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We present a financial market model, characterized by self-organized criticality, that is able to generate
endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community
of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure
on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives
contagion and causes market fragility. In this model imitation is not intended as a change in the agent’s group of
origin, but is referred only to the price formation process. We introduce in the community also a variable number
of random traders in order to study their possible beneficial role in stabilizing the market, as found in other
studies. Finally, we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of
a partial reduction of information.
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I. INTRODUCTION

Price dynamics in financial markets is the result of the
interactions and mutual feedbacks of many interconnected
agents, who trade according to their information. In general, it
shows a very complex and hardly predictable behavior, which
is not easy to simulate and control.

Financial integration on a global scale is today so extreme
that policy makers need to learn how to prevent dangerous
dynamics. In macroeconomic terms, the current mainstream
economics approach has shown to be ineffective in taming
the wild fluctuations that financial markets often show. A
very simple example of how urgent new policy designs
are is given by the evidence of scarce effectiveness of the
well-known Tobin tax on financial transactions [1]. In other
words, the neoclassical economic approach seems to have
failed its mission at the macroeconomic level: neither the
idea of efficient markets based on perfect equilibrium [2],
nor the rational expectations paradigm [3,4], have helped
understanding the aggregate financial behavior and the reasons
at the core of severe financial crises.

Recently, many studies presented intriguing insights on
the characterization of social systems as complex entities,
suggesting the fruitful adoption of tools and techniques coming
from statistical and theoretical physics [5–7]. New promising
directions of research to model financial markets are based
on the concepts of bounded rationality and behavioral hetero-
geneity, i.e., agents can have a limited rationality and not all of
them assume the same behavior. In addition, the topological
network structure that characterizes economic interactions at
the macroeconomic level has been discovered to have a crucial
role. These kinds of approaches focus also on the role of
information and of contagion spreading. From this perspective,
individual choices within a social context can reveal to be
driven more by rules of thumb than by perfect knowledge
and optimal computational ability [8,9]. Human interactions
and individual psychology of traders cannot be ignored any
longer, as dramatically shown in many situations [10]. A more
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realistic description of financial markets presumes that agents
are not fully rational in the sense described by the mainstream
of rational expectations literature. The many problems of the
rigid approach of full perfect rationality are discussed in a
number of papers [11–14].

In a series of recent studies we have taken into account
this limited rational behavior of agents operating in a complex
network structure and have already shown evidence that these
alternative approaches may reveal useful applications. As an
example, the beneficial role of random strategies has been
described in several papers for socioeconomic systems [15–
17], and in particular for financial markets [18–21]. A
simulative agent-based methodology will hopefully lead to
more advances in understanding complex economic dynamics
and in policy design [22].

A very wide literature deals with the agent-based approach
for financial markets simulations, [23–33]. In particular,
the heterogenous agent models (HAMs) represent a fruitful
approach able to study the complex interactions of different
individuals with different behaviors. In the greatest part of
the HAM-related literature, surveyed in Refs. [34] and [35],
agents are divided in two typical categories: fundamentalists
and chartists. Fundamentalists are traders with an eye on the
fundamental value of assets; for example, they form their
opinions and their strategies to decide whether to buy a share
or not, by looking at its current price level and by comparing
it with its fundamental values (that is, roughly speaking,
almost always the present discounted value of future expected
dividends). In contrast, chartists are technical analysts, who
form their expectations on assets prices and decide their
strategies by looking at the charts, i.e., at trends and graphic
dynamics of past prices.

The existing literature has usually described the imitation
in financial markets by assuming that a trader can switch
groups, from fundamentalists to chartists or vice versa [36].
We propose, instead, to refer to the trading decision of the
trader, i.e., to the price: the agent who decides to imitate
a trader, simply follows the price provision assumed by that
trader, no matter which group the latter belongs to. Thus, the
persuasive strength of information may induce, say, a chartist
to imitate the price set by a fundamentalist without switching
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group. As a result of this diffusion of informative signals,
according to the topology of the network, extreme phenomena
may spontaneously emerge.

Differently from other attempts to describe herding in
financial markets [37,38], our model considers the pressure
coming from the accumulation of information, by recalling
some features of a model of earthquakes [39] and presents
a number of key features: (i) an endogenous price setting
mechanism that can reproduce all relevant stylized facts of
true financial markets; (ii) heterogenous agents organized in
different groups, with a realistic imitative behavior; (iii) an
emergent aggregate dynamics that suitably describes extreme
events involving market participants as in true financial
bubbles or crashes. In the following we present the model
in detail and discuss its properties.

The paper is organized as follows. In Sec. II the model is
described and the reproduction of stylized facts is addressed,
also in comparison with a real data set. In Sec. III the role of
random traders on financial crises and some policy suggestions
are discussed. Finally, in Sec. IV conclusions are drawn.

II. MODEL

Financial markets are populated by interacting agents,
who continuously look for new information and try to
update their expectation models trying to obtain accurate
forecasts. However, the system exhibits unavoidably complex
characteristics, since individual beliefs and decisions depend
on those of others. Thus, facing unpredictability, agents are
forced to act inductively, by using different and volatile
strategies, continuously updated according to credibility of
signals that they receive from the market itself. In previous
studies, links between extreme events in financial markets
and the dynamics of informative cascades have been inves-
tigated [19,21]. However, at variance with previous models,
the present model considers a realistic feedback mechanism
that let the heterogenous traders determine prices under the
influence of prices dynamics itself. For these reasons, we call
it the contagion financial pricing (CFP henceforth) model.

A. Setting description

The CFP model here presented describes an artificial
financial market with a population of N investors. These agents
Ai (with i = 1, . . . ,N) are connected among themselves in
a small world (SW) network, usually adopted to describe
realistic communities in social or economical contexts [40].
The SW network here considered, shown in Fig. 1, is obtained
from a square two-dimensional (2D) regular lattice, with open
boundary conditions, by randomly rewiring its short-range
links with a probability p = 0.02, therefore creating a given
number of long-range links. The final average degree of the
network is equal to 〈k〉 = 4. See Ref. [19] for more details.

Since we do not consider any portfolio, the model implicitly
assumes that an ideal counterpart always exists at each time
step. Our main goal is to study the role of composition of the
population of traders and that of the spreading of information
in influencing the market dynamics, its stability, and the
probability of bubbles and crashes. Because of this reason,
the price-time series that our model generates, pt where t is

FIG. 1. (Color online) An example of the 2D small world lattice
adopted in our model (with n = 40). Traders are distributed on a
square network where short- and long-distance links are visible.
Agents are coloured differently in order to represent their levels of
information: the brighter a trader is, the more informed she is. Initial
levels of information are distributed randomly. See text for further
details.

the time, has to be considered as the result of the transactions
occurring among the traders, even if we do not describe either
the order book or the portfolio dynamics of investors. The
population is characterized by the existence of three groups
of traders: (i) fundamentalists, (ii) chartists, and (iii) random
traders.

More precisely, a fundamentalist bears in mind a fundamen-
tal value that she believes is the correct value of the asset being
traded: she believes that the market dynamics will tend to let
this correct value prevail. Thus, she participates to transactions
by stating her price p

f

t+1 on the basis of the discrepancy
between the last observed price, pt , and this fundamental value,
pf :

p
f

t+1 = pt + φ(pf − pt ) + ε. (1)

In such a way, the fundamentalist’s individual price will be
greater or smaller than the previous market price according to
the fact that the fundamental value is greater or smaller than the
previous market price itself. The parameter φ is a sensitivity
parameter that regulates how much of the discrepancy will be
embedded in the new price. Finally, ε is a stochastic noise
term, randomly chosen in the interval (−σ,σ ), with σ fixed at
the beginning of simulations and extraction done with uniform
probability. It is worth noticing that the value of φ can either be
fixed or, in order to gain heterogeneous behavior, different for
any fundamentalist. In this case, it will be normally distributed
with given mean and standard deviation.

A chartist, instead, is a technical analyst and decides her
behavior according to her inspection of charts of past prices.
Therefore, the next individual price that she will state on the
market will be a function of past prices. The simplest (and less
arbitrary) function that we have chosen is the average of last
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M prices. Thus, a chartist will decide her price according to
the circumstance that the last market price is greater or smaller
than the difference between the price and the average of last
M values, pM . More precisely,

pc
t+1 = pt + κ

M
(pt − pM ) + ε. (2)

Also in this case, the behavioral heterogeneity can be obtained
by letting both M and κ (respectively the length of trader’s
retrospective sight and the sensitivity of forecasts to past
prices) to be extracted from a normal distribution with
previously fixed mean and standard deviation values. Again, ε
is a stochastic noise term defined as in Eq. (1). Chartists will
also be considered with two different attitudes: trend-following
or trend-reversal (such a specification is easily obtained by
considering negative values for κ).

Finally, we consider also a third category, that of random
trading agents. A random trader is defined as an investor who
does not care at all about previous or fundamental values and
select her price, pr

t+1, by choosing it randomly from a uniform
distribution of values, ranging from 0 and the last market price
value, i.e.,

pr
t+1 ∈ [0,pt ]. (3)

The global market price, pt+1, will be obtained as the
weighted average of individual prices, the weight being the
proportion of each group relative to the total population

pt+1 = F

N

∑
p

f

t+1 + C

N

∑
pc

t+1 + R

N

∑
pr

t+1 + ω, (4)

where F is the total number of fundamentalists, C is the total
number of chartists, R is the total number of random traders,
and N = F + C + R is the total population of agents. Finally,
ω is a global noise term that is related to the information
accumulated by traders, as defined below.

Consistently with previous studies, we depict a situation
where each agent is exposed to two streams of informative
pressures, a global one (i) and an individual one (ii) [19,21].

(i) The first comes from the market and represents the
general climate that each trader perceives from news about
the current states of markets. We model this phenomenon by
associating to each trader a real variable Ii(t) (i = 1,2, . . . ,N ),
which represents the information possessed at time t . At the
beginning of each simulation (at t = 0), the informative level
of traders is set to a random value in the interval (0,Ith), where
Ith = 1.0 is a threshold value that is assumed to be the same for
all agents. Then, the simulation starts and all traders receive
a global informative pressure, which reaches them uniformly.
In other words, each investor acts as a sort of accumulator
of information: at each time step t > 0, the information
accumulated by all traders is increased by a quantity δIi ,
different for each agent and randomly extracted within the
interval {0,[Ith − Imax(t)]}, where Imax(t) = max{Ii(t)} is the
maximum value of the agents’ information at time t , and
each trader sets her new price following Eqs. (1), (2), or (3).
Finally, the global market price pt+1 follows from Eq. (4),
where the global noise is assumed to be ω = ε eβIav (t), where
ε is the same noise term as in Eqs. (1) and (2), β is a constant
chosen in a suitable interval and Iav(t) is the average value
of the information accumulated by all the traders at time t .

Thus, the global price formation is affected in a nonlinear (and
stochastic) way by the total information present in the system.

(ii) The second one is an individual transmission that every
trader receives from her close neighbors (i.e., from the other
known traders). Actually, when a given agent Ak accumulates,
from the general flow (i) of the market, enough information to
exceed her personal threshold value Ith, she becomes active.
At this point it is important to distinguish nonrandom traders
from random ones:

(a) When a given nonrandom trader Ak (fundamentalist or
chartist) surpasses her threshold at time t , immediately after
fixing her new price pk

t+1 she transmits the informative signal
to her neighbors within the trading network according to the
following simple herding mechanism, analogous to the energy
transmission in earthquake dynamics, see Ref. [19]:

Ik > Ith ⇒
{
Ik → 0,

Inn → Inn + α
Nnn

Ik,
(5)

where nn denotes the set of nearest neighbors of the active
agent Ak . Nnn is the number of direct neighbors, and the
parameter α controls the level of dissipation of the information
during the dynamics (α = 1 corresponds to the conservative
case, but in our simulations we always adopted values strictly
less than 1, in analogy with Ref. [39]). As a consequence of
the received amount of information, someone of the involved
neighbors may become active too and pass the threshold
level as well, thus transmitting, in turn, her signal to her
neighbors and so on: in this case we say that an informative
avalanche started and we call this process, which can involve a
variable number (even very high) of nonrandom active agents,
a financial avalanche. The central point is that all the agents
involved in the financial avalanche will imitate the price pk

t+1
set by the former one, who originated the avalanche, regardless
of their own group (fundamentalist or chartist); the reader
should be aware that, in such a way, we do not consider any
dynamical change in the population composition: instead, we
want to focus on the more realistic definition of imitation,
which keeps unchanged the type of the trader even if let her
copy the trading decision of one of her neighbors.

(b) On the other hand, random traders are only affected
by the general climate (i) of the market but do not influence
the other traders nor are influenced by them; we will show,
as already discussed in previous studies within a different
approach [19,21] that their role is crucial for a damping of the
herding avalanches and reduce the volatility of the time series.

In the next section we will show in detail, through a first set
of single-event numerical simulations, how such a dynamical
model shows self-organized criticality (SOC) (see also [41]),
which influences the global price formation. We will also
discuss the extent to which our model is able to reproduce
the so-called stylized facts, characteristic of real price time
series. No random traders will be considered at the beginning.

B. Reproduction of stylized facts and comparison with real data

Multiagent models of financial markets have to be able to
replicate some specific features, known as stylized facts [42].
In other words, before being used as a valid specimen
laboratory, any simulative model should manifest the ability
to reproduce known characteristics of real financial markets.
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In order to check this within the context of the CFP model, we
adopted the following settings:

(i) fundamentalists base their fundamental price on a
completely external, preset value;

(ii) heterogeneity of traders has been specified by means
of personal parameters that differentiate behavioral values of
different traders, also within each group;

(iii) different population composition and different net-
work sizes are considered.

Let us first consider a community of N = 1600 traders (no
random traders are considered for the moment), connected
as in Fig. 1 and divided in F = 400 fundamentalists and
C = 1200 chartists. At t = 0, as previously explained, each
trader starts with a given random amount of information
Ii(t) ∈ (0,1) and, at each time step t > 0, receives a further
(random) amount of global information δIi . Then, all traders
fix their price following Eqs. (1) or (2), where the values
of parameters are: pf = 5000 (fundamental price), φ = 2.0
(fundamentalists’ sensitivity parameter), σ = 200 (amplitude
of stochastic noise), M ∈ [0,90] (length of retrospective sight),
κ = 2.0 (chartists’ sensitivity of forecasts to past prices).
Finally, the next global market price pt+1 is calculated by
means of Eq. (4), with β = 16 (exponent of the global noise
term).

In the following, we compare the stylized facts obtained for
a CFP global price time series of 10000 iterations, with the
analogous ones obtained for a real time series of comparable
length, in particular for the General Electric (GE) stock
prices, collected day by day from January 1, 1962 to March,
14, 2014 [43]. During a single run of the CFP model, a
given number of informative avalanches occur, following the
herding mechanism (5) with α = 0.92. In Fig. 2 we show
the sizes of these avalanches versus time (top), together with
their frequency distribution (bottom), whose clear power-law
behavior confirms the SOC-like character of the herding

FIG. 2. (Color online) In the top panel, the time series of the
avalanches generated by the model is reported whereas, in the bottom
panel, the frequency distribution of the sizes of avalanches is shown.
The latter can be fitted by a power-law curve, also reported, with
slope −1.6. See text for further details.

FIG. 3. (Color online) (b) The simulated global price time series,
pt and (d) the correspondent returns time series rt , for the CFP model
are compared with the (a), (c) historical time series for the General
Electric stock prices. See text for further details.

dynamics. Such an internal feature, combined with the global
informative pressure expression of the market climate, strongly
affects the emerging global price series shown in Fig. 3(b):
after an initial positive trend, corresponding to the initial
transient dynamics which precedes the triggering of the critical
state (see top panel of Fig. 2), the global price values start
to strongly fluctuate, as also proved by the corresponding
fluctuating behavior of the returns time series [Fig. 3(d)].
Recall that, given a time series pt , returns rt are defined
as: rt = log(pt+1) − log(pt ). From the comparison with the
GE stock prices and returns time series [Figs. 3(a) and 3(c),
respectively], we conclude that the simulation results closely
mimics typical characters of real financial markets.

The stylized facts that are usually reported and verified in
true price series and that we successfully tested in our model,
are [44]: (i) fat tails of distribution of returns; (ii) absence of
autocorrelations of returns; and (iii) volatility clustering.

1. Fat tails distribution of returns

It is well known that financial returns distributions are
non-Gaussian curves and, in particular, leptokurtic and asym-
metric [44]. In Fig. 4(a) we show such a distribution for both a
price series generated by our model (open circles) and for the
GE stock price one (open squares). In particular, we consider
here normalized returns, defined as (rt − rav)/rstdev (where
rav and rstdev are, respectively, mean and standard deviation
calculated over the whole returns series).

Simulation and real data are also compared with a standard
Gaussian with unitary variance (dashed blue curve): fat
tails and asymmetry are well visible in both the returns
distributions, that can be fitted by a q Gaussian, defined as
Gq = A[1 − (1 − q)Bx2]

1/(1−q)
. The q Gaussian is a curve

with power-law tails, defined in the context of nonextensive
statistical mechanics, which has been widely used also in
economics and in coupled systems at the edge of chaos [45–
49]. The entropic index q measures deviations from Gaussian
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FIG. 4. (Color online) Stylized fact No. 1. (a) PDFs of both GE
(squares) and CFP normalized returns in comparison with a Gaussian
with unitary variance (dashed blue line). Evidence of non-Gaussian
behavior emerges, due to the presence of fat tails that can be fitted by a
q-Gaussian curve, see text. (b) and (c) The QQ plots of, respectively,
GE and CFP Returns quantiles (cross shapes) compared with those
of a Gaussian (straight line). Again strong deviations from normal
behavior are visible.

behavior, for q = 1 a standard Gaussian, with exponential tails,
is recovered. In our case, q = 1.55 while the values of the
other fitting parameters are A = 0.7,B = 3. This point seems
very interesting and deserves further investigation, but it is
beyond the scope of the present paper and it will be explored
elsewhere.

In Figs. 4(b) and 4(c) we present the QQ plot of the returns
obtained from both, respectively, the GE and CFP price series.
This kind of graph compares quantiles of a distribution with
quantiles of the Gaussian. The straight line y = x is the test
benchmark, since it represents the case of a distribution that
behaves normally. The cross shapes curves in both the panels,
clearly deviating from linearity, confirms the presence of fat

FIG. 5. (Color online) Stylized fact No. 2. (a) Autocorrelation
function (ACF) of both GE and CFP returns series shows no
significative autocorrelation of the returns. Stylized fact No. 3.
(b) ACF of both GE and CFP absolute returns series show an
autocorrelation of absolute returns, which slowly decays towards
zero remaining positive for all the lag intervals considered.

tails and therefore the non-Gaussian behavior of the returns
distributions.

2. Absence of autocorrelations of returns and volatility clustering

The absence of autocorrelations of returns is sometimes
referred to as the absence of simple arbitrage possibilities: it is
essentially equivalent to say that on average is not possible to
foresee the price variation from t to t + 1. Thus, profits may
derive just from risky investments (sometimes traders describe
this occurrence by saying that there are no free lunches).

In Fig. 5(a) we report the autocorrelation function (ACF)
for both the GE and the CFP returns series. We observe
that, as it has been widely documented in Refs. [50] and
in [51], among others, for true returns series of financial
assets, the ACF calculated from tick transactions prices of
the CFP returns series shows very similar results to those
obtained for the real GE stock returns, with no evidence of
correlations. In this regard, it is statistically relevant to talk
about the correct observational timing of financial markets. In
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what we discuss, we will always consider transactions prices
in order to refer to trade time: each time a price is set (in
other words, this represent the moment when a transaction is
done in our model), time counter is increased by 1. In our
framework, where an order book is missing, this is also the
closest approximation to tick prices, which are generated,
nowadays, even in milliseconds. The tick is the smallest
variation possible of a financial price: it represents the unit
measure of the price variation. In the trading jargon, a dealer
looks how many ticks an asset has gained or lost.

Finally, we observe that the absence of correlation among
returns does not imply the stability of properties of the
distribution with respect to time. In particular, one of the most
important facts is the circumstance that absolute returns exhibit
a long-range, slowly decaying autocorrelation function. This
property has been named volatility clustering and described
in Ref. [52]. In Fig. 5(b) we plot the ACF of absolute returns
for the CFP model and the GE stock prices, showing that in
both cases a persistent autocorrelation exists and that it decays
quite slowly, staying above zero for any lag’s size, even if with
different positive values (the GE values oscillate around an
average value greater than that of CFP).

3. Other features

Stationarity. It is worth noticing that our model generates
simulated returns that show compatibility also with respect
to another recurrent characteristic: stationarity on large time
windows and nonstationarity on small intervals [5]. In order to
check this feature we considered some returns series generated
by the model, and tested the unit root hypothesis on series
of different lengths, from very long to very short. More
precisely, we tested the existence of a unit root in a number
of series generated by the CFP model, with the following
length: 15000 values, 1500 values, and, finally, 150 values.
All of the series have been obtained by splitting the first one
in smaller parts: i.e., ten series with 1500 values have been
obtained by splitting the series with 150 000 values in ten, and
one hundred series with 150 values have been obtained by
splitting each of the 1500 values long series in ten. In such a
way we could test series of different length, without changing
any structural feature of the data set; none of the series is
overlapping. Selected results of the augmented-Dickey-Fuller
(ADF) test confirm that, both at 1% and 5% significance levels,
the hypothesis of stationarity can be rejected for small time
intervals, whereas a robust indication of stationarity exists for
longer series. None of the 150-values long series exhibited
stationarity, and none of the others exhibited nonstationarity.

Robustness. The model appears also interestingly robust
with respect to its parameters variability. As described in
previous sections, the relevant parameters of the model are:
(i) the fundamental price (either fixed or variable); (ii) the
length of the chartists window (either fixed or variable); (iii) the
values of both the sensitivity multipliers for fundamentalists
and chartists, namely φ and κ (both of them can be either fixed
or variable). We monitored in particular two indicators, namely
the volatility of the returns series and the number of relevant
avalanches (i.e., avalanches that involve at least the 0,2% of
traders), and run 50 simulations with different initial conditions
for any parameters combination, each simulation consisting of

FIG. 6. (Color online) Stability of the CFP model. The average
number of avalanches obtained in simulations (top) are reported
together with the average volatility values of the global price
series (bottom) for various combinations of parameters. Vertical bars
measure the correspondent standard deviations, over 50 events. In
all cases, variability of values observed lays within the standard
deviation.

10000 tick prices. Figure 6 shows the effect of the parameters
setting on the volatility of the global price series (bottom)
and on the number of significative extreme events occurred
during the simulations (top). Results suggest a strong stability
of the artificial market operativeness, which can be easily read
by considering that fluctuations of the indices around their
average values are always smaller than their correspondent
standard deviations.

Population composition and network size. Finally, let us
briefly check how the behavior of the global price time series,
previously described for a community of N = 1600 traders
with 75% of chartists, is affected by a change in the relative
composition of fundamentalists and chartists. In Fig. 7 we
show the same plots as in Fig. 3, but for communities with,
respectively, 50% and 25% of chartists: it is evident that both
the global price time series and the returns series hold their
features, even in case of a strong decrease of the percentage of
chartists.

This can be seen also by looking at Fig. 8(a), where the
PDF of normalized returns, calculated over series of 30000
tick prices (in order to have a better statistics), is reported
for different population compositions. The only noticeable
difference with respect to the case shown in Fig. 4(a), here
reported again for comparison (as circles), is the central part
of the distribution, which assumes a more rounded shape. Thus,
the population composition does not affect per se the fat tails
characteristic of the returns distribution, which seem to be
rather robust with respect to a variation in the percentage
of the number of chartists. We checked that both fat tails
and asymmetry in the returns distributions are robust also
with respect to a variation in the size of the SW network,
as shown in Fig. 8(b), where the different PDFs refer to
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FIG. 7. (Color online) Global prices and returns time series ver-
sus time, as in Fig. 3, but for two decreasing percentages of chartists,
i.e., (a) and (c) 50%, and (b) and (d) 25%. The reduction of chartists
does not imply significative changes in both the series with respect
to the situation with 75% of chartists shown in Fig. 3.

N = 2500 and N = 3600 (the case N = 1600 is also reported
for comparison).

However, as we will show in the next section, things change
a lot if we take into account our third category of traders, i.e.,
those who invest in a random way.

III. RANDOM TRADERS AND POLICY SUGGESTIONS

In previous studies [19], within a simpler artificial financial
market without feedback effects, it has been shown how the
introduction of a small percentage of random traders affects the
distribution of financial formation avalanches: more precisely,
we showed that their presence in the trading community,
even in a minimal proportion, is able to diminish the size
of avalanches changing the power-law behavior of PDFs into
and an exponential one. Therefore we want to explore, now,
the extent to which an analogous effect could be observed also
in the returns distribution of the price series endogenously
generated by traders in the context of CFP model. We will
show that such an expectation is actually verified.

In order to do this, we introduce different percentages of
random traders in the community, while the remaining part of
nonrandom agents is always divided in 75% chartists and 25%
fundamentalists. We report in Fig. 9 and Fig. 10 the effect of
the presence of random traders on the global price series, on
the returns series and on the returns probability distribution.
More precisely, in Fig. 9 we show how the price-time series
is modified by increasing the percentage of random traders
and how both the frequency and the magnitude of bursts in
the returns series are strongly dampened already for small
percentages (between 1% and 5%). Such an effect is confirmed
in Fig. 10, where fat tails in the distribution of returns
(calculated, again, over 30000 tick prices) appear visibly
reduced in presence of random traders. In particular, one
observes a change in the shape from an asymmetric fat-tailed
curve, still observed for 1% of random traders, to a less
sharpened curve that appears already around 5% and rapidly

FIG. 8. (Color online) PDF of normalized returns for different
agents compositions (a) and different population sizes (b). Fat tails
and asymmetry in the returns distribution are not significantly affected
neither by the percentage of chartists nor by the network size. See
text.

tends towards a standard Gaussian curve, finally obtained for
percentages above 15%. A comparison of these results with
the analogous reported in Fig. 3(b)–3(d) and Fig. 4(a), where
no random traders were present, clearly corroborates what
we expected: the introduction of an increasing percentage of
traders, which fix their price at random, as described by Eq. (3),
reduces extreme events, in size and frequency, and induces
a change in the shape of the returns distribution. It is quite
remarkable that a significative effect is obtained even with a
sensible low percentage. Therefore, with respect to previous
findings [19], we have obtained a further confirmation of the
beneficial effects of a random trading behavior, which hold
also in the more realistic context of the CFP model, where
agents have a realistic feedback on the market.

The results discussed above indicate some counterintuitive
policy suggestions. Although it may appear quite provocative
to state that random traders may dampen both size and
frequency of avalanches, these results are quite robust and
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FIG. 9. Global prices and normalized returns time series for three
increasing percentages of random traders: (a), (b) 1%; (c), (d) 5%;
(e), (f) 15%. The presence of random traders affects the structure and
the properties of both time series reducing the occurrence of wild
fluctuations. See text.

have been confirmed in several situations. On the other hand,
it is a medium-level target of financial policy to stabilize the
market and reduce wild fluctuations. The presence of a small
number of random traders seem to be able to produce a similar
effect. In fact we have seen that they are able to produce
financial returns, which tend to be normally distributed. In
this way the probability to predict price dynamics increases
or, at least, the error of forecasts might be reduced. But what
is actually the meaning of traders who act in a random way?
One of the most straightforward explanations is that, in real
markets, information flows determine decisions of investors.
Then, the presence of a few random players simply limits the
diffusion of information, providing boundaries to the spreading
mechanism.

The paradoxical extreme of contemporary financial markets
is that there exists an excess of information that is the cause
of turbulent and unpredictable dynamics. What a single trader
does not know is exactly the content of the informative signal
that she will try to obtain. This induces a continued search
for credible signals and, once a presumably credible signal
is found, it starts the spreading of the contagion through
avalanches of any size. The presence of random traders may
provide two interesting effects: from an individual point of
view, as already suggested in Refs. [19,20], a random approach
to financial speculative investments may appear to be more
convenient and less risky; on the other hand from a collective
perspective, the presence of traders who do not carry any
signal to follow can reduce the informational cascade that
generates contagion. A counterintuitive policy suggestion can
then be derived: the amount of information that traders believe
to retrieve from the market must be limited. The limitation will
act exactly as the effect of our random investors in the CFP

FIG. 10. (Color online) PDF of normalized returns for the same
three percentages of random traders of the previous figure. The
presence of a small percentage of this kind of traders significantly
reduces the fat tails of the returns distributions. Moreover, one
observes also an interesting reduction in the asymmetry of the
distribution for a population composition with 15% of random traders,
a value above which the PDFs become Gaussians, see text.

model: it will reduce the fragility of the market, the continuous
search for signals, the unstable and dangerous reactivity of
investors, ready to imitate any possibly credible behavior.
Markets dynamics will result to be closer to equilibrium
without dangerous extreme fluctuations and easier to predict.

IV. CONCLUSIONS

We have presented the contagion financial pricing (CFP)
model, for an artificial financial market with heterogeneous
agents. By means of a SOC-like herding behavior of agents,
the CFP model is able to provide realistic time-price series
that reproduce well-known stylized facts and that compare
well with real-time series. We have also investigated how wild
price fluctuations can be damped by introducing a category of
agents who trade in a random way. Promising results have been
obtained in this direction, confirming some previous findings
related to the beneficial role of random strategies. Even the
introduction of a small percentage of these random trading
agents is able to diminish wild price fluctuations. In this respect
the reduction of information seems to be a convenient although
counterintuitive policy suggestion for market stabilization,
which deserves a more detailed investigation.
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