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Abstract: This paper proposes an innovative approach for the characterisation of the 
experimental dynamics of two phase flows. These class of systems can express a great 

variety of different flow patterns, whose characterisation and classification strongly 

depends on the approach used for feature extraction. Phase space analysis in a traditional 

delayed embedding has allowed for the observation of the complex dynamics of the 
system. Nonetheless, the attractors obtained in a delayed embedding, though 

characterised by a regular complex structure, appear partly folded and are affected by 

noisy hydrodynamic high order dynamics. 

The present paper proposes an application to a case study, represented by an 
experimental air-water two-phase flow in upward motion inside a vertical pipe, of a 

Singular Value Decomposition (SVD) approach with the aim of assessing a more 

appropriate embedding into the phase space spanned by the principal vectors. Reported 

results demonstrate the ability of the of the proposed methodology to separate the 
dominant features of the system dynamics from noise-like dynamics, leading to obtain 

efficaciously unfolded and noise-free versions of the system attractors. 
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1. Introduction 
Several basic industrial processes, ranging from power generation, chemical and 

processing plants to oil pipelines, present heat and mass transfer applications of 

two phase flows. When two phase flows occur, very different flow patterns can 

be observed as well as transitions from a flow pattern to another. Indeed, the 

dynamical behaviours associated to the various types of flow pattern established 

in the system represent critical factors for the performances of such industrial 

systems. This explains the great efforts that have been and are still devoted to 

flow patterns identification, which represents a fundamental basis for 

appropriate characterisation of two phase flow systems. 

The dynamics of two phase flows are typically of highly complex pulsating 

nature, under the effect of several nonlinearities deriving from the strong 

coupling of different mechanisms and of the dependence on various factors. 
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Among the others, the most important factors are the differential action of 

gravity on the two phases and the effect of shear and surface tension forces at 

their interface. As a consequence, several different flow patterns can be 

identified, each of which can be characterised in terms of the dynamical 

behaviour of the void fraction time series. 

Among the other, two phase flows of air-water mixtures are often theoretical 

and experimental analysed with the aim of achieving a reference perspective on 

the general dynamical behaviours, often valid also for more complex flows, 

such as those arising in presence of phase changes. In particular, the present 

study aims at analysing the behaviour of ascending air-water two phase flows in 

vertical pipes. For this kind of flows heat transfer phenomena connected to 

phase change are not involved, so that the flow pattern established in the system 

mainly depends on the mass flow rates of the two phases. By varying the mass 

flow rate of the two phases, in fact, bubbly, slug, churn and annular flows can be 

identified as the main flow patterns typical of several classifications [1-3]. 

The bubbly flow exists for low values of the gas mass flow rate and consists in 

the motion of dispersed and small gas bubbles in the liquid phase. Coalescence 

phenomena are at the basis of the transition from bubbly to slug flow, which can 

be observed by increasing the gas mass flow rate. Slug flow is characterised by 

gas bubbles, namely Taylor bubbles, enveloped by a liquid film separating them 

from the pipe walls, alternated to liquid slugs. In the class of slug flow, it is 

possible to distinguish between: cap flow, with short air bubbles (with the head 

approximately connected to the tail) separated by long liquid slugs; plug flow, 

with gas bubbles and liquid slugs of comparable length; proper slug flow, 

characterised by elongated gas bubbles separated from relatively short liquid 

slugs, often aerated for the presence of small dispersed air bubbles. 

For growing gas mass flow rate, bubble coalescence and increasing aeration of 

the liquid slug leads to a highly unstable flow pattern addressed as churn flow, 

characterised by waves propagating through the liquid film enveloping the 

bubbles and occasionally falling within the tube, so to form a short, unstable and 

highly aerated liquid slug. Finally, the annular flow consists of a thin annular 

liquid film at the tube wall on which small ripples, interspersed occasionally 

with large disturbance waves, flow in a regular manner up the tube. 

It is usual practice to perform flow pattern identification on the basis of the 

differences of the dynamical behaviour of the time series of the local void 

fraction. Therefore, the reliability of the identification approach is highly 

dependent on the accuracy of the technique adopted to measure the void 

fraction. Several techniques have been proposed [4-9] and impedance 

measurements seem to be recognized as the most reliable [6]. At the same time, 

the performances of flow patter identification approaches depend also on the 

techniques adopted for time series analysis and feature extraction. Statistical [1, 

2, 6] or spectral [9-12] techniques indeed represent the typical approach for flow 

patterns identification on the basis of the analysis of the experimental void 

fraction time series. Nonlinear techniques have been also adopted, among the 

others see [10, 13-16], but a main drawback has been represented by the 

relatively poor spatial and temporal resolution of the experimental time series. 
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In order to address this problem, the experimental time series considered in the 

present study have been detected by means of a resistive probe characterised by 

high temporal and spatial resolution, which has been appositely set-up as 

described in [17]. The preliminary analysis in a delayed embedding of the void 

fraction time series detected by means of this sensor has shown the existence of 

strange attractors of interesting morphology for the various flow patterns [18]. 

Nonetheless, attractors obtained in this way are somewhat noisy as a 

consequence of the superposition of high order dynamics to the dominant 

dynamics characterizing the flow pattern. Among the others, the most important 

high order “noisy” dynamics are those of hydrodynamic nature associated to 

small diameter bubbles dispersed in the liquid slugs and to disturbances on the 

liquid film enveloping the Taylor bubbles. 

Therefore, the present study aims at extracting the dominant features of the flow 

dynamics under various flow pattern conditions so to separate the dominant 

features of the system dynamics from noise-like dynamics. The proposed 

approach is analogous to that proposed in [19] and is based on the calculation of 

the singular vectors of a n-dimensional delayed embedding, through the 

application of the technique known as Singular Value Decomposition (SVD) 

[20], and in the analysis of the restricted portion of the dynamics that is obtained 

by projecting the attractor onto the phase space spanned by the singular vectors 

corresponding to the three highest singular values. 

Reported results, show that the attractors described in the new embedding 

present a well defined and regular structure, indicating the existence of a low 

order source of the system dynamics, which will be analysed in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Experimental apparatus 
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2. Experimental Apparatus 

The experimental apparatus reported in Fig. 1 has been built and tested in order 

to study the dynamics of two-phase flow in vertical pipes. The test section is a 

vertical pipe of diameter 0.026 m diameter and length 3 m. The apparatus is 

equipped by an electromagnetic flowmeter and three air flow metres, 

respectively used for the measure of the water velocity and mass flow rate and 

for the regulation of the air flow rate in the range between 10 and 210 l/min. The 

air is supplied to the mixing section by a pressurised tank fed by a compressor, 

whereas the water flow rate can be varied in the range 0-150 l/min by means of 

a series of valves and bypasses placed at the pump outlet. 

A resistive probe for the measure of the void fraction is placed at a distance of 

over 100 times the diameter of the pipe from the mixing section, i.e. over the 

required entry region for two phase flows, in order to ensure a well established 

flow regime. In particular, the void fraction probe has been designed and 

realised for the experimental campaign and operates in the resistive range 

(carrier frequency of 20 kHz). The sampling frequency was set at 1 kHz with a 

cut-off frequency of 200 Hz. A detailed description of the experimental probe 

and on the wide set of experimental tests performed is reported in [17]. 

 

3. Dynamical Feature Extraction 
The results of preliminary linear analyses of the experimental time series have 

been shown to be unable to deal with the intrinsic complexity of two phase 

flows dynamics. Hence, in [18] a morphological analysis of the three-

dimensional attractors has been proposed in a classical Takens’ delayed 

embedding of the experimental void fraction time series [21]. In particular, it 

has been observed that the attractors obtained for some of the flow patterns are 

characterised by a regular fractal structure, which is indeed one of the most 

important evidences of deterministic chaotic behaviour. 

In the present study, the aim is to improve the dynamical representation by 

adopting a new embedding, derived through the application of Singular Value 

Decomposition technique, SVD [20], to the classical delayed embedding based 

on Takens’ theorem, similarly to the approach proposed in [19]. The new 

representation is characterised by a drastic reduction of noisy dynamics and, 

above all, a sensitive improvement of the attractor unfolding, so that the 

dominant morphological characteristic can be fully exploited. 

As a first step, the phase space reconstruction consists in the creation of a n  w 

matrix, S, where n is the length of a window moving through the data and w are 

the independent variables defining the phase space, i.e. delayed version of the 

experimental void fraction time series s(t)=(s0, s1, s2, …, si, …), with each 

column delayed τ time steps from the previous. The condition w>2d+1 for an 

appropriate embedding is implicitly respected if w is set much greater than the 

unknown fractal dimension d on the basis of a preliminary estimation. 

The second step consists in the application of the SVD approach to matrix S. 

This is done through the calculation of a new diagonal matrix, equivalent to the 

original one, i.e. with identical singular values but in decreasing order. In 

particular, S is factorized into its singular values according to equation: 
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 = M
T
 S C (1) 

In (1)  is the diagonal matrix containing the w singular values i of S in 

decreasing order and M and C are the matrices of the singular vectors associated 

with . Details on the factorization can be found in [20]; what is interesting for 

the scopes of the present study is that the high level singular values in Λ are 

associated to the dominant singular vectors, i.e. those representing the dominant 

features of the system dynamics, whereas the low level ones correspond to local 

behaviors or noise-like components. Therefore, the system can be virtually 

partitioned into two subsystems: the first deriving from noise free data (i.e. the 

main features and the relevant details) and the second from noisy dynamical 

behaviours, which can be considered superimposed and then eliminated. 

In order to choose how many singular vectors are needed to accurately describe 

the dominant dynamics of the system, it is possible to analyse, under the various 

possible flow patterns, the distribution of the spectrum of the normalized 

singular values (i)n, obtained by dividing the singular value i for its maximum 

(i)max under the given flow condition. By the analysis of the spectrum of the 

singular values reported in Fig. 3 for some cases representative of the typical 

flow patterns, it is possible to observe that only the three highest singular values 

are relevant in the spectrum and can therefore be chosen to describe the 

dominant dynamics of the system. It is worth observing that even for the flow 

patterns that seem to require the consideration of a higher number of singular 

values, it is possible to claim that only the three highest are actually relevant. 

The rising of higher order singular values in the bubbly flow and cap flow 

spectrum is due, in fact, to the comparatively lower amplitude of the void 

fraction oscillations under these flow conditions, which determines a greater 

relevance of noisy dynamics of hydrodynamic origin. 

 

 
 

Fig.3 Spectrum of the normalised singular values under various flow patterns. 
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4. Results and Discussion 
The described approach has been used in the present study in order to obtain a 

denoised and unfolded representation of the experimental dynamics. The SVD 

technique has been applied to the delayed embedding S of the experimental void 

fraction time series, created considering τ=1 and w=40 in order to ensure that w 

is sufficiently greater than m, i.e. greater than the (unknown) system dimension. 

The length n of the observation window has been set at 10000 data samples in 

order to be wide enough to obtain a well defined attractor in phase space, i.e. an 

attractor whose morphology does not change if further data samples are added. 

The claimed advantages of the proposed methodology can be observed in the 

results reported in the Fig. 4 to 9, which report the attractors of the same 

operating condition in two different embeddings. In particular, the phase space 

adopted for the plots on the left hand side of each figure is the basic three 

dimensional Takens’ delayed embedding, whereas the projections on the 

pseudo-phase space spanned by the three dominant principal vectors of the 

improved embedding obtained through application of SVD are those reported on 

the right hand side of each figure. It is worth observing that, as discussed on the 

basis of previous observations on the spectrum of the singular values, the three-

dimensional pseudo-phase space can indeed be considered an appropriate 

embedding for the dominant dynamical behaviour under the various flow 

patterns. 

By comparing the two methods of representation it is possible to observe that 

the attractors in the delayed phase space are in all cases sensibly affected by a 

higher noise level and are not sufficiently unfolded with respect to the 

corresponding attractors in the principal component embeddings, the last being 

characterised by a very low level of noise and a satisfactory unfolding. It is 

worth to remind that, even if the two attractors of each flow pattern appear 

different, they are, nonetheless, expressions of the same dynamical behaviour. 

In fact, they are morphologically equivalent and, therefore, characterised by the 

same invariants of the dynamics, such as fractal dimension and Lyapunov 

exponents [22-25]. 

The successful unfolding contributes to the achievement of a clear and well 

defined morphology of the attractors. This is a main advantage for the 

distinction of different flow patterns through a comparison of the representation 

of their dynamics in the phase space spanned by the principal components. 

Moreover, in some cases the proposed embedding amplifies important 

characteristics of the system dynamics. For example, the right hand cap flow 

attractor in Fig. 5 shows a clear distribution of the trajectory in alternated bands, 

which is a hint of the fractal (i.e. chaotic) nature of the system dynamics. 

Finally, the representation in the principal component phase space is very 

effective in underlining the differences between the various flow patterns. 
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Fig.4 Attractors in the delayed and principal component embeddings for the 

bubbly flow; air flow rate 2 lit/min - water flow rate 32.4 lit/min. 

 
Fig.5 Attractors in the delayed and principal component embeddings for the 

cap flow; air flow rate 5 lit/min - water flow rate 20.28 lit/min. 

 
Fig.6 Attractors in the delayed and principal component embeddings for the 

plug flow; air flow rate 10 lit/min - water flow rate 9.06 lit/min. 

 

Each type of flow pattern is, in fact, characterised by a specific morphology, 

sufficiently different from that of the other flow patterns. 

In particular:  

- each flow pattern attractor occupies a different phase space region; 

- each attractor differently “fills” its own region of phase space; for 

example, the cap flow attractor (properly 3-D) has a higher filling rate than that 

of the plug flow (which moves around a sort of 2-D limit cycle); 
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- the attracting region is progressively shifted, with a continuous trend 

from bubbly to annular flow, with respect to the first principal component. 

 

These differences are very important as the morphological considerations drawn 

insofar are related to the fractal nature and to the stretch and folding behaviour 

of the attractors [24], which can be considered as the topological expressions of 

the mentioned invariants of the dynamics, whose calculation is behind the scope 

of the present study and will be the object of future studies. 

 

5. Conclusions 
This study proposes a phase space approach for the description of typical 

complex dynamics of two-phase flow. At first the singular vectors of the 

classical delayed embedding are calculated and the attractors of the system 

dynamics are projected on the state space spanned by these eigenvectors. In this 

way the dominant feature of the dynamics, corresponding to a subset of the 

highest singular values, are separated from noisy dynamics in the time series, 

corresponding to the remaining lower singular values. The morphology of the 

attractors in the obtained unfolded and noise-free representation is analysed. 

Reported results demonstrate that the proposed approach represent a powerful 

tool for the identification of two-phase flow patterns. 

 

 
Fig.7 Attractors in the delayed and principal component embeddings for the 

slug flow; air flow rate 40 lit/min - water flow rate 16.80 lit/min. 

 
Fig.8 Attractors in the delayed and principal component embeddings for the 

churn flow; air flow rate 80 lit/min - water flow rate 9.01 lit/min. 
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Fig.9 Attractors in the delayed and principal component embeddings for the 

annular flow; air flow rate 80 lit/min - water flow rate 5.58 lit/min. 
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