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a b s t r a c t

In this work, we study the regularity criterion of the three-dimensional nematic liquid
crystal flows. It is proved that if the vorticity satisfies T

0

∥ω(t, ·)∥2
.
B
−1
∞,∞

1 + log(e + ∥ω(t, ·)∥ .
B
−1
∞,∞

)
dt < ∞,

where Ḃ−1
∞,∞ denotes the critical Besov space, then the solution (u, d) becomes a regular

solution on (0, T ]. This result extends the recent regularity criterion obtained by Fan and
Ozawa (2012) [11].

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the blow-up criterion for the hydrodynamic system modeling the flow of nematic liquid crystal
materials in R3:

ut − ν1u + (u · ∇)u + ∇π = −λ∇ · (∇d ⊙ ∇d), (1.1)
dt + (u · ∇)d = γ (1d − f (d)), (1.2)
∇ · u = 0, (1.3)
(u, d)(x, 0) = (u0, d0)(x). (1.4)

Here u = u(x, t) denotes the velocity field of the flow, the direction field d = d(x, t) represents the orientation parameter of
the liquid crystal andπ = π(x, t) is the pressure of the flow,while ν, λ, γ are positive physical constants. The term∇d⊙∇d
denotes the 3 × 3 matrix whose (i, j)-th element is given by ∂id · ∂jd (for 1 ≤ i, j ≤ 3). In addition, f (d) =

1
η2

(|d|2 − 1)d

(η > 0 a constant) is a Ginzburg–Landau approximation function whose primitive function is clearly F(d) =
1

4η2
(|d|2 − 1)2.

For the sake of simplicity, we will take ν = λ = γ = η = 1 since their sizes do not play any role in our analysis.
This model can be seen as a variant of the 3D Navier–Stokes equation, where the finite time blow-up for nematic liquid

crystal flow being a very important problem. This model was introduced by Lin in [1]. It is a simplified version of the
Ericksen–Leslie model (cf. [2–4]) of the liquid crystal flow. In [5], Lin and Liu proved local-in-time existence of classical
solutions and global-in-time existence of weak solutions. Later in [6] they also considered regularity of weak solutions and
proved that the one dimensional space time Hausdorff measure of the singular set of the ‘‘suitable’’ weak solutions is zero.
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When d = 0, the nematic liquid crystal flows reduces to the incompressible Navier–Stokes equations. For the
Navier–Stokes equations, different criteria for regularity of the weak solutions have been proposed. In 2005, Montgomery-
Smith [7] (see also [8–10] and references therein) showed that if T

0

∥u(t)∥α
Lq

1 + ln (e + ∥u(t)∥Lq)
dt < ∞ with

2
α

+
3
q

= 1, 3 < q < ∞,

then u is regular. Note that the log improvement is here, in time only. This can be seen as a natural Gronwall type extension
of the Prodi–Serrin conditions. Recently, Fan and Ozawa [11] obtained a finite time blow-up criterion, which says that the
local smooth solution for initial data (u0, d0) ∈ H3(R3) × H4(R3), blows up at T if

 T

0

∥∇u(t)∥
2

1−s

Ḃ−(s+1)
∞,∞

1 + log(e + ∥∇u(t)∥Ḃ−(1+s)
∞,∞

)
dt = ∞ with 0 < s < 1.

In this work, we shall consider the critical Besov space Ḃ−1
∞,∞ (s = 0) and we concentrate on the blow-up criterion under

the condition T

0

∥∇u(t)∥2
Ḃ−1
∞,∞

1 + log(e + ∥∇u(t)∥Ḃ−1
∞,∞

)
dt < ∞.

2. Preliminaries and main result

We begin this section with some notations and lemmas used later. Let et∆ denote the heat semi-group defined by

et∆f = Kt ∗ f , Kt(x) = (4π t)−
3
2 exp


−

|x|2

4t


for t > 0 and x ∈ R3, where ∗ means convolution of functions defined on R3.

We now recall the definition of the homogeneous Besov space with negative indices Ḃ−α
∞,∞ on R3 with α > 0. It is

known [12, p. 192] that f ∈ S′

R3


belongs to Ḃ−α

∞,∞


R3


if and only if et∆ ∈ L∞ for all t > 0 and t

α
2

et∆f 
∞

∈

L∞ (0, ∞; L∞). The norm of Ḃ−α
∞,∞ is defined, up to equivalence, by

∥f ∥Ḃ−α
∞,∞

= sup
t>0


t

α
2

et∆f 
∞


.

The following lemma is essentially due to Meyer–Gerard–Oru [13], which plays an important role for the proof of our
theorem.

Lemma 2.1. Let 1 < p < q < ∞ and s = α


q
p − 1


> 0. Then there exists a constant depending only on α, p and q such that

the estimate

∥f ∥Lq ≤ C
(−∆)

s
2 f

 p
q

Lp
∥f ∥

1− p
q

Ḃ−α
∞,∞

(2.1)

holds for all f ∈ Ḣs
p


R3


∩ Ḃ−α

∞,∞


R3


, where Ḣs

p denotes the homogeneous Sobolev space.

In particular, for s = 1, p = 2 and q = 4, we get α = 1 and

∥f ∥L4 ≤ C ∥f ∥
1
2
Ḣ1 ∥f ∥

1
2
Ḃ−1
∞,∞

(2.2)

for all f ∈ Ḣ1

R3


∩ Ḃ−1

∞,∞


R3


.

Let us recall by Biot–Savart law, for the solenoidal vectors u, the following representation:

∂u
∂xj

= Rj (R × ω) , j = 1, 2, 3, where ω = ∇ × u. (2.3)

where R = (R1, R2, R3) and Rj =
∂

∂xj
(−∆)−

1
2 denote the Riesz transforms. It is known by Jawerth [14] that

∥∇u∥Ḃ−α
∞,∞

≤ C ∥ω∥Ḃ−α
∞,∞

. (2.4)

Notice that

f ∈ Ḃ0
∞,∞


R3

⇐⇒
−→
∇ f ∈ Ḃ−1

∞,∞


R3 .

Now our result reads as follows.
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Theorem 2.2. Let (u, d) be a smooth solution to (1.1)–(1.4) with initial data (u0, d0) ∈ H3(R3) × H4(R3). Suppose that the
corresponding vorticity field ω = curl u satisfies T

0

∥ω(t, ·)∥2
Ḃ−1
∞,∞

1 + log(e + ∥ω(t, ·)∥Ḃ−1
∞,∞

)
dt < ∞. (2.5)

Then, the solution (u, d) can be smoothly extended after time T . In other words, if the solution blows up at t = T , then T

0

∥ω(t, ·)∥2
Ḃ−1
∞,∞

1 + log(e + ∥ω(t, ·)∥Ḃ−1
∞,∞

)
dt = ∞.

Remark 2.1. This result says that the velocity field of the fluid plays a more dominant role than the direction vector d
modeling the orientation of the crystal molecules in the nematic liquid crystal. The theorem is still true, if we replace
ω = curl u by ∇u, due to the boundedness operator in Ḃ−1

∞,∞.

Remark 2.2. Since the Besov space Ḃ−1
∞,∞ is much wider than the Lebesgue space L3 and Ẋ1, hence our result covers the

results contained in [15–17] and [18].

As a consequence we have the following result.

Corollary 2.3. Let (u0, d0) ∈ H3(R3) × H4(R3) with div u0 = 0. Suppose that (u, d) is a smooth solution to the liquid crystal
flow (1.1)–(1.4) on the time interval [0, T ) for some 0 < T < ∞. If u satisfies T

0

∥u(t, ·)∥2
Ḃ0∞,∞

1 + log(e + ∥u(t, ·)∥Ḃ0∞,∞
)
dt < ∞, (2.6)

then (u, d) can be extended beyond T .

It is well-known that

L∞(R3) ⊂ BMO(R3) ⊂ Ḃ0
∞,∞(R3),

where BMO(R3) is the space of the bounded mean oscillations defined by

BMO(R3) =


f ∈ L1loc(R

3) : sup
x,R

1
|B(x, R)|


B(x,R)

f (y) − f B(x,R)
 dy < ∞


with

f B(x,R) =
1

|B(x, R)|


B(x,R)

f (y)dy.

Thus the conclusion of Theorem 2.2 remains true if (2.6) is replaced by the condition T

0

∥u(t, ·)∥2
BMO

1 + log(e + ∥u(t, ·)∥BMO)
dt < ∞.

To prove Theorem 2.2, we need the following lemma.

Lemma 2.4. With the assumptions of Theorem 2.2, we have

sup
0≤t<T

∥d(., t)∥L∞ ≤ 1 + ∥d0∥L∞ .

Proof. See [11]. For the reader’s convenience and completeness, we give the proof. It suffices to show that

sup
0≤t<T

∥d(., t)∥L∞ ≤ max (1, ∥d0∥L∞)

where we use the inequalities

max (|a| , |b|) ≤


|a|2 + |b|2 ≤ |a| + |b| .

Without loss of generality, we may assume ∥d0∥L∞ ≥ 1 and denote

h(x, t) = |d(x, t)|2 − ∥d0∥2
L∞ .
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Then, multiplying Eq. (1.2) by d, it follows that

1
2
∂t |d|2 +

1
2
(u · ∇) |d|2 − d1d + |d|2


|d|2 − 1


= 0.

By the identities

1
2
∂t ∥d0∥2

L∞ +
1
2
(u · ∇) ∥d0∥2

L∞ −
1
2
∆(∥d0∥2

L∞) + (∥d0∥2
L∞ − 1) |d|2 = (∥d0∥2

L∞ − 1) |d|2 ,

and

d1d =
1
2
∆(|d|2) − |∇d|2 ,

it is easy to deduce that

∂th + (u · ∇)h − 1h + 2 |d|2 h = −2(∥d0∥2
L∞ − 1) |d|2 − 2 |∇d|2 ≤ 0.

Now taking the inner product in L2(R3) with h, using that
R3

(u · ∇)h · hdx =


R3

u · ∇


|h|2

2


dx = 0,

we obtain the inequality

d
dt

∥h∥2
L2 + ∥∇h∥2

L2 + 2 ∥d · h∥2
L2 ≤ 0

and hence

∥h(., t)∥L2 ≤ ∥h(., 0)∥L2 .

Therefore, in t = 0, we have

h(., 0) = |d0(.)|2 − ∥d0∥2
L∞ ≤ 0,

and by the maximum principle, yields h(x, t) ≤ 0, that is |d(x, t)| ≤ ∥d0∥L∞ for all (x, t) ∈ R3
× [0, T ), which proves the

lemma. �

In the proof of the main result, we frequently employ the following Gagliardo–Nirenberg inequality having fractional
derivatives contained in [19].

Lemma 2.5. Let 1 < p, p0, p1 ≤ ∞, s, r ∈ R, 0 ≤ α ≤ 1. Then, there exists a constant C such that

∥f ∥Ḣs
p

≤ C ∥f ∥1−α
Lp0

∥f ∥α

Ḣr
p1

,

where

1
p

−
s
3

=
1 − α

p0
+ α


1
p1

−
r
3


, s ≤ αr.

Using Lemma 2.5, we have

∥∇u∥L3 ≤ C∥∇u∥
3
4
L2∥Λ3u∥

1
4
L2 ,

∥Λ3u∥L3 ≤ C∥∇u∥
1
6
L2

∥Λ4u∥
5
6
L2

,

∥∇d∥L∞ ≤ C∥1d∥
3
4
L2

∥Λ4d∥
1
4
L2

,

∥Λ4d∥L2 ≤ C∥1d∥
1
3
L2

∥Λ5d∥
2
3
L2

.

Hereafter, C will denote a generic dimensionless constant.
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3. Proof of Theorem 2.2

For any T > 0 we suppose that u is a smooth solution to (1.1)–(1.4) on R3
× (0, T ) and will establish a priori bounds that

will allow us to extend u for all time under (2.5). If (2.5) holds, one can deduce that for any small ϵ > 0, there exists T∗ < T
such that T

T∗

∥ω(t)∥2
Ḃ−1
∞,∞

1 + log

e + ∥ω(t)∥Ḃ−1

∞,∞

 dt ≤ ϵ.

We shall establish the following a priori estimate

lim sup
t→T−

(∥∇3u(t, ·)∥2
L2 + ∥∇

4d(t, ·)∥2
L2) < ∞. (3.1)

We first recall some conservative identities of the system (1.1)–(1.4) and their immediate consequences. First, it is easy
to see that (see e.g. [5,17])

1
2

d
dt


R3

(|u|2 + |∇d|2 + 2F(d))dx +


R3

(|∇u|2 + |1d − f (d)|2)dx = 0, (3.2)

which implies

∥u∥L∞(0,T ;L2) + ∥u∥L2(0,T ;H1) ≤ C . (3.3)

Moreover, multiplying (1.2) by |d|2d and integrating by parts, we have

1
4

d
dt


R3

|d|4(t, x)dx +


R3


d2|∇d|2 +

1
2
|∇|d |

2
|
2
+ |d|6


(t, x)dx =


R3

|d|4(t, x)dx,

which implies

∥d(t, ·)∥L∞(0,T ;L4) +

 t

0


R3

(|d|2|∇d|2 + |d|6)(τ , x)dxdτ ≤ C . (3.4)

Thanks to (3.2) and (3.4), we obtain

∥d∥L∞(0,T ;H1) + ∥d∥L2(0,T ;H2) ≤ C . (3.5)

Besides, multiplying (1.2) by |d|4d and integrating over R3, we have
1
6

d
dt


R3

|d|6(t, x)dx +


R3

(|d|4|∇d|2 + |∇|d |
2
|
2
|d|2 + |d|8)(t, x)dx =


R3

|d|6(t, x)dx.

This implies that

∥d(t, ·)∥L∞(0,T ;L6) ≤ C∥d0∥L6 ≤ C∥d0∥H1 . (3.6)

Taking the operation curl on both sides of Eq. (1.1), we obtain

ωt + (u · ∇)ω − 1ω = (ω · ∇)u +

3
k=1

∇1dk · ∇dk, (3.7)

where ω = curl u. Multiplying (3.7) by ω and integrating it over R3, we find after integration by part

1
2

d
dt


R3

|ω|
2dx +


R3

|∇ω|
2dx =


R3

(ω · ∇u) · ωdx +

3
k=1


R3

(∇1dk · ∇dk)ωdx. (3.8)

Applying ∆ to (1.2), multiplying the resulting equation by 1d, we find that

1
2

d
dt


R3

|1d|2dx +


R3

|∇1d|2dx = −


R3

∆((u · ∇)d) · 1ddx −


R3

1f (d)1ddx. (3.9)

Summing up (3.8) and (3.9), we get

1
2

d
dt


R3


|ω|

2
+ |1d|2


dx +


R3

(|∇ω|
2
+ |∇1d|2)dx =


R3

(ω · ∇u) · ωdx +

3
k=1


R3

(∇1dk · ∇dk)ωdx

−


R3

∆((u · ∇)d) · 1ddx −


R3

1f (d)1ddx

= I1 + I2 + I3 + I4. (3.10)
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We estimate the first term I1 by using Hölder’s inequality, the interpolation inequality ∥ω∥
2
L4 ≤ C∥ω∥Ḃ−1

∞,∞
∥∇ω∥L2 and the

Young inequality as follows:

I1 ≤ C∥ω∥
2
L4∥∇u∥L2

≤ C∥ω∥Ḃ−1
∞,∞

∥∇ω∥L2∥ω∥L2

≤
1
2
∥∇ω∥

2
L2 + C∥ω∥

2
Ḃ−1
∞,∞

∥ω∥
2
L2 . (3.11)

For I2, we have

I2 ≤ ∥ω∥L4∥∇1d∥L2∥∇d∥L4

≤ C∥ω∥

1
2
Ḃ−1
∞,∞

∥∇ω∥

1
2
L2∥∇1d∥L2∥1d∥

1
2
L2∥d∥

1
2
L∞

≤ C∥ω∥

1
2
Ḃ−1
∞,∞

∥∇ω∥

1
2
L2

∥∇1d∥L2∥1d∥
1
2
L2

=

∥∇1d∥2

L2
 1

2

C∥ω∥

2
Ḃ−1
∞,∞

∥1d∥2
L2

 1
4 

∥∇ω∥
2
L2

 1
4

≤
1
4
∥∇1d∥2

L2 +
1
4
∥∇ω∥

2
L2 + C∥ω∥

2
Ḃ−1
∞,∞

∥1d∥2
L2

≤
1
4
∥∇1d∥2

L2 +
1
4
∥∇ω∥

2
L2 + C∥ω∥

2
Ḃ−1
∞,∞


∥ω∥

2
L2 + ∥1d∥2

L2

.

For I3, we have

|I3| ≤


R3

(1u · ∇)d · 1ddx
 +

3
k=1


R3

(∂ku · ∇)∂kd · 1ddx
 +


R3

(u · ∇)1d · 1ddx


≤ ∥1u∥L2∥∇d∥L4∥1d∥L4 + ∥∇u∥L2∥1d∥2
L4

≤ C∥∇ω∥L2∥1d∥
1
2
L2

∥d∥
1
2
L∞∥∇1d∥

1
2
L2

∥∇d∥
1
2
L∞ + C∥ω∥L2∥d∥L∞∥∇1d∥L2

≤ C∥∇ω∥L2∥1d∥
1
2
L2

∥∇1d∥
1
2
L2

+ C∥ω∥L2∥∇1d∥L2

=

∥∇1d∥2

L2
 1

4

C∥1d∥2

L2
 1

4

∥∇ω∥

2
L2

 1
2 +

1
8
∥∇1d∥2

L2 + C∥ω∥
2
L2

≤
1
4
∥∇1d∥2

L2 +
1
4
∥∇ω∥

2
L2 + C∥1d∥2

L2 + C∥ω∥
2
L2

≤
1
4
∥∇1d∥2

L2 +
1
4
∥∇ω∥

2
L2 + C


∥1d∥2

L2 + ∥ω∥
2
L2

 
1 + ∥ω∥

2
Ḃ−1
∞,∞


.

Here we have used the following Gagliardo–Nirenberg inequality:

∥1d∥2
L4 ≤ C∥d∥L∞∥∇1d∥L2

and 
R3

(u · ∇)1d · 1ddx = 0.

By the Hölder’s inequality and (3.6), I4 is bounded as follows:

I4 = −


R3

∆(|d|2d)1ddx +


R3

1d1ddx

= 3


R3
|d|2∇d · ∇1ddx + ∥1d∥2

L2

≤ 3∥d∥2
L6∥∇d∥L6∥∇1d∥L2 + ∥1d∥2

L2

≤
1
4
∥∇1d∥2

L2 + C∥d∥4
L6∥1d∥2

L2 + ∥1d∥2
L2

≤
1
4
∥∇1d∥2

L2 + C∥1d∥2
L2 , (3.12)
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where we used the inequality ab ≤
a2
2κ +

κb2
2 . Combining (3.11)–(3.12) into (3.10) and from the embedding L∞


R3


⊂

Ḃ0
∞,∞


R3


and the fact that

u ∈ Ḃ0
∞,∞


R3

⇐⇒ ∇u ∈ Ḃ−1
∞,∞


R3 ,

we obtain
d
dt

(∥ω∥
2
L2 + ∥1d∥2

L2) + (∥∇ω∥
2
L2 + ∥∇1d∥2

L2) ≤ C(∥ω∥
2
Ḃ−1
∞,∞

+ 1)

∥∇u∥2

L2 + ∥1d∥2
L2


≤ C

1 +

∥ω∥
2
Ḃ−1
∞,∞

1 + log(e + ∥ω∥Ḃ−1
∞,∞

)

 (1 + log(e + ∥ω∥Ḃ−1
∞,∞

))

∥ω∥

2
L2 + ∥1d∥2

L2


≤ C

1 +

∥ω∥
2
Ḃ−1
∞,∞

1 + log(e + ∥ω∥Ḃ−1
∞,∞

)

 (1 + log(e + ∥u∥Ḃ0∞,∞
))


∥ω∥

2
L2 + ∥1d∥2

L2


≤ C

1 +

∥ω∥
2
Ḃ−1
∞,∞

1 + log(e + ∥ω∥Ḃ−1
∞,∞

)

 (1 + log(e + ∥u∥L∞))

∥ω∥

2
L2 + ∥1d∥2

L2

.

Since it is well know that the Sobolev space Hs

R3


with s > 3

2 is continuously embedded into L∞

R3


, this yields

d
dt

F(t) ≤ C

1 +

∥ω∥
2
Ḃ−1
∞,∞

1 + log(e + ∥ω∥Ḃ−1
∞,∞

)

 (1 + log (e + y(t))) F(t),

where y(t) is defined by

y(t) = sup
T∗≤τ≤t

Λ3u(τ , .)

L2 +

Λ3
∇d(τ , .)


L2


for all T∗ ≤ t < T

and

F(t) = ∥ω(t)∥2
L2 + ∥1d(t)∥2

L2 .

By Gronwall’s lemma on the interval [T∗, t], one has

F(t) ≤ F(T∗) exp

C (1 + log (e + y(t)))
 t

T∗

∥ω(s)∥2
Ḃ−1
∞,∞

1 + log

e + ∥ω(s)∥Ḃ−1

∞,∞

 ds


≤ C0 exp (Cϵ (1 + log (e + y(t))))
≤ C0 exp (2Cϵ log (e + y(t)))
= C0 (e + y(t))2Cϵ ,

where C0 = ∥ω(., T∗)∥
2
L2 + ∥1d(., T∗)∥

2
L2 .

F(t) ≤ F(T∗)(e + y(t))Kϵ
∀t ∈ [0, T ]. (3.13)

We are now ready to study the estimate in H3
×H4 norm. Taking the operation Λ3

= (−∆)
3
2 on both sides of (1.1), then

multiplying them by Λ3u, and integrating over R3, we have

1
2

d
dt

Λ3u(t)
2
L2 +

Λ4u(t)
2
L2 = −


R3

Λ3 (u · ∇u) Λ3udx +


R3

Λ3(∇d ⊙ ∇d) : Λ3
∇udx. (3.14)

Noting that ∇ · u = 0 and integrating by parts, we write (3.14) as

1
2

d
dt

Λ3u(t)
2
L2 +

Λ4u(t)
2
L2 = −


R3

Λ3 
u · ∇u − u∇Λ3u


Λ3udx +


R3

Λ3(∇d ⊙ ∇d) : Λ3
∇udx. (3.15)

In what follows, we will use the following commutator and product estimates due to Kato and Ponce [20]:

∥Λα(fg) − fΛαg∥Lp ≤ C
Λα−1g


Lq1 ∥∇f ∥Lp1 + ∥Λα f ∥Lp2 ∥g∥Lq2


, (3.16)

∥Λα(fg)∥Lp ≤ C (∥Λαg∥Lq1 ∥f ∥Lp1 + ∥Λα f ∥Lp2 ∥g∥Lq2 ) (3.17)
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for α > 0, and 1
p =

1
p1

+
1
q1

=
1
p2

+
1
q2
. Hence, from (3.16) and (3.17) with α = 3, p =

3
2 , p1 = q1 = p2 = q2 = 3 and by

using Lemma 2.5, we deduce that

1
2

d
dt

Λ3u(t)
2
L2 +

Λ4u(t)
2
L2 ≤ C∥∇u∥L3∥Λ3u∥2

L3 + C∥∇d∥L∞∥Λ4u∥L2∥Λ4d∥L2

≤ C∥∇u∥
13
12
L2

∥Λ3u∥
1
4
L2

∥Λ4u∥
5
3
L2

+ C∥∇d∥2
L∞∥Λ4d∥2

L2 +
1
8
∥Λ4u∥2

L2

≤
1
8
∥Λ4u∥2

L2 + C∥ω∥

13
2
L2

∥Λ3u∥
3
2
L2

+ C∥1d∥
3
2
L2

∥Λ4d∥
1
2
L2

∥1d∥
2
3
L2

∥Λ5d∥
4
3
L2

≤
1
8


∥Λ4u∥2

L2 + ∥Λ5d∥2
L2


+ C∥ω∥

13
2
L2

∥Λ3u∥
3
2
L2

+ C∥1d∥
13
2
L2

∥Λ4d∥
3
2
L2

. (3.18)

Taking the operation Λ4 on both sides to the liquid crystal Eq. (1.2), thenmultiplying them by Λ4d, after integrating over
R3, we have

1
2

d
dt

Λ4d(t)
2
L2 +

Λ5d(t)
2
L2 = −


R3

Λ4 
u · ∇d − u∇Λ4d


· Λ4ddx −


R3

Λ4f (d) · Λ4ddx

≤ C∥∇u∥L3∥Λ4d∥L6∥Λ4d∥L2 + C∥∇d∥L∞∥Λ4u∥L2∥Λ4d∥L2 + C∥Λ4d∥2
L2

≤ C∥∇u∥
3
4
L2∥Λ3u∥

1
4
L2∥1d∥

1
3
L2∥Λ5d∥

5
3
L2 + C∥∇d∥2

L∞∥Λ4d∥2
L2 +

1
8
∥Λ4u∥2

L2 + C∥Λ4d∥2
L2

≤
1
8


∥Λ4u∥2

L2 + ∥Λ5d∥2
L2


+ C∥ω∥

9
2
L2

∥1d∥2
L2∥Λ3u∥

3
2
L2

+ C∥1d∥
13
2
L2

∥Λ4d∥
3
2
L2

+ C∥Λ4d∥2
L2 . (3.19)

Combining (3.18) and (3.19), we easily get

d
dt

Λ3u(t)
2
L2 +

Λ4d(t)
2
L2


≤ C0C(e + y(t))

3
2 +

13
2 Cϵ . (3.20)

Gronwall’s inequality implies the boundedness of H3
× H4-norm of (u, d) provided that ϵ < 1

13C , which can be achieved by
the absolute continuous property of integral (2.5). This completes the proof of Theorem 2.2. �
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