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a b s t r a c t

Rationalizability has been a main topic in individual choice theory since the seminal paper of Samuel-
son (1938). The rationalization of a multi-valued choice is classically obtained by maximizing the bi-
nary relation of revealed preference, which is fully informative of the primitive choice as long as
suitable axioms of choice consistency hold. In line with this tradition, we give a purely axiomatic treat-
ment of the topic of choice rationalization. In fact, we introduce a new class of properties of choice
coherence, called axioms of replacement consistency, which examine how the addition of an item to
a menu may cause a substitution in the selected set. These axioms are used to uniformly character-
ize rationalizable choices such that their revealed preferences are quasi-transitive, Ferrers, semitran-
sitive, and transitive. Further, regardless of rationalizability, we study the relationship of these new
axioms with some classical properties of choice consistency, such as standard contraction, standard ex-
pansion, and WARP. To complete our analysis of the transitive structure of rationalizable choices, we
examine the case of revealed preferences satisfying weak (m, n)-Ferrers properties in the sense of Gi-
arlotta and Watson (2014). Originally introduced with the purpose of extending the notions of interval
orders and semiorders, these Ferrers properties give a descriptive taxonomy of binary relations display-
ing a transitive strict preference but an intransitive indifference. Here we suggest a possible economic
interpretation of weak (m, n)-Ferrers properties, showing that, in a suitable model of transactions, they
provide a way of controlling phenomena of money-pump due to the presence of mixed cycles of pref-
erence/indifference. Finally, we define (m, n)-rationalizable choices as those having a weakly (m, n)-
Ferrers revealed preference, and characterize these choices bymeans of additional axioms of replacement
consistency.
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1. Introduction and motivation

The rationalization of an observed choice behavior is a topic in
individual choice theory which has been given a lot of attention
since the pioneering paper of Samuelson (1938): see – among sev-
eral contributions lying down the fundamentals of the associated
theory of revealed preferences – (Arrow, 1959; Chernoff, 1954;
Hansson, 1968; Houthakker, 1950; Richter, 1966; Sen, 1971). See
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also Aleskerov, Bouyssou, and Monjardet (2007), Moulin (1985),
and Suzumura (1983) for an introduction to rational choices and
revealed preference theory. Informally, a choice correspondence1
is rationalizable whenever it can be recovered by maximizing the
induced relation of revealed preference.2 Thus rationalizability is
equivalent to say that the original correspondence collapses to a
binary relation, whose maximization fully explains the economic
agent’s observed behavior.

Rationalizable choices are known to satisfy some structural
properties, called axioms of choice consistency. These axioms range
from properties that guarantee the mere rationalizability of a
choice in the sense described above (Chernoff’s axiom of contrac-
tion consistency, and Sen’s axiom of expansion consistency), to
properties ensuring that the relation of revealed preference satis-
fies highly desirable structural properties (e.g., Samuelson’s Weak
Axiomof Revealed Preferences,WARP). In fact, it iswell known that
the preference revealed by a rationalizable choice is always acyclic,
however it may well fail to satisfy any form of pseudo-transitivity.

The possibility to have a rationalizable choice with an intran-
sitive revealed preference has been regarded as a drawback of the
approach by many economists, who argue that the explanation of
an observed choice behavior provided by a binary maximization
cannot be taken per se as indicative of a perfect rationality. In fact,
the transitivity of the revealed preference (hence the satisfaction
of WARP) has been traditionally seen as an unquestionable ratio-
nality tenet, whose violationmay give rise to perverse effects, such
that themoney-pump phenomenon observed by Davidson, McKin-
sey, and Suppes (1955). Indeed, as described by Tversky (1969):

Transitivity, however, is one of the basic and the most compelling
principles of rational behaviour. For if one violates transitivity, it is
a well known conclusion that he is acting, in effect, as a ‘‘money-
pump’’. Suppose an individual prefers y to x, z to y, and x to z. It is
reasonable to assume that he is willing to pay a sum of money to
replace x by y. Similarly, he should be willing to pay some amount
of money to replace y by z, and still a third amount to replace z by
x. Thus, he ends up with the alternative he started with but with
less money.

As amatter of fact, themere presence of a strict cycle of preferences
indeed puts the economic agent at the risk of losing all her money,
since she may get involved in another cycle of money-pump, and
continue in this fashion until her financial resources are totally ex-
hausted.

Admittedly, the abovemoney-pump effect requires strict cycles
of preferences, which are forbidden in the case of a preference
revealed by a choice (which is by definition acyclic, at least
whenever the choice domain is finitely complete3). However,
many contributions to the economic literature show that amoney-
pump effect may also arise – under suitable assumptions – in
the presence of mixed cycles, that is, whenever there are cycles
involving both strict preferences and indifferences: see, e.g., Restle
(1961), who argues that a strict cycle can be easily induced by
a mixed cycle using a ‘‘small bonus’’ approach.4 Furthermore,
several additional ways to induce a money-pump from mixed
cycles of strict preferences/indifferences have been proposed in

1 Recall that given a set X of alternatives, a choice correspondence c on X is a
contractive set-function defined on a suitable subset Ω of the powerset of X . The
correspondence c associates to each menu S in Ω a nonempty subset c(S) ⊆ S,
which comprises all elements of S that are deemed choosable.
2 An alternative x is revealed to be preferred to another alternative y whenever

there is a menu containing both of them and such that x is selected from it.
3 A finitely complete domain contains all finite subsets of the ground set X .
4 For some recent examples of this approach, see also Hansson (1993) and

Rabinowicz (2008).
the literature, e.g., in a multiple-criteria set up (Schumm, 1987),
or using the notion of dominance in cases of preferences under
uncertainty (Gustafsson, 2010).5

Although the classical approach described above is motivated
by justifiable (someone would say compelling) economic rea-
sons, a strong opposition to regarding transitivity as an undis-
puted feature of rationality has naturally emerged since long time
ago. Within the field of individual choice, it was Sen (1971) who
started describing revealed preference theory as ‘‘obsessed with
transitivity’’. More generally, research collecting evidence of the
natural intransitivity of indifference and preference has became
abundant over time in all economic theory. In this respect, Ble-
ichrodt and Wakker (2015) argue that the year 1982 is a sort of
‘‘breaking point’’ in the economic literature. Indeed, in that very
year the transitivity axiom was given up in three seminal papers,
related to the so-called regret theory: the axiomatic approach of
Fishburn (1982), a decision analysis oriented paper by Bell (1982),
and the fundamental contribution of Loomes and Sugden (1982).
As a matter of fact, one should regard the probabilistic choice
model proposed by Luce (1959) as the pioneering example of in-
transitive preferences.

In the same stream of research that opposes the traditional
approach based on transitivity, one cannot avoid mentioning the
extraordinary amount of literature on semiorders, interval orders,
and similar preference structures, which describe forms of rational
behavior characterized byweaker forms of transitivity. Anticipated
by intuitions of authors such as Armstrong (1939), Fechner (1860),
Georgescu-Roegen (1936), Halphen (1955), and Poincaré (1908),
research on possibly intransitive preference structures had its
definitive consecration by the seminal papers of Luce (1956)
and Fishburn (1970), who formally introduced the notions of
semiorder and interval order, respectively. The semiorder/interval
order approach is based on the idea of weakening the axiom of
transitivity, rather than abandoning it all together. In fact, as Luce’s
coffee/sugar example suggests, the transitivity of indifference
should be questioned and regulated, whereas that of strict
preference may well be retained.

Weak (m, n)-Ferrers properties, introduced by Giarlotta and
Watson (2014) as a generalization of the approach proposed by
Öztürk (2008), go exactly in the direction of considering binary
structures with a transitive strict preference but a possibly intran-
sitive indifference. Originally designed to provide a combinatorial
extension of both the Ferrers condition and the semitransitivity –
which coincide, respectively, with weak (2, 2)-Ferrers and weak
(3, 1)-Ferrers – these new properties display an exhaustive (finite)
taxonomy of enhanced forms of quasi-transitivity. In fact, roughly
speaking, weak (m, n)-Ferrers properties classify transitive strict
preferences by means of the types of forbidden mixed cycles of
preference/indifference. It follows that such an approach may be
relevant for economic applications insofar as weak (m, n)-Ferrers
properties prompt a possible recognition of money-pump effects
due to the presence of mixed cycles of a certain length and type.

The analysis conducted in this paper employs interval orders,
semiorders, and, in general, weak (m, n)-Ferrers properties to
classify rational choice behaviors. In fact, we make a systematic
attempt to explicitly separate two issues: the rationalizability of
a choice on one hand, and the internal structure of its revealed
preference on the other one. To that end, we introduce suitable

5 However, as an objection to the money-pump argument, let us mention the
contributions ofMcClennen (1990) and Schick (1986),who basically claim that after
transactions between indifferent alternatives, an economic agent may well refuse
a transaction between strictly preferred alternatives, thus avoiding a money-pump
situation. As observed by Piper (2014), both solutions to themoney-pump effect are
based on the idea that the economic agent remembers the past and plans the future
accordingly.
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axioms of replacement consistency, which a rationalizable choice
may or may not satisfy. These axioms examine how the addition of
an item to a menu causes a substitution in the subset of selected
elements. We use these axioms to characterize rationalizable
choices whose revealed preference satisfies different levels of
transitivity.

Specifically, first we examine those cases in which the revealed
preference is a classical binary structure, such as a quasi-transitive
relation, an interval order, a semiorder, or a total preorder. In
this perspective, our contribution can be seen as an axiomatiza-
tion that is alternative to those given by Bandyopadhyay and Sen-
gupta (1991, 1993), Fishburn (1975), Jamison and Lau (1973, 1975),
Schwartz (1976). Successively, in order to complete a taxonomic
classification of rationalizable choices,we also characterize choices
with a weakly (m, n)-Ferrers revealed preference by means of ad-
ditional axioms of replacement consistency. In this way, we pro-
vide a uniform treatment of the topic by means of properties of
choice consistency that belong to a single category.

The paper is organized as follows. In Section 2 we provide
all preliminaries about choices and preferences. In particular,
we recall the notion of rationalizability, the relation of revealed
preference, and some classical axioms of choice consistency.
Section 3 introduces four axioms of replacement consistency. We
prove characterizations of rationalizable choices having a revealed
preference that is, respectively, a quasi-preorder, an interval order,
a semiorder, and a total preorder. Further, we extensively examine
the relation of these axioms of replacement consistency with
some classical properties of individual choice theory, regardless
of rationalizability. Section 4 deals with the general case of
(m, n)-rationalizable choice correspondences, that is, choices
rationalizable by means of a revealed preference satisfying
the weak (m, n)-Ferrers property. We study minimal forbidden
configurations for weak (m, n)-Ferrers properties, which link the
latter to money-pump phenomena arising from mixed cycles.
Finally, we provide a full characterization of (m, n)-rationalizable
choices bymeans of additional axioms of replacement consistency.
Section 5 summarizes the findings of the paper, and suggests
some natural extensions and applications of our approach. In the
Appendix, a picture describes all implications among combinations
of weak (m, n)-Ferrers properties.

2. Preliminaries on rationalizable choices

In this section we provide the reader with all the basic
ingredients of individual choice theory. Furthermore, we recall
the fundamentals of the theory of revealed preferences, and its
connection to the rationalizability of a choice correspondence
satisfying suitable axioms of consistency.

2.1. Basic definitions and terminology

In what follows, X denotes a nonempty set of alternatives. A
choice domain on X is a family Ω ⊆ 2X

\ {∅}, containing all the
subsets S of X on which an economic agent makes (realistically
or potentially) a selection, that is, she selects a nonempty subset
of S comprising the ‘‘best’’ elements of S. In some problems, Ω is
assumed to be complete, i.e., it is equal to 2X

\{∅}: this is the natural
setting whenever one deals with a finite set X of alternatives.
However, in the case that X is infinite, the hypothesis of the
completeness of Ω is often too demanding for most economic
settings. Apart from the cases of choices arising from consumer
demand theory6 (which require different hypotheses), usually the

6 On the topic, see the survey by Varian (2006), and references therein.
choice domain Ω is assumed to satisfy suitable closure properties
such as (i) it contains all singletons, and (ii) it is closedwith respect
to the operation of taking finite unions of its elements. A choice
domain satisfying (i) and (ii) is hereby called normal; throughout
this paper, the normality of Ω is assumed even without explicit
mention. Note the postulate of normality implies that Ω is finitely
complete, i.e., it contains [X]

fin (which henceforth denotes the
family of all finite nonempty subsets of X). In an individual choice
context, a finitely complete choice domain is easily justifiable by
the fact that an economic agent should be able to make a selection
within finite sets.

A choice space is a pair (X, Ω), whereΩ is a (normal) choice do-
main on X .We refer to a generic element S ofΩ as amenu, whereas
any element x belonging to amenu is called an item. A choice space
(X, Ω) is finite if Ω = [X]

fin, regardless of the cardinality of the
ground set X . A choice correspondence (also called a multi-valued
choice) on a choice space (X, Ω) is a map c : Ω → 2X

\ {∅} such
that c(S) ⊆ S for all S ∈ Ω . Thus a choice correspondence c se-
lects within each menu S a nonempty set c(S) ⊆ S, composed of
those elements of S that are deemed choosable by the economic
agent: we denote a choice correspondence on (X, Ω) by c : Ω ⇒ X
with the aim of emphasizing this multi-valued feature. In the spe-
cial case that the economic agent always selects a single element
of each menu, we say that c is a choice function, and denote it by
c : Ω → X . A choice correspondence is finite if so is its choice
space. To simplify some statements, we employ a special notation
for subfamilies of Ω containing fixed elements of X: for instance,
Ωx stands for the subfamily of Ω composed of all menus contain-
ing the item x, Ωyz is the subfamily of Ω composed of all menus
containing both y and z, etc.

Next, we recall a few basic notions concerning preference
relations. A reflexive binary relation on X is denoted by %, and is
generically called a weak preference: we read x % y as ‘‘x is weakly
preferred to y’’. Following standard practice, ≻ denotes the strict
preference derived from %, i.e., the (irreflexive and) asymmetric
relation on X defined by x ≻ y if x % y and ¬(y % x), where
x, y ∈ X . Further, the indifference derived from % is the reflexive
and symmetric relation ∼ on X defined by x ∼ y if x % y and y % x.
It follows that a weak preference % can always be written as the
(disjoint) union of its strict preference ≻ and its indifference ∼. In
particular, x is weakly preferred to y if and only if either x is strictly
preferred to y, or x and y are indifferent.

A weak preference % is complete (or total) if x % y or y % x
holds for all (distinct) x, y ∈ X , and acyclic if it contains no strict
cycles (i.e., there is no sequence x1, x2, . . . , xn of n ≥ 3 elements
of X such that x1 ≻ x2 ≻ . . . ≻ xn ≻ x1). Further, % is quasi-
transitive if its asymmetric part ≻ is transitive, Ferrers if (x % y and
z % w) implies (x % w or z % y), and semitransitive if (x % y and
y % z) implies (x % w or w % z), where x, y, z, w range over X .
Then, % is a preorder if it is transitive, a quasi-preorder if it is quasi-
transitive, an interval order if it is Ferrers, a semiorder if it is Ferrers
and semitransitive,7 and a linear order if it is an antisymmetric total
preorder.

As customary, given a weak preference % on X and a set S ⊆

X , the %-maximal elements of S are those that are strictly non-
dominated by other items of the same set, that is,
max(S, %) :=


x ∈ S : (@s ∈ S)(s ≻ x)


.

Note that in the special case that % is complete, the set of maximal
elements of S ⊆ X can be equivalently written as max(S, %) =

{x ∈ S : (∀s ∈ S)(x % s)}. Observe also that max(S, %) may
be empty for some menus S: consider, e.g., the case of an infinite
subset of the set of natural numbers, or a menu composed by the
elements of a strict cycle in a non-acyclic relation.

7 Note that a reflexive relation that is either Ferrers or semitransitive is
automatically complete.
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2.2. Revealed preference and choice rationalizability

The link between the two theories of individual choice and
individual preference depends on the set up of the problem at
hand. In fact, the literature basically distinguishes two approaches,
which are identifiable by the primitive information associated
with a choice problem: either (i) a preference (modeled by a
binary relation), or (ii) a choice (modeled by a possibly multi-
valued function). The relational approach (i) and the functional
approach (ii) are alternative to each other, both philosophically and
methodologically.

In this paper, we employ a functional approach, thus regarding
the observed choice behavior of an economic agent as a prior.
According to this point of view, a binary relation of preference
is canonically derived from the given choice correspondence,
with the goal to rationalize (i.e., explain) the observed selection.
Informally, a primitive choice c is rationalizable whenever the
functional approach can be reduced to a relational approach, that
is, c canonically induces a binary relation %c , which in turn allows
one to univocally retrieve c. The next definition provides the formal
notion.

Definition 2.1. Let c : Ω ⇒ X be a choice correspondence. The
preference revealed by c is the binary relation %c on X defined as
follows for each x, y ∈ X:

x%c y
def

⇐⇒ (∃S ∈ Ωxy) [x ∈ c(S)].

Then c is rationalizable (or binary, or normal) if it can be retrieved
from its revealed preference %c via the maximality principle, i.e.,
c(S) = max(S, %c) for each menu S ∈ Ω .

Given a choice correspondence c , then we read x%c y as ‘‘item
x is revealed to be weakly preferred to item y’’, in the sense
that there exists a feasible menu containing both items and such
that x is selected in it (whereas y may be selected or not).
Note that the revealed preference %c is reflexive, complete, and
acyclic, regardless of the rationalizability of c .8 Using a recently
introduced terminology, the revealed preference is in fact an
extended preference, that is, it contains a linear order.9

On the other hand, %c need not be transitive in general, in fact
it can even fail to be quasi-transitive. The literature on the topic
studies types of rationalizability linked to the internal structure of
the revealed preference, mostly focusing on choices that are

(A) transitively rationalizable (rationalizable by a transitive re-
vealed preference), and

(B) quasi-transitively rationalizable (rationalizable by a quasi-
transitive revealed preference).

The analysis of alternative types of rationalizability has succes-
sively been extended to cases in which the revealed preference
satisfies intermediate forms of transitivity.10 Here we refer to the
related choice correspondences as

(C) interval order rationalizable (rationalizable by a revealed
preference that is Ferrers), and

8 For reflexivity, since c is contractive and no menu may have an empty image,
we have c({x}) = {x} for each x ∈ X , hence x%c x holds. For completeness, if
x, y ∈ X are such that ¬(x%c y), then x ∉ c(S) for each S ∈ Ωxy; in particular
c({x, y}) = {y}, hence y%c x holds. Finally, the acyclicity of %c is an immediate
consequence of the finite completeness of a normal choice domain: indeed, if S is
the finite menu composed of the elements of a strict cycle, then the very definition
of revealed preference implies that c(S) is empty, a contradiction.
9 See Definition 2.2, Lemma 2.3, and Figure 1 in Giarlotta and Watson (2014).

10 For a similar classification within the realm of social choice theory, see Section
3 of Sen (1986).
(D) semiorder rationalizable (rationalizable by a revealed prefer-
ence that is a semiorder).

Themain goals of this paper are (1) to obtain a unified treatment
of the above cases (A)–(D), and (2) to describe a more general
framework that subsumes (A)–(D) as special cases.

2.3. Classical axioms of choice consistency

Several rationalizability results have been obtained over the last
few decades. Most of them are expressed in terms of the satisfac-
tion of suitable axioms of choice consistency. These axioms are con-
ditions imposed on the choice structure of an economic agent with
the aim of ensuring that the individual choice has some desirable
(i.e., rational) features.11 In fact, it turns out that rationalizability
is equivalent to the satisfaction of two standard properties of con-
sistency, which are related to contractions/expansions of feasible
menus:

(α)-axiom (standard contraction consistency)
x ∈ S ⊆ T ∧ x ∈ c(T )


=⇒ x ∈ c(S)

(γ )-axiom (standard expansion consistency)

x ∈


j∈J

c(Sj) =⇒ x ∈ c


j∈J

Sj



where x ∈ X and S, T , Si,


j∈J Sj ∈ Ω (for each i ∈ J). Axiom (α) is
also calledChernoff’s condition (Chernoff, 1954),whereas axiom (γ )
was introduced by Sen (1971). Chernoff’s condition (α) says that if
an item is selected from a feasible menu, then it is still selected
from any submenu containing it. Sen’s property (γ ) goes in the
direction opposite to (α), since it requires that whenever an item
is selected in each menu of a given family, then it is also selected
in the expanded menu obtained as the union of all menus in the
family. It is worth noting that the above axioms are universally
quantified over a single element of the ground set X , thus they are
unary.

It is well known that the standard axioms of contrac-
tion/expansion consistency characterize rationalizable choices
whenever the choice domain is finitely complete. (Recall that our
initial assumption about the normality of the choice domain au-
tomatically yields the finite completeness of a choice correspon-
dence.) In fact, we have:

Theorem 2.2 (Sen, 1971). A (finitely complete) choice correspon-
dence is rationalizable if and only if it satisfies axioms (α) and (γ ).

Rationalizability does not guarantee per se any special structural
property of the revealed preference, which may indeed fail to
satisfy even weak forms of transitivity. In fact, in order to
handle the two special cases (A) and (B) mentioned at the end
of Section 2.2, additional conditions of ‘‘symmetric expansion
consistency’’ have been analyzed in the literature: see Sen (1969,
1971), as well as Sen (1986) for an account of several axioms of
this kind and an analysis of the relationships among them. Two
well known properties belonging to this class are the (β)-axiom
and the (δ)-axiom. With an eye to some asymmetric consistency

11 Here we insist on the fact that the choice is ‘‘individual’’ and not ‘‘social’’, since
in Social Choice Theory the hypothesis that a choice correspondence satisfies suitable
axioms imposed ab externo has undertaken severe criticisms: see, e.g., Sen (1993)
for the notion of ‘‘epistemic value’’ of a menu.
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axioms to come, we restate them in the following equivalent way,
which emphasizes their symmetric nature:

(β)-axiom (symmetric expansion consistency)
x ≠ y ∧ x, y ∈ c(S) ∧ S ⊆ T


=⇒


x ∈ c(T ) ⇐⇒ y ∈ c(T )


(δ)-axiom (symmetric weak expansion consistency)

x ≠ y ∧ x, y ∈ c(S) ∧ S ⊆ T


=⇒ {x} ≠ c(T ) ≠ {y}

where x, y ∈ X and S, T ∈ Ω . Axiom (β) says that if two distinct
items x and y are selected from a menu S, then they are simulta-
neously either selected or rejected in any expanded menu T . On
the other hand, axiom (δ) says that under the same hypothesis as
(β), it cannot happen that one between x and y is the unique item
selected from the expandedmenu T . Therefore, axiom (β) is defini-
tively more demanding than axiom (δ). Note also that, contrary to
what happens for the unary axioms (α) and (γ ), axioms (β) and (δ)
are binary, in the sense that they are universally quantified over a
pair of elements of X .

The last axiom recalled here – which was proposed by Samuel-
son (1938) – is probably the most frequently mentioned in the lit-
erature:

WARP (Weak Axiom of Revealed Preferences)
x, y ∈ S ∩ T ∧ x ∈ c(S) ∧ y ∈ c(T )


=⇒


x ∈ c(T ) ∧ y ∈ c(S)


where x, y ∈ X and S, T ∈ Ω . WARP summarizes suitable
features of both contraction and expansion consistency in a single
– and quite strong, despite its name – axiom. In fact, WARP
basically regards two alternatives as choice-equivalent under the
sole condition that they are selected from two (possibly different)
menus containing both of them. Note thatWARP is again a kind of
symmetric and binary axiom.

The Fundamental Theorem of Revealed Preference Theory solves
case (A) mentioned before:

Theorem 2.3 (Arrow, 1959, Sen, 1971). A choice correspondence is
transitively rationalizable if and only if it satisfiesWARP if and only if
it satisfies axioms (α) and (β).

Concerning case (B), let usmention the following sufficient (but
not necessary) condition12:

Theorem 2.4 (Sen, 1986). A choice correspondence satisfying axioms
(α), (γ ), and (δ) is quasi-transitively rationalizable.

Finally, for cases (C) and (D), there are several important
contributions, which are however scattered in the literature:
see, e.g., Bandyopadhyay and Sengupta (1991, 1993), Fishburn
(1975), Jamison and Lau (1973, 1975), Schwartz (1976). For a
comprehensive analysis of the topic, see the book by Aleskerov
et al. (2007). In the next section we address cases (A)–(D) by
means of unified approach, introducing a new type of consistency
properties.

12 See part (2) of the so-called ‘‘sundry choice — functional lemma’’ in Sen (1986,
page 1099). It is worth noting that in a previous paper, the same author proves that
a finite version of δ (quantified over finite menus only) characterizes the quasi-
transitivity of a rationalizable choice: see ‘‘Property δ’’ and Theorem 10 in Sen
(1971).
3. Axioms of replacement consistency

In a recent paper on individual choices, Eliaz and Ok (2006)
examine a weakening of WARP, called WARNI (Weak Axiom of
Revealed Non-Inferiority). The authors’ goal is to provide a choice-
theoretic foundation of incomplete preferences. In fact, WARNI
can be naturally associated with the construction of a new
type of (transitive and possibly incomplete) revealed preference,
which still enables one to retrieve the primitive choice using the
maximality principle.

It turns out thatWARNI is also linked to problem (B) mentioned
in Section 2.2. In fact, the proof of Theorem 1 in Eliaz and Ok
(2006) implicitly shows that a choice correspondence satisfying
WARNI is quasi-transitively rationalizable. However, the converse
does not hold in general, since a technical hypothesis about the
choice domain is needed to prove that WARNI holds under quasi-
transitive rationalizability.13

In order to provide a general characterization of quasi-
transitively rationalizable choice correspondences defined on a
normal domain, in this section we introduce a new class of
consistency properties in an individual choice setting. These
axioms examine how the addition of an item to a menu may cause
a ‘‘substitution’’ in the selected set. We shall use these properties
to characterize rationalizable choice correspondences such that
their revealed preferences satisfy suitable forms of transitivity,
giving inter alia an alternative solution to cases (A), (B), (C), and
(D) mentioned at the end of Section 2.2.

3.1. Definitions and semantics

To start, we introduce four new axioms of choice consistency,
and discuss their semantics. These properties are the following (as
usual, x, y, z ∈ X and S, T ∈ Ω are universally quantified):

(ρ)-axiom (standard replacement consistency)
y ∈ c(S) ∧ y ∉ c(S ∪ {x})


=⇒ x ∈ c(S ∪ {x});

(ρf )-axiom (Ferrers replacement consistency)
x ∈ c(S) ∧ y ∈ S ∧ z ∈ c(T ) ∧ z ∉ c(T ∪ {y})


=⇒ x ∈ c(T ∪ {x});

(ρst)-axiom (semitransitive replacement consistency)
y ∈ c(S) ∧ z ∈ S ∧ z ∈ c(T ) ∧ y ∉ c(S ∪ {x})


=⇒ x ∈ c(T ∪ {x});

(ρt)-axiom (transitive replacement consistency)
y ∈ c(S) ∧ y ∉ c(S ∪ {x})


=⇒ c(S ∪ {x}) = {x}.

The relationship among these four axioms aswell as the level of
transitivity of the associated relation of revealed preferencewill be
examined in Section 3.3. The results in that sectionwill also explain
the employed notation. Here we only provide a rationale for their
introduction. Axiom (ρ) says that given a menu S and an item y in
it, if y is selected from S but fails to be chosen as soon as a certain
item x is added to S, then the new item xmust be selected from the
larger menu S ∪{x}. In some sense, the new element x ‘‘replaces’’ y
in the selection taste of the economic agent. (Note that, however,
the equality c(S∪{x}) = (c(S)\{y})∪{x} does not hold in general.)

13 This technical condition is the closure of the choice domain with respect to
countable subsets of the ground set. This implies that in the special case of a total
choice correspondence defined on a finite ground set, WARNI does characterize
quasi-transitive rationalizability.
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Axioms (ρf ) and (ρst) are slightly more demanding than (ρ),
despite in different (orthogonal) directions. Specifically, axiom (ρf )

requires that given two menus S ∈ Ωxy and T ∈ Ωz , if x is selected
from S, and z is selected from T but not from T ∪ {y}, then x must
be selected from T ∪ {x}. Note that whenever z is chosen from the
menu T but not from the larger menu T ∪ {y}, axiom (ρ) allows
one to derive that y is selected from T ∪ {y}, but no conclusion
can be inferred about the selection of x from the menu T ∪ {x}.
Axiom (ρf ) is stronger than (ρ) insofar as it allows one to derive
the conclusion x ∈ c(T ∪ {x}) from the fact that x is selected from
a menu S containing y among its items (i.e., from the fact that x is
revealed to be preferred to y).

The semantics of axiom (ρst) is somehow similar to that of (ρf ).
Specifically, (ρst) requires that given two menus S ∈ Ωyz and
T ∈ Ωz , if y is selected from S, z is selected from T , and y fails
to be selected as soon as x is added to S, then x is selected from
T ∪ {x}. Note that the conclusion of axiom (ρst) is exactly the same
as that of axiom (ρf ), but the antecedent is different (in fact, neither
stronger nor weaker than the antecedent of (ρf )). Indeed, it might
well happen that the item x selected from T∪{x} belongs to neither
S nor T .

Axiom (ρt) is the strongest of the four, since it says that given
a menu S ∈ Ωy, if y is selected from S but fails to be selected as
soon as a new item x is added to S, then x becomes the unique
item that is selected from the larger menu S ∪ {x}. Note that the
antecedent of axiom (ρt) is exactly the same as that of axiom (ρ),
but its conclusion is drastically stronger, since x ‘‘fully replaces’’
anything that was originally chosen from S. Despite its seemingly
unreasonable strength, axiom (ρt) is easily justifiable in a situation
of perfect comparability. To motivate the introduction of (ρt),
consider the following example.

Assume that G is a consumer who wishes to buy an apartment
in the neighborhood where she was raised, provided that the
price does not exceed a certain upper bound. G has restricted her
possible choice to two apartments y1 and y2, but she is displaying
quite some indecisiveness in selecting one of the two. While G
is in the process of finalizing her decision – maybe after asking
references about the current owners, or on the basis of friends’
suggestions, or even by a subjective randomization (e.g., flipping
a coin) – a new apartment x located in the same building as
apartment y1 becomes available. If x is definitively larger, with a
more refined interior, and a much better view than y1, G will have
no doubts in eliminating y1 from the set of possible final selections.
However, it seems reasonable to assume that G might also choose
x over y2, thus making x as her definite selection. Thus axiom (ρt)

holds in this scenario.
The statements of (ρ) and (ρt) only involve two items and a

single menu, hence their semantics is quite simple to understand.
On the other hand, the rationale of axioms (ρf ) and (ρst), despite
being of the same nature, is more subtle, since their statements
simultaneously involve three items and two menus. To give a
better insight into their semantics, in what follows we reformulate
all axioms of replacement consistency using a model-theoretic
notation.

To start, we associate to an arbitrary choice correspondence
c : Ω ⇒ X two new preference relations, which are inspired by the
replacement paradigm. Let%+

c andDc be the relations on X defined
as follows for each x, y ∈ X:

x%+

c y def
⇐⇒ (∃S ∈ Ω)


y ∈ S ∧ c(S ∪ {x}) = {x}


xDc y

def
⇐⇒ (∃S ∈ Ω)


y ∈ c(S) ∧ y ∉ c(S ∪ {x})


.

We call %+
c and Dc the relations of strong revealed preference and

replacing preference associated with c , respectively. Further, we
shall employ the following notation:

S |= x%c y stands for y ∈ S ∧ x ∈ c(S)
S |= x%+

c y stands for y ∈ S ∧ c(S ∪ {x}) = {x}
S |= xDc y stands for y ∈ c(S) ∧ y ∉ c(S ∪ {x})

where S ∈ Ω and x, y ∈ X . Therefore, S |= x%c y means
that menu S witnesses a revealed preference of x over y; the
meaning of S |= x%+

c y and S |= xDc y is similar. Then the
four axioms of replacement consistency can be reformulated using
the above notation14 (see Box I). Note that this model-theoretic
formulation of the four axioms of replacement consistency reveals
a complementarity of (ρf ) and (ρst), since they both state a type of
transitive coherence of the two binary relations %c and Dc .15

3.2. Examples and counterexamples

We discuss four sets of examples, which illustrate the effect of
the different axioms of replacement consistency. In the first three
sets, the ground set X is finite, whereas in the last one X is infinite;
furthermore, the choice domain is complete in all cases. These
examples are designed in a way such that Chernoff’s standard
axiom (α) of contraction consistency always holds, whereas Sen’s
standard axiom (γ ) of expansion consistency fails at times (and so
the choice correspondence is not rationalizable in these cases). In
fact, our goal is to show that the effect of the axioms of replacement
consistency is not related to the possibility of rationalizing a choice
correspondence, at least in the general case.16 Note that in order
to simplify the proof of some claims, we shall make use of a few
results presented in the next section.

Example 3.1. Let X := {x, y, z} and Ω := 2X
\ {∅}. Further, let

ci : Ω ⇒ X be the four choice correspondences defined as follows:

(c1) x y, x z, y z, x y z

(c2) x y, x z, y z, x y z

(c3) x y, x z, y z, x y z

(c4) x y, x z, y z, x y z

where the underlined elements of each set are the items selected
in that menu.17One can readily check that axiom (α) holds for all
ci’s. Belowwe determinewhether each ci satisfies axiom (γ ) or any
axiom of replacement consistency.

(1) Neither (γ ) nor (ρ) holds for c1: indeed, y ∈ c1({x, y}) ∩

c1({y, z}) but y ∉ c1({x, y, z}), and y ∈ c1({y, z}) \ c1({x, y, z})
but x ∉ c1({x, y, z}).

14 The equivalent formulation of axiom (ρf ) given below is redundant, since
the clause ‘‘z ∈ c(T )’’ is subsumed by the clause ‘‘T |= yDc z’’. However, this
formulation allows us to point out a complementarity of the two replacement
axioms (ρf ) and (ρst ), which otherwise would remain unnoticed.
15 The transitive coherence associated to the model-theoretic formulation of (ρf )

and (ρst ) is indeed reminiscent of the mixed transitivity properties of a NaP-
preference: see Section 5 and references therein.
16 Under axiom (α), there are special cases in which there exists a relationship
between axioms of replacement consistency and axiom (γ ). For instance, it is well
known that single-valued choice functions are (transitively) rationalizable if and
only if (α) holds, whence assuming (α) automatically implies assuming (γ ) – in
fact, even (β) – in these cases: see Houthakker (1950) for the equivalence between
(α) and WARP for choice functions. By Theorem 3 in Sen (1971) – which gives a
complete characterization of transitive rationalizability –Houthakker’s equivalence
for choice functions extends to many other axioms of choice consistency.
17 Thus, for the choice correspondence c1 , the notations x y and x y z stand for,
respectively, c1({x, y}) = {x, y} and c1({x, y, z}) = {z}. Obviously, the singletons
are always fixed points of c1 (and, in general, of any choice correspondence), i.e.,
c1({a}) = {a} for any a ∈ X .
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(ρ)-axiom S |= xDc y =⇒ S ∪ {x} |= x%c y
(ρf )-axiom


S |= x%c y


∧

T |= yDc z


∧ z ∈ c(T ) =⇒ T ∪ {x} |= x%c z

(ρst)-axiom

S |= xDc y


∧

S |= y%c z


∧ z ∈ c(T ) =⇒ T ∪ {x} |= x%c z

(ρt)-axiom S |= xDc y =⇒ S ∪ {x} |= x%+

c y

Box I.
(2) The choice correspondence c2 is very similar to c1, the only
difference being the image of the doubleton {x, y}. This fact
yields that – contrary to c1 – the correspondence c2 is
rationalizable. On the other hand, axiom (ρ) still fails to hold
for c2, exactly for the same reason as for c1. Note that the
preference %c2 revealed by c2 is not quasi-transitive, since
z ≻c2 x≻c2 y and z ∼c2 y.

(3) One can check that c3 satisfies the axioms of replacement
consistency (ρ), (ρf ), and (ρst). On the other hand, c3 satisfies
neither (ρt) nor (γ ): indeed, (ρt) fails because x ∈ c({x, y}) \

c(X) and c(X) ≠ {z}, whereas (γ ) fails since x ∈ c3({x, y}) ∩

c3({x, z}) and x ∉ c(X).
(4) It is not difficult to verify that c4 satisfies all the axioms (γ ),

(ρ), (ρf ), (ρst), and (ρt).

In the next set of examples, the ground set X has size four. In
these examples both the standard axiom (α) of contraction consis-
tency and the axiom (ρ) of replacement consistency always hold.
However, the standard axiom (γ ) of expansion consistency and
the other axioms of replacement consistency only hold in selected
cases. Specifically, the odd numbered choice correspondences do
satisfy (γ ), hence they are rationalizable by Theorem 2.2. On the
other hand, the even numbered choice correspondences violate ax-
iom (γ ).

Example 3.2. Let X := {x, y, z, w} and Ω := 2X
\ {∅}. Further, let

ci : Ω ⇒ X be the following five choice correspondences:

(c5) x y, x z, xw, y z, yw, z w, x y z, x yw, x z w, y z w, x y z w

(c6) x y, x z, xw, y z, yw, z w, x y z, x yw, x z w, y z w, x y z w

(c7) x y, x z, xw, y z, yw, z w, x y z, xyw, x z w, y z w, x y z w

(c8) x y, x z, xw, y z, yw, z w, x y z, x yw, x z w, y z w, x y z w

(c9) x y, x z, xw, y z, yw, z w, x y z, x yw, x z w, y z w, x y z w.

(c10) x y, x z, xw, y z, yw, z w, x y z, x yw, x z w, y z w, x y z w.

(5) The choice correspondence c5 is rationalizable, and satisfies
the replacement axioms (ρ) and (ρf ). On the other hand, the
axiom (ρst) of semitransitive replacement does not hold for
c5: indeed, for S := {y, z} and T := {z, w}, we have y ∈ c5(S),
z ∈ S ∩ c5(T ), y ∉ c5(S ∪ {x}), and yet x ∉ c5(T ∪ {x}). In view
of Theorem 3.5 (proved in the next section), axiom (ρt) does
not hold for c5 either.

(6) It is easy to check that c6 satisfies the standard axiom (ρ)

of replacement consistency. Furthermore, the axiom (ρf ) of
Ferrers replacement holds for c6 as well. (The verification of
this last fact is a bit long, and is left to the reader.) On the other
hand, c6 satisfies neither (γ ), nor (ρst), nor (ρt). (For (γ ), note
that y ∈ c({x, y}) ∩ c({y, z}) but y ∉ c({x, y, z}). For (ρst),
take S := {y, z} and T := {z, w}, and derive a contradiction.
For (ρt), use Proposition 3.7(ii).)

(7) The choice correspondence c7 is rationalizable, and satisfies
the axioms of replacement (ρ) and (ρst). On the other hand,
(ρf ) does not hold for c7: indeed, for S := {x, y} and T :=

{z, w}, we have x ∈ c7(S), y ∈ S, z ∈ c7(T ) \ c7(T ∪ {y}), and
yet x ∉ c7(T ∪ {x}). In view of Theorem 3.5, axiom (ρt) does
not hold for c7 either.
(8) The choice correspondence c8 is very similar to c7, the only
difference consisting of the images of {x, w} and {y, z}. One
can readily check that c8 satisfies (α) but not (γ ) (being%c8 =

X2). Furthermore, (ρ)holds for c8, whereas (ρf ), (ρst) and (ρt)

do not.18
(9) It is long but straightforward to check that the rationalizable

choice correspondence c9 satisfies the three replacement
axioms (ρ), (ρf ) and (ρst). On the other hand, the axiom (ρt)
of transitive replacement does not hold for c9: indeed, for
S := {y, z, w}, we have y ∈ c9(S) and y ∉ c9(S∪{x}), however
c9(S ∪ {x}) = {x, z, w} ≠ {x}.

(10) The choice correspondence c10 satisfies both (ρ) and (ρst).
(Again, the long verification that (ρst) holds is left to the
reader.) On the other hand, neither (γ ) nor (ρf ) holds for
c10. (For (γ ) observe that y ∈ c({y, z}) ∩ c({y, w}) and
y ∉ c({y, z, w}), whereas for (ρf ) take S := {x, z} and
T := {y, w}.)

In order to obtain an instance of a rationalizable choice
correspondence such that (ρ) holds but all of the other axioms of
replacement consistency fail, we use a ground set of size five.

Example 3.3. Let X := {x1, x2, x3, y1, y2}. Define a binary relation
%11 on X by

%11 := X2
\ {(x2, x1), (x3, x1), (x3, x2), (y2, y1)}.

Further, let c11 : 2X
\ {∅} ⇒ X be the (total) choice correspondence

induced by %11, i.e., c11(S) := max(S, %11) for each ∅ ≠ S ⊆

X . Using Theorem 3.5, it is immediate to check that c11 is a
rationalizable choice correspondence satisfying only (ρ) among all
axioms of replacement consistency.

The final example of this section exhibits an infinite choice
correspondence satisfying (α) and (ρt), but such that neither (γ )
nor (δ) holds for it.

Example 3.4. Let X = Y ∪ {x∞} be an infinite set of alternatives
(where x∞ ∉ Y ), andΩ := 2X

\ {∅}. Further, let c∞ : Ω ⇒ X be the
choice correspondence defined as follows:

c∞(S) :=


S if S is finite or x∞ ∉ S

{x∞} otherwise.

It is simple to check that axioms (α) and (ρt) hold for c∞. By
Proposition 3.7, all axioms of replacement consistency hold aswell.
Further, c∞ satisfies the following minimal form of (γ ):

(γ )−-axiom (singleton expansion consistency)
x ∈ c(S ∪ {y}) ∧ x ∈ c(S ∪ {z})


=⇒ x ∈ c(S ∪ {y, z})

where x, y, z ∈ X and S ∈ Ω . On the other hand, neither (γ )
nor (δ) holds for c∞. In fact, axiom (γ ) does not even hold in its
finite form (i.e., with two menus): indeed, for any fixed y ∈ Y ,
if S := {x∞, y} and T := Y , then y ∈ c∞(S) ∩ c∞(T ) and yet

18 For instance, to show that c8 does not satisfy (ρst ) (with a change of variables,
namely, y and z are exchanged) let S := {y, z} e T := {y, w}. Then z ∈ c(S), y ∈ S,
y ∈ c(T ), z ∉ c(S ∪ {x}), and yet x ∉ c(T ∪ {x}).
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Table 1
Axioms of consistency satisfied by the choices defined in Examples 3.1, 3.2, 3.3, and
3.4.

Choice (γ ) (ρ) (ρf ) (ρst ) (ρt )

c1
c2 ∗

c3 ∗ ∗ ∗

c4 ∗ ∗ ∗ ∗ ∗

c5 ∗ ∗ ∗

c6 ∗ ∗

c7 ∗ ∗ ∗

c8 ∗

c9 ∗ ∗ ∗ ∗

c10 ∗ ∗

c11 ∗ ∗

c∞ ∗ ∗ ∗ ∗

y ∉ c∞(S ∪ T ) = c∞(X). Furthermore, c∞ does not satisfy axiom
(δ), since for S := {x∞, y} and T := X , we obtain x∞, y ∈ c∞(S)
and S ⊆ T , but c∞(T ) = {x∞}. Finally, note that the hypothesis
that X is infinite is necessary: indeed, by Proposition 3.8(ii), for any
choice defined on a finite ground set, if (α) and (ρt) hold, then so
does (β), and therefore (γ ) and (δ) must hold as well.

In Table 1 we summarize the findings of Examples 3.1, 3.2, 3.3,
and 3.4 in terms of axioms satisfied by the corresponding choices
ci. (Whenever an axiom holds, it is marked by a star.) The standard
axiom (α) of contraction consistency is not mentioned, since it
holds in all cases.

3.3. A unified characterization of classical forms of rationalizability

Nowwe link the structural properties of a rationalizable choice
to those of its revealed preference. Specifically, the structural
properties of a choice correspondence are expressed in terms of
the satisfaction of suitable axioms of replacement consistency,
whereas those of the associated revealed preferences are related
to their degree of transitivity. An advantage of this approach to the
topic is the fact that it systematically separates the issues related
to the rationalizability of a choice (modeled by the satisfaction of
axioms (α) and (γ )) from those related to the transitive structure
of its revealed preference (modeled by the satisfaction of the
axioms of replacement consistency).

In this section we conduct this analysis for some basic cases.
In fact, here we only deal with the classical cases in which the
relation of revealed preference is a total preorder, a total quasi-
preorder, an interval order, and a semiorder (i.e., respectively, cases
(A), (B), (C), and (D) mentioned in Section 2.2). We shall generalize
this approach in Section 4, introducing the so-called weak (m, n)-
Ferrers properties.

There are two reasons why we reserve a separate section
to deal with cases (A)–(D). The first is related to the fact
that total preorders, total quasi-preorders, interval orders, and
semiorders are classical preference structures, which have been
extensively studied in the literature, due to the wide range of
their applications: see, e.g., Aleskerov et al. (2007), Fishburn (1970,
1985), Luce (1956), Pirlot andVincke (1997).19 The second is purely
didactic, since dealing directlywith the general case of choices that
are rationalizable by means of (m, n)-Ferrers revealed preferences
would make the semantics of the related axioms of replacement
consistency rather obscure.

19 In a forthcoming paper, Giarlotta and Watson (2016) describe universal types
of semiorders, called Z-products, which are generalized lexicographic products of
three total preorders such that the middle factor is the chain (Z, ≥) of integers
equipped with a shift operator. These semiorders are universal in the sense that
any semiorder embeds into a Z-product (in fact, into a Z-line, which is a Z-product
having linear orders as its two extreme factors).
Theorem 3.5. Let c : Ω ⇒ X be a rationalizable choice correspon-
dence, and%c its revealed preference. The following equivalences hold:

(i) %c is quasi-transitive ⇐⇒ c satisfies axiom (ρ);
(ii) %c is Ferrers ⇐⇒ c satisfies axiom (ρf );
(iii) %c is semitransitive ⇐⇒ c satisfies axiom (ρst);
(iv) %c is transitive ⇐⇒ c satisfies axiom (ρt).

Proof. Since c is rationalizable by hypothesis, Theorem 2.2 yields
that c satisfies the standard consistency axioms (α) and (γ ).

(i) For necessity, assume that c has a quasi-transitive revealed
preference %c . We show that c satisfies the axiom of replacement
(ρ). To that end, let x, y ∈ X and S ∈ Ω be such that y ∈ c(S) and
y ∉ c(S∪{x}). Axiom (γ ) yields y ∉ c({x, y}), hence c({x, y}) = {x}.
Now axiom (α) entails y ∉ c(T ) for each T ∈ Ωxy. From the
definition of revealed preference we obtain x%c y and ¬(y%c x),
i.e., x≻c y. Further, we have y%c z for each z ∈ S, because y ∈ c(S).
Since %c is complete and quasi-transitive, it follows that x%c z
holds for each z ∈ S ∪ {x}, i.e., x ∈ c(S ∪ {x}). This proves that
c satisfies axiom (ρ), as claimed.

Conversely, assume that c satisfies axiom (ρ). Since %c is
complete, to prove the quasi-transitivity of %c is equivalent to
show that x%c y≻c z implies x%c z for each x, y, z ∈ X . To that end,
first observe that the definition of revealed preference and axiom
(α) yield x ∈ c({x, y}) and c({y, z}) = {y}. Now, if x ∉ c({x, y, z}),
then z ∈ c({x, y, z}) by axiom (ρ), and so z ∈ c({y, z}) by axiom
(α), a contradiction. It follows that x ∈ c({x, y, z}), which implies
x%c z. Thus the claim holds.

(ii) For sufficiency, assume that (ρf ) holds, and let x, y, z, w ∈ X
be such that x%c y and z %c w. Suppose z %c y fails, hence y≻c z by
the completeness of %c . The definition of revealed preference and
axiom (α) yield x ∈ c({x, y}), z ∈ c({z, w}) and z ∉ c({y, z, w}).
Now the axiom of replacement (ρf ) entails x ∈ c({x, z, w}), hence
x%c w. This proves that %c is Ferrers.

Conversely, assume that %c is Ferrers. Let x, y, z ∈ X and S, T ∈

Ω be such that x ∈ c(S), y ∈ S, z ∈ c(T ) and z ∉ c(T ∪ {y}).
We wish to show that x ∈ c(T ∪ {x}) = max(T ∪ {x}, %c), i.e.,
x%c t for all t ∈ T . The hypotheses x ∈ c(S) and y ∈ S yields
x%c y. Furthermore, z ∈ c(T ) = max(T , %c) implies z %c t for each
t ∈ T . If z %c y were to hold, then we would have z ∈ c({z, y}) by
axiom (α), and so since z ∈ c(T ) by hypothesis, we could derive
z ∈ c(T ∪{y}) by axiom (γ ), a contradiction. In summary, we have
x%c y, z %c t for all t ∈ T , and ¬(z %c y). Now the Ferrers condition
implies x%c t for all t ∈ T . This proves that (ρf ) holds for c.

(iii) For sufficiency, assume that (ρst)holds, and let x, y, z, t ∈ X
be such that y%c z %c t . To prove that %c is semitransitive, we
show that either y%c x or x%c t holds. The definition of revealed
preference along with axiom (α) yields y ∈ c({y, z}) and z ∈

c({z, t}). If y%c x, then we are immediately done. Otherwise, we
have x≻c y by the completeness of %c , whence y ∉ c({x, y, z}).
Now axiom (ρst) entails x ∈ c({x, z, t}), and so x%c t holds, as
required.

Conversely, assume that%c is semitransitive. Let x, y, z ∈ X and
S, T ∈ Ω be such that y ∈ c(S), z ∈ S ∩ c(T ), and y ∉ c(S ∪ {x}).
We show that x ∈ c(T ∪ {x}) = max(T ∪ {x}, %c), that is, x%c t
for all t ∈ T . To start, we prove by contradiction that y%c fails.
Indeed, if y%c x were to hold, then we would get y ∈ c({x, y}) by
axiom (α), and y ∈ c(S ∪ {x}) by axiom (γ ), which is impossible.
Summarizing, we have y%c z %c t for all t ∈ T , and ¬(y%c x). Now
semitransitivity yields x%c t for all t ∈ T , thus proving that (ρst)

holds for c .
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(iv) To prove necessity, assume that the revealed preference %c
is transitive (hence a total preorder). By the fundamental theorem
of revealed preference theory, it follows that c satisfies WARP.
Thus, it suffices to show that axioms (α) and (β) imply axiom (ρt).
Let x, y ∈ X and S ∈ Ω be such that y ∈ c(S) and y ∉ c(S ∪ {x}).
To prove the claim, we show that the equality c(S ∪ {x}) = {x}
holds. Since c cannot be empty-valued, it suffices to show that no
element of S is chosen in S ∪ {x}. Toward a contradiction, assume
that there exists z ∈ S such that z ∈ c(S ∪ {x}). Axiom (α) yields
z ∈ c(S). Since y ∈ c(S) and y ∉ c(S ∪ {x}), axiom (β) implies
z ∉ c(S ∪ {x}), a contradiction.

For sufficiency, assume that the axiom (ρt) of transitive
replacement consistency holds. Let x, y, z ∈ X be such that
x%c y%c z. Axiom (α) yields x ∈ c({x, y}) and y ∈ c({y, z}).
If x ∉ c({x, y, z}), then axiom (ρt) implies c({x, y, z}) = {z}.
Since the last equality contradicts y ∈ c({y, z}), it follows that
x ∈ c({x, y, z}), hence x%c z. This completes the proof of (iv). �

As an immediate consequence of Theorems 2.2 and 3.5, we
obtain a partial taxonomy of rationalizable choices in terms of
(classical and new) axioms of consistency.

Corollary 3.6. The following equivalences hold for an arbitrary
choice correspondence c:

(i) c is quasi-transitively rationalizable ⇐⇒ axioms (α), (γ ), and
(ρ) hold;

(ii) c is interval order rationalizable ⇐⇒ axioms (α), (γ ), and (ρf )
hold;

(iii) c is semiorder rationalizable ⇐⇒ axioms (α), (γ ), (ρf ), and
(ρst) hold;

(iv) c is transitively rationalizable ⇐⇒ axioms (α), (γ ), and (ρt)
hold.

The next result summarizes the connections among axioms of
replacement consistency, both in the general case and under the
standard axiom (α) of contraction consistency.

Proposition 3.7. The following implications hold:

(i) (ρf ) =⇒ (ρ) and (ρst) =⇒ (ρ);
(ii) under axiom (α), (ρt) =⇒ (ρf ) and (ρt) =⇒ (ρst).

All reverse implications fail.

Proof. Let c : Ω ⇒ X be a choice correspondence.
(i) To prove the implication ‘‘(ρf ) ⇒ (ρ)’’, rewrite axiom (ρ)

with a change of variables as follows: if z ∈ c(T ) and z ∉ c(T∪{x}),
then x ∈ c(T ∪ {x}). Now apply axiom (ρf ) for x = y and S = {x}
to conclude that (ρ) holds. The implication ‘‘(ρst) ⇒ (ρ)’’ can be
proved similarly, by letting y = z and S = T in the statement of
(ρst).

(ii) Assume that (α) holds. First we prove ‘‘(ρt) ⇒ (ρf )’’.
Toward a contradiction, assume that (ρt) holds whereas (ρf ) does
not. Therefore, there exist x, y, z ∈ X and S, T ∈ Ω such that
(1) x ∈ c(S), (2) y ∈ S, (3) z ∈ c(T ), (4) z ∉ c(T ∪ {y}), and
(5) x ∉ c(T ∪ {x}). By axiom (α), (1)&(2) yields (6) x ∈ c({x, y}),
whereas (3)&(4) imply (7) z ∉ c(T ∪ {x, y}). On the other hand,
since axiom (ρt) holds, (3)&(5) implies (8) z ∈ c(T ∪ {x}), which in
turn, by (4), implies (9) x ≠ y. Another application of axiom (ρt) to
(7)&(8) yields c(T ∪ {x, y}) = {y}. Now a final application of axiom
(α) entails c({x, y}) = {y}, which, by (9), contradicts (6). This
proves the first implication. For the second implication, assume
by contradiction that (ρt) holds whereas (ρst) does not. Therefore,
there exist x, y, z ∈ X and S, T ∈ Ω such that (1) y ∈ c(S), (2)
z ∈ S, (3) z ∈ c(T ), (4) y ∉ c(S ∪ {x}), and (5) x ∉ c(T ∪ {x}). Since
(ρt) holds, (1)&(4) implies (6) c(S ∪ {x}) = {x}, whereas (3)&(5)
implies (7) z ∈ c(T ∪ {x}). The latter together with (5) implies
(8) x ≠ z. Now use axiom (α) to deduce that (2)&(6)&(8) implies
z ∉ c({x, z}), whereas (7) implies z ∈ c({x, z}). This contradiction
completes the proof of part (ii).

Finally, Example 3.2 shows that all reverse implications do not
hold. (In fact, the reverse of the implications in (i) does not even
hold under axiom (α).) �

It is worth emphasizing the difference between Theorem 3.5
and Proposition 3.7. In fact, the former characterizes forms of
rationalizable choice correspondences on the basis of the internal
structure of the revealed preference. On the other hand, the latter
simply states implications among axioms, which hold regardless
of rationalizability. In the same spirit as Proposition 3.7, the
next result examines the relationship between two axioms of
replacement consistency (namely, (ρ) and (ρt)) and two axioms
of expansion consistency (namely, (β) and (δ)), provided that the
standard axiom (α) of contraction consistency holds.

Proposition 3.8. Under axiom (α), the following implications hold:
(i) (β) =⇒ (ρt);
(ii) (ρt) =⇒ (β) for finite choices;
(iii) (δ)& (γ ) =⇒ (ρ).

Parts (ii) and (iii) do not hold if we drop finiteness and satisfaction of
(γ ), respectively.

Proof. Part (i) is an immediate consequence of Theorems 2.3 and
3.5(iv).

For part (ii), let c : Ω ⇒ X be a finite choice correspondence
satisfying axioms (α) and (ρt). Toward a contradiction, assume
that (β) does not hold. Then there exist x, y ∈ X and S, T ∈ Ω =

[X]
fin such that

x ≠ y, x, y ∈ c(S), S ⊆ T , x ∈ c(T ), y ∉ c(T ) (1)

hold. By axiom (α) and the finiteness of Ω , we can assume that T
is minimal in satisfying (1), in the sense that x, y ∈ c(T ′) holds for
every T ′ such that S ⊆ T ′ $ T . It follows that T = T ′

∪{z} for some
T ′

⊇ S and z ∉ T ′, where x, y ∈ c(T ′). Since y ∉ c(T ′
∪ {z}), axiom

(ρt) yields c(T ) = c(T ′
∪ {z}) = {z}, and therefore x = z, which

contradicts (1).
Part (iii) is an immediate consequence of Theorems 2.4 and

3.5(i).
Since (β) implies (δ), Example 3.4 shows that the assumption

of finiteness in (ii) is needed. Further, Example 3.10 proves that the
satisfaction of (γ ) in (iii) cannot be dropped. �

Proposition 3.8(ii) and the fundamental theorem of revealed
preference theory readily yield the following characterization of
the transitive rationalizability of finite choices.

Corollary 3.9. A finite choice correspondence is transitively rational-
izable if and only if axioms (α) and (ρt) hold.

Finally, we show that (α) and (δ) do not imply (ρ), even under
the assumption that the ground set is finite.

Example 3.10. Let X := {x, y, z, w}, Ω := 2X
\ {∅}, and c : Ω ⇒ X

be the choice correspondence defined by

c(S) :=

S \ {x} if S ≠ {x} and S ≠ X
{x} if S = {x}
{z, w} if S = X .

One can readily check that axioms (α) and (δ) hold for c. In
addition, for S := {y, z, w}, we have y ∈ c(S), y ∉ c(S ∪ {x}),
and x ∉ c(S ∪ {x}). Thus (ρ) fails for c .

4. The (m, n)-rationalizability of a choice

In this sectionwe extend the approach of Section 3, introducing
additional axioms of choice replacement and characterizing
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non-standard types of rationalizability. Specifically, we obtain
a taxonomy of rationalizable choices c having a transitive
revealed strict preference ≻c and a possibly intransitive revealed
indifference ∼c . To this aim, we employ the recently introduced
weak (m, n)-Ferrers properties, which generalize the classical
Ferrers property as well as the two properties of quasi-transitivity
and semitransitivity.

Weak (m, n)-Ferrers properties describe a finite taxonomy
of quasi-transitive preferences having a possibly intransitive
indifference, and are therefore interesting for economic theory per
se, insofar as they provide a systematic approximation to themuch
celebrated property of transitivity by discrete levels of pseudo-
transitivity. However, their economic significance is not limited to
a pure abstraction of the notion of transitivity. For instance, here
we show that each weak (m, n)-Ferrers property can be viewed
as the statement that a money-pump of a particular kind does not
exist. In view of the above considerations, the notion of (m, n)-
rationalizable choice sheds light on suitable features of rationality
displayed by an economic agent’s behavior.

4.1. Weak (m, n)-Ferrers properties and levels of transitivity

To start, let us recall the notion of (m, n)-Ferrers properties.
The original idea is due to Öztürk (2008), who however deals with
(m, n)-Ferrers properties for asymmetric binary relations. More
recently, Giarlotta and Watson (2014) distinguish two versions
– weak and strict – of (m, n)-Ferrers properties, and provide a
complete classification of the weak ones.

Definition 4.1. Let % be a weak preference (i.e., a reflexive binary
relation) onX . For each pair (m, n) of integers such thatm ≥ n ≥ 1,
we say that % is weakly (m, n)-Ferrers (or, simply, (m, n)-Ferrers)
if for each x1, . . . , xm, y1, . . . , yn ∈ X , the following implication
holds:
(x1 % . . . % xm) ∧ (y1 % . . . % yn)


=⇒


(x1 % yn) ∨ (y1 % xm)


. (2)

Similarly, we say that % is strictly (m, n)-Ferrers if its asymmetric
part ≻ satisfies the implication (2), with ≻ in place of %.

Note that the assumption ‘‘m ≥ n’’ causes no loss of generality
in Definition 4.1, since (in its absence) % is weakly/strictly (m, n)-
Ferrers if and only if it is weakly/strictly (n,m)-Ferrers. The next
result, which is a reformulation of Lemma 2.6 in Giarlotta and
Watson (2014), points out an almost dual behavior of weak and
strict Ferrers properties.

Lemma 4.2. Let % be a reflexive binary relation on X. For all positive
integers m, n,m′, n′ such that m ≥ n, m′

≥ n′, m ≥ m′, and n ≥ n′,
we have:
(i) if % is (weakly) (m, n)-Ferrers, then it is (weakly) (m′, n′)-

Ferrers;
(ii) if % is strictly (m′, n′)-Ferrers, with m′

+ n′
≥ 3, and ≻ is

transitive, then % is strictly (m, n)-Ferrers.

Let us emphasize again that in this paper we only deal with
weak (m, n)-Ferrers properties.20 That is why we shall omit the
adjective ‘‘weak’’ throughout, and henceforth simply speak of
(m, n)-Ferrers properties.

20 Loosely speaking, given a reflexive and complete binary relation %, its weak
Ferrers properties assume the transitivity of ≻, and are connected to levels of
transitivity of the associated indifference ∼. On the other hand, strict Ferrers
properties of% only dealwith levels of transitivity of the associated strict preference
≻. It follows that the problem of rationalizable choices whose revealed preference
is strictly(m, n)-Ferrers requires a quite different analysis. Due to its complexity, we
do not address this problem here.
Remark 4.3. As pointed out in Giarlotta and Watson (2014), a
weak preference is:

• (1, 1)-Ferrers if and only if it is complete;
• (2, 1)-Ferrers if and only if it is a total quasi-preorder;
• (2, 2)-Ferrers if and only if it is an interval order;
• (2, 2)-Ferrers and (3, 1)-Ferrers if and only if it is a semiorder;
• (3, 2)-Ferrers if and only if (by definition) it is a strong interval

order;
• (3, 2)-Ferrers and (4, 1)-Ferrers if and only if (by definition) it

is a strong semiorder.21

The following result summarizes one of the main findings in
Giarlotta and Watson (2014)22:

Theorem 4.4. The following equivalences/implications between
(m, n)-Ferrers properties hold:

• (5, 1)-Ferrers ⇐⇒ (m, 1)-Ferrers for all m ≥ 5;
• (4, 2)-Ferrers ⇐⇒ (m, 2)-Ferrers for all m ≥ 4;
• (4, 2)-Ferrers =⇒ (5, 1)-Ferrers;
• (3, 3)-Ferrers⇐⇒ transitivity⇐⇒ (m, n)-Ferrers for each m ≥

n ≥ 3.

In view of Lemma 4.2, Remark 4.3, and Theorem 4.4 (and some
other results), it suffices to study (m, n)-Ferrers properties for
(m, n) belonging to the following set of pairs:

F := {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 2), (3, 2),
(4, 2), (3, 3)}.

Fig. 1 in the Appendix describes all (non-reversible) implications
among all relevant combinations of (m, n)-Ferrers properties.

Before introducing the main notion of this paper – that is,
(m, n)-rationalizable choices (see Section 4.4) – we shall conduct
a further analysis of (m, n)-Ferrers properties for each (m, n) ∈ F .
Specifically:

• we determine the minimal preference relations that witness
the failure of each (m, n)-Ferrers property, while ensuring the
satisfaction of all weaker properties (Section 4.2);

• we describe how the satisfaction of (m, n)-Ferrers properties
allows one to prevent money-pump phenomena of a certain
kind (Section 4.3).

4.2. Forbidden characteristic configurations for (m, n)-Ferrers prop-
erties

Here we construct a preference relation %m,n for each (m, n) ∈

F : this relation is a ‘‘forbidden characteristic configuration (FCC)’’
for the respective (m, n)-Ferrers property. These configurations are
unique, up to isomorphisms. Although FCC’s are not strictly neces-
sary for the proof of the main result of Section 4 (Theorem 4.14),
they are quite useful and of independent (mathematical and eco-
nomic) interest: see Section 4.3.

Definition 4.5. Fix m ≥ n ≥ 1, with (m, n) ≠ (1, 1) and
m+n ≤ 6. A reflexive and acyclic23 binary relation % is a forbidden
characteristic configuration (FCC) for the (m, n)-Ferrers property if
the following conditions hold:

21 The notions of ‘‘strong interval order’’ and ‘‘strong semiorder’’ are introduced in
Giarlotta (2014).
22 This is Theorem 3.1 in the mentioned paper. See also Examples 3.3–3.10 and
Figures 1–3 in the same paper.
23 The required condition of acyclicity is by no means restrictive, since we are
dealing with preference relations revealed by choice correspondences (which are
always acyclic, as long as the choice domain is finitely complete).
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• % fails to be (m, n)-Ferrers;
• if %′ is a reflexive and acyclic relation that fails to be (m, n)-

Ferrers but is (m′, n′)-Ferrers for each m′
≤ m and n′

≤ n with
(m′, n′) ≠ (m, n), then %′ contains an isomorphic copy of %.24

For the base case (m, n) = (1, 1), a reflexive and acyclic relation %
is an FCC for the (1, 1)-Ferrers property if it is not complete, and is
defined on a set of minimal size.

Said differently, a forbidden characteristic configuration for the
(m, n)-Ferrers property is an acyclicweak preference (which is also
complete, with the only exception of the base case of the (1, 1)-
Ferrers property) defined on a minimal set, witnessing the failure
of the (m, n)-Ferrers property. We now identify all the preference
relations that are relevant to our analysis.

Definition 4.6. Let Xm,n := {x1, . . . , xm, y1, . . . , yn}, with m ≥

n ≥ 0 and |Xm,n| = m + n. For each (m, n) ∈ F , define the
following binary relations %m,n:

%1,1 := X1,1 × X1,1 \ {(x1, y1), (y1, x1)}
%2,1 := X2,1 × X2,1 \ {(x1, y1), (y1, x2)}
%2,2 := X2,2 × X2,2 \ {(x1, y2), (y1, x2)}
%3,1 := X3,1 × X3,1 \ {(x1, x3), (x1, y1), (y1, x3)}
%3,2 := X3,2 × X3,2 \ {(x1, x3), (x1, y2), (y1, x3)}
%3,3 := X3,0 × X3,0 \ {(x1, x3)}
%4,1 := X4,1 × X4,1 \ {(x1, x3), (x2, x4), (x1, x4), (x1, y1), (y1, x4)}
%4,2 := X4,0 × X4,0 \ {(x1, x3), (x2, x4), (x1, x4)}

%5,1 := X5,0 × X5,0 \ {(x1, x3), (x2, x4), (x3, x5), (x1, x4),
(x2, x5), (x1, x5)}.

The main result of this section shows that for each relevant
pair (m, n) of integers, the relation %m,n is the FCC for the (m, n)-
Ferrers property. (We use ‘‘the’’ since FCC’s are unique up to
isomorphisms.) Before proving it, let us preliminarily observe that
– contrary towhat onemight expect – the three relations%3,3,%4,2,
and%5,1 are not defined on, respectively,X3,3,X4,2, andX5,1. Indeed,
as we shall see in the proof of Lemma 4.7, theminimality condition
of the FCC requires one to use some of the xi’s as yj’s.

Lemma 4.7. For each (m, n) ∈ F , the relation %m,n is the FCC for
the (m, n)-Ferrers property.

Proof. The result is trivial for the base case (m, n) := (1, 1). Next,
let (m, n) ∈ F \ {(1, 1)}. It is not hard to check that %m,n fails
to be (m, n)-Ferrers, but is (m′, n′)-Ferrers for each m′

≤ m and
n′

≤ n such that (m′, n′) ≠ (m, n). Hence, to prove the lemma, it is
enough to show that, for each (m, n) ∈ F \{(1, 1)}, if% is aminimal
preference relation that fails to be (m, n)-Ferrers, but is (m′, n′)-
Ferrers for each m′

≤ m and n′
≤ n such that (m′, n′) ≠ (m, n),

then % is isomorphic to %m,n.
Weonly show that the aboveproperty holds for the pair (4, 2) ∈

F , and leave the remaining cases to the reader. To that end, we
develop a formal proof technique for the case of (4, 2)-Ferrers,
which can be adapted to the other Ferrers propertieswithoutmuch
difficulty. Let % be a minimal preference relation which fails to be
(4, 2)-Ferrers, but is (m, n)-Ferrers for (m, n) ∈ {(4, 1), (3, 2)}
(hence also for (m, n) ∈ {(1, 1), (2, 1), (3, 1), (2, 2)}). Since %
fails to be (4, 2)-Ferrers, there exist elements p, q, r, s, t, u (not
necessarily distinct) such that

p % q % r % s, t % u, u ≻ p, s ≻ t (3)

24 Given two preference relations % (on X) and %′ (on X ′), we say that %′ contains
an isomorphic copy of % if there is an injective map f : X → X ′ such that for all
x, y ∈ X , we have x % y if and only if f (x) %′ f (y).
hold. Set X := {p, q, r, s, t, u}. By exploiting the relationships (3)
and the Ferrers properties satisfied by %, we shall see that one
can infer whether (a, b) ∈% or not, for all a, b ∈ X . To enhance
readability, we make use of deduction rules of the following two
types:

⟨w1, . . . , wm | z1, . . . , zn⟩ → a % b and
⟨w1, . . . , wm | z1, . . . , zn⟩ → b ≻ a.

More specifically, by an application of a rule of type

⟨w1, . . . , wm | z1, . . . , zn⟩ → a % b,

we mean a deduction of the following form:

‘‘since w1 % . . . % wm, z1 % . . . % zn, and a′
≻ b′ hold, then, by

the (m, n)-Ferrers property, a % bmust hold as well’’,

where {(a, b), (b′, a′)} = {(w1, zn), (z1, wn)}. Likewise, by an
application of a rule of type

⟨w1, . . . , wm | z1, . . . , zn⟩ → b ≻ a,

where (a, b) ∈ {(wi, wi+1) : 1 ≤ i < m} ∪ {(zj, zj+1) : 1 ≤ j < n},
we mean a deduction of the following form:

‘‘if a % b held, then ⟨w1, . . . , wm | z1, . . . , zn⟩ would be a
counterexample to the (m, n)-Ferrers property (in the sense
that we would have w1 % . . . % wm, z1 % . . . % zn, zn ≻ w1,
and wm ≻ z1); hence, by the (1, 1)-Ferrers property, we must
have b ≻ a’’.

By the minimality of %, an application of the following deduction
rules (in the given order, starting from the first column)

⟨p, q | u⟩ → u % q ⟨p, q, r, s | u⟩ → u % s

⟨r, s | t⟩ → r % t ⟨p, q, r, s | t⟩ → p % t

⟨t, u | p⟩ → t % p ⟨u, r, s | t⟩ → u % t

⟨t, u | s⟩ → s % u ⟨p, s | t, u⟩ → s ≻ p

⟨p, q | t, u⟩ → t % q ⟨p, r, s | t, u⟩ → r ≻ p

⟨r, s | t, u⟩ → r % u ⟨p, q, s | t, u⟩ → s ≻ q

⟨p, q, r | u⟩ → u % r ⟨q, r | s⟩ → s % r

⟨q, r, s | t⟩ → q % t ⟨p, q | r⟩ → r % q

⟨p, q, r | t, u⟩ → t % r ⟨q, r | p⟩ → q % p

⟨q, r, s | t, u⟩ → q % u

yields that %= X2
\ {(p, r), (q, s), (p, s), (p, u), (t, s)}. Define an

equivalence relation ≡ on X by

a ≡ b def
⇐⇒ (∀x ∈ X)(a % x ⇐⇒ b % x)

∧(∀x ∈ X)(x % a ⇐⇒ x % b). (4)

Plainly, if a = b, then a ≡ b. In addition, it is not hard to see that
the quotient relation % / ≡, just as %, fails to be (4, 2)-Ferrers, but
is (4, 1)-Ferrers and (3, 2)-Ferrers.25 Therefore, by the minimality
of %, for all a, b ∈ X , we have that a = b if and only if a ≡ b,
which implies%=% / ≡. Thus, since the≡-equivalence classes are
{p}, {q, t}, {r, u}, {s}, it follows that p, q, r, s are pairwise distinct,
and the equality %= {p, q, r, s}2 \ {(p, r), (q, s), (p, s)} holds. This
proves that % is isomorphic to %4,2, as claimed. �

25 This is a special case of the followingmore general result: for each acyclic weak
preference % and each m ≥ n ≥ 1 such that (m, n) ≠ (1, 1) and m + n ≤ 6, the
relation % is (m, n)-Ferrers if and only if so is % / ≡ (where ≡ is defined as in (4)).
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4.3. (m, n)-Ferrers properties and money-pump avoidance

In this section we give an economic interpretation of (m, n)-
Ferrers properties, which is connected to money-pump phenom-
ena. To that aim, we introduce a simple model of transactions of
goods that is well suited to describe the semantics of Ferrers prop-
erties. In fact, we show that in this model, whenever the binary
relation modeling the agent’s preference structure satisfies a fixed
(m, n)-Ferrers property, there exists a strategy that prevents the
agent fromgetting involved inmixed indifference/strict preference
cycles of a certain type. To start, we describe the model.

Suppose that in order to convince an economic agent to
exchange a certain good with a different one that is indifferent to
the former, the agent is offered a base compensation B. Suppose
also that in case of consecutive exchanges of indifferent goods,
the compensation may not equal to the base compensation, but
is instead equal to the compensation of the previous transaction
times an indifference factor r > 0.26 Thus, for example, if three
consecutive transactions of indifferent goods are made, then the
compensation is B for the first, rB for the second, and r2B for the
third. It follows that if no other transactions of this kind are made,
then the total compensation R received by the economic agent will
be R = (1 + r + r2)B.

The indifference factor r of this model has a natural economic
interpretation, since it may be viewed as either a ‘‘discount’’ or a
‘‘penalty’’, depending on the agent’s attitude. Specifically, a factor
0 < r < 1 acts as a discount for consecutive transactions of
indifferent goods, because the agent is willing to receive less and
less money at each successive switch. This circumstance may be
due to the consideration that she is getting paid a positive amount
of money versus leaving her total utility basically unchanged. On
the other hand, the case r > 1 is typical of a situation in which
the agent, worried about the possibility of getting trapped into a
money-pump cycle, getsmore andmore suspicious at the proposal
of consecutive switches of indifferent goods. As a consequence,
at each immediately successive transaction of this kind, she shall
ask for a compensation that is larger than the previous one. The
intermediate case r = 1 identifies a neutral agent, who is neither
overconfident nor suspicious.

Finally, suppose that in order to switch from a good to a
different good that is strictly preferred to the former, the economic
agent is willing to pay a certain amount of money, which is a
percentage s of the base compensation B, that is, sB: we call s
the (strict) preference factor. Thus, for instance, if two transactions
of this kind are made, then the price S paid by the economic
agent is S = 2sB. Note that in the described model, additional
transactions of strictly preferred goods are all done at the same
price, regardless of whether they are consecutive or not. The
reason for distinguishing the way we treat consecutive types
of transactions – namely, indifferent goods vs. strictly preferred
goods – is that in the latter case it is reasonable to assume that
discount/penalty phenomena do not arise.27

26 We assume that the agent might only be sensitive to consecutive transactions
of indifferent goods. This can be explained, for instance, by the possibility that
transactions take place over a long period of time, and the economic agent
remembers only the last one. Note that the case of a constant compensation is
obtained for r = 1.
27 The rationale for such an assumption is that – differently from what happens
in the case of transactions of indifferent goods – there is no ambiguity for strict
preference transactions. This is due to the fact that quasi-transitivity holds starting
from a (2, 1)-Ferrers weak preference, and so we never switch to a different type
of preference relation in case of transactions of strictly preferred goods. On the
contrary, a sequence of consecutive transactions of indifferent goods may hiddenly
lead to a strict preference of the last good over the first one (or vice versa), unless
the economic agent’s preference structure is modeled by a total preorder (a (3, 3)-
Ferrers binary relation). At any rate, no discount/penalty phenomenon appears
in the case of a neutral agent, who treats all consecutive transactions of (either
indifferent or strictly preferred) goods with the same logic.
We aim at describing how in this model of transactions the
economic agent can avoid getting trapped into a money-pump
cycle. This is equivalent to determining under which conditions
we shall have R ≥ S: the total compensation R received for the
transactions of indifferent goods must be greater or equal than the
total price S paid in transacting for better goods. The next example
gives an instance of a money-pump phenomenon in such a model,
due to the presence of a certain kind of mixed cycle.

Example 4.8. Assume that the economic agent displays the
following mixed cycle of (four) indifferences and (two) strict
preferences:

x1 ∼ x2 ∼ x3 ∼ x4 ≻ y1 ∼ y2 ≻ x1. (5)

As a natural requirement of a rational economic behavior, if the
agent is starting with the good x1 in her hands, then she should at
least make sure that exchanging goods according to certain rules
(possibly decided in advance by a contract) will not bring her back
to x1 with less money than she had before starting all transactions.
For simplicity, let the base cost B be equal to 1 (euro, dollar, etc.).
Now assume that the agent is so naive/overconfident to agree to
be paid for indifference switches at a discount factor r = 0.5, and
instead to pay each strict preference switch at a premium factor
s = 1.4. Then she will loose money in going from x1 back to x1 by
a sequence of transactions, passing through y2, y1, x4, x3, and x2 (in
the given order). In fact, she will receive R = 1+ 1+ 0.5+ 0.25 as
a total compensation for the indifference switches, but pay a total
price S = 1.4 + 1.4 for the two strict preference switches, thus
enduring a net lossR−S = −0.05, and, in turn, triggering amoney-
pump process. However, if the agent knows in advance that her
preference structure is (4, 2)-Ferrers, then she will not run such a
risk, since a configuration as (5) is forbidden, and any mixed cycle
with two strict preferences and more indifferences28 is not risky,
since it gives a net profit of at least R − S = 2.875 − 2.8 = 0.075.

Example 4.8 is a simple instance of how the satisfaction
of the (4, 2)-Ferrers property may allow one to avoid money-
pump phenomena of a certain kind. In the remainder of this
section, we perform a similar analysis for each (m, n)-Ferrers
property, however only considering the special cases of avoidance
ofmoney-pumpphenomena arising frommixed indifference/strict
preference cycles having exactly two strict preferences. A complete
analysis of how (m, n)-Ferrers properties may allow an economic
agent to avoid money-pump phenomena deriving from arbitrary
mixed cycles appears to be doable but quite technical, and exceeds
the scope of the present paper.29

Definition 4.9 (Money-Pump Avoidance). Let MPA(r, s) stand for
the following property:
‘‘If r is the indifference factor and s is the strict preference factor,
then there are no money-pump phenomena deriving from the
presence of mixed cycles with exactly two strict preferences’’.

Within the transaction model under examination, the next
result connects each forbidden characteristic configuration %m,n
for the (m, n)-Ferrers property (see Definition 4.6) with the
avoidance of special money-pump phenomena.

Proposition 4.10. For each (m, n) ∈ F \ {(1, 1)}, we have:

(i) %2,1 satisfies MPA(r, s) ⇐⇒ s ≤
1
2 ;

28 Mixed cycles with two strict preferences and fewer indifferences are forbidden
by the fact that the (4, 2)-Ferrers property implies the (m, n)-Ferrers property for
eachm ≤ 4 and n ≤ 2: see Theorem 4.4.
29 See, however, Remark 4.11.
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(ii) %3,1 satisfies MPA(r, s) ⇐⇒ s ≤
1+r
2 ;

(iii) %4,1 satisfies MPA(r, s) ⇐⇒ s ≤
1+r+r2

2 ;

(iv) %5,1 satisfies MPA(r, s) ⇐⇒ s ≤
1+r+r2+r3

2 ;
(v) %2,2 satisfies MPA(r, s) ⇐⇒ s ≤ 1;
(vi) %3,2 satisfies MPA(r, s) ⇐⇒ s ≤ 1 +

r
2 ;

(vii) %4,2 satisfies MPA(r, s) ⇐⇒ s ≤ 1 +
r+r2
2 ;

(viii) %3,3 satisfies MPA(r, s) ⇐⇒ s ≤ 1 + r.

Proof. Assumewithout loss of generality that the base compensa-
tion is B = 1. For each (m, n) ∈ F \{(1, 1)}, denote by Rm,n and Sm,n
the total compensation and the total price, respectively, connected
to %m,n. Since each FCC contains exactly two strict preferences, we
have Sm,n = 2s for all (m, n) ∈ F \ {(1, 1)}. On the other hand, the
value of the total compensation Rm,n is the following:

R2,1 = 1
R3,1 = 1 + r

R4,1 = 1 + r + r2

R5,1 = 1 + r + r2 + r3

R2,2 = 2
R3,2 = 2 + r

R4,2 = 2 + r + r2

R3,3 = 2 + 2r.

Since the satisfaction of MPA(r, s) is equivalent to requiring that
Rm,n ≥ Sm,n = 2s, a simple computation shows that the claimholds
in all cases. �

Proposition 4.10 has an immediate economic interpretation
in terms of the relationship between the level of transitivity of
an economic agent’s preference structure on one hand, and the
caution that she has to exercise whenever indulging in certain
types of transactions on the other hand.

To make the above statement more precise, assume that the
preference structure of the economic agent is complete but rather
irregular, in the sense that it even fails to be quasi-transitive.
Therefore, we are in presence of a weak preference % that is
(1, 1)-Ferrers but not (2, 1)-Ferrers, hence Lemma 4.7 yields that
% contains an isomorphic copy of the forbidden characteristic
configuration %2,1. In this circumstance, it turns out that the agent
has to be rather cautious in agreeing to pay a certain amount
of money for any switch to a strictly preferred good. In fact,
Proposition 4.10(i) suggests that she should pay no more than
one half of the base compensation for any such transaction, since
otherwise she would become exposed to the risk of losing all her
money in a money-pump cycle.

On the contrary, a rather regular preference structure allows
the agent to be less parsimonious in her transactions. For instance,
assume that her preference structure % is a strong semiorder (i.e.,
(3, 2)-Ferrers and (4, 1)-Ferrers, see Fig. 1 in the Appendix),30
which however fails to be (5, 1)-Ferrers. In this circumstance,
Proposition 4.10(iv) says that the agent is allowed to spend atmost
(1 + r + r2 + r3)B/2 for each switch to a better good, where B is
the base compensation and r the indifference factor. For example,
if the agent is neutral (that is, neither overconfident nor suspicious,
which happens for r = 1), then she must pay no more than twice
the amount of the base compensation for each strict preference
transaction, or else risk getting involved in a money-pump cycle.

30 For an instance of a strong semiorder, see Example 4.6 and Figure 5(iii) in
Giarlotta (2014).
Remark 4.11. Observe that Theorem 3.1(vi) in the monograph by
Pirlot and Vincke (1997) characterizes semiorders as those reflex-
ive and complete binary relations with the property that every
mixed cycle contains more indifferences than strict preferences.
It follows that in our model of transactions, a neutral agent (r =

1) having a semiordered preference structure will be safe from
money-pump phenomena induced bymixed cycles of arbitrary (fi-
nite) length as long as her strict preference factor s is at least 1.
It should be possible to conduct a similar analysis for all types of
(m, n)-Ferrers properties.

4.4. (m, n)-rationalizability and axioms of (m, n)-replacement con-
sistency

We finally introduce the notion of (m, n)-rationalizable choices,
connecting it to the satisfaction of (m, n)-Ferrers properties. The
main result of this section is Theorem 4.14, which extends The-
orem 3.5 to cases of (m, n)-rationalizable choices by introducing
additional properties of (m, n)-replacement consistency. In view
of the discussion in Section 4.3 about the relationship between
(m, n)-Ferrers properties on one hand, and the avoidance of cer-
tain phenomena of money-pump on the other one, an extension of
Theorem 3.5 appears to be susceptible of an economic interpreta-
tion.

To start, we employ (m, n)-Ferrers properties to classify
rationalizable choices according to the transitive structure of their
revealed preferences, thus providing a general framework for cases
(A), (B), (C), and (D) discussed in Section 2.

Definition 4.12. A choice correspondence is (m, n)-rationalizable
(where m ≥ n ≥ 1) if it is rationalizable and its revealed
preference is (m, n)-Ferrers.

In order to extend Theorem 3.5 to cases of (m, n)-rationaliz-
ability, next we define additional properties of replacement
consistency. To that end, consider the following formulae:

y ∈ c(S) ∧ y ∉ c(S ∪ {x}) =⇒ x ∈ c(T ∪ {x}) (6)
x ∈ c(S) ∧ y ∈ T ∧ z ∈ c(S ′) ∧ z ∉ c(S ′

∪ {y})

=⇒ x ∈ c(S ′
∪ {x}) (7)

x ∈ c(S) ∧ y ∈ T ∧ z ∈ c(S ′) ∧ z ∉ c(S ′
∪ {y})

=⇒ x ∈ c(S ∪ T ′). (8)

Then the axioms (ρm,n) of (m, n)-replacement consistency are the
following for each (m, n) ∈ F (as usual, universal quantifications
are omitted):

(ρ1,1) S = S31;
(ρ2,1) S = T implies (6);
(ρ3,1) S ∩ c(T ) ≠ ∅ implies (6);
(ρ4,1) S ∩ c(U) ≠ ∅ ∧ U ∩ c(T ) ≠ ∅ implies (6);
(ρ5,1) S ∩ c(U) ≠ ∅ ∧ U ∩ c(W ) ≠ ∅ ∧ W ∩ c(T ) ≠ ∅ implies

(6);
(ρ2,2) S = T implies (7);
(ρ3,2) S ∩ c(T ) ≠ ∅ implies (7);
(ρ4,2) S ∩ c(U) ≠ ∅ ∧ U ∩ c(T ) ≠ ∅ implies (7);
(ρ3,3) S ∩ c(T ) ≠ ∅ ∧ S ′

∩ c(T ′) ≠ ∅ implies (8).

31 This is obviously a tautology, however we include it here for the sake of
completeness.
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Remark 4.13. It is long but straightforward to check that for ra-
tionalizable choices, (ρ2,1), (ρ3,1), (ρ2,2), and (ρ3,3) are equivalent
reformulations of, respectively, (ρ), (ρst), (ρf ), and (ρt). Similarly,
again under axioms (α) and (γ ), the implication

(ρm,n) =⇒ (ρm′,n′) (9)

holds for all (m, n), (m′, n′) ∈ F such thatm ≥ m′ and n ≥ n′.

As announced, we have:

Theorem 4.14. For each (m, n) ∈ F , a choice correspondence is
(m, n)-rationalizable if and only if axioms (α), (γ ), and (ρm,n) hold
for it.

Proof. Let c : Ω ⇒ X be a (normal) choice correspondence, and
%c its revealed preference. In view of Sen’s Theorem, it suffices to
show that for each (m, n) ∈ F \ {(1, 1)}, if c is rationalizable, then

%c is (m, n)-Ferrers ⇐⇒ (ρm,n) holds for c. (10)

Thus assume that c is rationalizable. We prove (10) inductively,
which means, when proving %c is (m, n)-Ferrers if and only
if c satisfies (ρm,n), we suppose this equivalence holds for all
(m′, n′) such that m′

≤ m, n′
≤ n, and (m′, n′) ≠ (m, n).

Since Theorem 3.5 yields that the claim holds for (m, n) ∈

{(2, 1), (2, 2), (3, 1), (3, 3)}, belowwe only prove the equivalence
(10) for (m, n) ∈ {(3, 2), (4, 2), (4, 1), (5, 1)}.

Assume that %c is not (3, 2)-Ferrers. By inductive hypothesis
and by (9), we may assume that (X, %c) contains an isomorphic
copy of the FCC for (3, 2)-Ferrers. Thus, there exist elements
x1, x2, x3, y1, y2 ∈ X such that y2 ≻c x1, x3 ≻c y1, x1 %c x2 %c x3, and
y1 %c y2 hold. Letting x := x1, y := x3, z := y1, S := {x1, x2},
T := {x2, x3}, and S ′

:= {y1, y2}, we obtain that (ρ3,2) fails for c.
Conversely, assume that c does not satisfy (ρ3,2). Then there exist
S, S ′, T ∈ Ω and x, y, z, t ∈ X such that

t ∈ S ∩ c(T ), x ∈ c(S), y ∈ T , z ∈ c(S ′),

z ∉ c(S ′
∪ {y}), x ∉ c(S ′

∪ {x})

hold. But then we must have y≻c z and v ≻c x, for some v ∈ S ′. In
addition, we must have x%c t %c y and z %c v, so %c is not (3, 2)-
Ferrers.

Next, assume that %c is not (4, 2)-Ferrers. Again, by inductive
hypothesis and by (9), we may assume that (X, %c) contains an
isomorphic copy of the FCC for (4, 2)-Ferrers. Thus, there exist
elements x1, x2, x3, x4, y1, y2 ∈ X such that y2 ≻c x1, x4 ≻c y1,
x1 %c x2 %c x3 %c x4, and y1 %c y2 hold. Letting x := x1, y := x4, z :=

y1, S := {x1, x2}, U := {x2, x3}, T := {x3, x4}, and S ′
:= {y1, y2},

we obtain that (ρ4,2) fails for c. Conversely, assume that c does not
satisfy (ρ4,2). Then there exist S,U, T , S ′

∈ Ω and x, y, z, t, w ∈ X
such that

t ∈ S ∩ c(U), w ∈ U ∩ c(T ), x ∈ c(S),
y ∈ T , z ∈ c(S ′), z ∉ c(S ′

∪ {y}), x ∉ c(S ′
∪ {x})

hold. But then we must have y≻c z and v ≻c x, for some v ∈ S ′.
In addition, we must have x%c t %c w %c y and z %c v, so %c is not
(4, 2)-Ferrers.

Next, assume that %c is not (4, 1)-Ferrers. As before, by
inductive hypothesis and by (9), we may assume that (X, %c)
contains an isomorphic copy of the FCC for (4, 1)-Ferrers. Thus,
there exist elements x1, x2, x3, x4, y1 ∈ X such that y1 ≻c x1,
x4 ≻c y1, and x1 %c x2 %c x3 %c x4 hold. Letting x := y1, y := x1,
S := {x1, x2}, U := {x2, x3}, and T := {x3, x4}, we obtain that (ρ4,1)
fails for c. Conversely, assume that c does not satisfy (ρ4,1). Then
there exist S,U, T ∈ Ω and x, y, t, w ∈ X such that

t ∈ S ∩ c(U), w ∈ U ∩ c(T ), y ∈ c(S),
y ∉ c(S ∪ {x}), x ∉ c(T ∪ {x})
hold. But then we must have x≻c y and z ≻c x, for some z ∈ T . In
addition, we must have y%c t %c w %c z, so %c is not (4, 1)-Ferrers.

Finally, assume that %c is not (5, 1)-Ferrers. As before, by
inductive hypothesis and by (9), we may assume that (X, %c)
contains an isomorphic copy of the FCC for (5, 1)-Ferrers. Thus,
there exist elements x1, x2, x3, x4, x5, y1 ∈ X such that y1 ≻c x1,
x5 ≻c y1, and x1 %c x2 %c x3 %c x4 %c x5 hold. Letting x := y1, y := x1,
S := {x1, x2}, U := {x2, x3}, W := {x3, x4}, and T := {x4, x5}, we
obtain that (ρ5,1) fails for c. Conversely, assume that c does not
satisfy (ρ5,1). Then there exist S,U,W , T ∈ Ω and x, y, t, w, v ∈ X
such that

t ∈ S ∩ c(U), w ∈ U ∩ c(W ), v ∈ W ∩ c(T ),

y ∈ c(S), y ∉ c(S ∪ {x}), x ∉ c(T ∪ {x})

hold. But then we must have x≻c y and z ≻c x, for some z ∈ T .
In addition, we must have y%c t %c w %c v %c z, so %c is not (5, 1)-
Ferrers. �

We conclude this section by exhibiting minimal choice
correspondences that witness a different strength of the axiom of
(m, n)-replacement consistency.

Example 4.15. For each (m, n) ∈ F , let cm,n be the (rationalizable)
choice correspondence induced by the FCC %m,n described in
Definition 4.6 (and Lemma 4.7). Then we have:

• c2,1 satisfies (ρ1,1) but not (ρ2,1);
• c3,1 satisfies (ρ2,2) but not (ρ3,1);
• c4,1 satisfies (ρ3,2) but not (ρ4,1);
• c5,1 satisfies (ρ3,2) and (ρ4,1) but not (ρ5,1);
• c2,2 satisfies (ρ5,1) but not (ρ2,2);
• c3,2 satisfies (ρ5,1) and (ρ2,2) but not (ρ3,2);
• c4,2 satisfies (ρ5,1) and (ρ3,2) but not (ρ4,2);
• c3,3 satisfies (ρ4,2) but not (ρ3,3).

5. Conclusions and further directions of research

In this paperwe have classified rationalizable choices according
to the level of transitivity of their revealed preferences, which
ranges from mere acyclicity to full transitivity. With the aim of
obtaining a unified treatment of the topic, we have addressed
the case of choices having a revealed preference such that its
asymmetric part is transitive but its indifference may fail to be
so. Specifically, we have introduced some axioms of replacement
consistency, which describe how the addition of an item to amenu
may cause a substitution in the set of selected elements. We have
used these axioms to characterize rationalizable choices whose
revealed preference is quasi-transitive, Ferrers, semitransitive, and
transitive. Further, we have extended this approach by introducing
axioms of (m, n)-replacement consistency, which characterize
choices having a revealed preference that is weakly (m, n)-Ferrers.

Future research on the topic points in three main directions.
A first interesting problem is that of the classification of ratio-
nalizable choices such that even the strict part of their revealed
preference may fail to be transitive. This naturally prompts a
systematic study of choices whose revealed preference is strictly
(m, n)-Ferrers. In fact, the monotonicity property given by
Lemma 4.2(ii) partially holds also in absence of strict transitivity,
that is, loosely speaking, the larger m and n are, the weaker the
strict (m, n)-Ferrers property becomes. The simplest types of strict
(m, n)-Ferrers properties, obtained for n = 1, already allow one
to conduct this type of analysis.32 In fact, it can be shown that an

32 In this simplified case, the monotonicity claim is to be intended as eventually
true: see Lemma2.6 and, especially, Conjecture 2.16 inGiarlotta andWatson (2014),
which has been proved to hold.
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Fig. 1. Implications among combinations of weak (m, n)-Ferrers properties.
acyclic preference is strictly (m, 1)-Ferrers for some m ≥ 3, and
each strict (m, 1)-Ferrers property implies the strict (p, 1)-Ferrers
property for all p ≥ st(m), where st(m) ≥ m is the stabilizer of
m. It follows that strict (m, 1)-Ferrers properties provide a good
estimate of the level of transitivity of the asymmetric part of the
revealed preference. More generally, it would be interesting to ob-
tain a full classification of rationalizable choices on the basis of the
satisfaction of strict (m, n)-Ferrers properties.

A second stream of research is related to possible applications
in economics of (generalizations of) (m, n)-Ferrers properties, to be
interpreted as weaker forms of rationality conditions imposed on
possibly intransitive preference structures. Specifically, it appears
of some interest to designing strategies that allow the economic
agent to detect/prevent any type of money-pump phenomena
in suitable transaction models. To that end, it is necessary to
introduce new types of Ferrers properties that are connected to
the existence of mixed cycles of all kinds, thus generalizing both
weak and strict (m, n)-Ferrers properties. Such an approachwould
operatively create a bridge between regret theory on one hand
(which basically abandons transitivity as a rationality tenet), and
theories that maintain suitable forms of pseudo-transitivity as
minimal rationality requirements (postulating, e.g., the transitivity
of the strict preference but not of the associated indifference, such
as in interval orders, semiorders, strong interval orders, strong
semiorders, etc.).

Last but not least, we are currently studying weaker forms
of choice rationalizability, which are alternative to the classical
revealed (mono-)preference approach. In this respect, pairs of
binary relations satisfying suitable properties – called NaP-
preferences (necessary and possible preferences) – provide a natural
tool to rationalize a choice.33 Recall that a NaP-preference is a pair
of binary relations such that the first component is a preorder,
the second is a quasi-transitive completion of the second, and

33 See Giarlotta and Greco (2013) for the introductory paper on NaP-preferences,
and Giarlotta (2014, 2015) for further developments of the theory.
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the two relations jointly satisfy forms of transitive coherence and
mixed completeness. It is possible to associate to an arbitrary
choice correspondence a relation of revealed universal preference,
which complements the classical relation of revealed (existential)
preference. It turns out that under Sen’s axiom (α) of contraction
consistency and the standard axiom of replacement consistency
(ρ) introduced in this paper, the pair formed by the two types
of revealed preferences is indeed a NaP-preference. This NaP-
preference enables one to ‘‘bi-rationalize’’ a choice in some cases
in which it fails to be (mono-)rationalizable.
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Appendix

In Fig. 1 we describe all implications among combinations of
weak (m, n)-Ferrers properties.34 All reverse implications do not
hold (see Examples 3.3–3.10 in Giarlotta and Watson (2014)).
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