Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 340 (2005) 408—431

www.elsevier.com/locate/tcs

New operations and regular expressions for
two-dimensional languages over one-letter
alphabet

Marcella Anselm&*, Dora Giammarre&j Maria Madoni&

aDipartimento Informatica ed Applicazioni, Universita di Salerno, 84081 Baronissi (Sa), Italy
bDi|0artimento Matematica, Universita di Roma “Tor Vergata”, via Ricerca Scientifica, 00133 Roma, Italy
CDipartimento Matematica e Informatica, Universita di Catania, Viale Andrea Doria 6/a, 95125 Catania, Italy

Abstract

We consider the problem of defining regular expressions to characterize the class of recognizable
picture languages in the case of a one-letter alphabet. We defiag@nal concatenatioand itsstar
and consider two different familie,(D) and L (CRD), of languages denoted by regular expressions
involving such operations plus classical operatidn@) is characterized both in terms of rational
relations and in terms of two-dimensional automata moving only right and do¢@RD) is included
in REC and contains languages defined by three-way automata while languA¢ERID) necessarily
satisfy some regularity conditions. Finally, we introduce new definitioaslenced starexpressing
the necessity of conceptually different definitions for iteration.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Two-dimensional language; Regular expression

1. Introduction

The theory of one-dimensional string languages is well founded and investigated
since 1950. From several years, the increasing interest for pattern recognition and image

* Work partially supported by Miur Cofin Linguaggi Formali e Automi: Metodi, Modelli e Applicazioni.
* Corresponding author.
E-mail addressesanselmo@dia.unisa.ifM. Anselmo), giammarr@mat.uniroma2.i{D. Giammarresi),
madonia@dmi.unict.igM. Madonia).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.031

http://www.elsevier.com/locate/tcs
mailto:anselmo@dia.unisa.it
mailto:giammarr@mat.uniroma2.it
mailto:madonia@dmi.unict.it

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 409

processing has also motivated the researdiwordimensional string languagesnd nowa-

days thisis afield of big investigation. The scope is the generalization, or possibly the exten-
sion, of the richness of the theory of one-dimensional languages to two dimensions. A first
attempt has been devoted to the study of two-dimensional languages defined by finite state
devices, with the aim of finding a counterpart of what regular languages are in one dimension.
Many approaches have been presented in the literature considering all ways to define regular
languages: finite automata, grammars, logic and regular expressions. In 1991, an unifying
point of view was presented by A. Restivo and D. Giammarresi who defined the family REC
of recognizable picture languagésee[7]). This class seems to be the candidate as “the”
generalization of the class of regular one-dimensional languages. Indeed REC is well charac-
terized from very different points of view and thus inherits several properties from the class
of regular string (one-dimensional) languages. It is characterized in terms of projections
of local languagesti{ing systemy of some finite-state automata, of logic formulas and of
regular expressions with alphabetic mapping. The approach by regular expressions is indeed
not completely satisfactory: the concatenation and star operations involved there are partial
functions and moreover an external operation of alphabetic mapping is needed. Then, in [7],
the problem of stating a Kleene-like theorem for the theory of recognizable picture languages
remains open.

Several papers were recently devoted to find a better formulation for regular expressions
for two-dimensional languages. In [15], O. Matz affords the problem of finding some more
powerful expressions to represent recognizable picture languages and suggests some regular
expressions where the iteration is over combinations of operators, rather than over languages.
The author shows that the power of these expressions does not exceed the family REC, but
it remains open whether or not it exhausts it. In [18] some tiling operation is introduced
as extension of the Kleene star to pictures and a characterization of REC that involves
some morphism and the intersection is given. The paper [19] compares star-free picture
expressions with first-order logic.

The aim of this paper is to look for a homogenous notion of regular expression that
could extend more naturally the concept of regular expression of one-dimensional lan-
guages. In this framework, we propose some new operations on pictures and picture lan-
guages and study the families of languages that can be generated using classical and new
operations.

The paper focuses on one-letter alphabets. This is a particular case of the more general
case of several letter alphabets. However this is not only a simpler case to handle, but it is
a necessary and meaningful case to start. Indeed studying two-dimensional languages on
one-letter alphabets means to study the “shapes” of pictures: if a picture language is in REC
then necessarily the language of its shapes is in REC. Such approach allows us to separate
the twofold nature of a picture: its shape and its content.

Classical concatenation operations on pictures and picture languages are the row and
column concatenations and their closure. Regular expressions that use only Boolean op-
erations and this kind of concatenations and closure however cannot define a large num-
ber of two-dimensional languages in REC. As an example, take the simple language of
“squares” (that is pictures with number of rows equal to the number of columns). The
major problem with this kind of regular expressions is that they cannot describe any rela-
tionship existing between the two dimensions of the pictures. Such operations are useful

410 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

to express some regularity either on the number of rows or on the number of columns
but not between them. This is the reason we introduce, in the one-letter case, a new con-
catenation operation between pictures:dr@gonal concatenatiarThe diagonal concate-
nation introduces the possibility of constructing new pictures forcing some dependence
between their dimensions. Moreover an important aspect of the diagonal concatenation is
that it is a total function between pictures. This allows to find a quite clean double char-
acterization oD-regular languagesthe picture languages denoted by regular expressions
containing union, diagonal concatenation and its closure: they are exactly those picture
languages in which the dimensions are related by a rational relation and also exactly those
picture languages recognizable by particular two-dimensional automata moving only right
and down.

Unfortunately, an analogous situation does not hold anymore, when we also introduce
row and column concatenations in regular expressions, essentially because they are partial
functions. The class dERD-regular languageghe languages denoted by regular expres-
sions with union, column, row and diagonal concatenations and their closures, strictly lies
between the class of languages recognized by three-way deterministic automata and REC.
The main result folCRD-regular languages is a necessary condition regarding a sort of
“regularity” in the possible “extensions” of a picture in a given language to another bigger
picture in the language. In@RD-regular language: if a picture is sufficiently “long” then
we can concatenate to it some picture infinitely often by columns; if a picture is sufficiently
“high” then we can concatenate to it some picture infinitely often by rows; if a picture is
sufficiently “big” then we can concatenate to it some picture infinitely often in diagonal.
This result generalizes in some sense what regularity implies in one-dimensional languages
over a one-letter alphabet.

We also provide a collection of examples classically considered in the literature, specify-
ing for each of them whether they belong or not to the classes of two-dimensional languages
considered throughout the paper.

Examining some examples of languages not captur&Riyformalism, we find out that
the “extensions” of a picture cannot be obtained by iterating the concatenation of the same
picture, and this independently from the picture to what we concatenate. On the contrary, for
some languages, a kind of iteration that generate pictures in a “non-uniform” way is needed,
indeed depending from the picture just obtained. This is a new situation with respect to the
one-dimensional case. Such considerations show the necessity of a more complex definition
for regular expressions in order to denote a wider class of two-dimensional languages in
REC. We introduce the definitions of soradvanced starsThey allow to capture a wider
class of languages, that still remains inside the class REC. All definitions are given in such
a way to synchronize the steps of iteration on a picture with the picture just constructed.
Observe that in this case we exploit the partial nature of column and row concatenation
operations. We conclude by discussing some ideas for extending all those definitions to the
general alphabet case.

The paper is organized as follows. In Sect®me recall some preliminary definitions and
results later used in the paper. Section 3 contains the main results: it presents our proposals
for possible classes of regular expressions. Moreover, it contains a table summarizing a wide
collection of examples. In Section 4 we define new star operations that allow to describe
many more languages (over one-letter alphabet) in REC, while in Section 5 we draw some

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 411

conclusions and proposals to extend results of this paper to two-dimensional languages over
general alphabets.
A preliminary version of this paper appeared1ih

2. Preliminaries

In this section we recall terminology for two-dimensional languages. Then, we briefly
describe some machine-based model for recognizing two-dimensional languages and sum-
marize all major results concerning the cl&¥sC of recognizable two-dimensional lan-
guagesthat is the one that seems to generalize better the family of regular string languages
to two dimensions.

We assume the reader is familiar with the basic terminology and properties of the theory of
one-dimensional languages as can be found for example in [8]. We will first introduce some
definitions about two-dimensional languages by borrowing and extending notation from the
theory of one-dimensional languages. Next, we will give formal definitions of the classical
concatenation operations between two-dimensional strings (pictures) and two-dimensional
languages. The notations used can be mainly found in [7].

Let 2 be a finite alphabet. Awo-dimensional strindor a picture) over 2 is a two-
dimensional rectangular array of elementzof he set of all two-dimensional strings over
2 is denoted by=**. A two-dimensional languagever X is a subset oE**.

Given a picturep € 2**, let £1(p) denote the number of rows pfandZz(p) denote the
number of columns gb. The pair(¢1(p), £2(p)) is called thesizeof the picturep. Unlike
the one-dimensional case, we can define an infinite number of empty pictures namely all
the pictures of sizé:, 0) and of sizg0, m), for allm, n > 0, that we calempty columnand
empty rowsand denote by ,, and/, o respectively. Thempty picturds the only picture
of size (0, 0) and it will be denoted by, 0. We indicate byAco and Arow the language of
all empty columns and of all empty rows, respectively.

We give first some simple examples of two-dimensional languages.

Example 1. Let 2 = {a} be a one-letter alphabet. The set of pictures'sfwith three
columns is a two-dimensional language overlt can be formally described as =
{p| L20p) = 3} € 2**. As another example ldt be the subset oX** that contains
all the pictures with a shape of “squares”. More formally= {p | £1(p) = £2(p)} € 2**.

We now recall theclassicalconcatenation operations between pictures and picture lan-
guages. Lep and g be two pictures over an alphabg&t of size (n, m) and (m’, n’),
m,n,m',n’ >0, respectively.

Definition 2. The column concatenationf p andq (denoted byp ©¢) and therow con-
catenationof p andq (denoted byp ©¢) are partial operations, defined onlyif= n" and
if m = m’, respectively and are given by

roq=[p1q] poq =1

412 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

Moreover we sepp®4,0 = p and p©1o,, = p thatis, the empty columns and the
empty rows are the neutral elements for the column and the row concatenation operations,
respectively.

As in the string language theory, these definitions of pictures concatenation can be ex-
tended to define concatenations between set of pictured.i,dt, € 2**, the column
concatenatiorand therow concatenatiorf L1 and L, are defined respectively by

L1OLy={pDqlpeLi,qgelz} and L1©Ly ={pSq|p € L1,q € La}.

By iterating the concatenation operations, we can define the columns andraowisive
closureswhich are somehovitwo-dimensional Kleene star’LetL be a picture language.

Definition 3. The column closurgcolumn star) and theow closure(row star) ofL are
defined as

L*G): U Li®, L*e: U Li@’
i=0 i>0

whereL%P = Ao, L0 =1, 1"® = Lo L®-DD and1.9° = Ayow, L€ =L, L"© =
LeL"bO,

2.1. Automata for two-dimensional languages

In this section we briefly review different kinds of automata that read two-dimensional
tapes. All models reduce to conventional automata when restricted to operate on one-row
pictures.

One of the first attempts at formalizing the concept of “recognizable picture language”
was made by M. Blum and C. Hewitt who in 1967 introduced a model of finite automaton
that reads a two-dimensional tape (&]). A deterministic (non-deterministic) four-way
automaton, denoted by 4DFA (4NFA), is defined as an extension of the two-way automaton
that recognizes strings (cf. [8]) by allowing it to move in four directionsft, Right, Up,
Down For example, a 4DFA can recognize squares by starting its computation from top-left
corner of a given picture and going alternatively one step right one step down (i.e. following
the diagonal) till it reaches the bottom-right corner.

The families of picture languages recognized by some 4DFA and 4NFA are denoted by
L(4DFA) andL(4NFA), respectively. An important result (cf. [3]) states that, unlike in the
one-dimensional case, the familf4DFA) is strictly included in the family. (4NFA). Both
familiesL(4DFA) andL(4NFA) are closed under Boolean union and intersection operations.
The familyL(4DFA) is also closed under complement, whilelf(4NFA) this is not known.

From several points of view, four-way automata could appear as a reasonable model of
computation for two-dimensional tapes and they were widely studied, but they have a major
bug. In fact, it can be proved that bdtfdDFA) andL (4NFA) are not closed under row and
column concatenation and closure operations [12].

In[14], aweaker model called three-way automaton is also considered in the two versions
non-deterministic and deterministic (referred to as 3NFA and 3DFA, respectively) that is

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 413

allowed to move right, left and down only. The family{(3NFA) is strictly included in
L(4NFA).

Another interesting model of two-dimensional automaton igweedimensional on-line
tessellation acceptofdenoted by 2-OTA) introduced if®]. In a sense the 2-OTA is an
infinite array of identical finite-state automata in a two-dimensional space. The computa-
tion goes by diagonals starting from top-left towards bottom-right corner of the picture.
Depending on the corresponding kinds of automata we can have a deterministic or a non-
deterministic version of 2-OTA. Despite the fact that this model is quite differentin principle
from four-way automaton, also in this case the family of languages corresponding to a deter-
minist 2-OTA is strictly included in the one corresponding to the non-deterministic model.

In [9] it is proved that the family of two-dimensional languages recognized by a 2-OTA,
L(2-OTA) is closed under union and intersection and also under row/column concatenation
and row/column star while it is not closed under complement. MorddfZ20OTA) properly
includes familyL (4NFA). The only trouble with this 2-OTA model is that it is quite difficult
to manage.

2.2. Tiling systems and the class REC

A different way to define (recognize) picture languages was introduced by A. Restivo and
D. Giammarresi in [6]. It generalizes the characterization of regular languages by means
of local strings language and alphabetic mapping to two dimensions (the local set together
with the mapping is an alternative description of the state graph of an automaton).

We recall that a local language of strings is defined by means of a finite set of strings
of length 2. As natural generalization, a local picture languagwer an alphabet’ is
defined by means of a finite sék of pictures of sizg2, 2) (calledtiles) that represent all
allowed sub-pictures for the pictureslin To be more precise, such gtis defined over
I' U {#} where # is a border symbol that we assume always to surround all the pictures. A
tiling systemfor a languagé. over X is a pair of a local language over an alphabeind
an alphabetic mapping : I' — 2. The mappingrt can be extended in the obvious way
from the alphabef to pictures ovell” and to picture languages ovEr Then, we say that
a languagd. C 2** is recognizable by tiling systenifsthere exists a local languagé
overI" and a mappingt : I' — 2 such thatL = =(L’). The family of two-dimensional
languages recognizable by tiling systems is denoted by REC.

As an example, consider again the languag@é squares over a one-letter alphabet
{a}. ThenL is in REC since it can be obtained@ad.’), whereL’ is the language of squares
overl’ = {0, 1} that have 1 in the diagonal positions and 0 elsewhereé@d)d= 7(1) = a.

The family REC is closed under Boolean union and intersection but not under comple-
ment. It is also closed under all row and column concatenations and stars. Moreover, by
definition, it is closed under alphabetic mappings. This notion of recognizability by tiling
systems turns out to be vergbust in [11], it is proved that REG= L(2-OTA). Moreover
finite tiling systems have also a natural logic meaning: in [7] it is shown that the family REC
and the family of languages defined by existential monadic second order formulas coincide.
And this is actually the generalization of Biichi’s theorem for strings to two-dimensional
languages. The class REC can also be characterized in terms of regular expressions, as
specified in Section 2.3.

414 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431
2.3. Regular expressions and the class REC

The characterizations of the family REC show that the family REC captures in some
sense the idea of unification of the concept of recognizability from the two different points
of view of descriptive and computational models, that is one of the main properties of the
class of recognizable string languages. It seems thus natural to ask whether one can prove
also a sort of two-dimensional Kleene’s Theorem. Using row and column concatenations
and closure operations, it is possible to express two-dimensional languages by means of
simpler languages. Nevertheless it can be observed that such classical operations are useful
to express some regularity either on the number of rows or on the number of columns, but
they cannot describe any relationship existing between the two dimensions of the pictures.
As an example, already in the case of a one-letter alphabet, we have that languages such
as the language of “squares” (see Exampjecannot be described using only classical
operations. More precisely, O. Matz [15] has characterized the class of languages that can
be obtained starting from finite languages and applying Boolean operations, column and
row concatenations and stars, as the class of languages that are a finite union of Cartesian
products of ultimately periodic string languages.

Furthermore, it can be shown (cf. [7]) that to describe the whole class REC we need to
allow also the alphabet mapping between the regular operations. This characterization of
REC in terms of regular expressions seems not completely satisfactory, because it is not
purely constructive and involves some external operations. Therefore the problem of proving
a sort of two-dimensional Kleene’s Theorem, is still under investigation. Furthermore such
considerations are a clear sign that, going from one to two dimensions we find a very rich
family of languages that need a non-straightforward generalization of the one-dimensional
definitions and techniques.

In the next section we are going to define a new operation on picture languages and
consider the class of languages that can be thereby denoted.

3. The diagonal concatenation and related regular expressions

In this section we introduce a new operation on picture languages over a one-letter alpha-
bet. We propose some different types of regular expressions involving the new operation,
comparing the resulting classes of languages obtained with known families of picture lan-
guages. Through all the section, we assume to be in the case of languages over one-letter
alphabetr = {a}.

Remark 4. When a one-letter alphabgtis considered, any picture € X** is character-

ized only by its size. Therefore it can be equivalently represented either by a pair of words
in 2*, where the first one is equal to the first columnpadnd the second one to the first
row of p, i.e. (@2(?), a®2(P) or simpler by its size, i.&£1(p), £2(p)).

Remark 5. The one-letter alphabet case means to consider the “shapes” of pictures. In-
deed if L C X**, with |X|>2, is in REC then the language obtained by mapginigto
a one-letter alphabét:}, is still in REC, since REC is closed under alphabetic mappings.

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 415

Therefore for alanguage in REC, itis a necessary condition that the language of its shapes is
in REC.

Let us denote bYCR = {U, @, ©, *©, x©} the set of classical operations on picture
languages(for “columns” andR for “rows”), and byL (CR) the class of languages (over
a one-letter alphabet) that can be denoted by a regular expression involving only operations
in CR and starting from finite languages. O. Mdi5] has characterized(CR) as the
class of languages that are a finite union of Cartesian products of ultimately periodic string
languages and he has shown théER) is closed under intersection.

3.1. D-regular expressions

We introduce a new simple definition of concatenation of two pictures in the particular
case of one-letter alphabet. The definition is motivated by the necessity of an operation
between pictures that could express some relationship existing between the dimensions of
the pictures. We use this new concatenation to construct some regular expressions and to
define a class of languages. This class is characterized in terms of the relations between the
dimensions of the pictures and in terms of the four-way automata recognizing them.

Let p andq be two pictures of sizén, m) and (n’, m") respectively over a one-letter
alphabet.

Definition 6. Thediagonal concatenationf p andq (denoted byp ®¢) is a picture over
2 of size(n +n’, m +m’). It can be represented by

p

Og = .
pYq g

Observe that, unlike the classical row and column concatenation, the diagonal concate-
nation is a total operation. As usual, it can be extended to define the diagonal concatenation
between languages. Moreover the Kleene closur@ chn be defined as follows. Lethe
a picture language over a one-letter alphabet.

Definition 7. Thediagonal closureor diagonal starof L (denoted byl*®) is defined as
L*@ _ U Li@
i>0

whereL%® = (o0}, L}® =L, L"® = LoL~ VO,

Example 8. LetL, , bethelanguage of squares (see ExartpileatisL, , = {p | €1(p) =
£2(p) =0}. It can be easily shown thdt, , = {(1, 1)}*® = {io,1®/11,0}*®, observing
that g1 ® 41,0 is the picture(l, 1).

Example 9. LetL,, 2, bethelanguage of rectangular pictures with even dimensions, thatis
Lon2m = {p |11(p) = 21, I2(p) = 2m, n, m >0}.We have thaLz, 2, = {{(2, 2)}*C P,
and alsolL2, 2, = {40.2)*® ©{12,0}*®, using the diagonal concatenation.

416 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

Proposition 10. The family REC is closed under diagonal concatenation and diagonal
star.

Proof. The proof uses similar techniques to the one for the closure of REC under row (or
column) concatenation and star ($6Efor more details). A tiling system fok = L1 ® Lo

can be defined as follows. Let the local languagedfpand L, be given by a set of tiles

©®1 over an alphabef'; and a set of tile®, over an alphabel’s, respectively. Moreover

we can always assume thiat andI'; are disjoint. Then, the local language fois defined

over the alphabdf, U I'; U {x}, wherex is a new symbol not ii'; U I'>. The set of tiles®

is defined, using?1 and®, in a way to represent pictur sl/’ 5 |, wherep andq belongs
S 14
to the local languages df; andL;, respectively, and, s” are pictures containing atl For
example, the non-border tiles 6f consist of all non-border tiles i®1 and® plus the tile
containing allx plus tiles obtained by replacing byall border symbols in all right-border
and bottom-border tiles i®1 and all left-border and top-border tiles &, plus tiles like

a Z , Wwhereaandb are symbols in bottom-right corner tiles@f, and top-left corner tiles
X

of @5, respectively. Observe that the last mentioned tiles are those that “glue” bottom-right
corners of pictures il to top-left corners of pictures ih. Finally, the projection from
I' to 2 maps all symbols to the unique symbolin

Regarding the closure under diagonal star, the tiling systerﬂ%"r can be defined as
above using two different local languages (i.e. over disjoint local alphabets) fdr]

The diagonal concatenation can be used to generate families of picture languages, starting
from atomic languages. Formally, letus denbte- {U, ®, % ®}; the elements dD are called
diagonal-regular operationsoriefly D-regular operations

Definition 11. A diagonal-regular expressiofD-RE) is defined recursively as follows:
(1) 9, (40,0), (40,1), (41,0) areD-RE.
(2) if «, pareD-REthen(w) U (), () © (), (x)*® areD-RE.

EveryD-RE denotes alanguage using the standard notation. Languages denbt&Eby
are calledliagonal-regular language$riefly D-regular languagesThe class oD-regular
languages is denoted lhy D). Observe that languages containing a single picture:)
can be denoted by tHe-RE E,, ,, = (4] o)@(zg?).

We will now characterizéd-regular languages in terms of rational relations and in terms
of some 4FA. For this, let us recall that (§2p arational relationover alphabet& and4is a
rational subset of the monojd™ x 4*, ., (1, A)), where the operatians the componentwise
product defined byu1, v1) (u2, v2) = (u1uz, vive) for any (u1, v1), (u2, v2) € X* x A*.
When the alphabet i = 4 = {a}, there is a natural correspondence between pictures
over X and relations oveZ x X. For any relationT < X* x X~* we define the picture
language:

L(T) = {pl t1(p) = Ir1| and £2(p) = |r2| for some (r1,r2) € T}.

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 417

Vice versa for any picture languadgeC 2** we define the relation:
R(L) = {(r1,r2) € 2* x 2*| |r1] = £1(p) and |rz| = £2(p) for some p € L}.

Remark 12. We recall that a 4ANFAM over a one-letter alphabet is equivalent to a two-way
two-tape automatoi/1 (cf. [10]). In fact, let H1 and H> be the first and the second heads
of M; respectively, theds; simulatesM as follows. If the input headl of M moves down
(up) one squareyf; movesH; right (left) one square without moving,, and ifH moves
right (left) one squarel1 movesH, right (left) without movingHs.

Proposition 13. Let 2 be a one-letter alphabet and lét € 2**. Then L is a D-regular
language if and only if. = L(T) for some rational relatiorl” € X* x X* if and only if
L = L(A) for someANFA A that moves only right and down

Proof. In light of Remark4, the componentwise concatenatiomin= 2* x 2* exactly
corresponds to the diagonal concatenatiodfi. It is well-known that a rational subset

of any monoidM is either empty or can be expressed, starting with singleton, by a finite
number of the (rational) operations . (product) and-closure (star). Thuk is a D-regular
language if and only if. = L(T) for some rational relatiof < X* x X*. On the other
hand, it is well-known thal” € 2* x X* is a rational relation iff it is accepted by a (finite)
transducer, that is a (finite) automaton ow&r x 2*. Further such an automaton can be
viewed as a (finite) one-way automaton with two tapes (cf. [17]). Then, in analogy to Remark
12, one-way two-tape automata are equivalent to 4NFA that move only right and dawn.

Example 14. Let L, , be the language of squares, as in Exantlé&Ve haveL, , €

L(D). Indeed it can be easily shown thiaf , is denoted by the followin@-RE: E, , =
(/10,1®/11,0)*® .We haveL, ,=L(T), whereT is the rational relatiod={(a", a™) | n > 0}.
FurtherL = L(A) whereA is the 4NFA that, starting in the top-left corner, moves along
the main diagonal until it eventually reaches the bottom-right corner and accepts. More
generally, the languagds, ,+i = {p | l1(p) = n,lo(p) = n + i, n>1}, for somei >0,

are denoted by thB-RE: E,, ,4+; = En,nd)((El,i)*@), whereE;; = (J{S ® Z1,0) denotes

the languagé(l, i)}.

Example 15. Let Ly, 2, be the language of even sides pictures, as in ExaSpieat is
Lonom = {p € 2" | l1(p) = 2n,12(p) = 2m, n, m >0}. We have thal.y, 2, = L(T),
whereT is the rational relatiorl” = {(a%*, a®") | n, m >0}. FurtherL = L(A), whereA

is the 4NFA that, starting in top-left corner, moves down checking the parity of the number
of rows and then to the right checking the parity of the nhumber of columns, eventually
accepting in the bottom-right corner. Therefdres L(D). IndeedL € L(CR) because of

the characterization af(CR) given in [15].

Corollary 16. L(CR) c L(D).

Proof. Following [15], L(CR) is the class of languages that are a finite union of
Cartesian products of ultimately periodic string languages./Let L(CR) and suppose

418 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

L = {J;—1.._4Ai x Bi. ThenL can be recognized by a 4NFA (that moves only right and
down) that non-deterministically checks whether a picture belongs to dpmeB; check-
ing first the belonging of the first row té; and then the belonging of the last colummBo
HenceL € L(D) by Propositionl 3.

Moreover the inclusion is strict since for example the language of squards(iBin(see
Example 14) and it is not ib(CR) since it is not a finite union of Cartesian products of
ultimately periodic string languages[]

In the same way thdt(D) corresponds to the class of rational relatidn&;R) corre-
sponds to its subclass of recognizable relations.

Corollary 17. L(D) is closed under intersection and complement

Proof. The result follows from the characterizationlafD) in terms of rational relations in
PropositioriL3, and from the closure under intersection and complement of rational relations
over a one-letter alphabet [2].C]

The following example shows that, also in the case of a one-letter alphabet, four-way
automata that move only right and down are strictly less powerful than 3DFA.

Example 18. Let L be the following picture language over a one-letter alphabet:
{(kn,n)| k,n >0}. Language. can be easily recognized by a 3DFA that, starting in the
top-left corner moves along the main diagonal until it reaches the right boundary and then
moves along the secondary diagonal until it reaches the left boundary and so on until it
eventually reaches the bottom-right corner and accepts. By Propo&Biolanguage.
cannot be recognized by a four-way automaton that moves only right and down, since
{(@*", a™)| k, n >0} is not a rational relation (see [4]).

3.2. CRD-regular expressions

In this section we consider regular expressions that involve columns, rows and diagonal
concatenations and stars defined in previous sections. We refer to theRDasegular
expression. We show that, in the case of one-letter alphabet, thelL¢laRd) of corre-
sponding languages is strictly included in the family REC, and strictly contaBBFA).

Further we show that there are languages accepted by a four-way automaton that do not
belong toL (CRD). The main result is a necessary condition for languagés@RD) that
expresses a sort of “regularity” on the possible “extensions” of a picture (pictures containing
the given one as a subpicture) inside the language.

Let us denot€RD= {U, ©, ©, O, D, xO, *xO®}, whereC, R, D stand for “column”,

“row” and “diagonal”. The elements @@RDare calledCRD-regular operations

Definition 19. A CRD-regular expressio(CRD-RE), is defined recursively as follows:

(1) 9, (40,0), (40,1), (A1,0) areCRD-RE.

(2) if o, pareCRD-REthen() U (), () D (B), ()*C, ()@ (B), (0*C, () @ (B), (0)*®
areCRD-RE

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 419

Every CRD-RE denotes a language using the standard notation. Languages denoted by
CRD-RE are calledCRD-regular languagesThe family of CRD-regular two-dimensional
languages (over one-letter alphabets) will be denoteld(®RD). Observe that (CRD) is
contained in REC, since REC is closed under operatioG&iD. A more precise positioning
of L(CRD) inside REC is established in Propositid@ below.

Example 20. LetL = {(n, k1(n+1) +ko(n +2) + k3(n+3)) | n, k1, k2, k3 >0}. Consider

the languageg., ,,+; denoted by th®-RE: E, ,,+; = En,n@((El,,-)*@), as in Example

14, Langua(%& € L(CRD) since it can be denoted by the followit@RD-RE: E =
1 2

n,n+ n,n+ n,n+3*

Example 21. Let L = {(hn, hkn + n) | n, h, k>0}. LanguageL belongs toL(CRD).
IndeedL = L1®OL,, whereLy = {(n,kn) | n,k>0} and L, = {(hm, m) | m, h>0}.
If E,, is aD-RE for the languages of squares (see Exani@le a CRD-RE for L is
E=(E;D)0ED).

We now present some “regularity” conditions necessarily satisfie@Rip-regular lan-
guages. They generalize in some sense whatregularity means for one-dimensional languages
in what concerns the possible extensions of a picture inside a regular language. Indeed it is
well-known that a string language over a one-letter alphabet{a} is regular if and only
if it is ultimately periodic. In particular ifL. < {a}* is a regular language anrd < L is a
sufficient long string then there exists a strirfy such that” (¢™)* C L. We show that a
generalization of this necessary condition holds for two-dimensional languageSRD):
if a picture is sufficient “long” then we can concatenate to it some picture infinitely often
by columns; if a picture is sufficient “high” then we can concatenate to it some picture
infinitely often by rows; if a picture is sufficient “big” then we can concatenate to it some
picture infinitely often in diagonal.

Let2 = {a} andL C X**. Let us define for any, m >0, the following string languages:
C,={d"|(n,m) e L}yandR,, = {a" | (n,m) € L}.

Proposition 22. Let L C {a}** and L € REC Then for any:, m >0, C,,, R,, are regular
languages

Proof. For any alphabeX, and fixedh, the fixed-heightaword language of. € X** is the
languagé. () over the alphabeX”*, of all the strings of columns of heighthat compose
pictures inL. In [16], it is shown that ifL is in REC, thenL(n) is regular, for any alphabet

2, and any integen. In the special case of an alphabet of a single letter, we can identify
any column infa}1 with aand we have that () is regular iffC,, is regular. An analogous
reasoning implies the regularity &,. O

The proof of the following proposition is only sketched here; a more complete proof is
given in Appendix A.

Proposition 23. Let L be a CRD-regular language. Then there exist

o, 0,0,y : N — N, p, & N x N — N increasing functions and, m € N such

420 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

that for anyp = (n, m) € L we have

1) if m > @(n) thenp®g*® < L for g = (n, B(n)) with@(n) # 0,

(2) if n > Y(m) '[henpeq*6 C L for g = (Y(m), m) withs(n) # O,

) if n>n, m>m then p®q*® C L for someq = (n,, my) Withng,, m, # 0,n4 <
p(n,m), mg<<(n,m).

Proof (Sketch. First we show how to choose the functiopsy, @, 1. From Proposition
22, we know that the set5, = {a™ | (n, m) € L} andR,, = {a" | (n,m) € L} are regular
and therefore ultimately periodic. So we can defin@/, resp.) in relation to the steam of
the minimal automaton of,, (R,,, resp.) andp (i, resp.) related to the period 6§, (R,
resp.), in such a way to ensure that such functions be increasing functions.

Now we sketch how to choog m, p andé for aCRD-regular languagk, by induction
on the number of operators inGRD-regular expressionthat denotes.

Forthe basis, iL. = ¢ thenthe proposition is vacuously trueLlf= {100}, 0rL = {401},
or L = {410}, then we can choosg m, p and¢ in such a way the proposition is always
vacuously true, having care to defipén) = 1,J(m) =1,p(n,m) = &(n,m) = 1sothat
q # 40,0-

Suppose now > 0. There are seven different cases depending on the formro&
riUry, r =r1Oro, r =r19ro, r =r1Oro, r = ri“CD, r= ri‘e, orr = ri‘®. In any of
the seven cases, andr, denote some languade andL», respectively, that satisfies the
conditions. Letp;, ¥;, @;, ¥;, p;, &, ni, m; be the functions and the values fby, with
i=1,2.

The valuesz, andm for L are chosen in such a way that a “big” picture (pe= (n, m)
with n >n andm >m) in L always decomposes in some pictured.inand inL» that are
either “big” or “long” (i.e.m > ¢;(n), fori = 1, 2) or “high” (i.e.n > ;(m),i = 1, 2).
Thereforen may depend oy, 2, but also on the other functions @f and L. As an
example, wherl. = L1® L, then any “big”"p = p1® p2, wherepy € L1, p» € Ly can be
such thatp; and p, are either both “big”, or one of fixed size and the other one “big” or
one “high” and the other one “long”.

The functionsp, ¢ ensure a limitation on the size of pictugethat can be diagonal
concatenated infinitely many times to a igSuch pictureg is constructed from some
corresponding pictureg for p; andgz for po. The major problem is due to the partiality
of column and row concatenations that requires ¢handg, must have same number of
rows or columns. This problem is solved by concatenagingndg, with itself as many

times as necessary. For exam@ﬁk:L andqze k2 have same number of rows if we choose
k1 = €1(g2) andko = £1(q1) (a more refined version could consider a lowest common
multiple).

A special care is due to handle also the case whéasean empty column or an empty
row. [

The regularity conditions in Proposition 23 are stated in such a way a finite number of
pictures that could “disturb” this regularity are put away, by properly defining the limitation
on the size (namely, m, ¢,). Observe that such “small” pictures may indeed have
an infinite number of extensions in some direction (horizontal, vertical, diagonal). This
situation is illustrated in the following Example 24.

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 421

Example 24. For a languagé.; = {(no, mo)} consisting of a single picture, the functions
©1, ©1, Y1, Y1, p1, €1 and integerd 1, m1 as in Propositior23 can be chosen as (n) =

mo, Y1(m) = no, 1(n) = Yy(m) = py(n,m) = &1(n,m) = 1,n1 = no + 1, and

m1 = mo + 1. Indeed the conditions (1), (2) and (3) in the proposition will be vacuously
true. Consider now the language of squakes= L, , = {p | £1(p) = L2(p) >0}. The
functions ¢,, o, Yo, Yo, po. &, and integersio, m» as in Proposition 23 foL, can be
chosen as followsp,(n) = Yo(n) = n, Pa(n) = Ez(n) = 1,np = my = 0, and
po(n,m) = E,(n, m) = 1. Finally, consideL = L1U Ly = {(no, mo)}UL,_, and suppose
(no, mo) ¢ Lo. According to Proposition 23 (case 1), the functionsp, ¥, ¥, p, & and
integersn, m are the following:p(n) = maxn, mo}; ¢(n) = 1; Y(m) = maxnog, m};
Y(n) = 1;n = maxny, nz} = no+ 1; m = maXmq, m2} = mo + 1; p(n,m) =
maxp4(n, m), po(n,m)} = 1 andé(n, m) = maxé,(n, m), £,(n, m)} = 1. Observe that,
even if the pictureng, mg) have an infinite number of extensions, we cannot find some
pictureq that can be concatenate infinitely often in diagonal. The choigexofin is made

in such a way(ng, mg) does not satisfy the conditiomg >n andmo>m, and it does not
“disturb” the regularity ofL.

Remark 25. In Proposition23 we state that for ang there exists a picturg that can be
concatenate tp as many times as we want. This picture may indeed depepdsrshown
in the following Example 26.

Example 26. Let L = {(kn,n) | k,n >0} = (Ln,,l)*@, whereL, , is the language of
squares. The functions, @, ¥, ¥, p, £ and integer®, m as in Propositio23 can be chosen
as follows:p(n) = n, Yy(m) = 0,9(n) = 1,Yy(m) = ma{m, 1}, n =m =0, p(n,m) =
maxm, 1} and&(n, m) = 1. Remark that the size of pictutgin casep = (n, m) with

n > Y(m) orn>=n, m >m, depends on the size pf This situation is indeed unavoidable.
For example, wherp = (k'n’,n’), anyq = (ng4,n’) such thatp©g¢*© < L is such
thatg = (k"n’,n’), thus depending on the number of columnsppfas pointed out in
Remark 25.

Example 27. Let L = {(hn, hn + n) | n, h >0}. We havelL = Ln,,,d)(Ln,,,)*e, where
L1 = L,, is the language of squares. The functians ;. /1, ¥4, p1. &1 and integers
n1,m1 as in Propositior23 for L1 can be chosen as follows; (n) = y4(n) = n,
P1(n) = Yy(n) = 1,711 = my = 0, andpy(n,m) = & (n,m) = 1. The functions
©2, O, wz,%, P2, & and integersiz, m2 as in Proposition 23 foL, = (Ln,n)*e can
be chosen as followsp,(n) = n, Y(m) = 0, Pr(n) = 1,$z(m) = maxXm, 1}, no =
my = 0, py(n,m) = maXm, 1} and&,(n, m) = 1. According to Proposition 23 (case
2), the functionsp, @, ¥/, ¥, p, ¢ and integers:, m are the following onesp(n) = 2n;
om) = L ym) =m—1,ym) = L;n = 1;m = 0; p(n,m) = maXxm, 1} and fi-
nally £(n, m) = max{m, 1} + 1. Observe that Proposition 23 ensures that, for any picture
p = ', m') = (hn, hn+n)withn'>1,m’' >0, there existg = (n,, my) withng,, my # 0,
ng <maxm’, 1}, my <maxm’, 1} + 1 such thaip@g*® C L. Indeed such a picture can
be chosen ag = (n, n), that really satisfies <m’ = hn+nandn<m'+1=hn+n+1.
For example, in Fig. 1, givep; = (6, 6) € L1 we choose; = (1, 1) andp1®qi‘® C Ls.

422 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

Fig. 1. Extensions op1, p2 andp as in Example7.

Given po = (6, 2) € Ly we choosey, = (2, 2) and we havqmeqike C L».Then, if we
considerp = p1 ® p2 we can choose = (2, 2) according to Propositio@3 (case 2) and
we havep ©¢*® < L.

Proposition 23 can be used to prove that some picture languages a&E&baegular
languages, as shown in the following examples.

Example 28. Let L = {(n,n?) | n>0}. We show that.. ¢ L(CRD), proving that it
does not satisfy the condition (3) in Propositi28. Indeed suppose on the contrary that
there existi,m € N, p,¢ : N — N as in the proposition. Observe thatlin for any

n >0, there is only one picture with rows and one picture with? columns. Hence the
pictures ofL with nhumber of rows less than or equal ioor number of columns less
than or equal tan are in a finite number. Since is infinite, then there exists a picture
p = (n,n? e L such thatr > 7 andn? > m. Therefore there existg = (n,, m,)
with n,, my % 0 such thatp®q*® C L. Considerpy = p®qg = (n + nq,n2 + my).
We must have that? + m, = (n + ngy)? and thusn, = (n + n,)? — n2. Consider now
p2=p0q0Oq = (n+2ny, n2+2mq);we havethahqz+2mq = nz+2(n+nq)2—2n2 =
n?+4nng + 2n2 # (n + 2n,)? (sincen, # 0) againstpz € L.

Example 29. Let L = {(2", 2") | n>0}. We show that. ¢ L(CRD), proving that it does
not satisfy the condition (3) in Propositi@8. Indeed, suppose on the contrary that there
existn, m € N, p, £ : N — N as in the proposition. Observe thatlinfor anyn >0, there

is only one picture with 2 rows and one picture with”2columns. Hence the pictures of
L with number of rows less than or equalii@r number of columns less than or equal to

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 423

m are in finite number. Sinck is infinite, then there exists a pictupe= (2",2") € L

such that 2 > n and 2 > m. Therefore there exisig = (ny, my) with n,,m, # 0

such thatp®q*® C L. Considerp; = p®g = (2" +ny, 2" + my). Sincepy € L,

we have that 2+ n, = 2" + m, = 2"tk for somek # 0 (sincen, # 0) and thus

ng = my = 2"k — 2" Consider nowp; = pOg0q = (2" + 2n4, 2" + 2m,); we have

that 2' + 2m, = 2" + 2(2"+tk — 27y = 27(1 4 k1 — 2) = 27(2k+1 — 1). Therefore

2" + 2m, is the product of a power of 2 times an odd number different from 1 and it cannot
be a power of 2, againgi, € L.

We now show that the family d@RD-regular languages lies between the cla@DFA)
and REC. On the other hand, there are languages that beldr{gNé-A) and that are not
CRD-regular.

Proposition 30. L(3DFA) ¢ L(CRD) c REC.

Proof. Let L € L(3DFA). Following[14] we have that is a finite union of languageR
whose elements argf, g), where f = ag + ain andg = h(bg + bin) + bon + bzk +

ba With ag, a1, bo, b1, b2, b3, by positive integers and, i, k positive integers variables.

We show that any languade of this form is inL(CRD). Let E, , a CRD-RE for the
language of squares (see Example 14). The langudage, »,.5, = {(ao + ain, bo +

bin) | ag, a1, b, b1,n € N} can be denoted by theRD-RE Ey 41,00.5; = ((a0, bo) ®
(Enn)®©)01 @), ThenE=(Eay.ay,0.5:)*C © (a0, 1*® © Eg.41.0.5,) O (1, b3)*©)*P)

(1, b4)*9) is aCRD-RE for languageér. Moreover the inclusio.(3DFA)C L(CRD)

is strict: in fact the language = {n, k1(n + 1) + k2(n + 2) + k3(n + 3)} in Example 20

is in L(CRD), but it cannot be recognized by a 3DFA (cf. [LADRD-regular languages

are contained in REC because REC is closed under union, column and row concatenations
and stars (cf. [6]) and under diagonal concatenation and star (cf. Proposition 10). Moreover
there can be found examples of languages in REC that ar€Rbtregular languages as
languagel = {(2", 2") | n >0} (see Example 29) ot = {(n, n?) |n>0}. O

Regarding the comparison with the class of languages recognized by four-way au-
tomata, consider language = {(2",2") | n>0 }. As shown in Example 29, is not
a CRDregular language, but J. Kari and C. Moore [13] showed thit recognized by
a 4DFA. On the other hand, the clas®DFA) seems not closed under concatenation
and star operations (despite the case of one-letter alphabet is still open, it seems that
for example the column closure of language in Example 21 cannot be recognized by a
ANFA).

3.3. Acollection of examples

In this section, we give a collection of examples of two-dimensional languages and
classify them with respect to their machine-type and regular expression-type. Languages
are given by their representative element, where:, 4, k> 1 are integer variables and
c>=1is an integer constant. Moreovét(n) = a1 + --- + a,, Whereas, ..., a, are all

424 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

chosen in a finite subset 8, and f>(n) = k1(n + 1) + ka2(n + 2) + k3(n + 3), where
k1, k2, k3> 1 are integer variables.

Element 2DFA 2NFA 3DFA 3NFA

4DFA 4ANFA D-RE CRD-RE REC
(n,n) Y Y Y Y Y Y Y Y Y
(2, 2n) \'% Y Y Y \'% Y Y Y \'%
(2n, 2n) \'% Y Y Y \'% Y Y Y Y
(2n, 2m) \'% Y Y Y \'% Y Y Y \'%
(n, cn) \% Y Y Y Y Y Y Y \%
(n, fi(n)) N Y Y Y Y Y Y Y Y
(kn, n) N N \'% Y Y Y N \% \'%
(n, f2(n)) N N N Y Y Y N Y Y
(n, kn) N N N N \'% Y N Y Y
(2, 2m) N N N N Y Y N N Y
(hn,hkn +n) N N N N N Y N \% Y
(n, n?) N N N N N N N N Y
(n2, n) N N N N N N N N Y
(n2, n?) N N N N N N N N Y
(n, 2" N N N N N N N N Y
(n,n!) N N N N N N N N N

4. Advanced star operations

Using the three types of concatenation operations (row, column and diagonal) and the
three corresponding stars we get regular expressions describing a quite large family of two-
dimensional languages over one-letter alphabet. Unfortunately, all those operations together
are not enough to describe the whole family REC because in REC there are very “complex”
languages even in the case of one-letter alphabet. For example, REC contains languages of
the formL = {(n, f(n)) |n > 0}, aswellad. = {(f(n), g(n)) |n > 0}, wheref (n), g(n)
are polynomial or exponential functionsiinsee[5] for details).

Observe that the peculiarities of the “classical” star operations (along which such column,
row or diagonal stars are defined) are mainly the following: (a) they are a simple iteration
of one kind (row- or column- or diagonal-) of concatenation between pictures; (b) they
correspond to an iterative process that at each step adds (concatenates) always the same set.
We can say that they correspond to the idea of the iteration for some reddrdefined as
HQ) =SandH(n + 1) = H(n)S, whereSis a given set.

In this section we define new types of iteration operations, to which we will refer as
advanced starsthat result much more powerful than the “classical” ones. We will use
subscripts “r"and “d” with the meaning of “right” and “down”, respectively.

Definition 31. Let L, L,, Lq be two-dimensional languages. Tétar of L with respect to
(Ly, Lg) is defined as

LELrLa)* — U L(Lr,Ld)i’
i=0

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 425

whereLrLd0 = (750}, LErLldl = [and

LEekaisd A PPO) e [kl e L py € Lo.q € 31

pPd| g

Remark that the operation we defined cannot be simulated by a sequercend
© operations because to get we first concatenate © p, and p© pq, then we overlay
them and finally we fill the “hole” with a picturg € X**. For this reason this defini-
tion is conceptually different from the one given by O. MatZ15%]. Moreover, observe
that such advanced star is based on a reverse principle with respect to the diagonal star:
we “decide” what to concatenate to the right and down to the given picture and then fill
the hole in the bottom-right corner. This implies that, iat-(1)th step of the iteration,
we are forced to select picturgs € L, and pq € Lg that have the same number of
rows and the same number of columns, respectively, of pictures generatedthtstep.
Therefore, we actually exploit the fact that column and row concatenations are partial op-
erations to somehogynchronizeeach step of the iteration with tloboiceof pictures inL;
andLg.

We now state the following proposition.

Proposition 32. If L, L, Lq are languages in REGhenLLr-Ld* is in REC

Proof. We give only few hints for the proof because it can be carried over using the tech-
nigues shown in the proof of Propositid@. The idea is to assume that the tiling systems for
L, L;, Lq are over disjoints local alphabelts I';, I'q and define a local languadé’ over

an alphabef™” equal to the union of the three ones together with a new different symbol

/ /

{x}. LanguageM’ contains pictures Iikap/ Pri, wherep’, p; and p); belong to the local
Pql S
languages fol., L, and Lg, respectively and is any picture filled with symbak. Then
the set of tiles fol.” = L(rLd)* can be defined by taking two “different copies” (i.e., over
disjoint local alphabets) of languag#g and different local languages fér and L4 and
define tiles according to the definition of picturedih O

As immediate application, consider the langudge- {(n, n?) | n >0} of Example 28.
ThenL can be defined as advanced stanbf= {(1, 1)} with respect taM; = {(n, 2n +
1) n>0}andMy = {(1,n) |n>0} (at ¢ + 1)th step of the iteration we “add(2i + 1)
columns to the curren? ones and 1 row to the currenbnes). Using the same principle,
namely exchanging languaggt and My, it is easy to define also the rotation of this lan-
guage, i.e. language’ = {(n2, n) | n >0}. Then also the language’ = {(n2, n®) |n >0}
can be defined as advanced stavbt= {(1, 1)} with respect taV, = {(n2, 2n +1) n>0}
andNg = {(2n + 1, n?) | n >0}, whereN; (Ng) can be obtained by column-concatenation
(row-concatenation) of two copies éf (L) and 1-row (1-column) pictures.

Remark that, even using the above defined advanced star, it seems still not possible to
define the language of Example 29 of pictures of $%% 2") or the language of pictures
of size(n, 2") and similar ones. In fact, for this kind of languages (recall that they are all

426 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

in REC), it would be needed a definition that allows to usé.aand/orLy the language
itself.
We give the following definition.

Definition 33. Let L, Ly be two-dimensional languages. Thu-iteration along the
columnsof L with respect td.q is defined as

L(*,Ld)* — U L(*,Ld)i’
i>0

whereL*Ld0 = (J5 0}, LIl = [and

LOEiH = {p/ = Zi];2 | pr. p2 € L% pye Ly, g € Z**} .

Similarly we define the bi-iteration along the rows lofwith respect to a languagéy,
denoted by.(Lr-9* where the(i + 1)th step of the iteration is given by

LEe»it = {p’ = I;; l;r | prop2e LE9 poe Ly, g e Z**} :

These notations naturally bring us to define also the bi-iteration along rows and columns,
denoted byl *~*)* where the(i 4 1)th step of the iteration is given by

‘ s :
LORHL = {P/ = ﬁz 1:] | p1, p2, p3€ LE¥ g e Z**} .

Using same techniques as in the proof of ProposB®yone can prove that the family REC
over one-letter alphabet is closed under all such bi-iteration operations.

It is immediate to verify that the languadieof pictures of sizgn, 2") can be obtained
from languageV = {(1, 1)} andMg = {(1, n) |n > 0} asL = M*Md* We conclude by
observing that the language of Example 29 of pictures of @%e2") can be obtained as a
bi-iteration both along rows and columns of the same languége {(1, 1)}.

5. Towards the general alphabet case

Inthis paper, we have defined new operations between pictures so that a quite wide class of
two-dimensional languages over one-letter alphabet could be described in terms of regular
expressions. All these languages belong to REC that is the class of recognizable languages
that generalizes better to two dimensions the class of regular string languages. Next step
is surely to complete the definitions of some other kind of “advanced” star operations in
the aim of proving a two-dimensional Kleene’s Theorem in this simpler case of one-letter
alphabet.

We also emphasize that an important goal of further work is to extend all these results to
the general case of two-dimensional languages awgalphabet. (i.e. the case with more

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 427

than one-letter). Observe that the definitions of diagonal concatenation and star are hard to
extend to such general case, even using their characterizations in terms of rational relations
or in terms of automata with only two moving directions. The main problem is that 4if

are two pictures ovek, to defineg ®¢ we need to specify two picturess such that

plr
s|ql

pOg =

On the other hand, the formalism of the advanced stars appears to be a more reasonable
approach to the general case. Recall that, in this case, we need always to specify four pictures
(or four languages). We will use subscripts r, d and ¢ with the meaning of “right”, “down”
and “corner”, respectively. Then, we can give the following definition that directly extends
Definition 31.

Definition 34. Let L, L, Ly, L be two-dimensional languages overThestar of L with
respectta(L;, Lq, L¢) is defined as

LErlalox — |) (Erlaloi
i=0

whereLLrLale)0 — (44}, L(ErnldLlol = [and

Pd| Pc

L (Lr.La.Lo)i+1 _ p’ _| P |Pr | pe L(Lr,Ld,Lc)i7 pre L, pd € L, pc € Lc}-

Remark that this kind of star operation is not the iteration of a “classical” concatenation
operation. These operations seem to be able to describe several languages in REC, despite
the “regular expressions” for the two-dimensional languages in the general case will result
very complex.

Appendix A.

Proposition 23. Let L be a CRD-regular language. Then there exist

o, o, N — N, p, & N x N — N increasing functions and, m € N such

that for anyp = (n, m) € L we have

1) if m > p(n) thenp0g*® C L forg = (n, B(n)) with G(n) # O,

(2) if n > Yy(m) thenpog*© < L for g = (J(m), m) with (n) # 0,

Q) ifn=n,m>m 1‘henp®q*® C L for someq = (n,, my) Withng,my # 0,n4 <
p(n,m), mg <<(n,m).

Proof. First let us see how to choose ¥, @, ¥ in all these cases. From Proposition
22, we know that the set§,, = {a™ | (n,m) € L} andR,, = {a" | (n,m) € L} are
regular and therefore ultlmately periodic. So there ekist k¢, hg, kg € N such that
al € C, & altkc ¢ C,, foreveryj >h¢,anda’ € R, < al*Fr Ry, foreveryj >hg.

If we do not take care to the fact that i, @, y have to be increasing and thaty have
to be # 0, then it would be sufficient to sei(n) = hc¢, Y(m) = hg, p(n) = kc and

428 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

J(m) = kg. But, to be sure thag(n), J(m) # 0 and to assure the increase of the functions,
we setp(n) = hc + sikp, Y(n) = hg + 52k, @(n) = k¢ + s3k andyr(m) = kg + sak’y,
wherek, = max1, kc}, kp = max1, kr} andsy, s2, 53, s4>0 are the minimal integer
such thap(n) > @(n — 1), Y(n) 2§ (n — 1), §(n) = @(n — 1) andy(n) > (n — 1).

Let us now show how to choo& m, p and¢& for aCRD-regular language. Letr be a
CRD-regular expression denotirig The proof is by induction on the number of operators
inr.

For the basis, if. = ¢ then the proposition is vacuously true lf= {49 o}, then we can
setn = 1,m =1, @) = 0,y(m) = 0. If L = {110} (resp.L = {4o,1}), then we can set
n=2(respn =1),m = 1(respin = 2), p(n) = 0 (resp.p(n) = 1), Y(m) = 1 (resp.
Y (m) = 0). In all these cases we can §gir) = 1,y(m) = 1, p(n,m) = E(n, m) = 1.

Assume now that the proposition is true for languages denot€dRiyregular expression
with less than operators; > 1, and letr havei operators. There are seven cases depending
ontheformof: (1)r = riUr2, (2)r = r1Or2, (3)r =r16r2,(4)r =r10r, (5)r = r1®,
6)r = ri®, or (7)r = r#®. In any of the seven cases,andr, denote some language
L1 andL, respectively, that satisfies the condition. kgt 1, @1, V1, py, &1, 711, 71 be
the functions and the values fag and letp,, V¥, @5, Ez, P2, &2, N2, mo be the functions
and the values fof.».

Casel: We haveL = L1 U L. We setp(n, m) = maxpq(n, m), po(n, m)}, E(n, m) =
max{¢y(n, m), (n, m)}, i = maxny, nz}, m = maxmy, ma}.

Case2: We havel. = L1 © L,. We set:

p(n, m) = maxpy(n, m)py(n, m), Yy (m)pa(n, m), llfz(m)pl(n m)},

En.m) = max{pyn,m)Ep(n,m) + po(n,m)q(n,m), Yy (m)Ep(n,m), Yp(m)Eq(n, m},

n = maxny, iz, Y1(m1), Yo (m2)},

m=m1+ moy.

Now, let p = (n,m) € L, with n>n, m>m. Clearly,p = p10 p> for somep; =
(np,mp) = m,mpy) € Lyandpy = (n,, my,) = (n,mp,) € L. We have to consider
three different cases:

(2a)m p, =m1 andm p, >mp, (2b)m,, < m1, (2C)m,, < mo.

(2a) Sincenp, >n1, m,, >ma, n,, =n andm,, >mo, from the hypothesis orL,
and Ly, we have thatpl®qi‘(D C L, for someq1 = (ng,, mg,) With ngy,my, # 0,
ng <p1(n,mp,), mg, <E1(n, mp,) and thatp, ©g3 O < 1, for somegy = (ng,, ny,)
With ng,, my, # 0,ng, <po(n, mp,), mg, <Eo(n, mp,).

Now let us sety = (ng ng,, ngmg, + ngmg,) = (ng,mg). Then pog*® c L
with ng,mg # 0,ny = ngng, <p(n, mp)po(n, mpy,) <py(n, m)p,(n,m) andm, =
Mg Mgy + NgyMy,y < pa(n, m)¢a(n, m) + p2(n, m)¢y(n, m).

(2b) Sincemn ,, < my, thenm ,, >m; (recall thatm ,, +mp, = m>m = my + m2) and
thereforep, ®¢3® C Lo for somegz = (ng,, mg,) With ng,, mg, # 0, ng, < po(n, m),
mg, <Ex(n, mp,). Moreovemy, =n>n>y(my) > Y(mp,): thereforepleqi‘e C L
for g1 = (ngy, mg;) = (P1(mp,), m,,). Note that we haver,, # 0. Let us seyy =
(ngingy. ngymgy) = (ng.my). Then we havep ©¢*® < L with 1 ng.mg # 0,nq =
Mg gy S lpl(mpl)pZ(n mp,) < Y (m)pa(n, m) andmg = ngymg, < lpl(mpl)£2(n M py) <

Y1(m)&a(n, m).

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 429

(2c) Itis analogous to the previous case.

Case3: We havel. = L1© Lo and the proof is similar to that one of the previous case.

Case4: We havelL = L1 ® Lp. We set: _

p(n, m) = maxpy(n, m), py(n, m), Yq(m), yo(m)},

¢(n,m) = max¢y(n, m), Co(n, m), Pa(n), P1(n)},

n = maxny + np, Y, (m1) + no, Yo(mo) +n1},

m = maxXmi + mz, pp(n2) + mi, ¢1(n1) + ma}.
Now, letp = (n,m) € L = L1® Ly, with n>n, m >m. Clearly,p = p1® p» for some
p1= (np,mp) € Lyandpy = (n,,, m,,) € L. We have to consider two different cases
4(a) and (b): withny, my # 0

(4a) At least one of the following conditions (1) and (2) is verified

IR s (2 "2l
My, Zmy. mp, ZMm2.

If condition (1) is verified, them@qi‘@ C Ly forsomegy = (ng,, my,) Withng,, my, #
0,14, <py(n, m), my; <E1(n, m) and it suffices to sef = ¢;. If, instead, condition (2) is
verified, therp2®q;® C Ly forsomeg; = (ng,, mg,) Withng,, my, # 0,n4, < py(n, m),
my, < Ea(n, m) and it suffices to sef = g».

(4b) If neither condition (1) nor condition (2) is verified, then, again, we have to con-
sider two different subcases eithey, >n1, m,, < m1, n,, < nz, mp, 2mp Or np <
ni, mp, =ma, np, =2, my, < my. \We give the details only for the first subcase, since
the other one can be handled in a similar way. So, in the first subcase, wa jave
N—Np, ZN—Np, > n—np =2 (m) +ng—nz = Y1(m1) > lﬁl(mpl) ie.npy > lﬁl(mpl)
andmp,=m —mp, >m —m,, > m —my=@y(m2) +ms —_ﬁlzq)z(ﬁz) > @o(np,) i.e.,
Mp, > @o(np,). Therefore,p10qi® < Ly for g1 = W1(mpy), mp,) and pr ©q3®
C L for q2 = (”pzv@Z(npz))- We setg = (nqa mq) = (”qla qu) = (llﬁl,(mpl)’az_(”pz))
and we will have p®q*® C L with ng,mg # 0, ng = y(mp) <hy(m),
Mg = P21 py) S Po(n).

Cases: We havd. = L’{CD.V_Ve sefp(n, m) = max{py(n, m), p (n, m)yy (m)}, En, m)
= maxim &y (n, m) =, m)Yy (m), Eq(n,m)), 7T = maxiy, Y (71)} andi = ;.

Now, letp = (n,m) € L, withn>n, m>m. If m = 0, thenp € L; and we can
apply the inductive hypothesis. If instead # 0, then we havey = p1 @ - - - © p with
pi = (np;,mp,) = (n,mp;) € L1. Let us consider two different subcases 5(a) and (b).

(5a) There exists somee {1,..., k} such thatn,, >m, for everyi = 1,...,7 and
m,, < myforeveryi =74 1,..., k. Therefore, for every =1, ...,7, there existy; =
(ng;, mg) Withng,, mg; # 0,ng, <py(np;, mp,),my, <E1(np;, mp,), such thap; ®q;k® C
Li. Note that fori = 1,...,7, we haven,, <pi(np,,mp,) = pi(n,mp)<p(n,m),
my, <E1(np,, mpy,) = E1(n, my,) <E1(n, m). Moreover, since for every =7+ 1,...,k,
we havem,, < my, it follows thaty(m,,) < y1(m1) <n<n = n,,. So for everyi =
i+ 1, ...,k there existg; = (ng;, rjqqi) = (Jl(mqi), myg,;) such thatp; eq;‘@ C L1.We
setqg = (ng,my) = (]_[f.czlnqi, Yi_q(my, Hﬁ:l,j;éi ng;))- Thenpog¢*® < L, where
ng,mg # 0, With ny, < pl(n, m) Yy(my,.,) ... (mg) <y (n, mypy (m) andm, =

430 M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431

Mgy M m) Py () + - 4 mgpl N)Py () < Ean,myTpy o m)g ()

<méq(n, m)pT_l(n, m)win (m) .
(5b) In this subcase, for eveny=1, ..., k, m,,<m1. Therefore, as in case (5a), for

everyi=1, ...k, there exists;i=(n,,, my,) = (J1(mg), my) such thatp; ©¢*°© L.
We setg=(n,, mq)z(]_[fle ng,,m). Thenng, my#0, ng gﬂ" (m)<pY(n, m)win (m),
mg =m<méy(n, m)p'f_l(n, m)win (m).

Caseb: This case is analogous to the previous one.

Case7: We havel = L. If there existsy = (n,, m,) € L with n,, m, # 0, we can
setp(n, m) = n,, &, m) = m,, @ = = 0. Then for everyp = (n,m) € L = L% we
havep ®q*® C L. IfinsteadL C Acgl (resp.L € Apow), thenwe canset =0,m =1
(respn = 1,m = 0) and condition (3) will be vacuously true.

Note that in all the cases the choice of the functiong/, ¢, y, p and¢ preserves their
increase. J

References

[1] M. Anselmo, D. Giammarresi, M. Madonia, Regular expressions for two-dimensional languages over one-
letter alphabet, in: C.S. Calude, E. Calude, M.J. Dinneen (Eds.), Proc. Development in Language Theory
(DLT 04), Lecture Notes in Computer Science, Vol. 3340, Springer, Berlin, 2004, pp. 63—75.

[2] J. Berstel, Transductions and Context-free Languages, Teubner, 1979.

[3] M. Blum, C. Hewitt, Automata on a two-dimensional tape, IEEE Symp. on Switching and Automata Theory,
1967, pp. 155-160.

[4] L. De Prophetis, S. Varricchio, Recognizability of rectangular pictures by Wang systems, J. Automat.
Languages Combin. 2 (1997) 269-288.

[5] D. Giammarresi, Two-dimensional languages and recognizable functions, in: G. Rozenberg, A. Salomaa
(Eds.), Proc. Developments in Language Theory, Finland, 1993, World Scientific Publishing Co., Singapore,
1994.

[6] D. Giammarresi, A. Restivo, Two-dimensional finite state recognizability, Fund. Inform. 25 (3,4) (1996)
399-422.

[7] D. Giammarresi, A. Restivo, Two-dimensional languages, in: G. Rozenberg, et al. (Eds.), Handbook of Formal
Languages, Vol. I, Springer, Berlin, 1997, pp. 215-268.

[8] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley,
Reading, MA, 1979.

[9] K. Inoue, A. Nakamura, Some properties of two-dimensional on-line tessellation acceptors, Inform. Sci. 13
(1977) 95-121.

[10] K. Inoue, A. Nakamura, Two-dimensional finite automata and unacceptable functions, Internat. J. Comput.
Math. Sec. A 7 (1979) 207-213.

[11] K. Inoue, I. Takanami, A characterization of recognizable picture languages, in: Proc. Second Internat. Collog.
on Parallel Image Processing, Lecture Notes in Computer Science, Vol. 654, Springer, Berlin, 1993.

[12] K. Inoue, I. Takanami, A. Nakamura, A note on two-dimensional finite automata, Inform. Process. Lett. 7 (1)
(1978) 49-52.

[13] J. Kari, C. Moore, Rectangles and squares recognized by two-dimensional automata, In: J. Karhumaki,
H. Maurer, G. Paun, G. Rozenburg (Eds.), Theory is Forever, Essays dedicated to Arto Salomaa on the
occasion of his 70th birthday. LNCS 3113 (2004) 134-144.

[14] E.B. Kinber, Three-way automata on rectangular tapes over a one-letter alphabet, Inform. Sci. 35 (1985)
61-77.

[15] O. Matz, Regular expressions and context-free grammars for picture languages, Proc. STACS'97, Lecture
Notes in Computer Science, Vol. 1200, Springer, Berlin, 1997, pp. 283—-294.

M. Anselmo et al. / Theoretical Computer Science 340 (2005) 408-431 431

[16] O. Matz, On piecewise testable, starfree, and recognizable picture languages, in: M. Nivat (Ed.), Foundations
of Software Science and Computation Structures, Vol. 1378, Springer, Berlin, 1998.

[17] M. Rabin, T. Scott, Finite automata and their decision problems, IBM J. Res. Dev. 3 (1959) 114-125.

[18] D. Simplot, A characterization of recognizable picture languages by tilings by finite sets, Theoret. Comput.
Sci. 218 (2) (1999) 297-323.

[19] T. Wilke, Star-free picture expressions are strictly weaker than first-order logic, in: Proc. ICALP'97, Lecture
Notes in Computer Science, Vol. 1256, Springer, Berlin, 1997, pp. 347-357.

