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Abstract

For each pair of linear orderings(L,M), the representability number reprM(L) of L in M is the
least ordinalα such thatL can be order-embedded into the lexicographic powerMα

lex. The case
M = R is relevant to utility theory. The main results in this paper are as follows. (i) Ifκ is a regular
cardinal that is not order-embeddable inM, then reprM(κ) = κ; as a consequence, reprR(κ) = κ

for eachκ � ω1. (ii) If M is an uncountable linear ordering with the property thatA ×lex 2 is
not order-embeddable inM for each uncountableA ⊆ M, then reprM(Mα

lex) = α for any ordi-
nal α; in particular, reprR(Rα

lex) = α. (iii) If L is either an Aronszajn line or a Souslin line, th
reprR(L) = ω1.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we deal with representations of linear orderings (also called chains) in
that are useful in the field of mathematical economics calledutility theory (see [6] for an
overview of this topic). A key notion in utility theory is that of representability: a ch
(L,≺) is representable(in R) if there exists a mapu :L → R, called a utility function,
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which is an order-embedding (i.e.,x ≺ y if and only if u(x) < u(y) for all x, y ∈ L). If we
interpretx ≺ y as “y is preferred tox”, then a utility function onL measures preference
quantitatively. In the traditional approach much attention has been given to char
zations of representable chains. A well-known result in this sense is the following
e.g., [2]). (Recall that ajump in a chainL is a pair(a, b) ∈ L2 such thata ≺ b and the
open interval(a, b) is empty.)

Theorem 1.1. A chain is representable(in R) if and only if it is separable in the orde
topology and has at most countably many jumps.

A more recent approach to the problem of representability focuses on finding stru
obstructions to the representability of a chain among its subchains (see [1,3]). Cla
examples of chains for which representability fails are the real plane endowed wi
lexicographic orderR2

lex, the first uncountable ordinalω1 and its reverse orderingω1
∗.

Recall that a chainL is short if neitherω1 norω1
∗ order-embed intoL, and it islong oth-

erwise; further, anAronszajn lineis an uncountable chain that is short and does not con
any uncountable representable subchain. The next result (from [1]) gives a subor
characterization of non-representable chains.

Theorem 1.2. A chainL is non-representable(in R) if and only if (i) it is long, or (ii) it
order-embeds a non-representable subchain of the lexicographic plane, or(iii) it order-
embeds an Aronszajn line.

Our objective is to give a more descriptive classification of non-representable c
(and, more generally, of all chains). In this paper we begin to pursue this goal by class
chains according to a measure of their “lexicographic complexity”. To this aim we tak
point of view that a chain which can be order-embedded in the lexicographically or
real plane is representable, even if in a weaker sense. Such an ordering is realized i
that is more complex than for suborderings ofR, but which still fits within the genera
utility concept. This is based on the observation that an order-embedding of(L,≺) into
R2

lex corresponds to two functionsu1, u2 :L → R with the property that for allx, y ∈ L,
we havex ≺ y if and only if eitheru1(x) < u1(y), or u1(x) = u1(y) andu2(x) < u2(y).
In other words, preference in the sense ofL corresponds to preference according tou1 and
u2 together, but withu1 being given higher priority.

More generally, we say that a chain(L,≺) is α-representable(in R) if it can be
order-embedded into the lexicographic powerRα

lex, whereα is an ordinal number. Thi
corresponds to having a representation of the preference ordering≺ by a well-ordered
family of utility functions uξ :L → R indexed by the ordinalsξ < α; for any x, y ∈ L

one hasx ≺ y if and only if uβ(x) < uβ(y) holds, whereβ is the least ordinal belowα
at whichuβ(x) anduβ(y) differ. One can think of the ordinal indices as determining
relative importance of the utility functionsuξ .

The least ordinalα for which a chainL is α-representable is called therepresentability
number ofL (in R). More generally, for any pair of chains(L,M), we define therepre-
sentability number ofL in M as the least ordinalα such thatL can be order-embedde
into Mα ; this ordinal is denoted by reprM(L). In this paper we determine reprM(L) for
lex
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some pairs of chains(L,M). Our goal is to classify chains that are non-representable iR;
thus, we focus on the caseM = R.

Long chains are notα-representable (inR) for any countable ordinalα (see [4]). There-
fore the family of all chains can be partitioned in the following three disjoint clas
(i) long chains; (ii) short chains with uncountable representability number; (iii) ch
with countable representability number. Surprisingly, class (ii) is very rich in variet
fact, there exists a hierarchy of short chains that do not embed an Aronszajn line, a
have uncountable representability number (see [8, Chapter 5]). Further, some ch
this class are rather complicated: for example, in this paper we prove that Aronszaj
belong to class (ii).

The paper is organized as follows. In Section 2 we introduce some basic termin
and prove some easy results for lexicographic products. In Section 3 we study the
sentability of cardinal numbers; for example, we show that ifκ is a regular cardinal that i
not order-embeddable inM , then reprM(κ) = κ . In Section 4 we prove that ifM is an un-
countable chain such thatA ×lex 2 is not order-embeddable inM for each uncountable se
A ⊆ M , then reprM(Mα

lex) = α for any ordinalα; thus, reprR(Rα
lex) = α for each ordinalα.

Finally, in Section 5 we use the (known) technique of lexicographic linearization of a
to prove some facts about order-homomorphisms of lexicographically orderedω1-trees;
then we deduce that the representability number inR of an Aronszajn line and of a Sousl
line isω1.

2. Preliminaries

By R andQ we mean the chains(R,<) and(Q,<), respectively; the chain(N,<) can
be denoted either byN or by the ordinal numberω. As usual, an ordinalα is identified with
the set of all ordinals below it. A cardinal is an initial ordinal, and the first cardinal gre
than a cardinalκ is denoted byκ+. Thus, for example,|α|+ denotes the first cardina
greater than the cardinality of the ordinalα. The unique chain with exactly one elemen
denoted by1. Further, for any chainL, the symbolL∗ denotes the reverse ordering ofL.
For all undefined set-theoretic notions the reader is referred to [9].

Let (L,≺) and (M,≺) be two chains. A mapf :L → M such thatx ≺ y implies
f (x) � f (y) for all x, y ∈ L is said to be anorder-homomorphism(or, simply, aho-
momorphism). In particular, anembedding(respectively,isomorphism) is an injective
(respectively, bijective) homomorphism. The notationL ↪→ M stands for embeddabilit
of the chainL into the chainM , whereasL ∼= M denotes the existence of an isomorphi
betweenL andM . For operations and basic properties of linear orderings the read
referred to [12].

Next we recall the definitions of some cardinal invariants for a chain(L,≺). Thedensity
d(L) of L is the density of the topological space(L, τ≺), whereτ≺ is the order topology
induced by≺. Theperfect densityd′(L) of L is the least infinite cardinalκ such that there
existsD ⊆ L, which has size� κ and intersects every closed interval inL containing at
least two points; in particular,L is perfectly separableif d′(L) = ω. Note that(L,≺)

is perfectly separable if and only if it is representable if and only if(L, τ≺) is second
countable. A chain isdense-in-itselfif it has no jumps. The set of jumps inL is denoted
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by Jump(L); further, we let j(L) = |Jump(L)|. Thecellularity c(L) of L is the least infinite
cardinalκ such that every family of pairwise disjoint nonempty open intervals ofL has
cardinality� κ ; in particular,L has thec.c.c. (countable chain condition) if c(L) = ω.
A Souslin lineis a chain that has the c.c.c. but is not separable; the existence of S
lines is independent from the usual axioms of set theory (see [9]). Note that for any
L, we have c(L) � d(L) � (c(L))+ and d(L) � d′(L); in particular, a chain that does n
satisfy the c.c.c. is not representable. All chains that have the c.c.c. are short (e.g.R and
Souslin lines); on the other hand, there exist chains that are short, yet they do not
the c.c.c. (e.g., some Aronszajn lines).

Let (Li,≺)i∈I be a family of chains indexed by a well-ordered set(I,<). The lexico-
graphic productof this family is the chain(

∏
i∈I Li,≺lex), where the relation of total orde

is defined as follows: for eachx = (xi)i∈I , y = (yi)i∈I ∈ ∏
i∈I Li , let x ≺lex y if there ex-

ists an indexj ∈ I with the property thatxj ≺ yj and for eachi ∈ I such thati < j ,
xi = yi ; this chain is denoted by

∏lex
i∈I Li . For anyj ∈ I , denote byπj :

∏lex
i∈I Li → Lj the

projection onto thej th component; observe that ifj 	= minI , thenπj fails in general to
be a homomorphism. Further, forj 	= minI , let π̂j :

∏lex
i∈I Li → ∏lex

i<j Li be the projection
onto the firstj components (which is always a homomorphism). If the well-ordered sI

is an ordinalα, the corresponding lexicographic product is denoted by
∏lex

ξ<α Lξ ; in partic-
ular, the lexicographic product of the two chainsL andM is denoted byL×lex M . Further,
the lexicographic power(Lα,≺lex) = ∏lex

ξ<α L is denoted byLα
lex; in particular,L1

lex = L

andL0
lex = 1. The empty set is a chain (it is the ordinal 0), but in this paper we assum

all chains are nonempty. The next result collects some simple facts about lexicog
products.

Lemma 2.1. Let Z be a chain, and(Lξ )ξ<α , (Mξ )ξ<α two families of chains indexed b
an ordinalα. We have:

(i)
∏lex

ξ<α Z
βξ

lex
∼= Z

γ

lex, where(βξ )ξ<α is a family of ordinals andγ their ordinal sum;

(ii) Lξ ↪→ Mξ for all ξ < α implies
∏lex

ξ<α Lξ ↪→ ∏lex
ξ<α Mξ ;

(iii) for anyI ⊆ α,
∏lex

i∈I Li ↪→ ∏lex
ξ<α Lξ .

Now we introduce the notion of representability number of a chain relative to an
chain.

Definition 2.2. Let L andM be chains, with|M| � 2. For any ordinalα, we say thatL is
α-representable inM if L can be embedded into the lexicographic powerMα

lex; the chain
M is called thebaseof the representation. Therepresentability number ofL in M is the
least ordinalα such thatL is α-representable inM ; this ordinal is denoted by reprM(L).
The representability number ofL in R is simply called therepresentability number ofL
and is denoted by repr(L).

Whenever we write reprM(L), we assume that the baseM of the representation is
chain with at least two elements. Observe that reprM(L) = 0 if and only ifL = 1. Further,
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if N ↪→ M then reprM(L) � reprN(L); in particular, reprM(L) � repr2(L) for eachM .
The next result ensures that reprM(L) is always well-defined.

Lemma 2.3. For all chainsL andM , reprM(L) � repr2(L) � min{d′(L),d(L) + 1}.

Proof. SinceL embeds into 2d(L)+1
lex (see [5]), it suffices to prove thatL embeds into 2d

′(L)
lex .

Let D be a perfectly dense subset ofL such that|D| = d′(L) = κ , and letf :κ → D be a
bijection. It is enough to show thatL ↪→ 3κ

lex. Define a mapı :L → 3κ
lex by

ı(x)(α) :=



0 if x ≺ f (α),

1 if x = f (α),

2 if x 
 f (α)

wherex ∈ L andα ∈ κ . The mapı is an embedding. �
The case in which the base of the representation isR is relevant in applications t

economics. In fact, repr(L) � 1 if and only if L is representable in the sense of util
theory.

Example 2.4. We have:

(i) repr(Qω
lex) = 1;

(ii) repr(R ×lex 2) = 2;
(iii) repr(ω1) = repr(ω∗

1) = ω1.

Parts (i) and (ii) are a consequence of Theorem 1.1; in fact,Qω
lex is separable and has n

jumps, whereasR ×lex 2 has uncountably many jumps. For (iii), see [4].

Example 2.5. Let
∏lex

ξ<α Lξ be the lexicographic product of the family of chains(Lξ )ξ<α ,

whereα � 1 and for eachξ < α, Lξ 	= 1. Then, repr(
∏lex

ξ<α Lξ ) = 1 if and only if either
(i) α � ω andLξ is countable for eachξ < α, or (ii) α < ω, Lξ is countable for each
ξ < α − 1, andLα−1 is uncountable but representable (see [7]).

In the remainder of this section we prove some miscellaneous facts about the
sentability number. We begin with some results related to reverse orderings.

Lemma 2.6. LetL andM be chains. We have:

(i) for each ordinalα, (Lα
lex)

∗ = (L∗)αlex;
(ii) reprM(L) = reprM∗(L∗).

Proof. The underlying sets of(Lα
lex)

∗ = (Lα, (≺lex)
∗) and of(L∗)αlex = ((L,≺∗)α,≺lex) =

(Lα, (≺∗)lex) are the same. It is easy to show that the orders(≺lex)
∗ and(≺∗)lex coincide.

Thus (i) holds. Part (ii) is a consequence of (i).�
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If (Zi)i∈I is a family of chains indexed by a chain(I,<), then thesum of(Zi)i∈I is the
chain(

⋃
i∈I {i} × Zi,≺), where the order is defined as follows: for each(j, zj ), (k, zk) ∈⋃

i∈I {i} × Zi , let (j, zj ) ≺ (k, zk) if either j < k or j = k andzj ≺ zk in Zj . This chain is
denoted by

∑
i∈I Zi . Note that a lexicographic product of two chains can be written

sum of chains; namely,L ×lex M = ∑
x∈L Mx , whereMx := M for eachx ∈ L.

Lemma 2.7. Let L = ∑
i∈I Zi andM = ∑

i∈I∗ Zi , whereI and(Zi)i∈I are chains. Then
L embeds intoI ×lex M . In particular, if I embeds intoM , thenreprM(L) � 2.

Proof. The mapϕ :L → I ×lex M , defined byϕ(i, zi) := (i, (i, zi)) for each(i, zi) ∈ L, is
an embedding. �

The next result gives an upper bound to the representability number of lexicog
products.

Lemma 2.8. For any family of chains(Lξ )ξ<α , reprM(
∏lex

ξ<α Lξ ) �
∑

ξ<α reprM(Lξ ).

Proof. The statement is a consequence of Lemma 2.1.�
The equality reprM(

∏lex
ξ<α Lξ ) = ∑

ξ<α reprM(Lξ ) does not hold in general.

Example 2.9. Let L := R ×lex 2. By Example 2.4, repr(L) + repr(L) = 4. On the other
hand,L2

lex ↪→ R ×lex L and so repr(L2
lex) � 3. (In fact, repr(L2

lex) = 3, see Example 2.11

We conclude the section by determining the representability number for some p
chains.

Proposition 2.10. LetL andM be chains, and letZ be an uncountable chain that is dens
in-itself and has the c.c.c. For any homomorphismf :Z ×lex L → Z ×lex M , there exist
a co-countable setA ⊆ Z, a homomorphismg :A → Z, and a family of homomorphism
(ha :L → M)a∈A such thatf (a, l) = (g(a),ha(l)) for each(a, l) ∈ A × L. Further, if f
is an embedding, then we may also require thatha is an embedding for eacha ∈ A.

Proof. Let f :Z ×lex L → Z ×lex M be a homomorphism. Denote byf0 :Z ×lex L → Z

the homomorphismf0 = π0 ◦ f , whereπ0 :Z ×lex M → Z is the projection onto the firs
component. Consider the following subset ofZ:

A := {
a ∈ Z: f0�{a} × L is constant

}
.

We claim thatZ \ A is countable. Indeed, ifz ∈ Z \ A, thenf0[{z} × L] is a subset ofZ
containing more than one point. LetUz denote the interior of the convex hull off0[{z}×L].
Observe that for eachz ∈ Z, Uz is nonempty, becauseZ is dense-in-itself. Further, ifx and
y are two distinct points ofZ \ A, then|f0[{x} × L] ∩ f0[{y} × L]| � 1, whenceUx ∩ Uy

is empty. Thus,U := {Uz: z ∈ Z \A} is a set of nonempty pairwise disjoint open sets inZ.
SinceZ has the c.c.c., it follows thatU must be countable. This proves the claim.
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Note thatf0�A×lexL depends only on the first component. Thus, if(a, l) ∈ A×L, then
the mapg :A → Z given byg(a) := f0(a, l) is a well-defined homomorphism. Next o
serve that for each(a, l) ∈ A × L, if f (a, l) = (z,m) ∈ Z × M , theng(a) = f0(a, l) = z.
Therefore, for any fixeda ∈ A, we can define a mapha :L → M by ha(l) := m, where
m ∈ M is such that the equalityf (a, l) = (g(a),m) holds. The functionha is a homomor-
phism for eacha ∈ A. Finally, if f is injective, then so is its restrictionf �{a} × L. Thus,
sincef (a, l) = (g(a),ha(l)) for eachl ∈ L, it follows that alsoha is an embedding. �
Example 2.11. repr(R×lex 2)2 = 3. By Example 2.9, it suffices to show that repr(R×lex2)2

> 2. Otherwise, we have(R ×lex 2)2
lex ↪→ R2

lex, hence Proposition 2.10 yields that 2×lex
R ×lex 2 ↪→ R, which is a contradiction.

Corollary 2.12. If Z is an uncountable chain that is dense-in-itself and has the c.c.c.,
reprZ(Zα

lex) = α for each ordinalα � ω.

Proof. The equality reprZ(Zn
lex) = n can be proved by induction onn < ω, using Proposi-

tion 2.10. To prove that repr(Zω
lex) = ω, assume by contradiction that repr(Zω

lex) = n < ω.
It follows thatZn+1

lex ↪→ Zω
lex ↪→ Zn

lex, which contradicts reprZ(Zn+1
lex ) = n + 1. �

In particular, Corollary 2.12 yields that for eachα � ω, repr(Rα
lex) = α and

reprS(Sα
lex) = α, whereS is a dense-in-itself Souslin line (cf. [10, Corollary 2.4]). The

results will be strengthened later (see Corollary 4.14).

3. Representability of cardinal numbers

In this section we deal with special types of homomorphisms, which are useful to
the representability of cardinal numbers. In particular, we prove that ifκ is a regular car-
dinal that does not embed intoM , then reprM(κ) = κ . As a consequence, ifM is a short
chain andκ is an uncountable cardinal, then reprM(κ) = κ .

Definition 3.1. Let X be an infinite set. A setX′ ⊆ X is small inX if |X′| < |X|; it is co-
small inX if its complement is small inX. We use the notationX′ ⊂∗ X to indicate thatX′
is a subset ofX that is co-small inX. A homomorphismf :L → M from an infinite chain
L into a chainM is almost-constantif there existsL′ ⊂∗ L such thatf �L′ is constant.

Lemma 3.2. A homomorphismf :κ → M from an infinite cardinalκ into a chainM is
almost-constant if and only if it is eventually constant.

Proof. If A ⊂∗ κ is such thatf �A is constant, thenf is constant on the convex hull ofA.
It follows that f is eventually constant. Conversely, ifα < κ is such thatf � (κ \ α) is
constant, thenκ \ α is co-small inκ . Thusf is almost-constant. �
Definition 3.3. Let L andM be two chains, where|L| � ω and|M| � 2. The pair(L,M)

is called ana.c.-pair (almost-constant pair) if any homomorphismf :L → M is almost-
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constant. Further,(L,M) is called anh.a.c.-pair(hereditary almost-constant pair) if for
all L′ ⊂∗ L, (L′,M) is an a.c.-pair.

We first analyze pairs of chains of the type(L,2). If X andY are subsets of a cha
(L,≺), the notationX ≺ Y means thatx ≺ y for eachx ∈ X andy ∈ Y .

Lemma 3.4. The following statements are equivalent for an infinite chainL:

(i) (L,2) is an a.c.-pair;
(ii) (L,2) is an h.a.c.-pair;

(iii) there exists no partitionL = X ∪ Y of L such thatX ≺ Y and |X| = |Y |.

Proof. The proof is easy and is left to the reader.�
Example 3.5. We call an infinite ordinalα aquasi-cardinalif it is of the formα = |α|+γ ,
whereγ < |α|. For each infinite ordinalα, (α,2) is an a.c.-pair if and only ifα is a quasi-
cardinal. In particular,(κ,2) is an a.c.-pair for each cardinalκ � ω.

More generally, letα andβ be infinite ordinals. Then(α + β∗,2) is an a.c.-pair if and
only if either (i) |α| > |β| andα is a quasi-cardinal, or (ii)|α| < |β| andβ is a quasi-
cardinal.

Example 3.6. Let L0 andL1 be disjoint subsets of a chain(L,≺). We say thatL0 and
L1 aremutually cofinal(respectively,mutually coinitial) if for eachx0 ∈ L0 andx1 ∈ L1,
there existx′

0 ∈ L0 and x′
1 ∈ L1 such thatx0 ≺ x′

1 and x1 ≺ x′
0 (respectively,x′

1 ≺ x0

and x′
0 ≺ x1). Furthermore, ifF = (Lξ )ξ<γ is a family of pairwise disjoint subsets o

(L,≺) such that any two chains inF are mutually cofinal (respectively, mutually coinitia
then we say thatF is amutually cofinal family(respectively,mutually coinitial family) of
subsets ofL.

Let (αξ )ξ<γ be a family of infinite ordinals andL a chain for which there exists
partitionL = ⋃

ξ<γ Lξ such that for eachξ < γ , eitherLξ = αξ or Lξ = αξ
∗. Assume tha

cf(|L|) > γ . SetA := {ξ < γ : Lξ = αξ ∧|Lξ | = |L|} andB := {ξ < γ : Lξ = αξ
∗ ∧|Lξ | =

|L|}. (Note thatA ∪ B is nonempty.) Then(L,2) is an a.c.-pair if and only if one of th
following two conditions holds: (i)B = ∅, A 	= ∅, αξ is a quasi-cardinal for eachξ ∈ A,
and(|αξ |)ξ∈A is a mutually cofinal family of subsets ofL; (ii) A = ∅, B 	= ∅, αξ is a quasi-
cardinal for eachξ ∈ B, and(|αξ |∗)ξ∈B is a mutually coinitial family of subsets ofL.

An h.a.c.-pair is an a.c.-pair, but the converse does not hold in general.

Example 3.7. (ω+1,ω) is an a.c.-pair, which fails to be an h.a.c.-pair.(ω1,R) is an h.a.c.-
pair.

Under certain conditions onL, the pair(L,M) is an a.c.-pair if and only if it is an
h.a.c.-pair.
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Definition 3.8. An infinite chain L is almost-reflexiveif for each L′ ⊂∗ L there exists
L′′ ⊂∗ L such thatL′′ ⊆ L′ andL′′ is a homomorphic image ofL.

Example 3.9. All infinite cardinals are almost-reflexive in a strong sense. In fact, ifκ is an
infinite cardinal andB ⊆ κ is unbounded inκ (in particular, ifB is co-small inκ), then the
mapf :κ → B, defined byα �→ min{β ∈ B: α � β}, is a homomorphism ofκ ontoB. On
the other hand, all quasi-cardinals fail to be almost-reflexive.

Note that ifL is almost-reflexive andL′ is co-small inL, thenL′ is almost-reflexive.

Lemma 3.10. Assume thatL is almost-reflexive. For each chainM , (L,M) is an a.c.-pair
if and only if it is an h.a.c.-pair.

Proof. Assume that(L,M) is an a.c.-pair and letL′ be a co-small subset ofL. To prove the
claim, it suffices to show that(L′,M) is an a.c.-pair. Letg :L′ → M be a homomorphism
By hypothesis there exists a homomorphismf :L → L′ such that ranf ⊂∗ L′. Since the
homomorphismg ◦ f :L → M is almost-constant, it follows thatg is almost-constant a
well. This shows that(L′,M) is an a.c.-pair. �

Before stating the main results of this section, we prove some technical facts.

Lemma 3.11. If (L,2) is an a.c.-pair andM is a chain such that|M| < cf(|L|), then
(L,M) is an h.a.c.-pair.

Proof. Let (L,≺) be an infinite chain and assume that there exists a chainM , with 2 �
|M| < cf(|L|), such that(L,M) is not an h.a.c.-pair; we show that(L,2) fails to be an
a.c.-pair. By hypothesis, there existL′ ⊂∗ L and a homomorphismf :L′ → M such that
for anym ∈ M , f −1{m} is not co-small inL′. Set

P := {
m ∈ M:

∣∣f −1{m}∣∣ = ∣∣L′∣∣}.
ThenP is nonempty, becauseL′ = ⋃

m∈M f −1{m} and |M| < cf(|L|) = cf(|L′|). Select
p ∈ P , and denoteL0 := {l ∈ L: {l} ≺ f −1{p}} andL1 := {l ∈ L: {l} 
 f −1{p}}. Observe
thatL = L0 ∪ f −1{p} ∪ L1, |f −1{p}| = |L| and|L \ f −1{p}| = |L|. It follows that either
|L0| = |L| or |L1| = |L|; without loss of generality, assume that|L1| = |L|. SetX :=
L0 ∪ f −1{p} and Y := L1. ThenL = X ∪ Y is a partition ofL such thatX ≺ Y and
|X| = |Y |, and so Lemma 3.4 yields that(L,2) is not an a.c.-pair. �
Lemma 3.12. If (L,M) is an h.a.c.-pair andα is an ordinal such thatα < cf(|L|), then
(L,Mα

lex) is an h.a.c.-pair.

Proof. Assume that(L,M) is an h.a.c.-pair andα is an ordinal such that 0< α < cf(|L|).
Let L′ be co-small inL andf :L′ → Mα

lex a homomorphism; we shall findL′′ ⊂∗ L′ such
thatf �L′′ is constant. For eachβ < α, let fβ = πβ ◦f :L′ → M , whereπβ :Mα

lex → M is
the projection onto theβth component. Note that ifA ⊆ L′ is such thatfγ �A is constant
for eachγ < β, thenfβ �A is a homomorphism. In the following we define by recursio
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decreasing sequence(L′
γ )γ<α of subsets ofL′ such that for eachγ < α, the following two

properties hold: (a)L′
γ is co-small inL′; (b) fγ �L′

γ is constant.
To build the sequence, observe that the mapf0 :L′ → M is a homomorphism define

on a co-small subset ofL, hence it is almost-constant by hypothesis; thus, there e
L′

0 ⊂∗ L′ such thatf0�L′
0 is constant. Next, assume thatL′

γ satisfying (a) and (b) has bee
constructed. Since the restrictionfγ+1 �L′

γ is a homomorphism, the hypothesis impl
that there exists a setL′

γ+1 ⊂∗ L′
γ such thatfγ+1�L′

γ+1 is constant; thenL′
γ+1 satisfies

both (a) and (b). Finally, letγ < α be a limit ordinal, and assume thatL′
δ satisfying (a) and

(b) has been constructed for allδ < γ . Observe that|L′ \ ⋂
δ<γ L′

δ| < |L′|, becauseγ <

α < cf(|L|) = cf(|L′|). Therefore, the homomorphismfγ �
⋂

δ<γ L′
δ is almost-constant

and there exists a setL′
γ ⊆ L′ such that (a) and (b) hold. This completes the definition

the sequence(L′
γ )γ<α .

Set L′′ := ⋂
γ<α L′

γ . Sinceα < cf(|L′|), property (a) implies that|L′ \ L′′| < |L′|,
and soL′′ ⊂∗ L′. Furthermore, property (b) yields thatf �L′′ is constant. This shows th
(L,Mα

lex) is an h.a.c.-pair. �
Corollary 3.13. LetL andM be chains, andα an ordinal such thatα < cf(|L|).

(i) If L is almost-reflexive and(L,M) is an a.c.-pair, then(L,Mα
lex) is an h.a.c.-pair.

(ii) If |M| < cf(|L|) and(L,2) is an a.c.-pair, then(L,Mα
lex) is an h.a.c.-pair.

Proof. Part (i) follows from Lemmas 3.10 and 3.12, part (ii) from Lemmas 3.11
3.12. �
Corollary 3.14. Let κ be a cardinal,M a chain andα an ordinal such thatα < cf(κ). If
cf(κ) does not embed intoM , then(κ,Mα

lex) is an h.a.c.-pair.

Proof. By Example 3.9,κ is almost-reflexive. Further, if cf(κ) does not embed intoM ,
then(κ,M) is an a.c.-pair. Therefore, Corollary 3.13(i) implies that(κ,Mα

lex) is an h.a.c.-
pair. �
Corollary 3.15. Let β be a quasi-cardinal,M a chain andα an ordinal such thatα <

cf(|β|). If |M| < cf(|β|), then(β,Mα
lex) is an h.a.c.-pair.

Proof. By Example 3.5,(β,2) is an a.c.-pair. The claim follows from Corollary 3.13(ii).�
Corollary 3.16. Let κ be a regular cardinal andM a chain.

(i) If κ does not embed intoM , thenreprM(κ) = κ .
(ii) If κ∗ does not embed intoM , thenreprM(κ∗) = κ .

Proof. To prove (i), we argue by contradiction. Assume thatκ 	↪→ M but reprM(κ) =
α < κ . Then|α|+ embeds intoMα

lex, and so(|α|+,Mα
lex) fails to be an h.a.c.-pair. By Coro

lary 3.14, it follows that|α|+ embeds intoM . Thus the hypothesis implies that|α|+ < κ .
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Now another application of Corollary 3.14 yields that(κ,M
|α|+
lex ) is an h.a.c.-pair, which

contradicts the fact thatκ embeds intoMα
lex.

For (ii), note thatκ∗ 	↪→ M impliesκ 	↪→ M∗. Thus, reprM(κ∗) = reprM∗(κ) = κ , using
Lemma 2.6 and part (i). �

Corollary 3.16 does not hold for arbitrary cardinals.

Example 3.17. Let M be the chain
∑

n∈ω∗ ωn. Thenωω does not embed intoM , and yet
reprM(ωω) = 2, using Lemma 2.7.

Recall that thewell-ordering numberof a chainL, denoted by wo(L), is the supremum
of the set of all cardinalsκ such that eitherκ or κ∗ embeds intoL. (Thus,L is short if and
only if wo(L) � ω.) The following weak version of Corollary 3.16 holds for all cardina

Corollary 3.18. Let κ be a cardinal andM a chain. If wo(M) < κ , then reprM(κ) =
reprM(κ∗) = κ . In particular, repr(κ) = repr(κ∗) = κ for each cardinalκ � ω1.

Proof. If κ is regular, then the claim follows from Corollary 3.16. Next, letκ be a singular
cardinal such that wo(M) < κ . To prove that reprM(κ) = κ , we argue by contradiction
Assume that reprM(κ) = α < κ . Let (κξ )ξ<cf(κ) be an increasing transfinite sequence
regular cardinals such that sup{κξ : ξ < cf(κ)} = κ . Then there existsη < cf(κ) such that
κη > max{wo(M),α}. Sinceκη is a regular cardinal> wo(M), we obtain

reprM(κ) � reprM(κη) = κη > α

which contradicts the hypothesis. Therefore reprM(κ) = κ . The proof that reprM(κ∗) = κ

is similar. �

4. Representability of unsplittable chains

In this section we study homomorphisms between lexicographic products. We sho
under certain conditions on the chainM , we have reprM(Mα

lex) = α for each ordinalα. In
particular, we obtain that repr(Rα

lex) = α and reprS(Sα
lex) = α, whereS is a Souslin line

with at most countably many jumps. This generalizes to arbitrary ordinals a result ob
at the end of Section 2 (cf. Corollary 2.12).

To begin we recall some basic terminology. Atree is a poset(T ,�) such that for each
t ∈ T , the initial segment{x ∈ T : x ≺ t} is well-ordered by�. A tree isrooted if it has a
minimum element, called theroot; all trees considered in this paper are rooted. Asubtree
of T is a subposetT ′ ⊆ T , which isdownward closed(i.e., for eacht, t ′ ∈ T , if t � t ′ and
t ′ ∈ T ′, thent ∈ T ′).

Notation 4.1. Let L = ∏lex
ξ<α Lξ . For each ordinalβ � α, let

L�β :=
lex∏

Lξ .
ξ<β
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Observe thatL�α = L. For eachβ < α, b ∈ L�β andx ∈ Lβ , denote byb
x theconcate-

nationof b andx, i.e., the element ofL�(β + 1) such thatb
x �β = b andb


x(β) = x.

Let L↓ be the collection of all restrictions of elements ofL, i.e.,

L↓:=
⋃
ξ�α

L�ξ.

For eachu,v ∈ L↓, we writeu � v if u is a restriction ofv (v is an extension ofu). Note
that(L↓,�) is a tree.

Let C ⊆ L↓. Define thedownward closureC↓ and theupward closureC↑ of C by

C↓:= {
u ∈ L↓: ∃c ∈ C(u � c)

}
and C↑:= {

u ∈ L↓: ∃c ∈ C(c � u)
}
.

For C = {c}, we simplify the notation toc↓ andc↑, respectively. Observe that(C↓,�)

and(C↓∪C↑,�) are subtrees of(L↓,�). A setC ⊆ L↓ is downward closedif C = C↓,
i.e., if it is a subtree ofL↓. Thetopof C is the (possibly empty) set∂C := C ∩ L.

For eachβ � α, define onL an equivalence relation∼β as follows: for allx, y ∈ L, let
x ∼β y if x �β = y �β. Thus, each elementb ∈ L�β determines an equivalence class inL,
namely,∂(b↑) = {x ∈ L: x �β = b}.

The next fact is immediate.

Lemma 4.2. Let L = ∏lex
ξ<α Lξ , A ⊆ L andC ⊆ L↓. Assume that for eachc ∈ C, the set

∂(c↑∩C) is nonempty. Then∂C ⊆ A if and only ifC ⊆ A↓.

Now we define a particular kind of subtree ofL↓, whereL = ∏lex
ξ<α Lξ . We use this

notion only when each factorLξ is uncountable.

Definition 4.3. Let (Lξ )ξ<α be a family of uncountable chains,L = ∏lex
ξ<α Lξ andC ⊆ L↓.

For eachβ < α andc ∈ C ∩ (L�β), define

C(c) := {u ∈ Lβ : c

u ∈ C}.

We say thatC is nearly-full if the following conditions hold:

(F.1) C is a nonempty subtree ofL↓;
(F.2) for eachβ < α andc ∈ C ∩ (L�β), the setsC(c) are co-countable inLβ ;
(F.3) for eachx ∈ L and limit ordinalβ � α, if x �γ ∈ C for all γ < β, thenx �β ∈ C.

Lemma 4.4. Let L = ∏lex
ξ<α Lξ be a lexicographic product of uncountable chains,C

a nearly-full subtree ofL↓, β an ordinal < α and cβ an element ofC ∩ (L �β). For
eachx ∈ C(cβ), there existscx ∈ ∂C such thatcx �(β + 1) = cβ


x.

Proof. Fix x ∈ C(cβ). We construct a sequence(cx
γ )β<γ�α such that the following con

ditions are verified: (a)cx
β+1 = cβ


x; (b) cx

γ ∈ C ∩ (L�γ ) for all γ such thatβ < γ � α;
(c) cx

δ = cx
γ �δ for all δ andγ such thatβ < δ < γ � α. The elementcx := cx

α ∈ ∂C satisfies
the claim.
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β+1 := cβ


x. For the successor case, assume thatcx

ξ satisfying (a)–(c)
has been constructed for allξ such thatβ < ξ � γ < α. Using (F.2), select an eleme
y ∈ C(cx

γ ) and definecx
γ+1 := cx

γ

y ∈ C ∩ (L � (γ + 1)); by the induction hypothesis

(a)–(c) hold forcx
γ+1.

Finally, if γ be a limit ordinal such thatβ < γ � α, setcx
γ := ⋃

β<ξ<γ cx
ξ . By (F.3),

cx
γ is a well-defined element ofC ∩ (L�γ ) such that ifβ < δ < γ thencx

δ = cx
γ �δ. This

completes the definition of the sequence.�
In the next result we list some basic properties of nearly-full subtrees.

Lemma 4.5. LetL = ∏lex
ξ<α Lξ , where each factorLξ is an uncountable chain. Further, le

C be a nearly-full subtree ofL↓. We have:

(i) for eachβ � α, the setC ∩ (L�β) is nonempty; in particular, if β > 0, thenC ∩ (L�β)

is uncountable;
(ii) C = (∂C)↓;
(iii) for eachc ∈ C \ ∂C, the set∂(c↑) ∩ ∂C is uncountable;
(iv) if (Cn)n∈ω is a family of nearly-full subtrees ofL↓, then

⋂
n∈ω Cn is also nearly-full.

Proof. To prove (i), observe that the empty functionc0 belongs toC ∩ (L�0). Lemma 4.4
yields that for allx ∈ C(c0), there existscx ∈ ∂C such thatcx(0) = x. Note that for all
β � α, cx �β belongs toC. Thus, if β > 0, then{cx �β: x ∈ C(c0)} is an uncountable
subset ofC ∩ (L�β).

For (ii), assume thatcβ ∈ C ∩ (L �β) for someβ � α. By Lemma 4.4, there exist
c ∈ ∂C such thatc �β = cβ . ThusC ⊆ (∂C)↓, using Lemma 4.2. The other inclusio
follows from the fact thatC is downward closed.

For (iii), let c ∈ C \ ∂C; thus,c ∈ C ∩ (L�β) for someβ < α. By Lemma 4.4, there
exists an uncountable setAc := {cx : x ∈ C(c)} ⊆ ∂C such thatcx �β = c for all x ∈ C(c).
Thus,|∂(c↑) ∩ ∂C| � |Ac| > ω.

To prove (iv), let (Cn)n∈ω be a family of nearly-full subtrees ofL↓; it suffices to
show that (F.2) holds forD := ⋂

n∈ω Cn. Let β < α andd ∈ D ∩ (L�β). Then,D(d) =⋂
n∈ω Cn(d) is co-countable inLβ , because so are all the setsCn(d). �
Next we introduce a notion of “large” set in a lexicographic product of uncount

chains.

Definition 4.6. Let L = ∏lex
ξ<α Lξ , where each factorLξ is an uncountable chain. A s

A ⊆ L is large in L if there existsB ⊆ A such thatB ↓ is a nearly-full subtree ofL↓
(equivalently, if there exists a nearly-full subtreeC ⊆ L↓ such that∂C ⊆ A). We denote
by Large(L) the family of all large subsets ofL.

Lemma 4.7. LetL = ∏lex
ξ<α Lξ , where each factorLξ is an uncountable chain. We have:

(i) if A is large inL andC is a nearly-full subtree ofL↓ contained inA↓, then for each
c ∈ C \ ∂C, the set∂(c↑) ∩ A is uncountable;
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(ii) if (An)n∈ω is a subfamily ofLarge(L) and for eachn ∈ ω, Cn is a nearly-full subtree
of L↓ contained inAn↓, then(

⋂
n∈ω An)↓⊇ ⋂

n∈ω Cn;
(iii) the setLarge(L) is aσ -complete filter onL.

Proof. Part (i) follows from Lemma 4.5(iii). To prove (ii), for eachn ∈ ω, let Cn

be a nearly-full subtree ofL↓ such thatAn ⊇ ∂Cn. Then,
⋂

n∈ω An ⊇ ⋂
n∈ω(∂Cn) =

∂(
⋂

n∈ω Cn), and so(
⋂

n∈ω An)↓⊇ (∂(
⋂

n∈ω Cn))↓= ⋂
n∈ω Cn. For (iii), it suffices to

show that if(An)n<ω is a countable subfamily of Large(L), then
⋂

n∈ω An ∈ Large(L).
This is a consequence of Lemma 4.5(iv) and part (ii).�

Finally we introduce the notion of unsplittable chains.

Definition 4.8. Let L be an uncountable chain. We say thatL is splittableif there exists an
uncountable setA ⊆ L such that the chainA ×lex 2 embeds intoL. A chain isunsplittable
if it is not splittable.

More generally, letL andM be two uncountable chains. We say thatM is L-splittable
if there exists an uncountable setA ⊆ L such that the chainA ×lex 2 embeds intoM ;
otherwise,M is L-unsplittable. An unsplittable pairis a pair of uncountable chains(L,M)

such that bothL is M-unsplittable andM is L-unsplittable.

Note thatL is unsplittable if and only if(L,L) is an unsplittable pair.

Example 4.9. A chain with uncountably many jumps is splittable. In particular,α andα∗
are splittable for any ordinalα � ω1. Let L be a chain such that j(L) > ω; without loss
of generality, assume that j(L) = ω1. We claim that there exists a setF ⊆ Jump(L) with
cardinality j(L) such that any two jumps inF have no common endpoint. To prove th
define an equivalence relation∼ on Jump(L) as follows: for any two jumps(x, y), (v,w)

in L, let (x, y) ∼ (v,w) if the interval with endpointsx andv is finite. Since each equiv
alence class is at most countable and j(L) = ω1, there are j(L) equivalence classes. Th
we can select one jump from each equivalence class and form a setF ⊆ Jump(L) that sat-
isfies the claim. If we denoteF := {(aξ , bξ ): ξ < ω1}, thenA := {aξ ∈ L: (aξ , bξ ) ∈ F}
is an uncountable subset ofL. EndowA with the induced order. Then the corresponde
(aξ ,0) �→ aξ and(aξ ,1) �→ bξ gives an embeddingA ×lex 2 ↪→ L. This proves thatL is
splittable.

Example 4.10. R and any Souslin line with at most countably many jumps are unsplitt.
If X ⊆ R is an uncountable set, thenX ×lex 2 has uncountably many jumps, and so it d
not embed intoR by Theorem 1.1; this proves thatR is unsplittable. Similarly, ifS is a
Souslin line such that j(S) � ω andX is an uncountable subset ofS, thenX ×lex 2 is not
embeddable inS, becauseS has the c.c.c. and j(S) is countable.

Observe that there exist Aronszajn lines that are dense-in-themselves and splittab
A ×lex Q, whereA is any Aronszajn line).
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Example 4.11. The following are unsplittable pairs(A is any Aronszajn line):

(i) (ω1,R);
(ii) (A,R);

(iii) (ω1,A).

For (i), let Z ⊆ ω1 andX ⊆ R be uncountable sets. SinceZ ∼= ω1, it follows thatZ ×lex

2 	↪→ R. On the other hand,X×lex 2 	↪→ ω1, because iff :X×lex 2 ↪→ ω1 is an embedding
then ranf is an uncountable tail ofω1; thusX ×lex 2∼= ω1, which is impossible. Part (ii) is
immediate. The proof of (iii) is similar to that of part (i).

Theorem 4.12. Let (Lξ )ξ<α and(Mξ )ξ<α be two families of uncountable chains such t
Mξ is Lξ -unsplittable for eachξ < α. For any homomorphismf :

∏lex
ξ<α Lξ → ∏lex

ξ<α Mξ ,

there existsA ∈ Large(
∏lex

ξ<α Lξ ) such that for eachβ < α and for eacha, a′ ∈ A, if a�β =
a′�β, thenf (a)�β = f (a′)�β.

Proof. SetL := ∏lex
ξ<α Lξ andM := ∏lex

ξ<α Mξ . For eachβ � α, let fβ :L → M �β be the
homomorphism defined byfβ := π̂β ◦ f , whereπ̂β :M → M �β is the projection onto the
first β components. Define by transfinite recursion onβ � α a sequence of sets(Aβ)β�α

as follows:

Aβ := {
x ∈ L�β: ∃y ∈ M �β

(
fβ

[
∂(x↑)

] = {y}) ∧ ∀γ < β(x �γ ∈ Aγ )
}
.

SetC := ⋃
β�α Aβ . Note thatC ⊆ L↓ and for eachβ � α, C ∩ (L�β) = Aβ ; in particular,

∂C = Aα . In the sequel we show thatC is a nearly-full subtree ofL↓.
Property (F.1) is immediate. To prove (F.2), letβ < α andc ∈ Aβ ; we show thatC(c)

is co-countable. Note thatc is an element ofL�β such thatfγ �∂((c�γ )↑) is constant for
eachγ � β. Then, for anyx ∈ Lβ , we have:x ∈ C(c) if and only if c


x ∈ Aβ+1 if and

only if fγ �∂(((c

x)�γ )↑) is constant for eachγ � β + 1 if and only if fβ+1�∂((c


l)↑)

is constant. It follows that the equality

C(c) = {
x ∈ Lβ : fβ+1�∂

(
(c


x)↑)

is constant
}

holds. Now assume by way of contradiction thatC(c) is not co-countable; i.e., there exis
an uncountable setRβ ⊆ Lβ such that for allr ∈ Rβ , fβ+1 �∂((c


r)↑) fails to be con-

stant. Thus, for eachr ∈ Rβ , we can find two elementsyr = (yr
ξ )ξ<α andzr = (zr

ξ )ξ<α in

f [∂((c

r)↑)] ⊆ M such thatyr �β = zr �β, butyr

β ≺ zr
β . The correspondence(r,0) �→ yr

β

and(r,1) �→ zr
β gives an embedding ofRβ ×lex 2 into Mβ , which contradicts the fact tha

Mβ is Lβ -unsplittable.
Finally we show that (F.3) holds. Letβ � α be a limit ordinal andx ∈ L such that for

eachγ < β, x �γ ∈ C. To prove thatx �β ∈ Aβ , it suffices to show thatfβ �∂((x �β)↑)

is constant. Assume by contradiction thatfβ �∂((x �β)↑) is not constant, i.e., there exi
y, z ∈ f [∂((x �β)↑)] ⊆ M such thaty �β 	= z�β. Sinceβ is a limit ordinal, there exist
δ < β such thaty �δ 	= z�δ. This is impossible, becausex �δ ∈ Aδ , and sofδ �∂((x �δ)↑)

is constant. This proves thatC ⊆ L↓ is nearly-full.
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SetA := Aα = ∂C ∈ Large(L); thenA satisfies the claim of the theorem. Indeed,
a, a′ ∈ A andβ < α be such thata �β = a′ �β = c ∈ L�β. Thusc ∈ Aβ by definition of
Aα , and sofβ �∂(c↑) is constant. Sincea, a′ ∈ ∂(c↑), we obtainf (a)�β = f (a′)�β. �
Corollary 4.13. LetL,M be uncountable chains, andα,β ordinals such thatβ < α. If M

is L-unsplittable, thenLα
lex is not embeddable inMβ

lex. In particular, if L is unsplittable,

thenLα
lex is not embeddable inLβ

lex.

Proof. We prove that ifM is L-unsplittable, then any homomorphismg :Lα
lex → M

β

lex fails

to be injective. Fixz ∈ M
α−β

lex and define a map

f :Lα
lex → M

β

lex ×lex M
α−β

lex

by setting f (x) := (g(x), z) for each x ∈ Lα
lex; then f is a homomorphism ofLα

lex
into Mα

lex. SinceM is L-unsplittable, Theorem 4.12 yields the existence of a setA ∈
Large(Lα

lex) such that for eacha, a′ ∈ A, if a�β = a′�β, thenf (a)�β = f (a′)�β. LetC be
a nearly-full subtree of(Lα

lex)↓ contained inA↓. Lemmas 4.5(i) and 4.7(i) imply that the

existsc ∈ C ∩ L
β

lex such that|∂(c↑) ∩ A| > ω. In particular, we can selecta, a′ ∈ A such
thata 	= a′, anda�β = c = a′ �β. On the other hand,g(a) = f (a)�β = f (a′)�β = g(a′),
sog is not injective. �
Corollary 4.14. Letα be an ordinal,A an Aronszajn line andS a Souslin line with at mos
countably many jumps. We have:

(i) reprω1
(Rα

lex) � α andrepr((ω1)
α) � α;

(ii) reprA(Rα
lex) � α andrepr(Aα

lex) � α;
(iii) reprω1

(Aα
lex) � α andreprA((ω1)

α) � α;
(iv) reprS(Sα

lex) = α;
(v) repr(Rα

lex) = α.

5. Representability of Aronszajn lines and Souslin lines

In this section we prove some results about homomorphisms of a tree (ordered
graphically) into a lexicographic power ofR. In particular, we show that the representab
ity number of any Aronszajn line and Souslin line isω1.

To begin we establish some further terminology for a tree(T ,�). (Note that the notation
used here might conflict with standard terminology.) Elements ofT are callednodes. For
eachs, t ∈ T , s ⊥ t stands fors � t and t � s. Also, we set(←, t) := {x ∈ T : x ≺ t}
and (s,→) := {x ∈ T : x 
 s}; similarly we define[s,→) and (←, t]. A path of T is a
subtreeP of T , which is linearly ordered by the induced order; the set of all pathsT
is denoted by Path(T ). A branch is a maximal path. Theheight of a nodet ∈ T is the
order-type of the initial segment(←, t) and is denoted by height(t). Theαth levelof T is
Levα(T ) := {t ∈ T : height(t) = α}; further, we setT �α := ⋃

β<α Levβ(T ). Theheightof
T is height(T ) := min{α: Levα(T ) = ∅}.
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Next we describe a procedure to extend the partial order� on a tree(T ,�) to a total
order�lex; we will follow the approach used in [13]. Define a mapΥ :T ×T → Path(T ) by
Υ (s, t) := (←, s)∩ (←, t) for all s, t ∈ T . The functionΥ satisfies the following propert
(see [13]).

Lemma 5.1. For any s, t, u ∈ T , the set{Υ (s, t),Υ (t, u),Υ (s,u)} has at most two ele
ments.

For eachs, t ∈ T , let s ∼ t if (←, s) = (←, t). Then∼ is an equivalence relation; th
set of equivalence classes is denoted by Block(T ), and its elements are calledblocks. Note
that each blockB of T is a subset of Levα(T ) for someα. Further, ifP is a path inT

that is not a branch, then there exists a unique blockBP such thatP ≺ BP andP ∪ BP is
a subtree ofT ; it follows that the correspondence(s, t) �→ BΥ (s,t) gives a well-defined ma
from T × T into Block(T ). Finally, for anyB ∈ Block(T ) andt ∈ ⋃

s∈B [s,→), denote by
tB the unique element of(←, t] ∩ B; then the correspondence(s, t) �→ (sB, tB), where
B = BΥ (s,t), gives a well-defined function fromT × T into itself.

Definition 5.2. Let (T ,�) be a tree and assume that for each blockB in T , a linear order
�B is given onB. The collectionL= {�B : B ∈ Block(T )} induces a linear order�lex on
T as follows: for eachs, t ∈ T , sets �lex t if either s � t , or s ⊥ t andsB �B tB , where
B = BΥ (s,t). (Equivalently,s �lex t if s 	
 t andsB �B tB .) The chain(T ,�lex) is called
thelexicographic linearization(or, for short, thelinear tree) of (T ,�) induced byL and is
denoted byTlex. Sometimes, we speak of the chainTlex as a linear tree, without mentionin
the collection of linear orders that induces�lex. Theheightof a linear tree is the height o
the original tree.

To distinguish intervals in the original tree(T ,�) from intervals in the induced linea
tree(T ,�lex), we use the following notation: for eachs, t ∈ T such thats ≺lex t , let (s, t)lex
be the open interval in the chainTlex; similarly, we denote by[s, t)lex, (s, t]lex and[s, t]lex
the other types of bounded intervals inTlex. Further,(←, t)lex = {x ∈ T : x ≺lex t} denotes
an open initial segment inTlex; the notations(←, t]lex, (s,→)lex and[s,→)lex have similar
meaning.

For any nodess, t ∈ T , let σ(s, t) be the ordinal defined as follows:

σ(s, t) :=



sup
{
height(x): x ∈ Υ (s, t)

}
if s ⊥ t,

height(s) if s � t,

height(t) if t � s.

Note thatσ(s, t) � min{height(s),height(t)}.

Lemma 5.3. Let Tlex be a linear tree ands, t, u ∈ T . If u ∈ (s, t)lex, thenheight(u) >

σ(s, t). Thus, ifu ∈ [s, t]lex, thenheight(u) � σ(s, t).

Proof. We prove the contrapositive. Thus, we assume that height(u) � σ(s, t), s ≺lex u

andu 	= t , and we show thatu 
lex t . It suffices to prove: (i)u ⊥ t , and (ii)tB ≺B uB , where
B = BΥ (u,t). For (i), first note that height(u) � σ(s, t) � height(t), henceu 	≺ t holds. On
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the other hand,s ≺lex u and height(u) � height(s) imply thatu ⊥ s, whenceu 	≺ t holds
as well. Sinceu 	= t by hypothesis, we obtain thatu ⊥ t . For (ii), observe that sinceu ⊥ s

andu ⊥ t , it follows that Υ (s,u) 	= Υ (s, t) 	= Υ (t, u), and soΥ (s,u) = Υ (t, u), using
Lemma 5.1. Thens ≺lex u implies thattB = sB ≺B uB , whereB = BΥ (s,u) = BΥ (u,t). �

Now we introduce a notion of homogeneity for subsets of a tree.

Definition 5.4. Let (T ,�) be a tree,H a subset ofT , andα an ordinal such thatα + 1 <

height(T ) (i.e., Levα(T ) is not the maximum level ofT ). We say thatH is homogeneou
aboveα if for all s, t ∈ T , σ(s, t) > α implies “s ∈ H ⇐⇒ t ∈ H ”. Also, we say thatH
is eventually homogeneousif it is homogeneous aboveα for some ordinalα with α + 1 <

height(T ).

For example, for anyt ∈ T , if height(t)+1< height(T ) (i.e., the nodet does not belong
to the maximum level ofT ), then(←, t) ∪ [t,→) is eventually homogeneous.

Lemma 5.5. Let Tlex be a linear tree ands, t two nodes inT such thatmax{height(s),
height(t)}+1< height(T ). If s ≺lex t , then the interval(s, t)lex is eventually homogeneou
as a subset ofT .

Proof. Setα := max{height(s),height(t)}; we prove that(s, t)lex is homogeneous aboveα.
Let u,v ∈ T such thatσ(u, v) > α. To prove thatu ∈ (s, t)lex if and only if v ∈ (s, t)lex,
it suffices to show that(u 
lex s �⇒ v 
lex s) and (u ≺lex t �⇒ v ≺lex t). Indeed,
Lemma 5.3 yields

σ(u, v) > α �⇒ ¬(v �lex s �lex u) ∧ ¬(u �lex t �lex v)

�⇒ (u 
lex s �⇒ v 
lex s) ∧ (u ≺lex t �⇒ v ≺lex t)

which proves the claim. �
The following immediate consequence of Lemma 5.5 is useful.

Corollary 5.6. Let f :Tlex → L be a homomorphism. Further, leta ≺ b be two element
of L such that there existsα < height(T ) with the property that bothf −1{a} ∩ (T �α) and
f −1{b}∩ (T �α) are nonempty.1 Then, there exists an open interval(s, t)lex ⊆ Tlex with the
following properties:

(i) f −1(a, b) ⊆ (s, t)lex;
(ii) f [(s, t)lex] ⊆ [a, b];

(iii) (s, t)lex is eventually homogeneous.

In particular, if height(T ) is a limit ordinal, then for anya, b ∈ ranf such thata ≺ b, there
exists an open interval(s, t)lex ⊆ Tlex satisfying(i)–(iii) .

1 I.e.,f −1{a} andf −1{b} are nonempty, and they do not consist solely of elements in the maximum levelT .
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Next we extend the notion of homogeneity to functions.

Definition 5.7. Let f : (T ,�) → X be any function of a tree into a nonempty set, and leα

be an ordinal such thatα + 1 < height(T ). We say thatf is homogeneous aboveα if for
all s, t ∈ T , σ(s, t) > α impliesf (s) = f (t); further,f is eventually homogeneousif it is
homogeneous aboveα for some ordinalα with α + 1< height(T ).

Note thatH ⊆ T is homogeneous aboveα if and only if its characteristic function
χH :T → 2 is homogeneous aboveα; thus,H is eventually homogeneous if and only if
is χH .

Lemma 5.8. Any homomorphism from a linear tree of heightω1 into a representable chai
L is eventually homogeneous.

Proof. Let Tlex be a linear tree obtained from a tree(T ,�) with height ω1, L an in-
finite representable chain andf :Tlex → L a homomorphism. Since any subset o
representable chain is representable, we can assume without loss of generalityf

is onto. By the representability ofL, there exists a countable set of nonempty o
intervalsB = {(an, bn): n ∈ ω} such that

⋂
Bx = {x} for eachx ∈ L, whereBx :=

{[an, bn]: x ∈ (an, bn) ∈ B}. Since height(T ) = ω1, we can apply Corollary 5.6 fo
eachn ∈ ω. Thus, we get a sequence((sn, tn)lex)n<ω of open intervals in the chai
Tlex and a sequence(αn)n<ω of countable ordinals satisfying the following propertie
(i) f −1(an, bn) ⊆ (sn, tn)lex; (ii) f [(sn, tn)lex] ⊆ [an, bn]; (iii) (sn, tn)lex is homogeneou
aboveαn. Setα := sup{αn: n ∈ ω}. In the sequel we show thatf is homogeneous aboveα;
sinceα < ω1, this will end the proof.

Let s, t ∈ T be such thatσ(s, t) > α. Assume by contradiction thatf (s) ≺ f (t). Select
(ak, bk) ∈ B such thatf (s) ∈ (ak, bk) andf (t) /∈ [ak, bk]. Sinceα � αk , condition (iii) im-
plies thats ∈ (sk, tk)lex if and only if t ∈ (sk, tk)lex. But then (i) and (ii) yield the following
chain of implications:

f (t) /∈ [ak, bk] �⇒ t /∈ (sk, tk)lex �⇒ s /∈ (sk, tk)lex �⇒ f (s) /∈ (ak, bk)

which is a contradiction. Similarly, it cannot bef (t) ≺ f (s). Thereforef (s) = f (t). This
completes the proof. �

Recall that anω1-tree is a tree of heightω1 such that all its levels are countable, and
Aronszajn treeis anω1-tree that has no branch of lengthω1. Observe that an eventual
homogeneous homomorphism defined on a lexicographic linearization of anω1-tree has a
countable range.

Theorem 5.9. Every homomorphism from a lexicographic linearization of anω1-tree into
a countable lexicographic power ofR is eventually homogeneous.

Proof. Let (T ,�) be anω1-tree,Tlex a lexicographic linearization ofT , α a countable
ordinal andf :Tlex → Rα

lex a homomorphism. It suffices to show that there exists an ord
β < ω1 with the property that for eacht ∈ T such that height(t) � β, f �[t,→) is constant.
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For eachγ < α, let πγ :Rα
lex → R be the projection onto theγ th component; further, fo

each 1� γ � α, denote byπ̂γ :Rα
lex → Rγ

lex the projection onto the firstγ components
Note that: (i)π0 = π̂1; (ii) π̂γ+1 = π̂γ × πγ for all 1 � γ < α; (iii) π̂α is the identity
function onRα

lex. We construct by recursion an increasing sequence(βγ )γ�α of countable
ordinals such that for all 1� γ � α the following condition is satisfied:

(∗)γ for eacht ∈ Levβγ (T ), the restriction of the homomorphism̂πγ ◦ f :Tlex → Rγ

lex to
[t,→) is constant.

Then the countable ordinalβ = βα satisfies the claim.
To build the sequence, consider the homomorphismπ0 ◦ f :Tlex → R. By Lemma 5.8,

there exists a countable ordinalγ0 such thatπ0 ◦ f is homogeneous aboveγ0. Setβ0 := γ0
andβ1 := γ0 + 1; then,(∗)1 holds. Next, assume thatγ is a successor ordinal, say,γ =
δ + 1. Consider the set

H = {
t ∈ Levβδ (T ): [t,→) is anω1-tree

}
.

SinceT is anω1-tree, the setH is nonempty and countable; letH = {tHn : n ∈ ω} be an
enumeration. Further, there exists an ordinalη < ω1 such that for allt ∈ Levη(T ), we have
tHn � t for somen ∈ ω. Fix tHn ∈ H and denote byψδ the restriction of the mapπδ ◦ f to
the interval[tHn ,→). Since(∗)δ holds, the map̂πδ ◦ f �[tHn ,→) is constant, and soψδ is a
homomorphism of anω1-tree intoR. Thus Lemma 5.8 yields the existence of a counta
ordinal ηn such that for eacht ∈ Levηn([tHn ,→)), the mapψδ � [t,→) is constant. Se
ηω := sup{ηn: n ∈ ω} andβγ := max{η,βδ + ηω}; then(∗)γ holds. Finally, ifγ is a limit
ordinal, then(∗)γ holds forβγ := sup{βδ: δ < γ }. �
Corollary 5.10. Every lexicographic linearization of anω1-tree has an uncountable rep
resentability number.

Corollary 5.11. The representability number of every Aronszajn line and of every So
line isω1.

Proof. A Souslin line contains an Aronszajn line, which is dense in it (see [13, Pro
tion 3.9]). Thus it suffices to show that for each Aronszajn lineA and Souslin lineS, we
have repr(A) � ω1 and repr(S) � ω1. SinceA is isomorphic to a linear treeTlex obtained
from an Aronszajn tree (see [13]), Corollary 5.10 yields repr(A) = repr(Tlex) � ω1. On the
other hand, repr(S) � ω1, because any short chain embeds into 2ω1

lex (see [11]). �
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