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Abstract

We consider the problem of defining regular expressions to characterize the class of recognizable
picture languages in the case of a one-letter alphabet.We define adiagonal concatenationand itsstar
and consider two different families,L(D) andL(CRD), of languages denoted by regular expressions
involving such operations plus classical operations.L(D) is characterized both in terms of rational
relations and in terms of two-dimensional automatamoving only right and down.L(CRD) is included
inRECandcontains languagesdefinedby three-wayautomatawhile languages inL(CRD)necessarily
satisfy some regularity conditions. Finally, we introduce new definitions ofadvanced starsexpressing
the necessity of conceptually different definitions for iteration.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of one-dimensional string languages is well founded and investigated
since 1950. From several years, the increasing interest for pattern recognition and image
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processing has alsomotivated the research ontwo-dimensional string languages, and nowa-
days this is a field of big investigation. The scope is the generalization, or possibly the exten-
sion, of the richness of the theory of one-dimensional languages to two dimensions. A first
attempt has been devoted to the study of two-dimensional languages defined by finite state
devices,with theaimof findingacounterpart ofwhat regular languagesare inonedimension.
Many approaches have been presented in the literature considering all ways to define regular
languages: finite automata, grammars, logic and regular expressions. In 1991, an unifying
point of viewwas presented byA. Restivo andD. Giammarresi who defined the family REC
of recognizable picture languages(see[7]). This class seems to be the candidate as “the”
generalizationof theclassof regular one-dimensional languages. IndeedREC iswell charac-
terized from very different points of view and thus inherits several properties from the class
of regular string (one-dimensional) languages. It is characterized in terms of projections
of local languages (tiling systems), of some finite-state automata, of logic formulas and of
regular expressionswith alphabeticmapping. The approach by regular expressions is indeed
not completely satisfactory: the concatenation and star operations involved there are partial
functions andmoreover an external operation of alphabetic mapping is needed. Then, in [7],
theproblemof statingaKleene-like theorem for the theoryof recognizablepicture languages
remains open.
Several papers were recently devoted to find a better formulation for regular expressions

for two-dimensional languages. In [15], O. Matz affords the problem of finding some more
powerful expressions to represent recognizable picture languages and suggests some regular
expressionswhere the iteration isover combinationsofoperators, rather thanover languages.
The author shows that the power of these expressions does not exceed the family REC, but
it remains open whether or not it exhausts it. In [18] some tiling operation is introduced
as extension of the Kleene star to pictures and a characterization of REC that involves
some morphism and the intersection is given. The paper [19] compares star-free picture
expressions with first-order logic.
The aim of this paper is to look for a homogenous notion of regular expression that

could extend more naturally the concept of regular expression of one-dimensional lan-
guages. In this framework, we propose some new operations on pictures and picture lan-
guages and study the families of languages that can be generated using classical and new
operations.
The paper focuses on one-letter alphabets. This is a particular case of the more general

case of several letter alphabets. However this is not only a simpler case to handle, but it is
a necessary and meaningful case to start. Indeed studying two-dimensional languages on
one-letter alphabets means to study the “shapes” of pictures: if a picture language is in REC
then necessarily the language of its shapes is in REC. Such approach allows us to separate
the twofold nature of a picture: its shape and its content.
Classical concatenation operations on pictures and picture languages are the row and

column concatenations and their closure. Regular expressions that use only Boolean op-
erations and this kind of concatenations and closure however cannot define a large num-
ber of two-dimensional languages in REC. As an example, take the simple language of
“squares” (that is pictures with number of rows equal to the number of columns). The
major problem with this kind of regular expressions is that they cannot describe any rela-
tionship existing between the two dimensions of the pictures. Such operations are useful
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to express some regularity either on the number of rows or on the number of columns
but not between them. This is the reason we introduce, in the one-letter case, a new con-
catenation operation between pictures: thediagonal concatenation. The diagonal concate-
nation introduces the possibility of constructing new pictures forcing some dependence
between their dimensions. Moreover an important aspect of the diagonal concatenation is
that it is a total function between pictures. This allows to find a quite clean double char-
acterization ofD-regular languages, the picture languages denoted by regular expressions
containing union, diagonal concatenation and its closure: they are exactly those picture
languages in which the dimensions are related by a rational relation and also exactly those
picture languages recognizable by particular two-dimensional automata moving only right
and down.
Unfortunately, an analogous situation does not hold anymore, when we also introduce

row and column concatenations in regular expressions, essentially because they are partial
functions. The class ofCRD-regular languages, the languages denoted by regular expres-
sions with union, column, row and diagonal concatenations and their closures, strictly lies
between the class of languages recognized by three-way deterministic automata and REC.
The main result forCRD-regular languages is a necessary condition regarding a sort of
“regularity” in the possible “extensions” of a picture in a given language to another bigger
picture in the language. In aCRD-regular language: if a picture is sufficiently “long” then
we can concatenate to it some picture infinitely often by columns; if a picture is sufficiently
“high” then we can concatenate to it some picture infinitely often by rows; if a picture is
sufficiently “big” then we can concatenate to it some picture infinitely often in diagonal.
This result generalizes in some sense what regularity implies in one-dimensional languages
over a one-letter alphabet.
We also provide a collection of examples classically considered in the literature, specify-

ing for each of themwhether they belong or not to the classes of two-dimensional languages
considered throughout the paper.
Examining some examples of languages not captured byCRDformalism, we find out that

the “extensions’’ of a picture cannot be obtained by iterating the concatenation of the same
picture, and this independently from the picture towhat we concatenate. On the contrary, for
some languages, a kind of iteration that generate pictures in a “non-uniform” way is needed,
indeed depending from the picture just obtained. This is a new situation with respect to the
one-dimensional case. Such considerations show the necessity of amore complex definition
for regular expressions in order to denote a wider class of two-dimensional languages in
REC. We introduce the definitions of someadvanced stars. They allow to capture a wider
class of languages, that still remains inside the class REC. All definitions are given in such
a way to synchronize the steps of iteration on a picture with the picture just constructed.
Observe that in this case we exploit the partial nature of column and row concatenation
operations.We conclude by discussing some ideas for extending all those definitions to the
general alphabet case.
The paper is organized as follows. In Section2we recall somepreliminary definitions and

results later used in the paper. Section 3 contains the main results: it presents our proposals
for possible classes of regular expressions.Moreover, it contains a table summarizing awide
collection of examples. In Section 4 we define new star operations that allow to describe
many more languages (over one-letter alphabet) in REC, while in Section 5 we draw some
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conclusions and proposals to extend results of this paper to two-dimensional languages over
general alphabets.
A preliminary version of this paper appeared in[1].

2. Preliminaries

In this section we recall terminology for two-dimensional languages. Then, we briefly
describe some machine-based model for recognizing two-dimensional languages and sum-
marize all major results concerning the classRECof recognizable two-dimensional lan-
guages, that is the one that seems to generalize better the family of regular string languages
to two dimensions.
Weassume the reader is familiarwith the basic terminology andproperties of the theory of

one-dimensional languages as can be found for example in [8].We will first introduce some
definitions about two-dimensional languages by borrowing and extending notation from the
theory of one-dimensional languages. Next, we will give formal definitions of the classical
concatenation operations between two-dimensional strings (pictures) and two-dimensional
languages. The notations used can be mainly found in [7].
Let � be a finite alphabet. Atwo-dimensional string(or a picture) over � is a two-

dimensional rectangular array of elements of�. The set of all two-dimensional strings over
� is denoted by�∗∗. A two-dimensional languageover� is a subset of�∗∗.
Given a picturep ∈ �∗∗, let �1(p) denote the number of rows ofp and�2(p) denote the

number of columns ofp. The pair(�1(p), �2(p)) is called thesizeof the picturep. Unlike
the one-dimensional case, we can define an infinite number of empty pictures namely all
the pictures of size(n,0) and of size(0,m), for allm, n�0, that we callempty columnsand
empty rows, and denote by�0,m and�n,0 respectively. Theempty pictureis the only picture
of size(0,0) and it will be denoted by�0,0. We indicate by�col and�row the language of
all empty columns and of all empty rows, respectively.
We give first some simple examples of two-dimensional languages.

Example 1. Let � = {a} be a one-letter alphabet. The set of pictures ofa’s with three
columns is a two-dimensional language over�. It can be formally described asL =
{p | �2(p) = 3} ⊆ �∗∗. As another example letL be the subset of�∗∗ that contains
all the pictures with a shape of “squares”. More formally,L = {p | �1(p) = �2(p)} ⊆ �∗∗.

We now recall theclassicalconcatenation operations between pictures and picture lan-
guages. Letp and q be two pictures over an alphabet�, of size (n,m) and (m′, n′),
m, n,m′, n′ �0, respectively.

Definition 2. Thecolumn concatenationof p andq (denoted byp ❡q) and therow con-
catenationof p andq (denoted byp ❡q) are partial operations, defined only ifn = n′ and
if m = m′, respectively and are given by

p ❡q = p q , p ❡q = p

q
.
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Moreover we setp ❡�n,0 = p andp ❡�0,m = p that is, the empty columns and the
empty rows are the neutral elements for the column and the row concatenation operations,
respectively.

As in the string language theory, these definitions of pictures concatenation can be ex-
tended to define concatenations between set of pictures. LetL1, L2 ⊆ �∗∗, thecolumn
concatenationand therow concatenationof L1 andL2 are defined respectively by

L1
❡L2 = {p ❡q| p ∈ L1, q ∈ L2} and L1

❡L2 = {p ❡q| p ∈ L1, q ∈ L2}.
By iterating the concatenation operations, we can define the columns and rowstransitive
closures, which are somehow“two-dimensional Kleene star”. LetL be a picture language.

Definition 3. The column closure(column star) and therow closure(row star) ofL are
defined as

L∗ ❡= ⋃
i�0

Li ❡
, L∗ ❡= ⋃

i�0
Li ❡

,

whereL0
❡=�col, L1

❡=L, Ln ❡=L ❡L(n−1) ❡
andL0

❡=�row, L1
❡=L, Ln ❡=

L ❡L(n−1) ❡
.

2.1. Automata for two-dimensional languages

In this section we briefly review different kinds of automata that read two-dimensional
tapes. All models reduce to conventional automata when restricted to operate on one-row
pictures.
One of the first attempts at formalizing the concept of “recognizable picture language”

was made by M. Blum and C. Hewitt who in 1967 introduced a model of finite automaton
that reads a two-dimensional tape (cf.[3]). A deterministic (non-deterministic) four-way
automaton, denoted by 4DFA (4NFA), is defined as an extension of the two-way automaton
that recognizes strings (cf. [8]) by allowing it to move in four directions:Left, Right, Up,
Down. For example, a 4DFA can recognize squares by starting its computation from top-left
corner of a given picture and going alternatively one step right one step down (i.e. following
the diagonal) till it reaches the bottom-right corner.
The families of picture languages recognized by some 4DFA and 4NFA are denoted by

L(4DFA) andL(4NFA), respectively. An important result (cf. [3]) states that, unlike in the
one-dimensional case, the familyL(4DFA) is strictly included in the familyL(4NFA). Both
familiesL(4DFA) andL(4NFA) are closedunderBooleanunion and intersection operations.
The familyL(4DFA) is also closed under complement, while forL(4NFA) this is not known.
From several points of view, four-way automata could appear as a reasonable model of

computation for two-dimensional tapes and they were widely studied, but they have amajor
bug. In fact, it can be proved that bothL(4DFA) andL(4NFA) are not closed under row and
column concatenation and closure operations [12].
In [14], aweakermodel called three-way automaton is also considered in the two versions

non-deterministic and deterministic (referred to as 3NFA and 3DFA, respectively) that is
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allowed to move right, left and down only. The familyL(3NFA) is strictly included in
L(4NFA).
Another interesting model of two-dimensional automaton is thetwo-dimensional on-line

tessellation acceptor(denoted by 2-OTA) introduced in[9]. In a sense the 2-OTA is an
infinite array of identical finite-state automata in a two-dimensional space. The computa-
tion goes by diagonals starting from top-left towards bottom-right corner of the picture.
Depending on the corresponding kinds of automata we can have a deterministic or a non-
deterministic version of 2-OTA.Despite the fact that thismodel is quite different in principle
from four-way automaton, also in this case the family of languages corresponding to a deter-
minist 2-OTA is strictly included in the one corresponding to the non-deterministic model.
In [9] it is proved that the family of two-dimensional languages recognized by a 2-OTA,

L(2-OTA) is closed under union and intersection and also under row/column concatenation
and row/column star while it is not closed under complement. MoreoverL(2-OTA) properly
includes familyL(4NFA). The only trouble with this 2-OTAmodel is that it is quite difficult
to manage.

2.2. Tiling systems and the class REC

A different way to define (recognize) picture languages was introduced byA. Restivo and
D. Giammarresi in [6]. It generalizes the characterization of regular languages by means
of local strings language and alphabetic mapping to two dimensions (the local set together
with the mapping is an alternative description of the state graph of an automaton).
We recall that a local language of strings is defined by means of a finite set of strings

of length 2. As natural generalization, a local picture languageL over an alphabet� is
defined by means of a finite set� of pictures of size(2,2) (calledtiles) that represent all
allowed sub-pictures for the pictures inL. To be more precise, such set� is defined over
� ∪ {#} where # is a border symbol that we assume always to surround all the pictures. A
tiling systemfor a languageL over� is a pair of a local language over an alphabet� and
an alphabetic mapping� : � → �. The mapping� can be extended in the obvious way
from the alphabet� to pictures over� and to picture languages over�. Then, we say that
a languageL ⊆ �∗∗ is recognizable by tiling systemsif there exists a local languageL′
over� and a mapping� : � → � such thatL = �(L′). The family of two-dimensional
languages recognizable by tiling systems is denoted by REC.
As an example, consider again the languageL of squares over a one-letter alphabet� =

{a}. ThenL is in REC since it can be obtained as�(L′), whereL′ is the language of squares
over� = {0,1} that have 1 in the diagonal positions and 0 elsewhere and�(0) = �(1) = a.
The family REC is closed under Boolean union and intersection but not under comple-

ment. It is also closed under all row and column concatenations and stars. Moreover, by
definition, it is closed under alphabetic mappings. This notion of recognizability by tiling
systems turns out to be veryrobust: in [11], it is proved that REC= L(2-OTA). Moreover
finite tiling systems have also a natural logic meaning: in [7] it is shown that the family REC
and the family of languages defined by existential monadic second order formulas coincide.
And this is actually the generalization of Büchi’s theorem for strings to two-dimensional
languages. The class REC can also be characterized in terms of regular expressions, as
specified in Section 2.3.
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2.3. Regular expressions and the class REC

The characterizations of the family REC show that the family REC captures in some
sense the idea of unification of the concept of recognizability from the two different points
of view of descriptive and computational models, that is one of the main properties of the
class of recognizable string languages. It seems thus natural to ask whether one can prove
also a sort of two-dimensional Kleene’s Theorem. Using row and column concatenations
and closure operations, it is possible to express two-dimensional languages by means of
simpler languages. Nevertheless it can be observed that such classical operations are useful
to express some regularity either on the number of rows or on the number of columns, but
they cannot describe any relationship existing between the two dimensions of the pictures.
As an example, already in the case of a one-letter alphabet, we have that languages such
as the language of “squares’’ (see Example1) cannot be described using only classical
operations. More precisely, O. Matz [15] has characterized the class of languages that can
be obtained starting from finite languages and applying Boolean operations, column and
row concatenations and stars, as the class of languages that are a finite union of Cartesian
products of ultimately periodic string languages.
Furthermore, it can be shown (cf. [7]) that to describe the whole class REC we need to

allow also the alphabet mapping between the regular operations. This characterization of
REC in terms of regular expressions seems not completely satisfactory, because it is not
purely constructiveand involves someexternal operations.Therefore theproblemof proving
a sort of two-dimensional Kleene’s Theorem, is still under investigation. Furthermore such
considerations are a clear sign that, going from one to two dimensions we find a very rich
family of languages that need a non-straightforward generalization of the one-dimensional
definitions and techniques.
In the next section we are going to define a new operation on picture languages and

consider the class of languages that can be thereby denoted.

3. The diagonal concatenation and related regular expressions

In this section we introduce a new operation on picture languages over a one-letter alpha-
bet. We propose some different types of regular expressions involving the new operation,
comparing the resulting classes of languages obtained with known families of picture lan-
guages. Through all the section, we assume to be in the case of languages over one-letter
alphabet� = {a}.

Remark 4. When a one-letter alphabet� is considered, any picturep ∈ �∗∗ is character-
ized only by its size. Therefore it can be equivalently represented either by a pair of words
in �∗, where the first one is equal to the first column ofp and the second one to the first
row of p, i.e.(a�1(p), a�2(p)), or simpler by its size, i.e.(�1(p), �2(p)).

Remark 5. The one-letter alphabet case means to consider the “shapes” of pictures. In-
deed ifL ⊆ �∗∗, with |�|�2, is in REC then the language obtained by mapping� into
a one-letter alphabet{a}, is still in REC, since REC is closed under alphabetic mappings.
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Therefore for a language in REC, it is a necessary condition that the language of its shapes is
in REC.

Let us denote byCR = {∪, ❡, ❡, ∗ ❡, ∗ ❡} the set of classical operations on picture
languages (C for “columns” andR for “rows”), and byL(CR) the class of languages (over
a one-letter alphabet) that can be denoted by a regular expression involving only operations
in CR and starting from finite languages. O. Matz[15] has characterizedL(CR) as the
class of languages that are a finite union of Cartesian products of ultimately periodic string
languages and he has shown thatL(CR) is closed under intersection.

3.1. D-regular expressions

We introduce a new simple definition of concatenation of two pictures in the particular
case of one-letter alphabet. The definition is motivated by the necessity of an operation
between pictures that could express some relationship existing between the dimensions of
the pictures. We use this new concatenation to construct some regular expressions and to
define a class of languages. This class is characterized in terms of the relations between the
dimensions of the pictures and in terms of the four-way automata recognizing them.
Let p andq be two pictures of size(n,m) and (n′,m′) respectively over a one-letter

alphabet.

Definition 6. Thediagonal concatenationof p andq (denoted byp ❡\ q) is a picture over
� of size(n + n′,m + m′). It can be represented by

p ❡\ q = p

q
.

Observe that, unlike the classical row and column concatenation, the diagonal concate-
nation is a total operation. As usual, it can be extended to define the diagonal concatenation
between languages. Moreover the Kleene closure of❡\ can be defined as follows. LetL be
a picture language over a one-letter alphabet.

Definition 7. Thediagonal closureor diagonal starof L (denoted byL∗ ❡\ ) is defined as

L∗ ❡\ = ⋃
i�0

Li ❡\
,

whereL0
❡\ = {�0,0}, L1 ❡\ = L, Ln ❡\ = L ❡\ L(n−1) ❡\ .

Example 8. LetLn,n be the languageof squares (seeExample1) that isLn,n = {p |�1(p) =
�2(p)�0}. It can be easily shown thatLn,n = {(1,1)}∗ ❡\ = {�0,1 ❡\ �1,0}∗ ❡\ , observing
that�0,1 ❡\ �1,0 is the picture(1,1).

Example 9. LetL2n,2m be the languageof rectangularpictureswithevendimensions, that is
L2n,2m = {p | l1(p) = 2n, l2(p) = 2m, n,m�0}.Wehave thatL2n,2m = {{(2,2)}∗ ❡}∗ ❡

,
and alsoL2n,2m = {�0,2}∗ ❡\ ❡\ {�2,0}∗ ❡\ , using the diagonal concatenation.
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Proposition 10. The family REC is closed under diagonal concatenation and diagonal
star.

Proof. The proof uses similar techniques to the one for the closure of REC under row (or
column) concatenation and star (see[6] for more details). A tiling system forL = L1

❡\ L2
can be defined as follows. Let the local languages forL1 andL2 be given by a set of tiles
�1 over an alphabet�1 and a set of tiles�2 over an alphabet�2, respectively. Moreover
we can always assume that�1 and�2 are disjoint. Then, the local language forL is defined
over the alphabet�1∪�2∪ {x}, wherex is a new symbol not in�1∪�2. The set of tiles�

is defined, using�1 and�2 in a way to represent pictures
p s

s′ q
, wherepandqbelongs

to the local languages ofL1 andL2, respectively, ands, s′ are pictures containing allx. For
example, the non-border tiles of� consist of all non-border tiles in�1 and�2 plus the tile
containing allx plus tiles obtained by replacing byx all border symbols in all right-border
and bottom-border tiles in�1 and all left-border and top-border tiles in�2, plus tiles like

a x

x b
, whereaandbare symbols in bottom-right corner tiles of�1 and top-left corner tiles

of�2, respectively. Observe that the last mentioned tiles are those that “glue’’bottom-right

corners of pictures inL1 to top-left corners of pictures inL2. Finally, the projection from
� to� maps all symbols to the unique symbol in�.
Regarding the closure under diagonal star, the tiling system forL

❡\ ∗ can be defined as
above using two different local languages (i.e. over disjoint local alphabets) forL. �

The diagonal concatenation can be used to generate families of picture languages, starting
fromatomic languages. Formally, let usdenoteD={∪, ❡\ , ∗ ❡\ }; theelements ofDare called
diagonal-regular operations, brieflyD-regular operations.

Definition 11. A diagonal-regular expression(D-RE) is defined recursively as follows:
(1) ∅, (�0,0), (�0,1), (�1,0) areD-RE.
(2) if �,� areD-RE then(�) ∪ (�), (�) ❡\ (�), (�)∗ ❡\ areD-RE.

EveryD-REdenotesa languageusing thestandardnotation. LanguagesdenotedbyD-RE
are calleddiagonal-regular languages, brieflyD-regular languages. The class ofD-regular
languages is denoted byL(D). Observe that languages containing a single picture(n,m)

can be denoted by theD-REEn,m = (�n
❡\

1,0 )
❡\ (�m

❡\
0,1 ).

We will now characterizeD-regular languages in terms of rational relations and in terms
of some4FA.For this, let us recall that (see[2]) arational relationover alphabets�and	 is a
rational subset of themonoid(�∗×	∗, ., (�, �)), where theoperation. is the componentwise
product defined by(u1, v1) (u2, v2) = (u1u2, v1v2) for any(u1, v1), (u2, v2) ∈ �∗ × 	∗.
When the alphabet is� = 	 = {a}, there is a natural correspondence between pictures
over� and relations over� × �. For any relationT ⊆ �∗ × �∗ we define the picture
language:

L(T ) = {p| �1(p) = |r1| and �2(p) = |r2| for some (r1, r2) ∈ T }.
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Vice versa for any picture languageL ⊆ �∗∗ we define the relation:

R(L) = {(r1, r2) ∈ �∗ × �∗| |r1| = �1(p) and |r2| = �2(p) for somep ∈ L}.

Remark 12. We recall that a 4NFAM over a one-letter alphabet is equivalent to a two-way
two-tape automatonM1 (cf. [10]). In fact, letH1 andH2 be the first and the second heads
ofM1 respectively, thenM1 simulatesM as follows. If the input headH ofMmoves down
(up) one square,M1 movesH1 right (left) one square without movingH2, and ifH moves
right (left) one square,M1 movesH2 right (left) without movingH1.

Proposition 13. Let� be a one-letter alphabet and letL ⊆ �∗∗. Then L is a D-regular
language if and only ifL = L(T ) for some rational relationT ⊆ �∗ × �∗ if and only if
L = L(A) for some4NFA A that moves only right and down.

Proof. In light of Remark4, the componentwise concatenation inM = �∗ × �∗ exactly
corresponds to the diagonal concatenation in�∗∗. It is well-known that a rational subset
of any monoidM is either empty or can be expressed, starting with singleton, by a finite
number of the (rational) operations∪, . (product) and.-closure (star). ThusL is aD-regular
language if and only ifL = L(T ) for some rational relationT ⊆ �∗ × �∗. On the other
hand, it is well-known thatT ⊆ �∗ × �∗ is a rational relation iff it is accepted by a (finite)
transducer, that is a (finite) automaton over�∗ × �∗. Further such an automaton can be
viewedasa (finite) one-wayautomatonwith two tapes (cf. [17]). Then, in analogy toRemark
12, one-way two-tape automata are equivalent to 4NFA that move only right and down.�

Example 14. Let Ln,n be the language of squares, as in Example8. We haveLn,n ∈
L(D). Indeed it can be easily shown thatLn,n is denoted by the followingD-RE:En,n =
(�0,1 ❡\ �1,0)∗

❡\ .We haveLn,n=L(T ), whereT is the rational relationT={(an, an) | n�0}.
FurtherL = L(A) whereA is the 4NFA that, starting in the top-left corner, moves along
the main diagonal until it eventually reaches the bottom-right corner and accepts. More
generally, the languagesLn,n+i = {p | l1(p) = n, l2(p) = n + i, n�1}, for somei�0,
are denoted by theD-RE:En,n+i = En,n

❡((E1,i )
∗ ❡

), whereE1,i = (�i
❡\

0,1
❡\ �1,0) denotes

the language{(1, i)}.

Example 15. Let L2n,2m be the language of even sides pictures, as in Example9, that is
L2n,2m = {p ∈ �∗∗ | l1(p) = 2n, l2(p) = 2m, n,m�0}. We have thatL2n,2m = L(T ),
whereT is the rational relationT = {(a2n, a2m) | n,m�0}. FurtherL = L(A), whereA
is the 4NFA that, starting in top-left corner, moves down checking the parity of the number
of rows and then to the right checking the parity of the number of columns, eventually
accepting in the bottom-right corner. ThereforeL ∈ L(D). IndeedL ∈ L(CR) because of
the characterization ofL(CR) given in [15].

Corollary 16. L(CR) ⊂ L(D).

Proof. Following [15], L(CR) is the class of languages that are a finite union of
Cartesian products of ultimately periodic string languages. LetL ∈ L(CR) and suppose
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L = ⋃
i=1,...,kAi × Bi . ThenL can be recognized by a 4NFA (that moves only right and

down) that non-deterministically checks whether a picture belongs to someAi ×Bi check-
ing first the belonging of the first row toAi and then the belonging of the last column toBi .
HenceL ∈ L(D) by Proposition13.
Moreover the inclusion is strict since for example the language of squares is inL(D) (see

Example 14) and it is not inL(CR) since it is not a finite union of Cartesian products of
ultimately periodic string languages.�

In the same way thatL(D) corresponds to the class of rational relations,L(CR) corre-
sponds to its subclass of recognizable relations.

Corollary 17. L(D) is closed under intersection and complement.

Proof. The result follows from the characterization ofL(D) in terms of rational relations in
Proposition13, and from the closure under intersection and complement of rational relations
over a one-letter alphabet [2].�

The following example shows that, also in the case of a one-letter alphabet, four-way
automata that move only right and down are strictly less powerful than 3DFA.

Example 18. Let L be the following picture language over a one-letter alphabet:L =
{(kn, n)| k, n�0}. LanguageL can be easily recognized by a 3DFA that, starting in the
top-left corner moves along the main diagonal until it reaches the right boundary and then
moves along the secondary diagonal until it reaches the left boundary and so on until it
eventually reaches the bottom-right corner and accepts. By Proposition13, languageL
cannot be recognized by a four-way automaton that moves only right and down, since
{(akn, an)| k, n�0} is not a rational relation (see [4]).

3.2. CRD-regular expressions

In this section we consider regular expressions that involve columns, rows and diagonal
concatenations and stars defined in previous sections. We refer to them asCRD-regular
expression. We show that, in the case of one-letter alphabet, the classL(CRD) of corre-
sponding languages is strictly included in the family REC, and strictly containsL(3DFA).
Further we show that there are languages accepted by a four-way automaton that do not
belong toL(CRD). The main result is a necessary condition for languages inL(CRD) that
expresses a sort of “regularity” on the possible “extensions” of a picture (pictures containing
the given one as a subpicture) inside the language.
Let us denoteCRD= {∪, ❡, ❡, ❡\ , ∗ ❡, ∗ ❡, ∗ ❡\ }, whereC, R, D stand for “column”,

“row” and “diagonal”. The elements ofCRDare calledCRD-regular operations.

Definition 19. A CRD-regular expression(CRD-RE), is defined recursively as follows:
(1) ∅, (�0,0), (�0,1), (�1,0) areCRD-RE.
(2) if �,� areCRD-RE then(�)∪ (�), (�) ❡(�), (�)∗ ❡

, (�) ❡(�), (�)∗ ❡
, (�) ❡\ (�), (�)∗ ❡\

areCRD-RE.
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EveryCRD-RE denotes a language using the standard notation. Languages denoted by
CRD-RE are calledCRD-regular languages. The family ofCRD-regular two-dimensional
languages (over one-letter alphabets) will be denoted byL(CRD). Observe thatL(CRD) is
contained inREC, sinceREC is closed under operations inCRD.Amore precise positioning
of L(CRD) inside REC is established in Proposition30 below.

Example 20. LetL = {(n, k1(n+1)+k2(n+2)+k3(n+3)) | n, k1, k2, k3�0}. Consider
the languagesLn,n+i denoted by theD-RE:En,n+i = En,n

❡((E1,i )
∗ ❡

), as in Example
14. LanguageL ∈ L(CRD) since it can be denoted by the followingCRD-RE: E =
E∗ ❡

n,n+1 ❡E∗ ❡

n,n+2 ❡E∗ ❡

n,n+3.

Example 21. Let L = {(hn, hkn + n) | n, h, k�0}. LanguageL belongs toL(CRD).
IndeedL = L1

❡L2, whereL1 = {(n, kn) | n, k�0} andL2 = {(hm,m) | m,h�0}.
If En,n is a D-RE for the languages of squares (see Example14), aCRD-RE for L is
E = (E∗ ❡

n,n )
❡(E∗ ❡

n,n ).

We now present some “regularity’’ conditions necessarily satisfied byCRD-regular lan-
guages.Theygeneralize in somesensewhat regularitymeans forone-dimensional languages
in what concerns the possible extensions of a picture inside a regular language. Indeed it is
well-known that a string language over a one-letter alphabet� = {a} is regular if and only
if it is ultimately periodic. In particular ifL ⊆ {a}∗ is a regular language andan ∈ L is a
sufficient long string then there exists a stringam such thatan(am)∗ ⊆ L. We show that a
generalization of this necessary condition holds for two-dimensional languages inL(CRD):
if a picture is sufficient “long” then we can concatenate to it some picture infinitely often
by columns; if a picture is sufficient “high’’ then we can concatenate to it some picture
infinitely often by rows; if a picture is sufficient “big” then we can concatenate to it some
picture infinitely often in diagonal.
Let� = {a} andL ⊆ �∗∗. Let us define for anyn,m�0, the following string languages:

Cn = {am | (n,m) ∈ L} andRm = {an | (n,m) ∈ L}.

Proposition 22. LetL ⊆ {a}∗∗ andL ∈ REC. Then for anyn,m�0,Cn,Rm are regular
languages.

Proof. For any alphabet�, and fixedn, the fixed-height-nword language ofL ⊆ �∗∗ is the
languageL(n) over the alphabet�n,1, of all the strings of columns of heightn that compose
pictures inL. In [16], it is shown that ifL is in REC, thenL(n) is regular, for any alphabet
�, and any integern. In the special case of an alphabet of a single letter, we can identify
any column in{a}n,1 with aand we have thatL(n) is regular iffCn is regular. An analogous
reasoning implies the regularity ofRm. �

The proof of the following proposition is only sketched here; a more complete proof is
given in Appendix A.

Proposition 23. Let L be a CRD-regular language. Then there exist

, �, 
, � : N → N, �, : N × N → N increasing functions andn, m ∈ N such
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that for anyp = (n,m) ∈ L we have
(1) if m > 
(n) thenp ❡q∗ ❡⊆ L for q = (n,
(n)) with
(n) �= 0,
(2) if n > �(m) thenp ❡q∗ ❡⊆ L for q = (�(m),m) with�(n) �= 0,
(3) if n�n, m�m thenp ❡\ q∗ ❡\ ⊆ L for someq = (nq,mq) with nq,mq �= 0, nq �

�(n,m),mq �(n,m).

Proof (Sketch). First we show how to choose the functions
, �, 
, �. From Proposition
22, we know that the setsCn = {am | (n,m) ∈ L} andRm = {an | (n,m) ∈ L} are regular
and therefore ultimately periodic. So we can define
 (�, resp.) in relation to the steam of
the minimal automaton ofCn (Rm, resp.) and
 (�, resp.) related to the period ofCn (Rm,
resp.), in such a way to ensure that such functions be increasing functions.
Now we sketch how to choosen,m, � and for aCRD-regular languageL, by induction

on the number of operators in aCRD-regular expressionr that denotesL.
For the basis, ifL = ∅ then the proposition is vacuously true. IfL = {�0,0}, orL = {�0,1},

or L = {�1,0}, then we can choosen, m, � and in such a way the proposition is always
vacuously true, having care to define
(n) = 1,�(m) = 1,�(n,m) = (n,m) = 1 so that
q �= �0,0.
Suppose nowr > 0. There are seven different cases depending on the form ofr: r =

r1 ∪ r2, r = r1
❡r2, r = r1

❡r2, r = r1
❡\ r2, r = r∗ ❡

1 , r = r∗ ❡

1 , or r = r∗ ❡\
1 . In any of

the seven cases,r1 andr2 denote some languageL1 andL2, respectively, that satisfies the
conditions. Let
i , �i , 
i , �i , �i , i , ni , mi be the functions and the values forLi , with
i = 1,2.
The valuesn, andm for L are chosen in such a way that a “big” picture (i.e.p = (n,m)

with n�n andm�m ) in L always decomposes in some pictures inL1 and inL2 that are
either “big” or “long” (i.e.m > 
i (n), for i = 1,2) or “high” (i.e.n > �i (m), i = 1,2).
Thereforen may depend onn1, n2, but also on the other functions ofL1 andL2. As an
example, whenL = L1

❡\ L2 then any “big”p = p1
❡\ p2, wherep1 ∈ L1, p2 ∈ L2 can be

such thatp1 andp2 are either both “big”, or one of fixed size and the other one “big” or
one “high” and the other one “long”.
The functions�,  ensure a limitation on the size of pictureq that can be diagonal

concatenated infinitely many times to a bigp. Such pictureq is constructed from some
corresponding picturesq1 for p1 andq2 for p2. The major problem is due to the partiality
of column and row concatenations that requires thatq1 andq2 must have same number of
rows or columns. This problem is solved by concatenatingq1 andq2 with itself as many

times as necessary. For exampleq
❡k1
1 andq

❡k2
2 have same number of rows if we choose

k1 = �1(q2) andk2 = �1(q1) (a more refined version could consider a lowest common
multiple).
A special care is due to handle also the case wherep is an empty column or an empty

row. �

The regularity conditions in Proposition 23 are stated in such a way a finite number of
pictures that could “disturb” this regularity are put away, by properly defining the limitation
on the size (namelyn, m, 
, �). Observe that such “small” pictures may indeed have
an infinite number of extensions in some direction (horizontal, vertical, diagonal). This
situation is illustrated in the following Example 24.
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Example 24. For a languageL1 = {(n0,m0)} consisting of a single picture, the functions

1, 
1, �1, �1, �1, 1 and integersn1,m1 as in Proposition23 can be chosen as
1(n) =
m0, �1(m) = n0, 
1(n) = �1(m) = �1(n,m) = 1(n,m) = 1, n1 = n0 + 1, and
m1 = m0 + 1. Indeed the conditions (1), (2) and (3) in the proposition will be vacuously
true. Consider now the language of squaresL2 = Ln,n = {p | �1(p) = �2(p)�0}. The
functions
2,
2,�2,�2,�2, 2 and integersn2,m2 as in Proposition 23 forL2 can be
chosen as follows:
2(n) = �2(n) = n, 
2(n) = �2(n) = 1, n2 = m2 = 0, and
�2(n,m) = 2(n,m) = 1. Finally, considerL = L1∪L2 = {(n0,m0)}∪Ln,n and suppose
(n0,m0) �∈ L2. According to Proposition 23 (case 1), the functions
,
,�,�,�,  and
integersn,m are the following:
(n) = max{n,m0}; 
(n) = 1; �(m) = max{n0,m};
�(n) = 1; n = max{n1, n2} = n0 + 1; m = max{m1,m2} = m0 + 1; �(n,m) =
max{�1(n,m),�2(n,m)} = 1 and(n,m) = max{1(n,m), 2(n,m)} = 1. Observe that,
even if the picture(n0,m0) have an infinite number of extensions, we cannot find some
pictureq that can be concatenate infinitely often in diagonal. The choice ofn andm is made
in such a way(n0,m0) does not satisfy the conditionsn0�n andm0�m, and it does not
“disturb” the regularity ofL.

Remark 25. In Proposition23 we state that for anyp there exists a pictureq that can be
concatenate top as many times as we want. This picture may indeed depend onp as shown
in the following Example 26.

Example 26. Let L = {(kn, n) | k, n�0} = (Ln,n)
∗ ❡
, whereLn,n is the language of

squares. The functions
,
,�,�,�,  and integersn,m as in Proposition23 can be chosen
as follows:
(n) = n, �(m) = 0,
(n) = 1,�(m) = max{m,1}, n = m = 0, �(n,m) =
max{m,1} and(n,m) = 1. Remark that the size of pictureq in casep = (n,m) with
n > �(m) or n�n,m�m, depends on the size ofp. This situation is indeed unavoidable.
For example, whenp = (k′n′, n′), any q = (nq, n

′) such thatp ❡q∗ ❡ ⊆ L is such
that q = (k′′n′, n′), thus depending on the number of columns ofp, as pointed out in
Remark 25.

Example 27. Let L = {(hn, hn + n) | n, h�0}. We haveL = Ln,n
❡(Ln,n)

∗ ❡
, where

L1 = Ln,n is the language of squares. The functions
1,
1,�1,�1,�1, 1 and integers
n1,m1 as in Proposition23 for L1 can be chosen as follows:
1(n) = �1(n) = n,

1(n) = �1(n) = 1, n1 = m1 = 0, and�1(n,m) = 1(n,m) = 1. The functions

2,
2,�2,�2,�2, 2 and integersn2,m2 as in Proposition 23 forL2 = (Ln,n)

∗ ❡
can

be chosen as follows:
2(n) = n, �2(m) = 0, 
2(n) = 1, �2(m) = max{m,1}, n2 =
m2 = 0, �2(n,m) = max{m,1} and2(n,m) = 1. According to Proposition 23 (case
2), the functions
,
,�,�,�,  and integersn,m are the following ones:
(n) = 2n;

(n) = 1; �(m) = m − 1; �(n) = 1; n = 1; m = 0; �(n,m) = max{m,1} and fi-
nally (n,m) = max{m,1} + 1. Observe that Proposition 23 ensures that, for any picture
p = (n′,m′) = (hn, hn+n)with n′ �1,m′ �0, there existsq = (nq,mq)with nq,mq �= 0,
nq �max{m′,1}, mq �max{m′,1} + 1 such thatp ❡\ q∗ ❡\ ⊆ L. Indeed such a picture can
be chosen asq = (n, n), that really satisfiesn�m′ = hn+n andn�m′ +1= hn+n+1.
For example, in Fig. 1, givenp1 = (6,6) ∈ L1 we chooseq1 = (1,1) andp1 ❡\ q∗ ❡\

1 ⊆ L1.
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1
q

q2

q
1

p
2

p
1

Fig. 1. Extensions ofp1, p2 andp as in Example27.

Givenp2 = (6,2) ∈ L2 we chooseq2 = (2,2) and we havep2 ❡q∗ ❡

2 ⊆ L2.Then, if we
considerp = p1

❡p2 we can chooseq = (2,2) according to Proposition23 (case 2) and
we havep ❡\ q∗ ❡\ ⊆ L.

Proposition 23 can be used to prove that some picture languages are notCRD-regular
languages, as shown in the following examples.

Example 28. Let L = {(n, n2) | n�0}. We show thatL �∈ L(CRD), proving that it
does not satisfy the condition (3) in Proposition23. Indeed suppose on the contrary that
there existn,m ∈ N, �,  : N → N as in the proposition. Observe that inL, for any
n�0, there is only one picture withn rows and one picture withn2 columns. Hence the
pictures ofL with number of rows less than or equal ton or number of columns less
than or equal tom are in a finite number. SinceL is infinite, then there exists a picture
p = (n, n2) ∈ L such thatn > n andn2 > m. Therefore there existsq = (nq,mq)

with nq,mq �= 0 such thatp ❡\ q∗ ❡\ ⊆ L. Considerp1 = p ❡\ q = (n + nq, n
2 + mq).

We must have thatn2 + mq = (n + nq)
2 and thusmq = (n + nq)

2 − n2. Consider now
p2 = p ❡\ q ❡\ q = (n+2nq, n2+2mq); we have thatn2+2mq = n2+2(n+nq)

2−2n2 =
n2 + 4nnq + 2n2q �= (n + 2nq)2 (sincenq �= 0) againstp2 ∈ L.

Example 29. LetL = {(2n,2n) | n�0}. We show thatL �∈ L(CRD), proving that it does
not satisfy the condition (3) in Proposition23. Indeed, suppose on the contrary that there
existn,m ∈ N, �,  : N → N as in the proposition. Observe that inL, for anyn�0, there
is only one picture with 2n rows and one picture with 2n columns. Hence the pictures of
L with number of rows less than or equal ton or number of columns less than or equal to
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m are in finite number. SinceL is infinite, then there exists a picturep = (2n,2n) ∈ L

such that 2n > n and 2n > m. Therefore there existsq = (nq,mq) with nq,mq �= 0
such thatp ❡\ q∗ ❡\ ⊆ L. Considerp1 = p ❡\ q = (2n + nq,2n + mq). Sincep1 ∈ L,
we have that 2n + nq = 2n + mq = 2n+k for somek �= 0 (sincenq �= 0) and thus
nq = mq = 2n+k − 2n. Consider nowp2 = p ❡\ q ❡\ q = (2n + 2nq,2n + 2mq); we have
that 2n + 2mq = 2n + 2(2n+k − 2n) = 2n(1+ 2k+1 − 2) = 2n(2k+1 − 1). Therefore
2n +2mq is the product of a power of 2 times an odd number different from 1 and it cannot
be a power of 2, againstp2 ∈ L.

We now show that the family ofCRD-regular languages lies between the classL(3DFA)
and REC. On the other hand, there are languages that belong toL(4NFA) and that are not
CRD-regular.

Proposition 30. L(3DFA) ⊂ L(CRD) ⊂ REC.

Proof. Let L ∈ L(3DFA). Following[14] we have thatL is a finite union of languagesR
whose elements are(f, g), wheref = a0 + a1n andg = h(b0 + b1n) + b2n + b3k +
b4 with a0, a1, b0, b1, b2, b3, b4 positive integers andn, h, k positive integers variables.
We show that any languageR of this form is inL(CRD). Let En,n a CRD-RE for the
language of squares (see Example 14). The languageLa0,a1,b0,b1 = {(a0 + a1n, b0 +
b1n) | a0, a1, b0, b1, n ∈ N} can be denoted by theCRD-RE Ea0,a1,b0,b1 = ((a0, b0)

❡\

((En,n)
a1

❡
)b1

❡
). ThenE=(Ea0,a1,b0,b1)

∗ ❡
❡((a0,1)∗

❡
❡E0,a1,0,b2)

❡(((1, b3)∗
❡
)∗ ❡

)
❡((1, b4)∗

❡
) is aCRD-RE for languageR. Moreover the inclusionL(3DFA)⊂ L(CRD)

is strict: in fact the languageL = {n, k1(n + 1) + k2(n + 2) + k3(n + 3)} in Example 20
is in L(CRD), but it cannot be recognized by a 3DFA (cf. [14]).CRD-regular languages
are contained in REC because REC is closed under union, column and row concatenations
and stars (cf. [6]) and under diagonal concatenation and star (cf. Proposition 10). Moreover
there can be found examples of languages in REC that are notCRD-regular languages as
languageL = {(2n,2n) | n�0} (see Example 29) orL = {(n, n2) | n�0}. �

Regarding the comparison with the class of languages recognized by four-way au-
tomata, consider languageL = {(2n,2n) | n�0 }. As shown in Example 29,L is not
a CRD-regular language, but J. Kari and C. Moore [13] showed thatL is recognized by
a 4DFA. On the other hand, the classL(4DFA) seems not closed under concatenation
and star operations (despite the case of one-letter alphabet is still open, it seems that
for example the column closure of language in Example 21 cannot be recognized by a
4NFA).

3.3. A collection of examples

In this section, we give a collection of examples of two-dimensional languages and
classify them with respect to their machine-type and regular expression-type. Languages
are given by their representative element, wheren,m, h, k�1 are integer variables and
c�1 is an integer constant. Moreoverf1(n) = a1 + · · · + an, wherea1, . . . , an are all
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chosen in a finite subset ofN, andf2(n) = k1(n + 1) + k2(n + 2) + k3(n + 3), where
k1, k2, k3�1 are integer variables.
Element 2DFA 2NFA 3DFA 3NFA 4DFA 4NFA D-RE CRD-RE REC

(n, n) Y Y Y Y Y Y Y Y Y
(2,2n) Y Y Y Y Y Y Y Y Y
(2n,2n) Y Y Y Y Y Y Y Y Y
(2n,2m) Y Y Y Y Y Y Y Y Y
(n, cn) Y Y Y Y Y Y Y Y Y
(n, f1(n)) N Y Y Y Y Y Y Y Y
(kn, n) N N Y Y Y Y N Y Y
(n, f2(n)) N N N Y Y Y N Y Y
(n, kn) N N N N Y Y N Y Y
(2n,2n) N N N N Y Y N N Y
(hn, hkn + n) N N N N N Y N Y Y
(n, n2) N N N N N N N N Y
(n2, n) N N N N N N N N Y
(n2, n2) N N N N N N N N Y
(n,2n) N N N N N N N N Y
(n, n!) N N N N N N N N N

4. Advanced star operations

Using the three types of concatenation operations (row, column and diagonal) and the
three corresponding stars we get regular expressions describing a quite large family of two-
dimensional languages over one-letter alphabet. Unfortunately, all those operations together
are not enough to describe the whole family REC because in REC there are very “complex’’
languages even in the case of one-letter alphabet. For example, REC contains languages of
the formL = {(n, f (n)) | n > 0}, as well asL = {(f (n), g(n)) | n > 0}, wheref (n), g(n)
are polynomial or exponential functions inn (see[5] for details).
Observe that the peculiarities of the “classical’’star operations (alongwhich such column,

row or diagonal stars are defined) are mainly the following: (a) they are a simple iteration
of one kind (row- or column- or diagonal-) of concatenation between pictures; (b) they
correspond to an iterative process that at each step adds (concatenates) always the same set.
We can say that they correspond to the idea of the iteration for some recursiveH defined as
H(1) = S andH(n + 1) = H(n)S, whereS is a given set.
In this section we define new types of iteration operations, to which we will refer as

advanced stars, that result much more powerful than the “classical’’ ones. We will use
subscripts “r”and “d” with the meaning of “right” and “down’’, respectively.

Definition 31. LetL,Lr, Ld be two-dimensional languages. Thestar of L with respect to
(Lr, Ld) is defined as

L(Lr,Ld)∗ = ⋃
i�0

L(Lr,Ld)i ,
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whereL(Lr,Ld)0 = {�0,0}, L(Lr,Ld)1 = L and

L(Lr,Ld)i+1 =
{
p′ = p pr

pd q
| p ∈ L(Lr,Ld)i , pr ∈ Lr, pd ∈ Ld, q ∈ �∗∗

}
.

Remark that the operation we defined cannot be simulated by a sequence of❡ and
❡ operations because to getp′ we first concatenatep ❡pr andp ❡pd, then we overlay
them and finally we fill the “hole’’ with a pictureq ∈ �∗∗. For this reason this defini-
tion is conceptually different from the one given by O. Matz in[15]. Moreover, observe
that such advanced star is based on a reverse principle with respect to the diagonal star:
we “decide’’ what to concatenate to the right and down to the given picture and then fill
the hole in the bottom-right corner. This implies that, at (i + 1)th step of the iteration,
we are forced to select picturespr ∈ Lr andpd ∈ Ld that have the same number of
rows and the same number of columns, respectively, of pictures generated at theith step.
Therefore, we actually exploit the fact that column and row concatenations are partial op-
erations to somehowsynchronizeeach step of the iteration with thechoiceof pictures inLr
andLd.
We now state the following proposition.

Proposition 32. If L,Lr, Ld are languages in REC, thenL(Lr,Ld)∗ is in REC.

Proof. We give only few hints for the proof because it can be carried over using the tech-
niques shown in the proof of Proposition10. The idea is to assume that the tiling systems for
L,Lr, Ld are over disjoints local alphabets�,�r,�d and define a local languageM ′ over
an alphabet�′ equal to the union of the three ones together with a new different symbol

{x}. LanguageM ′ contains pictures likep
′ p′

r
p′
d s

, wherep′, p′
r andp

′
d belong to the local

languages forL,Lr andLd, respectively ands is any picture filled with symbolx. Then

the set of tiles forL′ = L(Lr,Ld)∗ can be defined by taking two “different copies’’ (i.e., over
disjoint local alphabets) of languagesM ′ and different local languages forLr andLd and
define tiles according to the definition of pictures inL′. �

As immediate application, consider the languageL = {(n, n2) | n�0} of Example 28.
ThenL can be defined as advanced star ofM = {(1,1)} with respect toMr = {(n,2n +
1) n�0} andMd = {(1, n) | n�0} (at (i + 1)th step of the iteration we “add’’(2i + 1)
columns to the currenti2 ones and 1 row to the currenti ones). Using the same principle,
namely exchanging languagesMr andMd, it is easy to define also the rotation of this lan-
guage, i.e. languageL′ = {(n2, n) | n�0}. Then also the languageL′′ = {(n2, n2) | n�0}
can be defined as advanced star ofM = {(1,1)} with respect toNr = {(n2,2n+ 1) n�0}
andNd = {(2n + 1, n2) | n�0}, whereNr (Nd) can be obtained by column-concatenation
(row-concatenation) of two copies ofL′ (L) and 1-row (1-column) pictures.
Remark that, even using the above defined advanced star, it seems still not possible to

define the language of Example 29 of pictures of size(2n,2n) or the language of pictures
of size(n,2n) and similar ones. In fact, for this kind of languages (recall that they are all
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in REC), it would be needed a definition that allows to use asLr and/orLd the language
itself.
We give the following definition.

Definition 33. Let L,Ld be two-dimensional languages. Thebi-iteration along the
columnsof L with respect toLd is defined as

L(∗,Ld)∗ = ⋃
i�0

L(∗,Ld)i ,

whereL(∗,Ld)0 = {�0,0}, L(∗,Ld)1 = L and

L(∗,Ld)i+1 =
{
p′ = p1 p2

pd q
| p1, p2 ∈ L(∗,Ld)i , pd ∈ Ld, q ∈ �∗∗

}
.

Similarly we define the bi-iteration along the rows ofL with respect to a languageLr,
denoted byL(Lr,∗)∗, where the(i + 1)th step of the iteration is given by

L(Lr,∗)i+1 =
{
p′ = p1 pr

p2 q
| p1, p2 ∈ L(Lr,∗)i , pr ∈ Lr, q ∈ �∗∗

}
.

These notations naturally bring us to define also the bi-iteration along rows and columns,
denoted byL(∗,∗)∗, where the(i + 1)th step of the iteration is given by

L(∗,∗)i+1 =
{
p′ = p1 p3

p2 q
| p1, p2, p3 ∈ L(∗,∗)i , q ∈ �∗∗

}
.

Using same techniques as in the proof of Proposition32, one can prove that the family REC
over one-letter alphabet is closed under all such bi-iteration operations.
It is immediate to verify that the languageL of pictures of size(n,2n) can be obtained

from languageM = {(1,1)} andMd = {(1, n) | n > 0} asL = M(∗,Md)∗. We conclude by
observing that the language of Example 29 of pictures of size(2n,2n) can be obtained as a
bi-iteration both along rows and columns of the same languageM = {(1,1)}.

5. Towards the general alphabet case

In this paper,wehavedefinednewoperationsbetweenpictures so that aquitewide classof
two-dimensional languages over one-letter alphabet could be described in terms of regular
expressions. All these languages belong to REC that is the class of recognizable languages
that generalizes better to two dimensions the class of regular string languages. Next step
is surely to complete the definitions of some other kind of “advanced’’ star operations in
the aim of proving a two-dimensional Kleene’s Theorem in this simpler case of one-letter
alphabet.
We also emphasize that an important goal of further work is to extend all these results to

the general case of two-dimensional languages overanyalphabet� (i.e. the case with more
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than one-letter). Observe that the definitions of diagonal concatenation and star are hard to
extend to such general case, even using their characterizations in terms of rational relations
or in terms of automata with only two moving directions. The main problem is that, ifp, q

are two pictures over�, to defineq ❡\ q we need to specify two picturesr, s such that

p ❡\ q = p r

s q
.

On the other hand, the formalism of the advanced stars appears to be a more reasonable
approach to the general case.Recall that, in this case,weneedalways to specify four pictures
(or four languages). We will use subscripts r, d and c with the meaning of “right”, “down”
and “corner”, respectively. Then, we can give the following definition that directly extends
Definition31.

Definition 34. LetL,Lr, Ld, Lc be two-dimensional languages over�. Thestar of L with
respect to(Lr, Ld, Lc) is defined as

L(Lr,Ld,Lc)∗ = ⋃
i�0

L(Lr,Ld,Lc)i ,

whereL(Lr,Ld,Lc)0 = {�0,0}, L(Lr,Ld,Lc)1 = L and

L(Lr,Ld,Lc)i+1 =
{
p′ = p pr

pd pc
| p ∈ L(Lr,Ld,Lc)i , pr ∈ Lr, pd ∈ Ld, pc ∈ Lc

}
.

Remark that this kind of star operation is not the iteration of a “classical’’ concatenation
operation. These operations seem to be able to describe several languages in REC, despite
the “regular expressions’’ for the two-dimensional languages in the general case will result
very complex.

Appendix A.

Proposition 23. Let L be a CRD-regular language. Then there exist

, �, 
, � : N → N, �, : N × N → N increasing functions andn, m ∈ N such
that for anyp = (n,m) ∈ L we have
(1) if m > 
(n) thenp ❡q∗ ❡⊆ L for q = (n,
(n)) with
(n) �= 0,
(2) if n > �(m) thenp ❡q∗ ❡⊆ L for q = (�(m),m) with�(n) �= 0,
(3) if n�n, m�m thenp ❡\ q∗ ❡\ ⊆ L for someq = (nq,mq) with nq,mq �= 0, nq �

�(n,m),mq �(n,m).

Proof. First let us see how to choose
, �, 
, � in all these cases. From Proposition
22, we know that the setsCn = {am | (n,m) ∈ L} andRm = {an | (n,m) ∈ L} are
regular and therefore ultimately periodic. So there existhC , kC , hR, kR ∈ N such that
aj ∈ Cn ⇔ aj+kC ∈ Cn, for everyj�hC , andaj ∈ Rm ⇔ aj+kR ∈ Rm, for everyj�hR.
If we do not take care to the fact that
, �, 
, � have to be increasing and that
, � have
to be �= 0, then it would be sufficient to set
(n) = hC , �(m) = hR, 
(n) = kC and



428 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408–431

�(m) = kR. But, to be sure that
(n),�(m) �= 0 and to assure the increase of the functions,
we set
(n) = hC + s1k

′
C ,�(n) = hR + s2k

′
R,
(n) = kC + s3k

′
C and�(m) = kR + s4k

′
R,

wherek′
C = max{1, kC}, k′

R = max{1, kR} ands1, s2, s3, s4�0 are the minimal integer
such that
(n)�
(n − 1), �(n)��(n − 1), 
(n)�
(n − 1) and�(n)��(n − 1).
Let us now show how to choosen,m, � and for aCRD-regular languageL. Let r be a

CRD-regular expression denotingL. The proof is by induction on the number of operators
in r.
For the basis, ifL = ∅ then the proposition is vacuously true. IfL = {�0,0}, then we can

setn = 1,m = 1,
(n) = 0,�(m) = 0. If L = {�1,0} (resp.L = {�0,1}), then we can set
n = 2 (resp.n = 1),m = 1 (resp.m = 2),
(n) = 0 (resp.
(n) = 1),�(m) = 1 (resp.
�(m) = 0). In all these cases we can set
(n) = 1,�(m) = 1,�(n,m) = (n,m) = 1.
Assumenow that theproposition is true for languagesdenotedbyCRD-regular expression

with less thani operators,i�1, and letr havei operators. There are seven cases depending
on the formofr: (1)r = r1∪r2, (2)r = r1

❡r2, (3)r = r1
❡r2, (4)r = r1

❡\ r2, (5)r = r∗ ❡

1 ,
(6) r = r∗ ❡

1 , or (7) r = r∗ ❡\
1 . In any of the seven cases,r1 andr2 denote some language

L1 andL2, respectively, that satisfies the condition. Let
1, �1, 
1, �1, �1, 1, n1,m1 be
the functions and the values forL1 and let
2, �2, 
2, �2, �2, 2, n2,m2 be the functions
and the values forL2.
Case1: We haveL = L1 ∪ L2. We set�(n,m) = max{�1(n,m), �2(n,m)}, (n,m) =

max{1(n,m), 2(n,m)}, n = max{n1, n2},m = max{m1,m2}.
Case2: We haveL = L1

❡L2. We set:
�(n,m) = max{�1(n,m)�2(n,m), �1(m)�2(n,m), �2(m)�1(n,m)},
(n,m) = max{�1(n,m)2(n,m) + �2(n,m)1(n,m), �1(m)2(n,m), �2(m)1(n,m)},
n = max{n1, n2, �1(m1), �2(m2)},
m = m1 + m2.

Now, let p = (n,m) ∈ L, with n�n, m�m. Clearly,p = p1
❡p2 for somep1 =

(np1,mp1) = (n,mp1) ∈ L1 andp2 = (np2,mp2) = (n,mp2) ∈ L2. We have to consider
three different cases:
(2a)mp1�m1 andmp2�m2, (2b)mp1 < m1, (2c)mp2 < m2.
(2a) Sincenp1�n1, mp1�m1, np2�n2 andmp2�m2, from the hypothesis onL1

andL2, we have thatp1 ❡\ q∗ ❡\
1 ⊆ L1 for someq1 = (nq1,mq1) with nq1,mq1 �= 0,

nq1��1(n,mp1), mq1�1(n,mp1) and thatp2
❡\ q∗ ❡\
2 ⊆ L2 for someq2 = (nq2,mq2)

with nq2,mq2 �= 0, nq2��2(n,mp2),mq2�2(n,mp2).
Now let us setq = (nq1nq2, nq1mq2 + nq2mq1) = (nq,mq). Thenp ❡\ q∗ ❡\ ⊆ L

with nq,mq �= 0, nq = nq1nq2��1(n,mp1)�2(n,mp2)��1(n,m)�2(n,m) andmq =
nq1mq2 + nq2mq1��1(n,m)2(n,m) + �2(n,m)1(n,m).
(2b) Sincemp1 < m1, thenmp2�m2 (recall thatmp1 +mp2 = m�m = m1+m2) and

thereforep2 ❡\ q∗ ❡\
2 ⊆ L2 for someq2 = (nq2,mq2) with nq2,mq2 �= 0, nq2��2(n,mp2),

mq2�2(n,mp2). Moreovernq1 = n�n��1(m1) > �1(mp1): thereforep1
❡q∗ ❡

1 ⊆ L1

for q1 = (nq1,mq1) = (�1(mp1),mp1). Note that we havenq1 �= 0. Let us setq =
(nq1nq2, nq1mq2) = (nq,mq). Then we havep ❡\ q∗ ❡\ ⊆ L with nq,mq �= 0, nq =
nq1nq2��1(mp1)�2(n,mp2)��1(m)�2(n,m) andmq = nq1mq2��1(mp1)2(n,mp2)�
�1(m)2(n,m).
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(2c) It is analogous to the previous case.
Case3: We haveL = L1

❡L2 and the proof is similar to that one of the previous case.
Case4: We haveL = L1

❡\ L2. We set:
�(n,m) = max{�1(n,m), �2(n,m), �1(m), �2(m)},
(n,m) = max{1(n,m), 2(n,m), 
2(n), 
1(n)},
n = max{n1 + n2, �1(m1) + n2, �2(m2) + n1},
m = max{m1 + m2,
2(n2) + m1,
1(n1) + m2}.

Now, letp = (n,m) ∈ L = L1
❡\ L2, with n�n, m�m. Clearly,p = p1

❡\ p2 for some
p1 = (np1,mp1) ∈ L1 andp2 = (np2,mp2) ∈ L2.We have to consider two different cases
4(a) and (b): withnq,mq �= 0
(4a) At least one of the following conditions (1) and (2) is verified

(1)

{
np1�n1,

mp1�m1.
(2)

{
np2�n2,

mp2�m2.

If condition (1) is verified, thenp1 ❡\ q∗ ❡\
1 ⊆ L1 for someq1 = (nq1,mq1) with nq1,mq1 �=

0, nq1��1(n,m),mq1�1(n,m) and it suffices to setq = q1. If, instead, condition (2) is
verified, thenp2 ❡\ q∗ ❡\

2 ⊆ L2 for someq2 = (nq2,mq2)with nq2,mq2 �= 0,nq2��2(n,m),
mq2�2(n,m) and it suffices to setq = q2.
(4b) If neither condition (1) nor condition (2) is verified, then, again, we have to con-

sider two different subcases eithernp1�n1, mp1 < m1, np2 < n2, mp2�m2 or np1 <

n1, mp1�m1, np2�n2, mp2 < m2. We give the details only for the first subcase, since
the other one can be handled in a similar way. So, in the first subcase, we havenp1 =
n−np2�n−np2 > n−n2��1(m1)+n2−n2 = �1(m1) > �1(mp1) i.e.,np1 > �1(mp1)

andmp2=m−mp1�m−mp1 > m−m1�
2(n2)+m1−m1=
2(n2) > 
2(np2) i.e.,
mp2 > 
2(np2). Therefore,p1 ❡q∗ ❡

1 ⊆ L1 for q1 = (�1(mp1),mp1) andp2
❡q∗ ❡

2

⊆ L2 for q2 = (np2,
2(np2)). We setq = (nq,mq) = (nq1,mq2) = (�1(mp1),
2(np2))
and we will havep ❡\ q∗ ❡\ ⊆ L with nq,mq �= 0, nq = �1(mp1)��1(m),
mq = 
2(np2)�
2(n).
Case5:WehaveL = L∗ ❡

1 .We set�(n,m) = max{�1(n,m),�m1 (n,m)�
m

1 (m)},(n,m)
= max{m1(n,m)�

m−1
1 (n,m)�

m

1 (m), 1(n,m)}, n = max{n1, �1(m1)} andm = m1.
Now, let p = (n,m) ∈ L, with n�n, m�m. If m = 0, thenp ∈ L1 and we can

apply the inductive hypothesis. If insteadm �= 0, then we havep = p1
❡· · · ❡pk with

pi = (npi , mpi ) = (n,mpi ) ∈ L1. Let us consider two different subcases 5(a) and (b).
(5a) There exists some™ ∈ {1, . . . , k} such thatmpi �m1 for every i = 1, . . . , ™ and

mpi < m1 for everyi = ™ + 1, . . . , k. Therefore, for everyi = 1, . . . , ™, there existsqi =
(nqi , mqi )with nqi , mqi �= 0,nqi ��1(npi , mpi ),mqi �1(npi , mpi ), such thatpi

❡\ q∗ ❡\
i ⊆

L1. Note that fori = 1, . . . , ™, we havenqi ��1(npi , mpi ) = �1(n,mpi )��1(n,m),
mqi �1(npi , mpi ) = 1(n,mpi )�1(n,m). Moreover, since for everyi = ™ + 1, . . . , k,
we havempi < m1, it follows that�1(mpi ) < �1(m1)�n�n = npi . So for everyi =
™+ 1, . . . , k, there existsqi = (nqi , mqi ) = (�1(mqi ),mqi ) such thatpi

❡q∗ ❡

i ⊆ L1. We

setq = (nq,mq) = (
∏k

i=1 nqi ,
∑™

i=1(mqi

∏k
j=1,j �=i nqj )). Thenp

❡\ q∗ ❡\ ⊆ L, where

nq,mq �= 0, with nq � �™1(n,m)�1(mq™+1) . . .�1(mqk )��m1 (n,m)�
m

1 (m) andmq =
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mq1 �m−1
1 (n,m) �

m

1 (m) + · · · + mq™�
m−1
1 (n,m)�

m

1 (m) � 1(n,m)™�m−1
1 (n,m)�

m

1 (m)

�m1(n,m)�
m−1
1 (n,m)�

m

1 (m) .
(5b) In this subcase, for everyi=1, . . . , k, mpi<m1. Therefore, as in case (5a), for

every i=1, . . . , k, there existsqi=(nqi , mqi ) = (�1(mqi ),mqi ) such thatpi
❡q∗ ❡

i ⊆L1.

We set q=(nq,mq)=(
∏k

i=1 nqi , m). Then nq, mq �=0, nq ��
m

1 (m)��m1 (n,m)�
m

1 (m),

mq = m�m1(n,m)�
m−1
1 (n,m)�

m

1 (m).
Case6: This case is analogous to the previous one.
Case7: We haveL = L∗ ❡\

1 . If there existsq = (nq,mq) ∈ L with nq,mq �= 0, we can
set�(n,m) = nq , (n,m) = mq , n = m = 0. Then for everyp = (n,m) ∈ L = L∗ ❡\

1 we
havep ❡\ q∗ ❡\ ⊆ L. If insteadL ⊆ �col (resp.L ⊆ �row ), then we can setn = 0,m = 1
(resp.n = 1,m = 0) and condition (3) will be vacuously true.
Note that in all the cases the choice of the functions
, �, 
, �, � and preserves their

increase. �
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