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Abstract

In this paper we consider the problem regarding the existence of uniformly
resolvable decompositions of the complete graph Kv into subgraphs such
that each resolution class contains only blocks isomorphic to the same
graph. We completely determine the spectrum for the case in which all
the resolution classes are either P3 or P4.

1 Introduction

Given a collection of graphs H, an H-decomposition of a graph G is a decomposition
of the edges of G into isomorphic copies of graphs from H; the copies of H ∈ H in
the decomposition are called blocks. Such a decomposition is called resolvable if it is
possible to partition the blocks into classes Pi such that every vertex of G appears
in exactly one block of each Pi.

A resolvable H-decomposition of G is sometimes also referred to as an H-factor-
ization of G, a class can be called an H-factor of G. The case where H is a single
edge (K2) is known as a 1-factorization of G and it is well known to exist for G = Kv

if and only if v is even.
In many cases we wish to impose further constraints on the classes of an H-

decomposition. For example, a class is called uniform if every block of the class is
isomorphic to the same graph from H.

A uniformly resolvable H-design of order v is a uniformly resolvable H-decomp-
osition of Kv. Of particular note is the result of Rees [12] which finds necessary
and sufficient conditions for the existence of uniformly resolvable {K2, K3}-designs
of order v. Uniformly resolvable decompositions of Kv have also been studied in
[4], [6], [9], [10], [11], [15], [16], [17], and [18]. In what follows, we will denote
by [a1, . . . , ak], k ≥ 2, the path Pk having vertex set {a1, . . . , ak} and edge set
{{a1, a2}, {a2, a3}, . . . , {ak−1, ak}}. The existence problem of resolvable Pk-designs
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of order v was solved by Horton [8] for k = 3 and by Bermond, Heinrich and Yu [3]
for k ≥ 4.

If v is a multiple of 12 we make the followings definitions for the purposes of this
paper.

• Let (P3, P4)-URD(v; r, s) denote a uniformly resolvable decomposition of Kv

into r classes containing only copies of paths P3 and s classes containing only
copies of paths P4.

• Let J(v)= {(6 + 9x, 2 + 2(v−12)
3

− 8x), x = 0, . . . , v−12
12

}.
• Let URD(v; P3, P4) denote the set of all pairs (r, s) such that there exists a

uniformly resolvable decomposition of Kv into r classes containing only copies
of P3 and s classes containing only copies of P4.

In this paper, the main purpose is to investigate the existence problem of a
(P3, P4)-URD(v; r, s) of Kv. We completely solve the spectrum problem for such de-
sign; i.e., characterize the existence of uniformly resolvable {P3, P4}-designs of order
v, by proving the following result:

Main Theorem. For every integer v ≡ 0 (mod 12), v ≥ 4, the set URD(v; P3, P4)
is identical to the set J(v).

2 Preliminaries and necessary conditions

In this section we introduce some useful definitions, results and give necessary con-
ditions for the existence of a uniformly resolvable decomposition of Kv into P3 and
P4 graphs. A (resolvable)H-decomposition of the complete multipartite graph with
u parts each of size g is known as a resolvable group divisible design H-RGDD of
type gu; the parts of size g are called the groups of the design. When H = {Kn} we
will call it an n-(R)GDD.

A (P3, P4)-URGDD (r, s) of type gu is a uniformly resolvable decomposition of
the complete multipartite graph with u parts each of size g into r classes containing
only copies of paths P3 and s classes containing only copies of paths P4.

If the blocks of an H−RGDD of type gu can be partitioned into partial parallel
classes, by which we mean that each contains all points except none of those of one
group, we refer to the decomposition as a frame. When H = {Kn} we will call it an
n-frame and it is easy to deduce that the number of partial parallel classes missing a
specified group G is |G|

n−1
. There exists a 2-frame of type gu if and only if u ≥ 3 and

g(u − 1) is even [14].
An incomplete uniformly resolvable (P3, P4)-decomposition of Kv+h with a hole

of size h is a (P3, P4)-decomposition of Kv+h − Kh in which there are two types of
classes, full classes and partial classes which cover every point except those in the
hole (the points of Kh are referred to as the hole). Specifically a (P3, P4)-IURD(v +
h, h; [r1, s1], [r̄1, s̄1]) is a uniformly resolvable (P3, P4)−decomposition of Kv+h − Kh
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into r1 partial classes of paths P3 and s1 partial classes of paths P4 which cover only
the points not in the hole, r̄1 full classes of paths P3 and s̄1 full classes of paths P4

which cover every point of Kv+h.
We also need the following definitions. Let (s1, t1) and (s2, t2) be two pairs of

non-negative integers. Define (s1, t1)+(s2, t2) = (s1 +s2, t1 + t2). If X and Y are two
sets of pairs of non-negative integers, then X + Y denotes the set {(s1, t1) + (s2, t2) :
(s1, t1) ∈ X, (s2, t2) ∈ Y }. If X is a set of pairs of non-negative integers and h is a
positive integer, then h∗X denotes the set of all pairs of non-negative integers which
can be obtained by adding any h elements of X together (repetitions of elements of
X are allowed).

Lemma 2.1. If (r, s) ∈ URD(v; P3, P4), with r > 0 and s > 0, then v ≡ 0 (mod 12)
and (r, s) ∈ J(v).

Proof. Assume that there exists a (P3, P4)-URD(v; r, s) D of Kv, with r > 0 and
s > 0. By resolvability it follows that v ≡ 0 (mod 12). Counting the edges of Kv

that appear in D we obtain

2rv

3
+

3sv

4
=

v(v − 1)

2
,

and hence that
8r + 9s = 6(v − 1). (1)

This equation implies that 8r ≡ 6(v − 1) (mod 9) and 9s ≡ 6(v − 1) (mod 8).
Then we obtain

r ≡ 6 (mod 9) and s ≡ 2 (mod 8).

Now letting r = 6 + 9x and s = 2 + 8y, the equation (1) yields

x + y =
v − 12

12
. (2)

The equation (2) yields x = 0, . . . , v−12
12

and y = v−12
12

−x. Hence (r, s) ∈ {(6+9x, 2+
2(v−12)

3
− 8x), x = 0, . . . , v−12

12
}. This complete the proof of the lemma.

To establish the existence of some small (P3, P4)-designs we need the following
results.

Theorem 2.2. [11, Lemma 4.1]. Let v ≡ 0 (mod 3), v ≥ 9. The union of any two
edge-disjoint parallel classes of 3-cycles of Kv can be decomposed into three parallel
classes of P3.

Lemma 2.3. Let v ≡ 0 (mod 12). If there exists a (K3, K4)-URD(v; 2r, s) K of Kv,
then there exists a (P3, P4)-URD(v; 3r, 2s) P of Kv.

Proof. Let K be a (K3, K4)-URD(v; 2r, s). By Theorem 2.2 the 2r classes of K of
size 3 can be decomposed into 3r classes of paths P3. Filling in each block of K of
size 4 with the same (P3, P4)-URD(4; 0, 2), we obtain the result.
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3 Small cases

Lemma 3.1. There exists a (P3, P4)-URGDD(0, 4) of type 62.

Proof. Take the groups to be {0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11} and the classes as
listed below:

{[7, 0, 10, 3], [5, 6, 2, 9], [1, 8, 4, 11]}, {[0, 6, 1, 7], [2, 8, 3, 9], [4, 10, 5, 11]},
{[1, 9, 0, 8], [3, 11, 2, 10], [5, 7, 4, 6]}, {[0, 11, 1, 10], [2, 7, 3, 6], [4, 9, 5, 8]}.

Lemma 3.2. There exists a (P3, P4)-URGDD(6, 0) of type 43.

Proof. Let {a0, . . . , a3}, {b0, . . . , b3} and {c0, . . . , c3} be the groups and the classes
as listed below:

{[ci, bi, ai+1], i ∈ Z4}, {[ci+2, bi, ai+2], i ∈ Z4}, {[ci, ai, bi], i ∈ Z4},
{[ci+1, ai, bi+1], i ∈ Z4}, {[bi+1, ci, ai+1], i ∈ Z4}, {[bi+3, ci, ai+2], i ∈ Z4}.

Lemma 3.3. There exists a (P3, P4)-URGDD(r, s) of type 122 with (r, s) ∈ {(9, 0),
(0, 8)}.
Proof. The case (9, 0) corresponds to a (P3, P4)-URGDD(9, 0) of type 122 which is
known to exist [19]. For the case (0, 8), take a 2-RGDD of type 22 with 2 paral-
lel classes of edges. Expand each point 6 times and replace the blocks of a given
resolution class with the same (P3, P4)-URGDD(0, 4) of type 62, which exists by
Lemma 3.1.

Lemma 3.4. URD(12; P3, P4) = J(12) = {(6, 2)}.
Proof. Take a (P3, P4)-URGDD(6, 0) of type 43, which exists by Lemma 3.2. Fill
each of the groups of size 4 with the same (P3, P4)-URD(4; 0, 2). This completes the
proof.

Lemma 3.5. URD(36; P3, P4) = J(36).

Proof. Take a (K3, K4)-URD(36; r, s) of K36 with (r, s) ∈ {(16, 1), (10, 5), (4, 9)},
which exists by Lemma 3.2 of [18]. Applying Lemma 2.3 we obtain the result.

Lemma 3.6. URD(60; P3, P4) = J(60).

Proof. Take a (K3, K4)-URD(60; r, s) of K60, with (r, s) ∈ {(28, 1), (22, 5), (16, 9),
(10, 13), (4, 17)}, which exists by Lemma 3.4 of [18]. Applying Lemma 2.3 we obtain
the result.

Lemma 3.7. There exists a (P3, P4)-URGDD(r, s) of type 123, with (r, s) ∈ {(18, 0),
(9, 8), (0, 16)}.
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Proof.

• (18, 0).
Take a 3-RGDD G of type 33 which exists by [13]. Give weight 4 to all
points and replace the blocks of a given resolution class with the same (P3, P4)-
URGDD(6, 0) of type 43, which exists by Lemma 3.2. Since G contains three
parallel classes we obtain the result.

• (0, 16).
Let F={F1, . . . , F4} be a 1-factorization of the complete graph K2,2,2 [7]. Give
weight 6 to all points and place on each edge of a given 1-factor of F the same
(P3, P4)-URGDD(0, 4) of type 62, which exists by Lemma 3.1. Since F contains
four 1-factors we obtain the result.

• (9, 8).
Let A = {a1, a2, a3, ā1, ā2, ā3}, B = {b1, b2, b3, b̄1, b̄2, b̄3},
X = {x1, x2, x3, x̄1, x̄2, x̄3}, Y = {y1, y2, y3, ȳ1, ȳ2, ȳ3},
Z = {z1, z2, z3, z̄1, z̄2, z̄3}, T = {t1, t2, t3, t̄1, t̄2, t̄3}.
Take the groups to be {a1, a2, a3, ā1, ā2, ā3, b1, b2, b3, b̄1, b̄2, b̄3},
{x1, x2, x3, x̄1, x̄2, x̄3, y1, y2, y3, ȳ1, ȳ2, ȳ3}, {z1, z2, z3, z̄1, z̄2, z̄3, t1, t2, t3, t̄1, t̄2, t̄3}.
* 9 classes of paths P3

Take 3 classes of paths P3 listed below:
{[a1, zj, y1], [a2, zj+1, y2], [a3, zj+2, y3], [ā1, z̄j , ȳ1], [ā2, z̄j+1, ȳ2], [ā3, z̄j+2, ȳ3],
[x1, bj , t1], [x2, bj+1, t2], [x3, bj+2, t3], [x̄1, b̄j , t̄1], [x̄2, b̄j+1, t̄2], [x̄3, b̄j+2, t̄3]},
{[z̄1, aj, x1], [z̄2, aj+1, x2], [z̄3, aj+2, x3], [z1, āj , x̄1], [z2, āj+1, x̄2], [z3, āj+2, x̄3],
[̄b1, tj , y1], [̄b2, tj+1, y2], [̄b3, tj+2, y3], [b1, t̄j , ȳ1], [b2, t̄j+1, ȳ2], [b3, t̄j+2, ȳ3]},
{[t̄1, yj, z̄1], [t̄2, yj+1, z̄2], [t̄3, yj+2, z̄3], [t1, ȳj, z1], [t2, ȳj+1, z2], [t3, ȳj+2, z3],
[̄b1, xj , ā1], [̄b2, xj+1, ā2], [̄b3, xj+2, ā3], [b1, x̄j , a1], [b2, x̄j+1, a2], [b3, x̄j+2, a3]}.
From the above classes, for j = 1, 2, 3, we obtain 9 classes of P3.

* 8 classes of paths P4

Take on K2,2,2, with V (K2,2,2) = {a, b} ∪ {x, y} ∪ {z, t}, the following two 1-
factors F1 = {[a, t], [b, y], [z, x]}, F2 = {[a, y], [b, z], [t, x]}. Expand each point 6
times and replace each edge of F1 and F2 with the same (P3, P4)-URGDD(0, 4)
of type 62, which exists by Lemma 3.1. This gives 8 parallel classes of paths P4.

Lemma 3.8. There exists a (P3, P4)-IURD(36, 12; [6, 2], [r, s]) with (r, s) ∈ {(18, 0),
(9, 8), (0, 16)}.
Proof. Start with a 3-partite graph G of type 123 with groups H , H1 and H2. We
will construct our design on H1 ∪ H2 ∪ H in such a way that the hole covers the
points of H . Place on G a copy of a (P3, P4)−URGDD(r, s) of type 123 with (r, s) ∈
{(18, 0), (9, 8), (0, 16)}, which exists by Lemma 3.7. This gives the full classes. The
partial classes can be obtained by filling the groups H1 and H2 of sizes 12 with
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the same (P3, P4)-URD(12; 6, 2) of K12, which exists by Lemma 3.4, and joining the
resultant classes. This completes the proof.

4 Main results

Lemma 4.1. For every v ≡ 0 (mod 24) J(v) ⊆ URD(v; P3, P4).

Proof. Let v ≡ 0 (mod 24), v ≥ 24. Start with a 1-factorization F={F1, . . . , F v−12
12

}
of the complete graph K v

12
[7]. Expand each point of K v

12
12 times and place on

each edge of a given 1-factor of F the same (P3, P4)-URGDD(r, s) of type 122, with
(r, s) ∈ {(9, 0), (0, 8)}, which exists by Lemma 3.3. Fill the groups of sizes 12 with
the same (P3, P4)-URD(12; 6, 2) of K12 which exists by Lemma 3.4. Since F contains
v−12
12

1-factors, the result is a (P3, P4)-URD(v; r, s) of Kv for each (r, s) ∈ {(6, 2) +
(v−12)

12
∗ {(9, 0), (0, 8)}}. This implies

URD(v; P3, P4) ⊇ {(6, 2) +
v − 12

12
∗ {(9, 0), (0, 8)}}.

Since (v−12
12

) ∗ {(9, 0), (0, 8)} = {(9x, 8v−12
12

− 8x), x = 0, . . . , v−12
12

}, it easy to see that
{(6, 2)+v−12

12
∗ {(18, 0), (9, 8), (0, 16)}} = J(v). This completes the proof.

Lemma 4.2. For every v ≡ 12 (mod 24) J(v) ⊆ URD(v; P3, P4).

Proof. Let v ≡ 12 (mod 24). The cases v = 12, 36, 60 are covered by Lemmas 3.4,

3.5 and 3.6. For v > 60 start with a 2-frame F of type 2
v−12
24 [17] with groups Gi, i =

1, . . . , v−12
24

. Let pi,j, j = 1, 2 be the two partial parallel classes which miss the group
Gi. Expand each point 12 times and add a set H of 12 ideal points a1, . . . , a12. Fill
H with a (P3, P4)-URD(12; 6, 2) D of K12, which exists by Lemma 3.4. For each i =
1, . . . , v−12

24
, place on Gi×{1, . . . , 12} ∪H the same (P3, P4)-IURD(36, 12; [6, 2], [x, y])

Di of K36 −K12 with (x, y) ∈ {(18, 0), (9, 8), (0, 16)}, which exists by Lemma 3.8, in
such a way that the hole covers the points of H . For i = 1, . . . , v−12

24
, place on each

block of the two partial parallel classes pi,j the same (P3, P4)-URGDD(r2, s2) Di,j of
type 122 with (r2, s2) ∈ {(9, 0), (0, 8)}, which exists by Lemma 3.3. Add the classes

of D to the partial classes of Di and form, on ∪
v−12
24

i=1 Gi × {1, . . . , 12} ∪ H , 6 classes
of P3−factors and two classes of P4− factors. For each i = 1, . . . , v−12

24
, add the full

classes of Di to the two classes of Di,j, j = 1, 2, and form r3 classes of P3-factors and
s3 classes of P4-factors with (r3, s3) ∈ {(18, 0), (9, 8), (0, 16)}. Since each group Gi is
missed by two partial parallel classes of F , we obtain a (P3, P4)-URD (v; r, s) of Kv

for each (r, s) ∈ {(6, 2) + v−12
24

∗ {(18, 0), (9, 8), (0, 16)}}. This implies

URD(v; P3, P4) ⊇ {(6, 2) +
v − 12

24
∗ {(18, 0), (9, 8), (0, 16)}}.

Since (v−12
24

) ∗ {(18, 0), (9, 8), (0, 16)} = {(9x, 8v−12
12

− 8x), x = 0, . . . , v−12
12

}, it easy to
see that {(6, 2) + v−12

24
∗ {(18, 0), (9, 8), (0, 16)}} = J(v). This completes the proof.
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We are now in a position to prove the main result of the paper.

Theorem 4.3. For every v ≡ 0 (mod 12), we have URD(v; P3, P4) = J(v).

Proof. Necessity follows from Lemma 2.1. Sufficiency follows from Lemmas 4.1
and 4.2. This completes the proof.
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