the order-type of the initial segment (←, t) and is denoted by ht(t, T ) (or simply by ht(t) if there
is no risk of ambiguity). The α-th level of T is the set Levα(T ) := {t ∈ T : ht(t) = α}, and the
height of T is the ordinal ht(T ) := min{α : Levα(T ) = ∅}. (Thus, the level zero of a rooted tree
is formed by its root only.)

In this paper we work on the tree (R<ω,⊑) of all R-valued functions defined on a finite initial
segment of ω and ordered by extension. Thus, its underlying set is R<ω

:=


n<ω Rn , and its
partial order⊑ is defined by x ⊑ y if x is a restriction of y; in particular, for each n < ω, we have
Levn(R<ω,⊑) = Rn . Observe that (R<ω,⊑) has height ω, infinitely many branches of length
ω and no terminal nodes. The main object of our analysis is the lexicographic linearization of
the tree (R<ω,⊑), i.e., the chain R<ω

lex = (R<ω,⊑lex), whose linear order ⊑lex is the completion
of the partial order ⊑ obtained as follows: whenever two nodes s and t are incomparable in
(R<ω,⊑), we complete the order by looking at the first elements where the paths leading to s
and t differ. More precisely, for each s, t ∈ R<ω, let s⊑lex t if either s ⊑ t , or s ⊥ t and s∗ < t∗,
where s∗ ∈ (←, s] and t∗ ∈ (←, t] are the first elements in the respective paths which do not
belong to (←, s)∩ (←, t). (Note that this definition is well given because (←, s)∩ (←, t) has a
last element u, and the set of immediate successors of u is a subset of the reals.) More generally,
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we will denote by Tlex = (T,≼lex) the lexicographic linearization of a tree (T,≼) of height at
most ω (see [21] for the general procedure to obtain the lexicographic linearization of a tree).

Definition 2.1. An (R, ω)-tree is a rooted tree of height at most ω with the property that the set
of the immediate successors of each node embeds into R. An (R, ω)-chain is the lexicographic
linearization of an (R, ω)-tree.

Note that (R<ω,⊑) and (R<ω,⊑lex) are universal for the classes of (R, ω)-trees and (R, ω)-
chains, respectively: in fact, any (R, ω)-tree embeds into (R<ω,⊑), and any (R, ω)-chain
embeds into (R<ω,⊑lex). Observe also that an (R, ω)-chain has a minimum element, namely,
the one corresponding to the root of the associated (R, ω)-tree. Furthermore, a subtree of an
(R, ω)-tree is an (R, ω)-tree, whereas a subchain of an (R, ω)-chain is not necessarily an (R, ω)-
chain (for example, it might lack a minimum element).

We conclude this section by associating to each isomorphism class of (R, ω)-chains a set of
(not necessarily isomorphic) (R, ω)-trees.

Definition 2.2. Define an equivalence relation ∼lex on the class of (R, ω)-trees as follows. For
each couple of (R, ω)-trees S and T , let S∼lex T if Slex and Tlex are isomorphic chains. Thus
each isomorphism class of (R, ω)-chains has a class of (R, ω)-trees associated to it. If L is an
(R, ω)-chain, each (R, ω)-tree T whose lexicographic linearization is isomorphic to L is said to
be a tree representation of L . If S and T are two tree representations of the same linear ordering

L , then the notation S
lex
= T means the following: (i) S and T have the same underlying set of

nodes; (ii) the isomorphism between Slex and Tlex is the identity map. More generally, if S and T
are two (R, ω)-trees having the same set of nodes, then we say that S is a refinement of T if the
partial order ≼S contains the partial order ≼T .

3. Small and large chains

In this section we define suitable notions of smallness and largeness for chains that embed
into R<ω

lex . To this aim, we introduce two special classes of linear orderings embeddable into
R<ω

lex , namely, pseudo-small chains and pseudo-large chains. Then, a chain is defined to be small
if is contained in a pseudo-small chain, and, dually, it is large if it contains a pseudo-large chain.
We obtain sufficient conditions for a chain to be small (Theorem 3.7) and large (Theorem 3.11).
These two facts, along with the main result of Section 4 (Theorem 4.6), will be used to prove the
dichotomy theorem (Theorem 5.4).

Definition 3.1. A pseudo-small tree is an (R, ω)-tree with no infinite branches. A pseudo-small
chain is an (R, ω)-chain with a pseudo-small tree representation. A chain is small if it embeds
into a pseudo-small chain.

Within the family of pseudo-small trees associated to a small chain L , we can find a tree T
such that L is displayed as a set of terminal nodes of T .

Lemma 3.2. For each small chain L, there exist a pseudo-small tree T and an embedding
f : L ↩→ Tlex whose image f [L] is a set of terminal nodes of T .

Proof. Let L be a small chain. Therefore, there exists a pseudo-small tree T and an embedding
f : L ↩→ Tlex. We construct a pseudo-small tree T ∗ and an embedding f ∗: L ↩→ T ∗lex such that
f ∗[L] is contained in the set of terminal nodes of T ∗. To build T ∗, start with T and for each
non-terminal node t ∈ T , add a new node t∗ in a way that Succ(t, T ∗) := {t∗} ∪ Succ(t, T ),
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t∗≺lex Succ(t, T ), and Succ(t∗, T ∗) = ∅. It is immediate to check that T ∗ is a pseudo-small
tree. Next, define a map f ∗: L → T ∗lex as follows for each x ∈ L: let f ∗(x) := f (x) if f (x)

is a terminal node in T , and f ∗(x) := ( f (x))∗ if f (x) is non-terminal in T . Then f ∗ is an
embedding such that f ∗[L] is a set of terminal nodes in T ∗. �

Example 3.3. For each n < ω, the lexicographic power Rn
lex is a small chain, which can be

identified with the set of terminal nodes of the pseudo-small tree (R≤n,⊑) via the canonical
inclusion ιn : Rn

lex ↩→ R≤n
lex . More generally, in [13] we define a c+-sequence of linear order-

ings

↑γR : γ < c+


, whose initial ω-segment is the sequence of finite lexicographic powers

Rn
lex : n < ω


. We show (Corollary 6.4) that the transfinite sequence


↑γR : γ < c+


is a hier-

archy, i.e., each linear ordering embeds into all chains following it and into none of the chains
preceding it. Furthermore, each linear ordering in this hierarchy is a small chain, which is dis-
played as the set of all terminal nodes of a suitable pseudo-small tree (Lemma 8.6).

The notion of smallness is an invariant of finite lexicographic operations.

Lemma 3.4. A lexicographic product of finitely many small chains is a small chain. A sum over
a small chain of small chains is a small chain.

Proof. For the first statement, it suffices to show that the claim holds for two small chains.
Since a lexicographic product of two chains is a particular case of a sum of chains over another
chain, it suffices to show that the second statement holds. Let {Mx : x ∈ X} be a family of small
chains indexed over a small chain X . By Lemma 3.2, we can assume that all small chains
under consideration are displayed as sets of terminal nodes of pseudo-small trees. Therefore,
there exist: (i) a pseudo-small tree U and an embedding g: X ↩→ Ulex such that g[X ] is a
set of terminal nodes of U ; (ii) a family of pseudo-small trees {Ux : x ∈ X} and a family of
embeddings {gx : x ∈ X}, where each map gx : Mx ↩→ (Ux )lex is such that the image gx [Mx ] is
a set of terminal nodes in Ux . In the sequel we define a pseudo-small tree T and an embedding
f :


x∈X Mx ↩→ Tlex such that the image f


x∈X Mx


is a set of terminal nodes of T . This

will prove that


x∈X Mx is a small chain.
Let T be the (R, ω)-tree obtained substituting the terminal node g(x) ∈ U by the tree Ux for

each x ∈ X . Further, let f :


x∈X Mx → Tlex be the map defined by f (x, m) := (g(x), gx (m))

for each (x, m) ∈


x∈X Mx , where (g(x), gx (m)) ∈ T denotes the node gx (m) ∈ Ux once that
the terminal node g(x) ∈ U has been substituted by the tree Ux . It is immediate to check that T
is a pseudo-small tree and f is an embedding such that f


x∈X Mx


is a set of terminal nodes

of T . Thus the claim holds. �

A key property of small chains is that in the process of checking embeddability into a pseudo-
small chain, any countable subset can be disregarded (Theorem 3.7). To prove this fact, we
introduce the notion of the Dedekind duplicate of a chain.

Definition 3.5. Let (L ,≺L) be a chain. The set of Dedekind cuts of L is

Cut(L) := {(A, B) : A, B ⊆ L ∧ A≺L B ∧ A ∪ B = L}.

(Recall that A≺L B means that a≺L b for each a ∈ A and b ∈ B.) Endow Cut(L) with a linear
order ≺Cut(L) defined by (A, B)≺Cut(L)(C, D) if A & C for each (A, B), (C, D) ∈ Cut(L). The
Dedekind duplicate of L is the chain


Ded(L),≺Ded(L)


, whose underlying set is Ded(L) :=

L ∪ Cut(L), and whose linear order extends the orders on L and Cut(L) as follows:

• if x, y ∈ L , then let x ≺Ded(L) y if and only if x ≺L y;
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• if x, y ∈ Cut(L), then let x ≺Ded(L) y if and only if x ≺Cut(L) y;
• if x ∈ L and y = (A, B) ∈ Cut(L), then let x ≺Ded(L) y if and only if x ≺L B.

Note that

Ded(L),≺Ded(L)


has a minimum, namely, (∅, L), as well as a maximum, namely,

either max L or (L ,∅) in case L has no maximum. Furthermore, if L is empty, then Ded(L) =

Cut(L) = {(∅,∅)}. Let M be a subchain of L . For each x, y ∈ L such that x ≺L y, the notation
(x, y)M stands for (x, y)L ∩ M ; furthermore, we denote by M the closure of M in L .

Lemma 3.6. If L and M are chains such that M $ L, then L embeds into Ded(M)×lex(L \M).

Proof. The result holds trivially if M = ∅ or M = L . Thus, assume that ∅ $ M $ L . For each
x ∈ L \ M , let x+ be the element of Cut(M) ⊆ Ded(M) defined as follows:

x+ :=

(←, x)M , [x,→)M


.

Definition 3.5 yields that for each x, y ∈ L\M such that x ≺L y, we have x+≼Ded(M) y+. Define

a function f : L → Ded(M)×lex(L \ M) as follows for each x ∈ L:

f (x) :=


(x, z0) if x ∈ M
(x+, x) if x ∈ L \ M

where z0 is a fixed element of L \ M . To complete the proof, we show that f is an embedding.
Let x, y ∈ L be such that x ≺L y. We prove that f (x)≺lex f (y) in each of the four possible
cases. If x, y ∈ M , then f (x) = (x, z0)≺lex(y, z0) = f (y) holds. Dually, if x, y ∈ L \ M ,
then we get f (x) = (x+, x)≺lex(y+, y) = f (y) because of the second components. Further,
if x ∈ M and y ∈ L \ M , then f (x) = (x, z0)≺lex(y+, y) = f (y) by comparing the first
components. Finally, assume that x ∈ L \ M and y ∈ M . By definition of closure, there
exists an open interval (a, b) ⊆ L such that x ∈ (a, b) and (a, b) ∩ M = ∅. It follows that
x+ =


(←, a]M , [b,→)M


and b≼L y. Now Definition 3.5 yields that x+≺Ded(M) y, and so we

have f (x) = (x+, x)≺lex(y, z0) = f (y) also in this case. �

Finally, we obtain the following sufficient condition for the smallness of chains.

Theorem 3.7. Let L be a chain and M a countable subchain of L. If L \ M is small, then so
is L.

Proof. The result is obvious in the case that M = L , so assume that M $ L . If L \ M is a
small chain, then Lemma 3.6 implies that L embeds into Ded(M)×lex(L \ M). Countability
of M yields the embeddability Ded(M) ↩→ R2

lex, which implies that Ded(M) is a small chain.
Therefore, the lexicographic product Ded(M)×lex(L \ M) is a small chain by Lemma 3.4. The
claim follows. �

Now we introduce a notion of largeness for chains embeddable into R<ω
lex .

Definition 3.8. A pseudo-large tree is an (R, ω)-tree with no terminal nodes and such that the
set of immediate successors of each node is an uncountable chain with no minimum. A pseudo-
large chain is an (R, ω)-chain that has a pseudo-large tree representation. A chain embeddable
into R<ω

lex is large if it contains a copy of a pseudo-large chain.

We shall prove a sufficient condition for a chain to be large (Theorem 3.11). To this aim, we
introduce the definition of a branching generator in an (R, ω)-tree.
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Definition 3.9. Let U be an (R, ω)-tree and A(U ) the family of all antichains in U . A branching
generator in U is a pair (S, σ ), where S is a set of nodes containing the root of U , and
σ : S → A(U ) is a map such that for each s ∈ S, the antichain σ(s) satisfies the following
properties:

• σ(s) is uncountable;
• σ(s) is contained in S ∩ (s,→)U ;
• (σ (s))lex embeds into R.

The next result shows that the existence of a branching generator is preserved by refinements
of (R, ω)-trees (see the last part of Definition 2.2 for the notion of refinement).

Lemma 3.10. Let T and U be (R, ω)-trees having the same underlying set of nodes. If U has a
branching generator and T refines U, then T has a branching generator as well.

Proof. Assume that the partial order ≼U is contained into the partial order ≼T , and let (S, σ ) be
a branching generator for U . We construct a branching generator (R, ρ) for T , with R ⊆ S and
ρ: R → A(T ) such that ρ(r) = σ(r) ∩ R for each r ∈ R. In what follows we build a sequence
of pairs {(Rn, ρn) : n < ω} such that R0 has the root rT of T as its only element, ρ0(rT ) is an
uncountable antichain of T whose lexicographic linearization embeds into the reals, and for each
n < ω, we have:

• Rn+1 = Rn ∪ ρn[Rn] ⊆ S;
• ρn+1: Rn+1 → A(T ) is such that ρn+1 � Rn = ρn , and for each r ∈ Rn+1 \ Rn , the set

ρn+1(r) is an uncountable antichain, which is contained in the open cone (r,→)T and whose
lexicographic linearization embeds into the reals.

Then the pair (R, ρ), where R :=


n<ω Rn and ρ :=


n<ω ρn , is a branching generator
for T .

Let rU be the root of U . By hypothesis, rU belongs to S and σ(rU ) is an uncountable antichain
of U contained in S∩ (rU ,→)U and whose lexicographic linearization embeds into R. Note that
since ≼U is included into ≼T , it follows that T and U have the same root rT = rU , and the
inclusion A(T ) ⊆ A(U ) holds. Let R0 := {rT }. Countability of ht(T ) implies that we can
select an uncountable set ArT ⊆ σ(rT ) ⊆ (rT ,→)T with the property that all nodes in ArT

belong to Levk(T ) for some k ≥ 1; in particular, ArT is an antichain of T whose lexicographic
linearization embeds into R. Let ρ0: R0 → A(T ) be the map defined by rT → ArT . For the
successor step, define Rn+1 := Rn ∪ ρn[Rn] and ρn+1 � Rn := ρn . To complete the definition of
ρn+1, let r ∈ Rn+1 \ Rn . Since ≼U is contained in ≼T , it follows that (r,→)U ⊆ (r,→)T . Thus,
σ(r) is an uncountable antichain of U , which is contained in the open cone (r,→)T , and whose
lexicographic linearization embeds into the reals. Select an uncountable subset Ar ⊆ σ(r) such
that Ar is contained in Levk(T ) for some k ≥ n + 1, and set ρn+1(r) := Ar . This completes the
definition of the sequence {(Rn, ρn) : n < ω}. �

Theorem 3.11. Let T be an (R, ω)-tree and X ⊆ T a set of nodes. If T has a branching
generator and X is upward dense in T , then X lex is a large chain.

Proof. Let (S, σ ) be a branching generator for T . We aim at obtaining a branching generator
(R, ρ) for T such that Rlex contains a pseudo-large chain and Rlex ↩→ X lex. We create (R, ρ)

from (S, σ ) by selecting a set R ⊆ S as follows.
Let rT ∈ R. Then there exists a node r−T ∈ σ(rT ) such that in the linear ordering σ(rT )lex

the final segment (r−T ,→)lex is isomorphic to an uncountable subset of the reals. Set ρ(rT ) :=
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(r−T ,→). Repeat the construction for each r ∈ R by choosing a node r− ∈ σ(r) such that the
final segment (r−,→)lex ⊆ σ(r)lex is isomorphic to an uncountable subset of the reals. Set
ρ(r) := (r−,→) ⊆ σ(r). Then (R, ρ) is a branching generator for T .

By removing the maximal well-ordered (hence countable) initial segment from each subchain
ρ(r)lex, we obtain an (R, ω)-chain Plex such that the set of successors of each element in P
(considered as a tree on its own) is isomorphic to an uncountable subset of the reals with no
minimum element. Therefore Plex is a pseudo-large chain. By the upward density of X in T , for
each r− ∈ σ(r), there exists xr ∈ X such that r−≼T xr . Since for each r1, r2 ∈ R, the chain of
implications

r1 ≠ r2 ⇒ r−1 ≠ r−2 ⇒ xr1 ≠ xr2

holds, it follows that

Plex ⊆ Rlex ∼= {xr : r ∈ R}lex ⊆ X lex.

Therefore X lex is a large chain, as claimed. �

4. Lexicographically intrinsic properties

In this section we introduce the notion of a lexicographically intrinsic property of the nodes
of (R, ω)-trees, which is defined by the invariance of the lexicographic linearization of the cone
above a node. This order-theoretic property has some peculiar features, which allow one to select
a suitable representative within each equivalence class of (R, ω)-trees. The content of this section
is rather technical, however its main result (Theorem 4.6) plays a fundamental role in the proof of
the dichotomy theorem. The reader who is only interested in a compact proof of the dichotomy
theorem might want to (temporarily) skip all technical details (Lemma 4.3 and onwards).

Definition 4.1. Let P be a property of the nodes of (R, ω)-trees. For each (R, ω)-tree T , denote
by P(T ) the set of nodes in T satisfying property P. We say that P is lexicographically intrinsic
if for each pair of (R, ω)-trees T and T ′, for each pair of nodes t ∈ T and t ′ ∈ T ′, whenever
[t,→)∼lex[t ′,→) as trees (in the sense of Definition 2.2), we have that t ∈ P(T ) if and only if
t ′ ∈ P(T ′).

Thus, a lexicographically intrinsic property is an invariant of the lexicographic linearization
of the cone above a node. An example of a lexicographically intrinsic property is the following.

Example 4.2. Let T be an (R, ω)-tree and t a node of T . We say that t is a pseudo-small node if
the lexicographic linearization [t,→)lex of the closed cone [t,→) is a pseudo-small chain. It is
easy to check that the property of being (or not being) a pseudo-small node is lexicographically
intrinsic.

We aim at showing that for each (R, ω)-tree T , if P(T ) ⊆ T is the set of all nodes of
T satisfying a lexicographically intrinsic property P, then there exists an (R, ω)-tree U with
the same lexicographic linearization as T , and whose own set of nodes P(U ) is displayed at
its lowest levels. The proof of this fact is based on a recursive construction. We need three
preliminary lemmas: two are related to a “pulling down” operation of the cones above selected
nodes, and one is related to a “fusion” of the levels of suitably compatible trees.

Lemma 4.3 (Pulling Down #1). Let P be a lexicographically intrinsic property of (R, ω)-trees.
For each (R, ω)-tree T such that P(T ) is uncountable, there exists an (R, ω)-tree T ′ satisfying
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the following properties:

(1) T ′
lex
= T ;

(2) for each t ∈ T , ht(t, T ′) ≤ ht(t, T );

(3) for each t ∈ T , either [t,→)T ′
lex
=[t,→)T or t is a terminal node of T ′;

(4) T is a refinement of T ′;
(5) ↓ P(T ′) ∩ Lev1(T ′) is uncountable.

Proof. Toward a contradiction, let T be a counterexample to the claim of the theorem.
Specifically, assume that P(T ) is uncountable and there is no (R, ω)-tree T ′ satisfying properties
(1)–(5). Further, since there exists k ≥ 2 such that the set of nodes A :=↓ P(T ) ∩ Levk(T ) is
uncountable, we assume that this natural number k is minimal among all such counterexamples.
Note that if T is a counterexample and T ′ is another (R, ω)-tree that satisfies all properties
but (5), then T ′ is also a counterexample. In the sequel we construct from T an (R, ω)-tree T ′

satisfying properties (1)–(4) and such that ↓ P(T ′) ∩ Levk−1(T ′) is uncountable.
Minimality of k implies that there is a node u ∈ Levk−1(T ) such that the set B := A ∩

Succ(u, T ) is uncountable. Let T ′ be the tree obtained from T by pulling the open cone (u,→)T
down one level as follows. In the original tree T , let u′ be the immediate predecessor of u.
Further, let

Succ(u′, T ) = X ∪ {u} ∪ Y ⊆ Levk−1(T )

be the R-embeddable chain of immediate successors of u′, where X < u < Y in the order of
the real numbers. In the new tree T ′, both the underlying set of nodes and the partial order are
the same as in T , with only two exceptions: (a) the set of immediate successors of u′ is the
R-embeddable chain

Succ(u′, T ′) = X ∪ {u} ∪ Succ(u, T ) ∪ Y

where X < u < Succ(u, T ) < Y in the order of the real numbers; and (b) the node u is
terminal in T ′. It is straightforward to check that T ′ is an (R, ω)-tree satisfying properties (1)–(4).
Note that the described operation affects only the node u with respect to P, because P is a
lexicographically intrinsic property. Therefore all nodes in B belong to ↓ P(T ′), and so the set
↓ P(T ′) ∩ Levk−1(T ′) is uncountable.

If k = 2, it follows that T ′ is an (R, ω)-tree that satisfies properties (1)–(5), which contradicts
the fact that T is a counterexample. On the other hand, if k > 2, then T ′ is a counterexample
such that ↓ P(T ′) ∩ Levk−1(T ′) is uncountable, contradicting the minimality of k. �

Lemma 4.4 (Pulling Down #2). Let P be a lexicographically intrinsic property of (R, ω)-trees.
For each (R, ω)-tree T such that ↓ P(T ) ∩ Lev1(T ) is uncountable, there exists an (R, ω)-tree
T ′ satisfying the following properties:

(1) T ′
lex
= T ;

(2) for each t ∈ T , ht(t, T ′) ≤ ht(t, T );

(3) for each t ∈ T , either [t,→)T ′
lex
=[t,→)T or t is a terminal node of T ′;

(4) T is a refinement of T ′;
(5) P(T ′) ∩


Lev1(T ′) ∪ Lev2(T ′)


is uncountable.

Proof. Toward a contradiction, let T be a counterexample. By hypothesis the set ↓ P(T ) con-
tains an uncountable set of distinct nodes {tα : α < ω1} ⊆ Lev1(T ). Thus, for each α < ω1 there
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exists a node zα ∈ P(T ) such that tα ≼T zα . Since ht(T ) ≤ ω and there is no (R, ω)-tree T ′ sat-
isfying (1)–(5), we can assume without loss of generality that there exists a natural number k ≥ 3
such that for each α < ω1, we have zα ∈ Levk(T ). Suppose that T is chosen with minimal such k.

Fix α < ω1. Let yα be the immediate predecessor of zα , and xα the immediate predecessor of
yα . Note that tα ≼T xα ≺T yα ≺T zα because k ≥ 3. Let

Succ(yα, T ) = Z−α ∪ {zα} ∪ Z+α ⊆ Levk(T )

be the R-embeddable chain of immediate successors of yα , where Z−α < zα < Z+α in the order
of the real numbers. Further, let

Succ(xα, T ) = Y−α ∪ {yα} ∪ Y+α ⊆ Levk−1(T )

be the R-embeddable chain of immediate successors of xα , where Y−α < yα < Y+α in the order
of the real numbers.

We define a new tree Tα by “pulling down” one level both the closed cone [zα,→)T and
the union of closed cones ↑ Z+α ⊆ T . The underlying set of nodes and partial order of Tα are
the same as in T , with only two exceptions: (a) yα is a terminal node in Tα; and (b) the set of
immediate successors of xα in Tα is the R-embeddable chain

Succ(xα, Tα) = Y−α ∪ {yα} ∪ Z−α ∪ {zα} ∪ Z+α ∪ Y+α

where Y−α < yα < Z−α < zα < Z+α < Y+α in the order of real numbers. Note that Tα is an (R, ω)-

tree such that Tα
lex
= T and ht(t, Tα) ≤ ht(t, T ) for each t ∈ T . Observe also that the operation

described above modifies only the lexicographic linearization of the closed cone above yα ,
whereas the lexicographic linearization of all the other closed cones remains unchanged. Finally,
it is straightforward to check that the partial order on Tα is contained in the partial order of T ,
since we have eliminated some comparisons and added none. Therefore, properties (1)–(4) hold
for Tα and, since P is lexicographically intrinsic, the node zα belongs to P(Tα) ∩ Levk−1(Tα).

Next, we create a tree T ′ by simultaneously performing the “pulling down” operation on each
node in the set {zα : α < ω1}. The tree T ′ has the same underlying set of nodes and the same
lexicographic linearization as T , but the set of nodes {zα : α < ω1} lies at level k − 1 in the new
tree T ′. Observe that the construction never increases the height of any node, and so the tree T ′

satisfies (1) and (2). Furthermore, the set Succ(t ′, T ′) is an R-embeddable chain for each t ′ ∈ T ′:
indeed, the only sets of immediate successors that have been altered in T ′ are Succ(yα, T ′) and
Succ(xα, T ′) for each α < ω1, and all of them are embeddable into R. It follows that T ′ is (R, ω)-
tree. Finally, note that the only nodes in T ′ whose closed cones have been modified are the nodes
in the set {yα : α < ω1}, which are terminal in T ′. Therefore, properties (3) and (4) hold for T ′

as well. Since P is lexicographically intrinsic, the uncountable set of nodes {zα : α < ω1} lies in
P(T ′) ∩ Levk−1(T ′).

If k = 3, then T ′ is an (R, ω)-tree satisfying properties (1)–(5). This contradicts the fact that
T is a counterexample. On the other hand, if k > 3, then T ′ is another counterexample to the
statement of the theorem, contradicting the minimality of k. This completes the proof. �

For each (R, ω)-tree T and for each n < ω, the notation T � (n + 1) stands for the subtree
formed by its first n levels, i.e.,


i≤n Levi (T ).

Lemma 4.5 (Fusion Lemma). Let T be an (R, ω)-tree and

U (n)
: n < ω


a sequence of (R, ω)-

trees satisfying the following properties for each n < ω:

(a) U (n) � (m + 1) = U (m) � (m + 1) for each m ≤ n;



88 A. Giarlotta, S. Watson / Indagationes Mathematicae 25 (2014) 78–92

(b) U (n) lex
= T ;

(c) ht(t, U (n)) ≤ ht(t, U (m)) ≤ ht(t, T ) for each t ∈ T and m ≤ n.

Then the tree U, whose n-th level is defined by Levn(U ) := Levn

U (n)


for each n < ω, is a

well-defined (R, ω)-tree satisfying following properties:

(i) U � (n + 1) = U (n) � (n + 1);

(ii) U
lex
= T .

Proof. Let U be the tree defined by levels as in the statement of the theorem. We prove that U
is an (R, ω)-tree satisfying properties (i)–(ii). First of all, observe that U is well-defined. In fact,
for each u ∈ U there exists a natural number k := ht(u, T )+ 1 such that for all n ≥ k, we have
(←, u]U = (←, u]U (n) by properties (a) and (c) in the hypothesis. Therefore, the initial segment
having u as endpoint stabilizes into a (well-defined) well-ordered set.

To prove (i), fix n < ω. For each k ≤ n, hypothesis (a) and the definition of U yield the chain
of equalities Levk(U (k)) = Levk(U (n)) = Levk(U ). Property (i) follows.

Next, we show that U is an (R, ω)-tree. Hypothesis (c) implies that ht(U (n)) ≤ ht(T ) ≤ ω for
each n < ω, hence h(U ) ≤ ω. We claim that the set of immediate successors in U of each node
u ∈ U is an R-embeddable chain; this will show that U is an (R, ω)-tree. Let u be an arbitrary
node in U . Then there exists n < ω such that u ∈ Levn(U ). Property (i) yields the equality
U � (n + 2) = U (n+1) � (n + 2). In particular, Succ(u, U ) = Succ(u, U (n+1)), hence the chain
Succ(u, U ) embeds into R, because U (n+1) is an (R, ω)-tree by hypothesis.

To prove (ii), let u1, u2 ∈ U such that u1≺Tlex u2. Then there exist n1, n2 < ω such that

u1 ∈ Levn1(U ) and u2 ∈ Levn2(U ). Let n := max{n1, n2}. Since U (n) lex
= T by hypothesis (b),

we have u1≺U (n)
lex

u2. Thus property (i) and the definition of lexicographic linearization of a
tree imply that u1≺Ulex u2, as claimed. �

We are ready to prove the main result of this section. Its content can be roughly summarized as
follows: for each lexicographic intrinsic property P of an (R, ω)-tree, we can always find another
(R, ω)-tree “similar” to the original one, and such that for each node, the locally uncountable
character of P is always displayed at the first two levels above the node. For the sake of synthesis,
for any tree T and node t ∈ T , we use the following notation:

Succ(2)(t, T ) :=


u∈Succ(t,T )

Succ(u, T ),

Succ(1,2)(t, T ) := Succ(t, T ) ∪ Succ(2)(t, T ).

(1)

Theorem 4.6. Let P be a lexicographically intrinsic property of (R, ω)-trees, and T an (R, ω)-
tree. There exists an (R, ω)-tree U satisfying the following properties:

(i) U
lex
= T ;

(ii) T is a refinement of U;
(iii) for each u ∈ U, either P(U ) ∩ Succ(1,2)(u, U ) is uncountable or P(U ) ∩ [u,→)U is

countable.

Proof. If P(T ) is countable, then the result holds trivially for U := T . Therefore, assume that
P(T ) is uncountable. Denote by Q(T ) be the set of the nodes of T that do not satisfy (iii), i.e.,

Q(T ) := {t ∈ T : |P(T ) ∩ Succ(1,2)(t, T )| ≤ ω ∧ |P(T ) ∩ (t,→)T | ≥ ω1}.
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We construct by recursion a sequence

(U (n),≼U (n)) : n < ω


of (R, ω)-trees satisfying the

following properties for each n < ω (for consistency, let U (−1)
:= T by definition):

(a) U (n) � (m + 1) = U (m) � (m + 1) for each m ≤ n;

(b) [x,→)U (n)
lex
=[x,→)U (n−1) for each x ∈ U (n) � (n + 1);

(c) U (n) lex
= T ;

(d) ht(t, U (n)) ≤ ht(t, U (m)) ≤ ht(t, T ) for each t ∈ T and m ≤ n;
(e) ≼U (n) ⊆ ≼U (m) ⊆ ≼T for each m ≤ n;
(f) Q(U (n)) ∩U (n) � (n + 1) = ∅.

For the base step of the recursive construction, a joint application of the two “pulling down”

Lemmas 4.3 and 4.4 yields an (R, ω)-tree T ′ such that (1) T ′
lex
= T , (2) ht(t, T ′) ≤ ht(t, T ) for

each t ∈ T , (3) either [t,→)T ′
lex
=[t,→)T or t is a terminal node of T ′ for each t ∈ T , (4) T is

a refinement of T ′, and (5) |P(T ′) ∩ (Lev1(T ′) ∪ Lev2(T ′))| ≥ ω1. Set U (0)
:= T ′. It is easy to

check that U (0) satisfies properties (a)–(f).
Next, assume that the (R, ω)-tree U (n) satisfying properties (a)–(f) has been defined. If the

set Q(U (n)) ∩ Levn+1(U (n)) is empty, then set U (n+1)
:= U (n). Otherwise, for each node

u ∈ Q(U (n)) ∩ Levn+1(U (n)), we apply the two “pulling down” Lemmas 4.3 and 4.4 to the
(R, ω)-tree Tu := [u,→)U (n) and obtain an (R, ω)-tree Tu

′ such that:

(1) Tu
′ lex
= Tu ;

(2) ht(t, Tu
′) ≤ ht(t, Tu) for each t ∈ Tu ;

(3) either [t,→)Tu
′

lex
=[t,→)Tu , or t is a terminal node of Tu

′ for each t ∈ T ;
(4) Tu is a refinement of Tu′ ;
(5) |P(Tu

′) ∩ (Lev1(T ′u) ∪ Lev2(Tu
′))| ≥ ω1.

Since Q(U (n+1)) ∩ Levn+1(U (n+1)) is empty by construction, the inductive hypothesis implies
that the tree U (n+1) satisfies properties (a)–(f). This completes the construction of the sequence
U (n)
: n < ω


.

Let (U,≼U ) be the tree whose n-th level is defined by Levn(U ) := Levn(U (n)) for each
n < ω. By the “fusion” Lemma 4.5 and by construction, U is an (R, ω)-tree such that the
following properties hold for each n < ω:

(A) U � (n + 1) = U (n) � (n + 1);

(B) U
lex
= T ;

(C) ht(u, U ) ≤ ht(u, U (n)) ≤ h(u, T ) for each u ∈ U ;

(D) [u,→)U
lex
=[u,→)U (n) for each u ∈ U � (n + 1);

(E) ≼U ⊆ ≼U (n) ⊆ ≼T ;
(F) Q(U (n)) ∩U (n) � (n + 1) = ∅.

To complete the proof, we show that U satisfies property (iii) of the thesis, i.e., Q(U ) = ∅. Let
u be an arbitrary node of U . Then u ∈ Levk(T ) for some k < ω. Properties (C) and (F) imply

that u ∉ Q(U (k)). Furthermore, the equality [u,→)U
lex
=[u,→)U (k) holds by property (D). Since

P is lexicographically intrinsic, it follows that u ∉ Q(U ), as claimed. �
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5. The dichotomy theorem

We apply Theorem 4.6 to a special lexicographically intrinsic property for the nodes of (R, ω)-
trees: the property S of not being a small node, defined as follows (cf. Example 4.2).

Definition 5.1. Let T be an (R, ω)-tree and t a node of T . We say that t is a small node if
[t,→)lex is a small chain. We use the following notation:

S(T ) := {t ∈ T : t is a small node} and S(T ) := T \ S(T ).

Let A ⊆ T be a nonempty set in a tree (T,≼). Recall that the downward closure of A in
T is the set ↓ A :=


a∈A(←, a], and A is downward closed in T if A =↓ A. (Note that

each downward closed set is a subtree of T .) Dually, the upward closure of A in T is the set
↑ A :=


a∈A[a,→), and A is upward closed in T if A =↑ A. Furthermore, we say that A is

upward dense in T if for each t ∈ T there exists a ∈ A such that t ≼ a (i.e., ↓ A = T ).

Lemma 5.2. For each (R, ω)-tree T , the set S(T ) is upward closed, and the set S(T ) is down-
ward closed.

Proof. Let T be an (R, ω)-tree. It suffices to show that S(T ) is upward closed. Assume that
t, u ∈ T are such that t ≺ u and t is a small node. Since the linear ordering [t,→)lex is a small
chain, there exists a pseudo-small tree U such that [t,→)lex embeds into Ulex. Thus we have
[u,→)lex ⊆ [t,→)lex ↩→ Ulex, hence u is a small node. �

If an (R, ω)-tree has a non-small node, then it has uncountably many non-small nodes, as the
next results shows.

Lemma 5.3. For each (R, ω)-tree T , the following statements are equivalent:

(i) Tlex is a small chain;
(ii) the root of T is a small node;

(iii) all nodes of T are small;
(iv) all but at most countably many nodes of T are small.

Therefore, the set S(T ) is either empty or uncountable.

Proof. Let T be an (R, ω)-tree and rT the root of T . The equality T = [rT ,→) and Lemma 5.2
yield the equivalences (i) ⇔ (ii) ⇔ (iii). To finish the proof, it suffices to show that (iv)
implies (ii). Toward a contradiction, assume that the set S(T ) is countable and rT fails to be a
small node. We claim that Tlex is a small chain; this will contradict the equivalence (i) ⇔ (ii).

By Theorem 3.7, to prove the claim it suffices to show that the linear ordering Tlex \ S(T ) =

S(T )lex is a small chain. Let

B := {b ∈ T : b is a minimal small node}

where “minimal” means that if b ∈ B, then there is no b′ ∈ B such that b′ ≺ b. Therefore, the
set B is an antichain of T that does not contain rT . For each b ∈ B, let tb be the immediate
predecessor of b. By the minimality of the nodes of B, the set

C := {tb : b ∈ B}

contains only nodes that fail to be small. Note that Lemma 5.2 yields that ↑ B = S(T ) and
↓ C ⊆ S(T ). By hypothesis, the set ↓ C is countable, hence so is the set C . Since T is an
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(R, ω)-tree, we obtain

Blex ↩→ Clex×lex R ↩→ R≤2
lex

hence Blex is a small chain. Furthermore, we have

Tlex \ S(T ) = S(T )lex =↑ Blex =


b∈Blex

[b,→)lex

where [b,→)lex is a small chain by hypothesis. Therefore, Lemma 3.4 yields that Tlex \ S(T ) is
a small chain and the proof is complete. �

Finally, we have:

Theorem 5.4. Each chain embeddable into R<ω
lex is either small or large.

Proof. Let L be a chain, and f : L ↩→ R<ω
lex an embedding. Let (T,≼T ) be the subtree of

(R<ω,⊑) obtained by taking the downward closure of the image f [L]. Then T is an (R, ω)-
tree such that L embeds into the (R, ω)-chain Tlex.

We claim that there exists a tree representation (U,≼U ) of Tlex with the following two
properties: (i) T is a refinement of U ; (ii) for each u ∈ U , either u is a small node or there
are uncountably many nodes in Succ(1,2)(u, U ) that fail to be small. Indeed, an application of
Theorem 4.6 to the tree T and the intrinsic property S yields an (R, ω)-tree representation U of
Tlex such that for each u ∈ U , either S(U ) ∩ Succ(1,2)(u, U ) is uncountable, or S(U ) ∩ [u,→)

is countable. For each u ∈ U , if S(U ) ∩ [u,→) is countable, then Lemma 5.3 implies that the
root u of the (R, ω)-tree [u,→) is a small node. The claim follows.

As a consequence of the claim, either (I) the root rU of U is a small node, or (II) there are un-
countably many nodes in Lev1(U )∪Lev2(U ) that fail to be small. In case (I), Lemma 5.3 implies
that Ulex is a small chain. Since L embeds into Ulex, it follows that L is a small chain as well.

Next, assume that (II) holds, hence L is not small. We claim that U has a branching generator
(S, σ ). Let rU ∈ S. If there exists an uncountable set A1 ⊆ Lev1(U ) of non-small nodes, then
set σ(rU ) := A1. Otherwise, there is an uncountable set A2 ⊆ Lev2(U ) of non-small nodes. In
this case, if there exists u ∈ Lev1(U ) such that the set A′2 := Succ(u, U ) ∩ A2 is uncountable,
then set σ(rU ) := A′2. On the other hand, if there is no such a node u ∈ Lev1(U ), then select an
uncountable set A′′2 ⊆ A2 such that no elements in A′′2 have the same immediate predecessor, and
set σ(rU ) := A′′2 . It is immediate to check that the lexicographic linearization of the uncountable
antichain σ(rU ) is embeddable into the reals. Since each node u ∈ σ(rU ) fails to be small, we
can repeat the above construction for each such u and create recursively a branching generator
for U . This proves the claim.

Since the partial order ≼U is contained in the partial order ≼T , we can apply Lemma 3.10
to obtain a branching generator for T . By construction the chain L is upward dense in T , hence
Theorem 3.11 yields that L is a large chain. �
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