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1. Introduction

We adopt a differential game approach to study the optimal effort of oligopolistic
firms concerning the R&D investment aimed at product innovation. In particu-
lar, we consider a dynamic model where firms produce symmetrically differentiated
goods, and where the degree of differentiation is the outcome of R&D investments
by firms over time. Since the differentiation between goods is symmetric, it can be
interpreted as a public good; thus, the activity of R&D aimed at product differen-
tiation can be interpreted as the private provision of a public good.

The basics of the present model are the same as in Cellini and Lambertini (2002),
but in the present paper we do not confine ourselves to the open-loop solution
concept. On the contrary, we adopt the closed-loop Nash equilibrium concept. It
is well-known that these two solution concepts may be interpreted as two different
choice rules, corresponding to different information sets. Under the open-loop rule,
firms precommit their decisions on the control variables to a path over time, and the
resulting equilibrium is only (usually) weakly time-consistent.a By contrast, under

aThere exist classes of games where the open-loop solution is strongly time consistent. For an
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the closed-loop rule, firms do not precommit on any path and their strategies at
any instant may depend on all the preceding history, even if - in such a situation
- the information set used by firms in setting their strategies at any given time is
often simplified to be only the current value of the state variables. The relevant
equilibrium concept is the so-called “memoryless closed-loop” Nash equilibrium,
and it is strongly time-consistent or Markov-perfect (see Basar and Olsder, 1982,
and Dockner et al., 2000).

The comparison between the steady states under these different equilibrium
concepts provides us with a view of some interesting properties of the optimal
behaviour of oligopolistic firms under alternative decision rules. In particular, under
the open-loop solution concept an Arrowian conclusion is reached, according to
which the amount of resources invested by the industry in product differentiation
is increasing in the number of firms, i.e., in the intensity of market competition
(Arrow, 1962). By contrast, under the closed-loop time consistent solution concept,
the Schumpeterian conclusion may be reached, according to which the amount of
resources invested by the industry in product differentiation is decreasing in the
intensity of market competition, as captured by the number of firms (Schumpeter,
1942).

Moreover, the privately optimal allocations under the aforementioned equilib-
rium concepts are compared with the social optimum. In particular, we show that
the steady state equilibrium under the open-loop decision rules is closer to the
steady state social optimum, than the closed-loop steady state equilibrium is.

The outline of the paper is as follows. Section 2 illustrates the basics of the
model. Section 3 develops the private optimum under the closed-loop decision rule,
and compares the results with the open-loop decision rules, with particular empha-
sis on profits and social welfare. Section 4 derives the social optimum allocation
and proposes some considerations about the social desirability of market regulation
under alternative private decision rules. Section 5 briefly concludes.

2. The Setup

We consider a market where n > 1 single-product firms sell differentiated products
over the time period [0,∞). Market competition takes place à la Cournot. The
demand structure is borrowed from Spence (1976). In each period t ∈ [0,∞), the
inverse demand function for product i is:

pi(t) = A−Bqi(t)−D(t)
∑

j 6=i

qj(t) (2.1)

where D(t) ∈ [0, B] is the symmetric degree of substitutability between any pair
of products. If D(t) = B, products are completely homogeneous. If D(t) = 0,
products are completely independent and each firm is a monopolist.b At any time
t, the output level qi(t) is produced at constant returns to scale, for a given D(t),
so that we define the individual total operative cost per period as Ci(t) = cqi(t),
where c ∈ (0, A).

exhaustive overview, see Dockner et al. (2000, ch. 7).
bThe idea that D depends upon the behaviour of firms has been investigated in static models by
Harrington (1995); Lambertini and Rossini (1998); Lambertini, Poddar and Sasaki (1998).
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We assume that D(0) = B, so that, at the initial instant, firms may produce
the same homogeneous good through a technology which is public domain. Product
differentiation may increase, i.e., parameter D may decrease, through firms’ R&D
investment according to the following law, borrowed from Cellini and Lambertini
(2002):

Ḋ(t) =
dD(t)

dt
= − K(t)

1 + K(t)
·D(t) ≡ − ki(t) +

∑
j 6=i kj(t)

1 +
[
ki(t) +

∑
j 6=i kj(t)

] ·D(t); (2.2)

with ki(t) ≥ 0 ∀ i. The above dynamics of product differentiation can be interpreted
as follows. The industry overall R&D expenditure is K(t) =

∑n
i=1 ki(t), where ki(t)

is individual investment of firm i.c Given the symmetric nature of product differ-
entiation in this model, there exists a complete spillover effect in the R&D process.
Notice that the externality effect we consider here entails that the outcome of R&D
activity is public domain via the demand function. On the contrary, the exter-
nality effects usually considered in the literature are associated with information
leakage or transmission (see, inter alia, d’Aspremont and Jacquemin, 1988). The
dynamic equation (2.2) can be interpreted as a production function whose output
is −Ḋ(t)/D(t), obtained through an R&D input represented by capital. This tech-
nology can be shown to exhibit decreasing returns to scale w.r.t. K(t). As a result,
D(t) is non-increasing over time, and approaches zero as K(t) tends to infinity.

The instantaneous profit of firm i is πi(t) = [pi(t)− c] qi(t) − ki(t). Each firm
aims at maximizing the discounted value of its flow of profits:

Πi =
∫ ∞

0

e−ρtπi(t) dt

under the dynamic constraint (2.2) concerning the state variable D(t). The firm’s
control variables are qi(t) and ki(t).

3. The Private Optimum

Suppose firms choose non-cooperatively both R&D efforts and output levels. The
solution concept we adopt is the closed-loop memoryless (or Markovian) Nash equi-
librium. The objective function of firm i is:

Πi =
∫ ∞

0

e−ρt



qi(t) ·


A− c−Bqi(t)−D(t)

∑

j 6=i

qj(t)


− ki(t)



 dt

to be maximised w.r.t. qi(t) and ki(t), s.t. (2.2). The Hamiltonian is:

H(t) = e−ρt ·


[A− c]qi(t)−B(qi(t))2 −D(t)qi(t)

∑

j 6=i

qj(t)− ki(t)

cIn eq. (2.2), we keep ki(t) separated from
∑

j 6=i
kj(t) in order to put in evidence the control

variable of firm i.
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+λi(t)[−
ki(t) +

∑
j 6=i kj(t)

1 +
[
ki(t) +

∑
j 6=i kj(t)

] ·D(t)]



 ,

where λi(t) = µi(t)eρt, µi(t) being the current value costate variable associated with
D(t).

The necessary conditions for a path to be optimal are:d

∂H(t)
∂qi(t)

= A− c− 2Bqi(t)−D(t)
∑

j 6=i

qj(t) = 0 ⇒ (3.7)

q∗i (t) =
A− c−D(t)

∑
j 6=i qj(t)

2B
;

∂H(t)
∂ki(t)

= −1−D(t)λi(t)
1(

1 + ki(t) +
∑

j 6=i kj(t)
)2 = 0 ⇒ (3.9)

k∗i (t) = −1−
∑

j 6=i

kj(t) +
√
−D(t)λi(t) ;

−∂H(t)
∂D(t)

−
∑

j 6=i

∂H(t)
∂qj(t)

∂q∗j (t)
∂D(t)

−
∑

j 6=i

∂H(t)
∂kj(t)

∂k∗j (t)
∂D(t)

=
dµi(t)

dt
⇒ (3.11)

dλi(t)
dt

= qi(t)
∑

j 6=i

qj(t)−

∑

j 6=i

D(t)qj(t)
∑

m6=j

qm(t)
2B

+
∑

j 6=i

λi(t)
√

λi(t)D(t)

2
[
1 + ki(t) +

∑
j 6=i kj(t)

]2


 + λi(t)


 ki(t) +

∑
j 6=i kj(t)

1 +
[
ki(t) +

∑
j 6=i kj(t)

] + ρ


 ;

lim
t→∞

µi(t) ·D(t) = 0

We introduce the following:

Assumption 3.1. qi(t) = qj(t) = q(t), and ki(t) = kj(t) = k(t).

This is a usual symmetry assumption involving no loss of generality as long as
one adopts the Nash equilibrium as the solution concept.e In particular, it implies∑

j 6=i qj(t) = (n− 1)q(t) and
∑

j 6=i kj(t) = (n− 1)k(t).

dThe appropriate second-order conditions for a maximum are fulfilled. They are omitted for
brevity. For the same reason, in the first-order conditions we also omit the indication of exponential
discounting.
eUnder non-cooperative behaviour, such a symmetry assumption can be introduced only after the
computation of the first-order conditions. Imposing symmetry ex ante would be appropriate in
order to solve the game where firms build up full cartelisation in quantities and R&D investments.
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Then, from (3.7) we derive the equilibrium per firm output:

q(t) =
A− c

2B + (n− 1)D(t)
(3.15)

which coincides with the standard outcome of Cournot models with product differ-
entiation (see, e.g., Singh and Vives, 1984; Majerus, 1988; Lambertini, 1997; Cellini
and Lambertini, 1998). Given that Assumption 3.1 also implies the symmetry con-
dition λi(t) = λ(t) ∀i, equation (3.9) rewrites as

−λ(t) =
[1 + nk(t)]2

D(t)
. (3.16)

By symmetry, and using (3.16), (3.11) simplifies as follows:

λ̇(t) =
dλ(t)

dt
=

D(t)(n− 1) [q(t)]2 [2B −D(t)(n− 1)]
2BD(t)

+ (3.17)

−B(1 + nk) [2nk + n− 1 + 2ρ (1 + nk)]
2BD(t)

. (3.18)

From (3.16) we obtain k(t), which can be differentiated w.r.t. t :

k̇(t) =
1

2n
√
−λ(t)D(t)

[
−λ̇(t) ·D(t)− λ(t) · Ḋ(t)

]
(3.19)

Then, plugging (3.17) and (3.16) into (3.19) and rearranging, one obtains:

k̇(t) =
B [1 + nk(t)] [2ρ (1 + nk(t)) + n− 1]−D(t)(n− 1)[q(t)]2 [2B −D(t)(n− 1)]

2n [1 + nk(t)]
(3.20)

The expression in (3.20) is valid for all D(t) ∈ (0, B]. If D(t) = 0, optimal per-period
investment is k(t) = 0. Likewise, one can also exclude the monopoly case (n = 1) ,
where strategic interaction between goods is absent by definition. Therefore, in the
remainder we focus on n ≥ 2.

We are now in a position to assess the overall dynamic properties of the model,
fully characterised by (3.19) and Ḋ(t) = −nk(t)D(t)/(1+nk(t)). The latter equation
establishes that Ḋ(t) < 0 for all k(t) ∈ (0,∞) and for all D(t) ∈ (0, B]; while
Ḋ(t) = 0 if k(t) = 0 or D(t) = 0. In the latter circumstances, it is immediate to
verify that k̇(t) is also zero.

Moreover, from (3.20), using the equilibrium value of the output level from
(3.15), we obtain that

k̇(t) = 0 if

2Bρn2[α(t)]2 [k(t)]2 + Bn[α(t)]2 (4ρ + n− 1) k(t)+

+B[α(t)]2 (2ρ + n− 1)− (n− 1)(A− c)2D(t) [2B − (n− 1)D(t)] = 0 , (3.23)

where
α(t) ≡ 2B + (n− 1)D(t) .
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The roots of equation (3.23) are:

k(t) =
−B · α(t) · (4ρ + n− 1)±√Ω

4Bρnα(t)

Ω ≡ 8(A− c)2D(t)α(t)ρ−B2(n− 1) [2B −D(t)]2 +

+Bn
{

4B[B + (n− 2)D(t)] + [D(t)]2
(
n2 − 3n + 3

)}
.

The smaller root corresponds to a locus where k has always negative values, and
therefore can be disregarded, as being economically meaningless. Then, considering
the larger root, we are interested in investigating the dynamics of the system in
the positive quadrant of the space (D, k), which is described in Figure 1. The
locus Ḋ(t) = 0 corresponds to the axes. The locus k̇(t) = 0 is a curve over the
admissible range of parameter D, which may or may not cross the horizontal axis
within the same range, i.e., D ∈ (0, B]. If it does, the resulting candidate degree of
substitutability in steady state is either

Dcl1 =
B

[
(A− c)2 − 2B(2ρ + n− 1)− (A− c)

√
(A− c)2 − 8B(2ρ + n− 1)

]

(n− 1) [(A− c)2 + B(2ρ + n− 1)]
(3.25)

or

Dcl2 =
B

[
(A− c)2 − 2B(2ρ + n− 1) + (A− c)

√
(A− c)2 − 8B(2ρ + n− 1)

]

(n− 1) [(A− c)2 + B(2ρ + n− 1)]

with Dcl1,2 ∈ R iff B ∈ (
0 , B

)
, B ≡ (A− c)2 / [8(2ρ + n− 1)] . Subscript cl stands

for closed-loop.
Moreover, it can quickly be verified that

Dcl2 > Dcl1 > 0

in the whole admissible parameter range. Now it remains to check the conditions
ensuring that Dcl1,2 < B.

It is easily established that Dcl1 < B for all n ≥ 2. As to the larger root, we
have:f

Dcl2 < B for all B > B̂ ≡ (A− c)2 (n− 3)(1− n)
(n + 1)2(2ρ + n− 1)

,

with

B > B̂ > 0 iff n = 2 ;
B > B̂ = 0 iff n = 3 ;
B > 0 > B̂ for all n ≥ 4 .

fThe equation D∗1 = B has another root: B = −(A− c)2/(2ρ + n− 1), which can be disregarded
as it is always negative.
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We can now formulate the following

Lemma 3.1. If n = 2 and B ∈
(
0 , B̂

)
, there exists only one steady state at

Dcl1 . If n = 2 and B ∈
(
B̂ , B

)
, there exist two steady state levels of product

substitutability, Dcl1 and Dcl2 , with B > Dcl2 > Dcl1 > 0. For all n ≥ 3 and all
B ∈ (

0 , B
)
, there exist two steady state levels of product substitutability, Dcl1 and

Dcl2 , with B > Dcl2 > Dcl1 > 0.

The alternative situations identified by Lemma 3.1 are illustrated in Figures 1-2.

Fig. 1. Dynamics in the space (D, k) for n = 2 and B ∈
(
0 , B̂

)
.

6

- D0

k

− 1
n

BDcl1

dk(t)
dt = 0

¾ 6

¾
?

Considering the stability of the system, the system of dynamic equations (2.2)
and (3.19) can be linearised around the steady state points (Dcl1 , 0) (whenever
Dcl1 ∈ (0 , B)) and (Dcl2 , 0) , to prove that the sign of the determinant of the
Jacobian matrix is the sign of

3D(n− 1)− 2B,

which:

• in (Dcl1 , 0) is negative for all B ∈ (
0 , B

)
;

• in (Dcl2 , 0) is positive for all B ∈ (
0 , B

)
.

Since in (Dcl2 , 0) the trace of the Jacobian matrix is positive over the admissible
range of parameters, we can state the following:g

gThe detailed calculations involved in the assessment of the stability properties are omitted for
the sake of brevity. They are available from the authors upon request.
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Proposition 3.1. The steady state (Dcl1 , 0) is a saddle point. The steady state
(Dcl2 , 0) , whenever it exists, is an unstable focus.

It should be stressed that the saddle point (Dcl1 , 0) can be approached only
along the north-east branch of the saddle point path.

Fig. 2 : Dynamics in the space (D, k) for either
n = 2 and B ∈

(
B̂, B

)
, or n ≥ 3 and all B ∈ (

0 , B
)
.

6

- D0

k

− 1
n

BDcl1 Dcl2

dk(t)
dt = 0¾ 6

¾
?

3.1. Comparative Evaluation of Open-Loop and Closed-Loop Equilibria

Comparative statics exercises can be carried out on Dcl1 to describe the effects of
market size (A−c)2/B, the discount rate ρ, and the number of firms n on the optimal
amount of product substitutability in the closed-loop equilibrium. The derivative
∂Dcl1/∂n is a quartic expression in n, and can be evaluated only numerically, but
a few examples suffice to characterise the behaviour of optimal substitutability as
n changes. For instance, consider the case A − c = 10, ρ = 1/10 and B = 1/2 to
verify numerically that

∂Dcl1

∂n
< 0 for all n ∈ [2 , 4.3616) ; (3.30)

∂Dcl1

∂n
> 0 for all n > 4.3616 . (3.31)

In view of the integer constraint, this means that Dcl1 is decreasing in n for n ∈
[2 , 4) and then increasing in n for all n ≥ 5. By increasing B, it can be seen that the
interval wherein ∂Dcl1/∂n < 0 shrinks. If B = 2.2425, the closed-loop equilibrium
degree of substitutability is the same at n = 2 and n = 3. Dcl1 takes a minimum
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at n = 2.431, where Dcl1 = 0.1297. However, due to the integer constraint, the
behaviour of Dcl1 over n ∈ [2 , 3) is irrelevant; therefore, if B ∈ (

2.2425 , B
)
,

product differentiation is decreasing for all n ≥ 2 in the closed-loop equilibrium. Of
course, this exercise can be repeated for many other admissible values of parameters
{A , c , ρ} . In general, there exists a threshold B̃ such that Dcl1 is everywhere
increasing in n for all B ∈

(
B̃ , B

)
. Thus, there exists a parameter region where,

whenever a real solution does exist, optimal product differentiation is decreasing in
the number of firms in equilibrium. The intuition behind this result is that, as the
number of firms increases and the market becomes more competitive, the feedback
effects characterising the closed-loop solution induce a firm to invest less in product
differentiation in that, in the present model, differentiation is a public good whose
benefits are more difficult to internalise as n grows larger.

In the light of the debate on the relationship between market structure and
the incentive to invest (either in process or in product innovation), that can be
traced back to Schumpeter (1942) and Arrow (1962),h the comparative statics in
(3.30-3.31) lead to the following:

Proposition 3.2. Under the closed-loop information structure, an increase in
market power generated by a decrease in the number of firms entails an increase in
product differentiation in equilibrium, for n ∈ [2 , 4); the opposite holds for n ≥ 5.

Hence, the closed-loop equilibrium has a strong Schumpeterian flavour, which
sharply contrasts with the conclusions drawn from the open-loop formulation of the
same model.

From Cellini and Lambertini (2002) we know that the opposite holds in an
open-loop equilibrium, where the optimal amount of product substitutability is:

Dol =
(A− c)2 − 4Bρ− (A− c)

√
(A− c)2 − 8Bρ

2(n− 1)ρ
; (3.32)

Dol ∈ (0 , B) for all B < B̃ ≡ (A− c)2 (n− 1)
ρ(n + 1)2

,

with subscript ol standing for open-loop. Since B̃ > B for all n ≥ 2, both Dol

and Dcl1 belong to (0 , B) for all B ∈ (
0 , B

)
. Clearly, ∂Dol/∂n < 0 always, i.e.,

the open-loop degree of product differentiation is increasing in the intensity of mar-
ket competition. Increasing the number of firms reduces equilibrium profits, but
this effect can be offset by increasing R&D efforts so as to decrease the degree of
substitutability among products.

Comparing (3.25) and (3.32), it is straightforward to verify that

Dcl1 −Dol = 0 atB1 = − (A− c)2

2ρ + n− 1
; B2 = − (n− 1)(A− c)2

(2ρ + n− 1)2
; B3 = 0 ,

with Dcl1 −Dol > 0 for all B > B3 .
Consequently, the following holds:

hFor an exhaustive overview of this literature, see Reinganum (1989).
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Proposition 3.3. Ceteris paribus, the difference Dcl1−Dol is positive and increas-
ing in n for all B ∈ (

0 , B
)
.

This leads us to compare profits and social welfare levels in the two settings.
Concerning profits, observing that (i) optimal output in (3.15) is the same under
both information structures; and (ii) equilibrium steady state investments are zero
in both cases, suffices to prove that the following corollary to Proposition 3.3 holds:

Corollary 3.1. Ceteris paribus, the individual firm’s profits as well as industry
profits, are lower in the closed-loop equilibrium than in the open-loop equilibrium.

This is a result that confirms the existing literature on dynamic investment in
oligopoly, be such investment related to R&D, productive capacity or other long
run variables affecting firms’ size (see, inter alia, Reynolds, 1987; and the related
discussion in Fudenberg and Tirole, 1991, ch. 13).

As to the welfare assessment, we proceed as follows. The utility function of the
representative consumer is:

U(t) = A
∑

i

qi(t)− 1
2


B

N∑

i=1

(qi(t))
2 + D(t)

∑

i

∑

j 6=i

qi (t) qj (t)




whose maximization under the budget constraint Y (t) ≥ ∑
i pi (t) qi(t), where Y (t)

is nominal income, yields demand functions (2.1). Accordingly, consumer surplus is
measured by CS(t) ≡ U(t)−∑

i pi (t) qi(t) and social welfare is SW (t) ≡ ∑
i πi(t)+

CS(t). Under the symmetry assumption, and given that k = 0 in steady state,
consumer surplus writes as

CS =
nq2

2
[B + D (n− 1)] , (3.36)

while welfare is given by:

SW = n(A− c)q − nq2

2
[B + D (n− 1)] . (3.37)

Now one can plug the equilibrium output (3.15) into (3.36) and (3.37), and differ-
entiate w.r.t. D, to verify that ∂CS/∂D and ∂SW/∂D are everywhere negative,
which implies a second corollary to Proposition 3.3:

Corollary 3.2. Ceteris paribus, social welfare is higher in the open-loop equilibrium
than in the closed-loop equilibrium, due to both higher industry profits and higher
consumer surplus.

When compared to existing contributions in oligopoly theory, this result sounds
quite peculiar. Usually, if firms’ profits increase, consumer surplus decreases and
the overall welfare effect is a priori ambiguous. In the present setting, however,
given that first-order conditions on output levels are the same under both solution
concepts, an increase in product differentiation benefits both the firms and the
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consumers alike. One reason is that firms and consumers have a common “taste for
differentiation”,i which generates the above result.

This considerations raise the issue of whether firms can be expected to adopt
open-loop decision rules, either spontaneously or because they are induced to do
so by a regulator trying to increase social welfare. The latter case seems quite
implausible, since R&D policy is usually implemented through subsidies or patent
laws, while in this case it should compel firms to initially declare their investment
plans and stick to them forever. In our view, the former case is more realistic,
since firms may decide to follow open-loop decision rules, though only weakly time
consistent, for the following reasons. First, the open-loop rule requires a minimum
amount of information, as compared to the closed-loop rule. Second, in the case
of investment choices, the stickiness of investment makes it difficult to believe that
a firm can react “period by period” to the rivals’ choices, as the closed-loop rule
would require.

4. The Social Optimum

The objective of a benevolent social planner consists in maximising the discounted
value of social welfare under the dynamic constraint (2.2). Under the symmetry
assumption, which in this setting can be imposed on outputs and R&D efforts from
the outset, the instantaneous social welfare simplifies as follows:

SW (t) = n (A− c) q(t)− n [B + D(n− 1)] [q(t)]2

2
− nk(t)

The Hamiltonian function corresponding to the maximisation of the present
value of the social welfare is:

Hsp(t) = e−ρtn

[
(A− c) q(t)− [B + D(t)(n− 1)] [q(t)]2

2
− k(t)− λ(t)D(t)k(t)

1 + nk(t)

]

where the subscript sp stands for social planning. The first-order conditions and
adjoint equations are:

∂Hsp(t)
∂q(t)

= n (A− c)− nq(t) [B + D(t)(n− 1)] = 0; (4.40)

∂Hsp(t)
∂k(t)

= −n

{
1 +

D(t)λ(t)
[1 + nk(t)]2

}
= 0; (4.41)

−∂Hsp(t)
∂D(t)

=
dµ(t)

dt
⇒ dλ(t)

dt
=

n [q(t)]2

2
+ λ(t)

(
nk(t)

1 + nk(t)
+ ρ

)
; (4.42)

lim
t→∞

µ(t) ·D(t) = 0,

iIt is worth stressing that consumers exhibit an additional “taste for variety”, that is, consumer
surplus is increasing in the number of firms, n. This, of course, cannot hold for firms, as individual
profits are decreasing in n.
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with µ(t) being the costate variable associated with D(t), and λ(t) = µ(t)eρt.
From (4.40) and (4.41), one obtains, respectively:

q(t) =
A− c

B + D(t)(n− 1)
; (4.44)

−λ(t) =
[1 + nk(t)]2

D(t)
. (4.45)

The optimal quantity (4.44) reveals, as one would expect, that the planner sets the
price equal to marginal cost. From (4.41), the evolution of k(t) over time has the
following dynamics:

k̇(t) ∝ −D(t) · λ̇(t)− λ(t) · Ḋ(t). (4.46)

Using (4.42), (4.44) and (4.45), one can rewrite the right-hand side of (4.46) as
follows:

k̇(t) ∝ 2ρ [1 + nk(t)]2 − D(t)n(n− 1)(A− c)2

[B + D(t)(n− 1)]2
. (4.47)

The roots of the right-hand side of (4.47) are:

k(t) = − 1
n
± (A− c)

√
2n(n− 1)ρD(t)

2ρn [B + D(t)(n− 1)]
. (4.48)

The smaller root can be disregarded as it is always negative. The larger root is zero
at

Dsp1 =
n (A− c)2 − 4Bρ− (A− c)

√
n [n(A− c)2 − 8Bρ]

4(n− 1)ρ
;

Dsp2 =
n (A− c)2 − 4Bρ + (A− c)

√
n [n(A− c)2 − 8Bρ]

4(n− 1)ρ
,

with

Dsp1,2 ∈ R for all B ∈
(

0 ,
n(A− c)2

8ρ

]
.

Moreover, simple calculations show that

Dsp1 > 0 always;

Dsp1 < B for all B >
(n− 1)(A− c)2

2nρ
;

Dsp2 > B always.

Noticing that
n(A− c)2

8ρ
≥ (n− 1)(A− c)2

2nρ
for all n ≥ 2

we have proved the following:

Lemma 4.1. The social planner reaches a steady state at Dsp1 ∈ (0 , B) for all
B ∈ (

(n− 1)(A− c)22nρ , n(A− c)28ρ
)

.

The situation in Lemma 4.1 is illustrated in Figure 3.
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Fig. 3. Dynamics in the space (D, k) under social planning.
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The dynamic properties of the system, as described by Figure 3, together with
Lemma 4.1, can be used to prove the following:

Proposition 4.1. For all B ∈ (
(n− 1)(A− c)22nρ , n(A− c)28ρ

)
, the socially

optimal steady state (Dsp1 , 0) is a saddle point, with each firm pricing at marginal
cost.

Evaluating Dsp1 against Dol reveals that Dsp1 < Dol for all B such that
Dsp1, Dol ∈ (0 , B) . The same holds if one compares Dsp1 to Dcl1. Hence we have
our final result:

Corollary 4.1. Dsp1 < Dol < Dcl1 for all B ∈ (0 , B) . This means that, at the
private optima, product differentiation is too low as compared to social planning.

By increasing product differentiation as compared to the private optima, the
planner gets two eggs in one basket, because welfare (which coincides here with
consumer surplus) increases due to both an increase in consumer utility U, which
is everywhere decreasing in D for any given output level, and an increase in output
levels.

In sharp contrast with the conventional wisdom (see, e.g., Tirole, 1988, ch. 7;
and Eaton and Lipsey, 1989), in this model the private (i.e., firms’) incentive to pro-
vide product differentiation is lower than the social incentive.l This is due to the fact

lWe have shown this result by contrasting the fully private equilibria with the first best where the
planner controls both output and investment levels. It can be shown that the same conclusion
obtains in the case where firms control output levels while a public agency interested in welfare
maximisation controls investment levels.
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that, in our model, product differentiation is partly a public good; therefore, its ben-
efits spill over completely to all rivals, unlike what we see in so-called address models
where firms choose locations (as in the literature stemming from Hotelling, 1929)
or qualities (as in Shaked and Sutton, 1982; 1983), where the internalised benefit
exceeds the external effect. From the policy-making perspective, the market failure
originated from the externality and the public-good nature of product differentia-
tion could be corrected through an appropriate R&D policy supporting the private
efforts for investment in product differentiation. For instance, a policy-maker could
introduce a subsidy s ∈ (0 , 1] rescaling downward the instantaneous investment
cost, so that instantaneous profits would be πi(t) = [pi(t)− c] qi(t) − (1− s) ki(t).
As a result, firms would invest more, and the associated equilibrium degree of prod-
uct differentiation would be higher. Note, however, that R&D subsidization would
not suffice to reach the first best, due to the distortion in output levels (as well as
prices) at the oligopolistic equilibrium.

5. Conclusion

We have taken a differential game approach to analyse firms’ R&D efforts to dif-
ferentiate their products. Under our hypotheses, differentiation is, at least partly,
a public good. We compared the open-loop Nash equilibrium strategy with the
closed-loop decision rule. It was shown that, under the closed-loop decision rule,
multiple steady states may exist, but only one is a saddle. We focused on this saddle
point, and compared its properties with the properties of the saddle point emerging
from the open-loop Nash equilibrium.

Some results are worth stressing. First, the link between market competition,
as captured by the number of firms in the market, and optimal efforts for product
differentiation is different under the two decision rules. Indeed, in open-loop equi-
librium, a larger number of firms leads to a higher degree of differentiation, which in
turn requires a higher aggregate effort. This conclusion has an anti-Schumpeterian
flavour, lending support to the Arrowian idea that the harsher the competition, the
higher the equilibrium level of R&D. In a closed-loop equilibrium, when the number
of firms is sufficiently large, an increased number of firms leads to a smaller degree
of differentiation, requiring a smaller aggregate R&D effort. This conclusion has a
clear Schumpeterian flavour.

The “period by period” strategic reaction implied by the closed-loop decision
rule leads to the result that the steady state individual firm’s profits, as well as
the steady state industry profits, are lower under the closed-loop that under the
open-loop decision rule.

Moreover, the steady state degree of differentiation among goods under the
open-loop is closer to the socially optimum level than the steady state degree of
differentiation reached under the closed-loop rule. In both cases, the privately
optimal product differentiation is too low as compared to social planning.

Finally, the social welfare in the steady state equilibrium under the closed-loop
decision rule is smaller than that in open-loop equilibrium, due to higher industry
profits and consumer surplus.

All the results are consistent with the fact that the differentiation is - in the
present model - a public good. This assumption led to the conclusion that the
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private incentive to produce differentiation is lower than the social incentive, which
prompts for the adoption of an appropriate R&D policy, such as a subsidy, in order
to increase private investments in product differentiation so as to ultimately enhance
social welfare.
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