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Abstract—In this note, we prove the well posedness for a Cauchy-Dirichlet problem in the class
Wpl’z, for every p between 1 and co.

The main part of the linear parabolic operator is symmetric, uniformly elliptic and belongs to the
Sarason's class VMO.

Consequently, we prove a boundary estimate of the solution u, where the related constant depends

on coefficients only through the ellipticity constant and the VMO moduli. © 2005 Elsevier Ltd. All
rights reserved.
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1. INTRODUCTION

Let £ be a linear parabolic operator of the form,

n 7
Lu=uy— Z aij () Uiz, + Zbi (z) ug; + cu, (1.1)
ij=1 i=1
where © = (a/,t) = (2}, 24,... ,2/,t) ¢ R*HL,

Let & C R™ be a bounded C! domain and Qr, the cylinder Q x (0, T).
Aim of this note is to study the Cauchy-Dirichlet problem,

Lu = f, a.e. T € Qr,
u =0, on 99 x (0,77, (1.2)
u(z’,0) =0, in Q,

where f € LP(Q7), 1 < p < oo. The coefficients a;;(z) are discontinuous; precisely, they are in
the space VMO defined by Sarason [1], symmetric and also uniformly elliptic, i.e.,

3r>1:77 e <ay(2) &8 <TIE,  VEERY, ae z€Qr. (1.3)

Let us assume that the coefficients b; and ¢ belong to suitable Lebesgue spaces.
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The literature about Cauchy-Dirichlet problem is very wide, we recall for instance the study
by Campanato [2], Guglielmino [3], the papers by Gagliardo [4,5], the book by LadyZenskaya and
Ural’ceva [6].

With different methods than that one used by LadyZenskaya and Ural’ceva, Gagliardo proved
the existence and the uniqueness of the solution of Cauchy Dirichlet problem in [4]. In this paper,
Gagliardo begins to study the regularity problem of the solutions, and interesting developments
have been achieved in the study of this problem in the note [5].

A few years later, Arena with different hypotheses for the coefficients than those by Gugliel-
mino in [7,8] studied the well posedness of the Cauchy-Dirichlet problem proving theorems of
existence and uniqueness for solutions v € H>(Q7).

In the present note, the author considers a Cauchy-Dirichlet problem related to nondivergence
form parabolic equation with discontinuous coefficients and proves the existence, uniqueness,
and regularity of the solution. This problem is inspired by the study made by Bramanti and
Cerutti [9]. We point out that our fundamental tools are some properties related to the products
of the terms b; and ¢ with u and its derivatives. The technique used to obtain these results is

based on dividing the cylinder Q7 in sections and obtaining the requested estimates in each part
of the subdivision.

2. SOME DEFINITIONS

Let us introduce in R®*! the following parabolic metric d(z,y) = p(z —y), where

|2/ % + /|| * + 4¢2

2

plz) =

DEFINITION 2.1. Let us assume parabolic cubes of center x = (2',t) € R"t! and radius r

I=Lz)={y=(s) eR" 2/ —¢/| <r, |t —s] <r?}.

DEFINITION 2.2. (See [10].) Let f € L. (R"*!). We say that f belongs to the parabolic BMO
space (BMO (R**1)) if the seminorm,

1
151 = sup / 1 ()~ fi] de,

is finite, where I ranges in the class of the parabolic cubes in R™"*! and f; is the average
/|| J; f(z)dz.
Let f e BMO and

s (7) ZSHPﬁ/j |f (z) — fr,| d=

p<r
where I, ranges over the class of parabolic cubes in R**! of radius p.

DEFINITION 2.3. (See e.g., [11].) We say that the function f € BMO is in the Sarason class
VMO (R™+1) if

lim 7 (r)=0.

r—0+

We will refer to n as the VMO modulus of f.
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DEFINITION 2.4. Let us denote LP9(Q1), 1 < p, ¢ < oo the space of measurable functions h(z,t)

such that
/p 1/q
[P~ (/ (/ b (z, £)F da:) dt) < oo,

with obvious modifications if p or q or both the exponents are infinite. If p = q, we simply write
LP(Qr) instead of LPP(Qr).
Moreover, if h € LP1(Qr), we set

<(@)= o [l naco)

where D C R™**! is Lebesgue measurable and |D| is its Lebesgue measure.
The function w(o) is decreasing in 10, |Qr|[ and is such that

;ﬁr})w (o) =0.

We will refer to w(o) as the AC modulus of |h|.

We intend consider Wg’l(QT) as the space of functions u(z,t) with p-summability in Q7 such
that the derivative with respect to ¢ belongs to LP(Qr) and as functions of t with values in LP(2),
belong to LP(0,T, Wg ().

Let us assume in W21(Qr) as a norm the quantity,

1/p

2 p/2
”“”W,?'I(QT) = / <uf + Z |D“u{2> dzx dt
Qr a=1

Let us define Wo ,(Qr) to be the closure in the W' (Qr) norm of the space
C={peC®(Qr):¢=0, fort =0, or z € Q}.
We are interested in the following Cauchy-Dirichlet problem,

Lu=f, a.e. T € Qr,
u 6 Wo)p (QT) ?

associated with a nondivergence form parabolic equation.

3. PRELIMINARY LEMMA AND MAIN RESULTS

In the sequel, we need the next result and we refer the readers to [12] for the proof of the
lemma.

LemMA 3.1. For every function u € WPQ’I(QT), we have
essg . Sup leu‘ <C HUHWZ’I(QT) , (3.1)
fO<|j|<1,2p-2~jlp>n;

1P|

Lo (@r) T “D uHLw P (QT) <C ”U“Wg»l(QT) ) (3.2)

fO<|jl <1, 2p—-2—jlp=n; 1 < p < oo;

||Dju||Lp (#/1-6)(Qq) < C’||u||W21 (@r) (3.3)
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if0< 5| <1,2p—2—|jlp <n, p=np/(n—2p+28+|j|lp), and moreover,

max (o, 25”—_“2“’—_”) < 6 < min (1, M) . (3.4)

If2p—|jlp—n = 0 in (3.4), we have not to rcad the equal sign on the left. If 2p —2 — |jlp—n <0
and 2 < p < oo in (3.4) we have not to read the equal sign on the right.

The constant C does not depend on Q,p,T and on p in the case of (3.2), or on 6 in the case
of (3.3). If u has a trace equal to zero on Q x {T = 0}, the constant C is not decreasing when T
is growing.

Let us assume the following hypotheses.

For every i = 1,...,n, b; € L**(Qr), where

t=1t=p, ifp>n+2,
t=p, f= 22 o t:_Z_’P_, t=p, VYp>p, fp=n+2,
p=p p—p
t:—-m)—, t_zg, ifi<p<n+2
pP—p 0

If p < n+2 weset p=np/(n—p+20) and max(0,(p —n)/2) < 6 < min(1,p/2). Let us
suppose ¢ < 0 a.e. in Qr and also ¢ € L%*(Qr), where

_ . n+2
§s=35=p, ifp> 5
- _ _bp pp - . n+2
s=p, §=—— or §=——, 5=p VYp>p, ifp= ,
p—p p—p 2
2
§= pp, §=B, 1f1<p<n+
p—p ¢

If p<n+2/2, we assume p = np/(n — 2p + 20), max(0, (2p — n)/2) < § < min(1, p).

THEOREM 3.2. Let us assume the coefficients b; and ¢ as above, Vi=1,...,n.
Then, for every function u € WPQ’I(QT), we have

b;Du,cu € LP (Qr), V1<p<oo,

and it results
”biDu”LP(QT) + HCU‘HLP(QT) <C ||U||W3'1(QT) )
where C' depends on T, p,n,{, (c||ps.s(qr), [1bill Le.£(gp) and the Sobolev constant.

Proor. To prove some of the following inequalities it is useful to consider Lemma 3.1.
Let p>n+2.

Then,
( /OT ([ oup ox) dt)

Let p > (n+2)/2.

(£ o)) <[ (e o))

= “u||L°°(QT) HCHLI’(QT) .

1/p 1/p

< (/OT (/ﬂ 1bif? (Slép|Du|>p da:) dt>

= [1Dull o () 105l Loy -
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Let p=n+2.

1/p1P 1/py] P
(/ b Du|” dx) < [(/ \Dul? dg:> ] . {(/ b ¥ dx) } ,
Q Q Q
where 1/(p/p) +1/y =1 or equivalently y = p/(p — p), ¥V p > 1, such that p > p, then
T T p/p 1/py\ P
/ (/ |b; Dul? dm) dtS/ (/ | Du|? d:v) . <</ |bs |V dx) > dt
0 Q 0 Q Q

T 1/p
</ /| |biDu|”dxdt> < 1Dl oy IBilzowrco 2y

Also, we have
p
(/ |b; Du|? da:) < <sup|Du]) . </ 6P da:) ,
Q Q Q

integrating between zero and T', we obtain

[ Upmor) o= (I o) o) [(£ )" 4) ]

with 1/(p/p) +1/(y/p) = 1, or equivalently, y = pp/(p — p).
Then,

1/p

T
{/0 (/Q |biDu|p dﬂ?) dt‘| S “Du||[,°°P(QT) ||bi”LPvPP/(P—P)(QT) P p>D.

Let p = (n+2)/2.

We obtain
(/ leul|? dm) <
Q

with y = p/(p — p); then

p

( /Q uf? da:>l/T . [( /Q o dm)l/py] ,

P

/OT (/Q leuf? da:) dt < /OT [/ﬂ Juf? d:c]p/p . l(/ﬂ P d$>1/p1 W

p

T 1/
[A <A 1cu|P d,’lﬁ) dt:l < HUHL”"X’(QT) ”c”Lp”/(p_p)’P(QT) .

Moreover, in this case, we have

(vt ) < (suplud)" ([ e dz) = bl ([ 1o o)

integrating between zero and T" we obtain

It follows

T T ple s wp O\ /P
cupda:) dt < / w||? o dt / (/ cpdx> dt ,
L (e (0||||L(QT>> ( 1o

with p > p and y = pp/(p — p).
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T p 1/}7 T 1/[7
( /O ( /Q mth) dt) s( /O o o dt) el r - o)

= ”u”Lw»ﬂ(QT) Hc“Lp,pp/(p—p)(QT)-

Let p<n+2, p=np/(n —p+260), max (0; (p — n)/2) < 6 < min (1;p/2).
Then,

It implies

P

/Q|b,-Du|" dr < ((/ﬂwm’y d:c) l/py>p ((/Q | Dul® dx)l/p> :

where y = p/(p — p), so that

T T » p/p
b:D pd)dt</ bi ) (/ Du”dm) dt
[ ([urac)as (u A=
@ 1-6
S (A ||bHLPP/(P P (QT) dt) (/ HD ”P/(l % dt)

= ”b”ipp/(p‘p),(p/f?)(QT) ”Du”I[),p,p/(l—G)(QT) *
Let p < (n+2)/2, p =np/(n —p+ 26), max (0; (2p — n)/2) < § < min (1;p), we have

< /Q leuf? da:) < < /Q [P d:c) v (( /Q ju[P/P) dm)l/p)p,

where y is such that 1/(p/p) + 1/y = 1, and then

T T v . p/p
cul? dz) dtg/ o[ (/ u d:n) dt
L (e [ (1l iy ([ 1
T [ T 16
0 [
=< J R dt) ( | 1wz dt)

= ||C”ipp/(p—p>,<p/e)(QT) ||“Hz£p,p/<1—0>(QT) :

THEOREM 3.3. Let f € LP(Qr1), 1 < p < oo, the coefficients b;, ¢ satisfying the above assump-

tions and a;; € VMO N L*°(Qr) are symmetric and uniformly elliptic.

Then, there exists a constant k such that for any u solution of the Cauchy-Dirichlet prob-

lem (2.1), we have
lullizsgry < & (1£0l Loy + Il 2o ar )

where the constant k depends on n;p;7;n; |Q; 0 T; ||bs| e, Vi=1,...,n; ||c||Lss and the AC

moduli of b; and c.

Proor. We start by observing that for the above Cauchy-Dirichlet problem Bramanti and

Cerutti [9, Theorem 4.3] have proved the estimate,

“u“W,?-‘(QT) <C|Lu~ Z b, Du — cu

i=1 LP(QT)
Therefore, we obtain
HU‘HWI?'I(QT) <C HEUHLP(QT) + ZbiDiu + chHLP(QT)
i=1 L?(Qr)

<C {HCUHLP(QT) + Z ”biDiu“LP(QT) + HCUHLP(QT)} ‘

i=1
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Let us define
Q (L) = {(:E,t) €Qr: |bi (I,t)| z L}a
then

1/p 1/p
(/ |b:|? | Dyl dmdt) <L / |DiulP dx dt + / |6:;)” | Diul|” dz dt
Qr QT\Q(L) Q(L)

Using Lemma 3.2 and Sobolev inequality, we obtain

1/p

1/p 1/p
|bi|”|Diu|p dxdt) <L / |D;ul? dx dt +c||bill 102 - w2 ,
</QT Qr\0(L) Ltt(Q(L)) Wy (Qr)

where the constant ¢ depends on the Sobolev constant.
It is also known that

||DiU“Lp(QT) <e ||Di2u||Lp(QT) +c(€) ”u”Lp(QT) .

Hence, we obtain

| 0P Dl dede < I (elulugg guy +¢ (0 Rollzaigny) + ilsecarmn - 1ol wzeny-

T

In the following, we will have to estimate the last term of the above inequality.
We have that

T T
/ / 1bs ()| dmdtzL/ dt/ de = L-1Q (L)
0 {(I,t):lbi(z,t)|>L} 0 {(z,t):]bi(x,t)|>L}

Moreover, using Holder inequality

T
/ / |b; (z,t)| dz dt
0 J{(@t)ilbi(z,t)>L}
T
S/ dt (/ 1b; (z, 1) da:)
0 Q
T 1/t 1-(1/1)
g/ dt (/ |b; (z,8)|* d:r) (/ dm)
0 Q Q
T 1/t
5/ (Q|)1-<1/t>.(/ [b; (z,1)]* dz) dt
0 Q

T (1/1;){ (l/f) T 1—(1/5)
s(mi)l‘“/“-(/o (/Q Ibi (z,1)|* dx) dt) (/ dt)

= (DY bl ez TP,
(

From inequality (3.6) and the last one, we obtain

1

QD) < 2 (D ™Y - il gy T,
Let L be large enough and let us assume
1 _ -
0= f (‘QDI (1/t) * ||bi||L¢,Z(Q) Tl (1/t_)
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We know (see [13]) that if f € LPP1(Q) Ve > 030 >0: VE subset of @ : |E| < o

1/ps

T Pi/p
/ (/ If (z, )7 d:::) dt < €,
0 E(t)

where E(t) is a section of E at level t.
Then, if we choose f(x,t) = b;(z,t), we have

16:ll pero(ryy < €

and the requested inequality is obtained.

Let us now consider |lcu||zr(q)-
We have that

leull Lory < L llull pogory + ull pos i@y - Tellwzr @ay -

then from (3.6) on, similar arguments allows us to get to the conclusion.

THEOREM 3.4. Let f € LP(Qr), 1 < p < oo, the coefficients a;;,b;,c satisfying the above
assumptions.

Then, the Cauchy-Dirichlet problem (2.1) has a unique solution u € Wg’l(QT) and there exists
a constant Cy such that

lullwzr g < Collfll Loy -

The constant Cy depends on n; p;7; n; |Q; 0Q; T; ||bsllpee, Vi =1,...,n; ||c||Lss and the AC
moduli of b; and c.
Proor. Using inequality (3.5) let us prove the uniqueness.

Let u be a solution of the above Cauchy—Dirichlet problem with known term f = 0.

Let us suppose v € C. Then, we set u(z,t) fo ue(z, ¢)dC.

It follows |lu|l, < T - ||usl|p, which, using (3.5), implies that there exists T > 0, such that if
T<LT

lullwz1gp < KLUl Loop -

The above estimate is obtained, by density argument, for u € Wy ,(Qr).

Let us also break up Qp into a finite number of cylinders @Q; =  x [T}; Ti41], such that
|T;s1 — T3] < T. Applying the last inequality to each @Q; we have that u = 0.

The estimate (3.7) is proved by contradiction.

Let us suppose that estimate (3.7) is not true, then there exists a sequence,

a i o2 - 0
)y — 2 _ ")y 2 (k) () 2 4 a0
C at Z al] (IL') axlamj + Z bz (I) ax1 +c ?

i,5=1

such that the hypotheses for a;;, b;, ¢ are true, such that the L> norms of aE]), k € N, are uni-

formly bounded, the L% t(QT) and L**(Qr) norms respectively of bg ,c®) ke N, are uniformly
bounded. Let us also suppose that there exists a sequence of functions {u(k)} ,ulk) € Wo(Qr),

lim HL(k)u(k)}

|« =0
wg 1(QT) k—oo

Lr(Qr)

As proved in [14, Theorem 4.4}, it is possible to find a subsequence of {a; k)} and we call it

again {a } such that it converges a.e. in R**! to a function «;; satisfying the above hypothesis
of a;;.
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It is also possible to find two subsequences of {b( )} {c¥)} weakly converging, respectively to
Bi € L“(Qr) and v € L* #(Q7). Let us define

a i)
£ - 2 .
ot ;1 o (<) 31: 107 ;5 i

Moreover there exists a subsequence {u(*} weakly convergent to a function u(") € Wo »(Qr). It
follows that {||u®|| » (g, } converges to [wC| £ (@ry- Let us suppose 1 < p < n+2, z € LP (Qr),

P’ =p/(p—1), then

(ﬁ(k)u(k) _ £<r>u<r>> »

n

S/ Z ( g“lj —ut uglj +u(7)) izl drdt
Qr i,5=1
+ ‘ugk)z - u(k)\ . H <a£’-c) - ai-) z‘
l.Z_: i L?(Qr) ? 77 N @)
j=1
+ )Pw ul?) |NBizl o
DB e P L R
p*) _ 3. , 1 u(™
F P g Fleren “2 | Lagon)
+ Z/ ugfi)z (bz(»k) - ﬂl)’ dz dt
i=1 Qr
+HC(’C) _ H Nzll, .Huac) oy
Mm@ L4Qr)
+ Hu(k) — ™ L@ ||'Y z|| o @r )+/ '(c(k) —’y) u(T)z' dz dt,
T

with 1/¢/ + 1/ = 1, 1 < ¢ < (n+2p)/(n+2)—p), 1 < ¢ < ((n+2)p)/((n+2) — 2p),
1/t + 1/t = 1. Since {L®u®} is weakly convergent to L£Mul™ in LP(Qr) we have that
LMy = 0 ae. in Qr and by the uniqueness it follows u(™ = 0. Moreover 1™ 2e0r)
converging to zero and (3.5) contradict Hu(k)”WgJ(QT) =1 Thecasesp=n+2and p>n+2
are similar.

The ezistence will follow by a standard approximation argument using smooth coefficients.
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