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Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them
to colonize various environments and hosts but also to be opportunistic pathogens. Many
papers have contributed to a better understanding of: (i) the taxonomy of this complex
group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity
traits; and (iv) some markers related to the character of host-specificity, but the reasons
of such incredible success of adaptability is still far from being fully explained. Recently,
genomic-based studies have improved our understanding of the genome diversity of the
most studied species, i.e., E. faecalis and E. faecium. From these studies, what is becoming
evident is the role of the mobilome in adding new abilities to colonize new hosts and envi-
ronments, and eventually in driving their evolution: specific clones associated with human
infections or specific hosts can exist, but probably the consideration of these populations
as strictly clonal groups is only partially correct. The variable presence of mobile genetic
elements may, indeed, be one of the factors involved in the evolution of one specific group
in a specific host and/or environment. Certainly more extensive studies using new high
throughput technologies are mandatory to fully understand the evolution of predominant
clones and species in different hosts and environments.
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THE GENUS ENTEROCOCCUS
The genus Enterococcus contains bacterial species that are ecolog-
ically diverse. They are Gram-positive lactic acid bacteria that are
found in the gastrointestinal consortia of humans, other mam-
mals, reptiles, amphibians, birds, and insects and are used in the
production of fermented foods and probiotics (Benno et al., 1992;
Aarestrup et al., 2002; Tannock and Cook, 2002). To date, only
species from humans and domestic animals have been studied in
some detail.

Enterococci have gained notoriety over the past few decades as
frequent causes of hospital-acquired infection at extra-intestinal
sites, including surgical site wounds, urinary tract, and heart. The
ability of these microorganisms to cause infections has been linked
to the intrinsic ruggedness of these species, which allows the organ-
ism to persist in the hospital environment and survive many host
defenses compounded by the acquisition of a variety of variable
virulence and resistance traits by horizontal transfer from other
organisms: being rugged and genetically flexible is an important
feature of these microorganisms (Fisher and Phillips, 2009; Palmer
et al., 2010b; Laverde Gomez et al., 2011a).

Enterococci are among the most antibiotic-resistant bacterial
pathogens known. For reasons not well understood, they appear
to have served as a key collection point for a wide variety of
antibiotic-resistance determinants. It is well known that entero-
cocci possess the intrinsic low-level resistance to cephalosporins,
some beta-lactam antibiotics and about 83% of clinical isolates
of E. faecium show the high levels of resistance due to the pres-
ence of an alternative penicillin-binding protein (PBP5), and

aminoglycosides. In addition, the acquired high-level resistance
to beta-lactams, aminoglycosides, and glycopeptides is associated
with the acquisition of foreign DNA mediated by lateral gene trans-
fer (LTG; Shepard and Gilmore, 2002). It was recently shown that
enterococci have transferred vancomycin resistance to methicillin-
resistant Staphylococcus aureus, and the opposite transfer from
Staphylococcus to Enterococcus clinical strains has also been docu-
mented (Weigel et al., 2003; Perichon and Courvalin, 2004; Sarti
et al., 2012).

The genus Enterococcus, after different taxonomical allo-
cations that have identified more than 40 different species
(http://www.bacterio.cict.fr/enterococcus.html), has retained 17
species: formal infra-species division has not been made in the
genus, though some ecovar-related variability has become appar-
ent in E. faecium. These ecovars pertain to biochemical reaction
types (biotypes) and, in some cases, they have been found to
be host associated: example are raffinose-positive E. faecium in
poultry and sorbitol-positive E. faecium found in dogs; but more
convincingly, some genotypes have been associated with certain
animal host species (Devriese et al., 1994; Quednau et al., 1998).
Association of some genogroups with different hosts has been
recently found in a group of vancomycin-resistant E. faecium
(VRE) isolated from hospitalized, non-hospitalized patients, and
different animal sources, by using AFLP analysis (Willems et al.,
2000). The Authors, in this subgroup of strains, also demonstrated
that various pig strains were indistinguishable from human strains.

Among these 17 species, E. faecalis and E. faecium are mainly
isolated from human infections: a few years ago, the proportion
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between the two species was 80–90% for E. faecalis and 5–12% for
E. faecium (Cetinkaya et al., 2000). In recent years, the emergence
of enterococci has been associated with a gradual replacement of E.
faecalis (responsible for approximately 40% of enterococcal infec-
tions) with E. faecium (more than 60% of these infections) prob-
ably because of the rapid accumulation of antibiotic-resistance
determinants in this latter species (Iwen et al., 1997; Treitman
et al., 2005; Top et al., 2007; Hidron et al., 2008).

HABITAT
The best known, though not the only habitat of the enterococci,
is the gut of mammals and birds; they may be a significant com-
ponent of other animal groups as well. Most enterococcal species
known to date are typically associated with the intestine of humans
and domestic animals, and when found outside the gut, they are
interpreted as indicators of fecal pollution or, in the case of the
human body, as possible pathogens. Some species, i.e., E. cas-
seliflavus, E. mundtii, and E. sulfureus appear to have adapted to
vegetative life in environmental habitats and can colonize plants
(Klein, 2003). A recent study demonstrated single E. casseliflavus
populations in submerged aquatic vegetation and the Authors
concluded that this species represents a naturalized reproducing
indicator bacteria, not directly related to pollution events (Badgley
et al., 2010).

As stated before, E. faecalis and E. faecium are the most com-
mon isolates in the human gastrointestinal tract: the number of E.
faecalis in human feces range from 105 to 107 per gram and those
of E. faecium from 104 to 105 per gram (Tannock and Cook, 2002;
Fisher and Phillips, 2009).

Taking into consideration different species, there are certain
variations depending on different factors: host, age, and feeding
behavior. For example, E. faecalis and E. faecium occur predom-
inantly in humans; E. cecorum is a member of the enterococcal
flora of pigs and poultry; E. hirae is a frequent inhabitant of the
porcine gut and may occur in poultry, cattle, dogs, and cats, E.
asini that is specific for donkeys (Aarestrup et al., 2002). Further-
more, enterococcal colonization takes place more during the very
first period of life, and varies depending on intestinal compart-
ment, and on type of feeding (Vaughn et al., 1979; Collins et al.,
1986).

E. faecalis and E. faecium are also regularly isolated from cheese,
fish, sausages, minced beef, and pork (Fontana et al., 2009; Nieto-
Arribas et al., 2011). In some cases these species are involved in
food spoilage and fermentation; in others (above all when they
are isolated from food of animal origins) they are often associ-
ated with contamination due to their ability to survive the heating
process (Fisher and Phillips, 2009).

Some E. faecium and E. faecalis strains are used as probiotics
and are then ingested at high inocula. Such probiotics are used
to treat various dysbiosis (antibiotic-associated diarrhea or irri-
table bowel syndrome), to lower cholesterol or to improve host
immunity (Franz et al., 2011). All these benefits were assessed
and confirmed by practical use and, recently, in an animal model
(Tarasova et al., 2010), but in view of the emergence of problem-
atic enterococcal lineages and the potential for gene transfer in the
gastrointestinal tract of both human and animals, their use needs
to be carefully monitored (Franz et al., 2011).

In conclusion, it is evident that enterococci are able to colonize
a variety of niches due to their ability to survive in a wide range of
environmental conditions.

NOSOCOMIAL PATHOGENS AND MULTI-DRUG RESISTANCE
Enterococci are known to be causes of endocarditis and rare cases
of meningitis. However, this picture has changed dramatically over
the last 20 years, in which enterococci have become one of the
leading causes of nosocomial infections and – according to the
recent National Nosocomial Infection Surveillance (NNIS) sur-
veys (NNIS, 2004; Rosenthal et al., 2008) – they remain in the top
three most common pathogens responsible for urinary tract, intra-
abdominal, pelvic, surgical, wound, and central venous catheter
(CVC) associated infections and bacteremia, which may seed to
more distant sites. For example, genitourinary tract infections
or instrumentation use often precedes the onset of enterococcal
endocarditis. Pleural space infections, as well as skin and soft tissue
infections, have also been reported (Rice et al., 2004; Deshpande
et al., 2007).

Hospital-associated enterococcal infections emerged differ-
ently in the USA with respect to Europe (around 1990) and
concurrently with the acquisition of vancomycin resistance. Even
if with a different percentage of isolation, vancomycin resistance
in Europe has so far not spread to hospitals at the same levels as
in the USA (there are, in any case, variations among European
countries with some, such as Greece and Ireland, having rates
exceeding 30%, while Italian and Spanish prevalence is less than
5%, Germany less than 10%, and the UK with approximately 13%;
Werner et al., 2008). In general, most E. faecium isolates recov-
ered from hospitalized patients are more resistant to antimicrobial
agents than community-derived isolates. In particular ampicillin
and fluoroquinolone resistance are important markers that dis-
tinguish hospital from community-derived isolates (Coque et al.,
2005; Willems et al., 2005; Willems and van Schaik, 2009).

PATHOGENIC ENTEROCOCCI
In general, the virulence of enterococci is lower than that of other
organisms such as S. aureus. However, enterococcal infections
often occur in debilitated patients and as a part of polymicrobial
infections: these factors limit the ability of investigators to deter-
mine the independent contribution of enterococcal infections to
mortality and morbidity.

Perturbation in the dynamics of the host/commensal relation-
ship is related to different causes: (i) the access to extra-intestinal
sites can be promoted by antibiotic-treatment, host injury, or
diminished host immunity; and (ii) the transition from a com-
mensal behavior to a pathogen happens through the acquisition
of new traits. The latter has been gaining ground after the iden-
tification of pathogenicity islands (PAI) in E. faecalis (Shankar
et al., 2002). These elements encode several genetic determinants
involved in colonization and virulence, and possess modular struc-
tures able to adapt their genetic content, with the acquisition or
loss of pathogenicity factors. Diverse PAI variants are widely dis-
tributed among enterococcal strains belonging to various clonal
complexes (CCs), origins, and hosts, which enrich their acces-
sory genomes with new traits able to enhance their pathogenicity
in hospitalized patients (McBride et al., 2009). The spread of
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these more infective clones is mainly due to the presence of fac-
tors involved in colonization and ability to form biofilm, the
first crucial steps in clinical infection and nosocomial spread of
antibiotic-resistant strains.

In E. faecalis, some of the most prominent virulence determi-
nants and factors involved in colonization and biofilm formation
are: a secreted toxin cytolysin; a collagen-binding adhesin of the
microbial surface component recognizing adhesive matrix mole-
cules (MSCRAMM-ACE); an adhesin expressed on the surface of
the bacteria designated Esp (proteins associated with virulence,
initially found only in hospital-derived strains, and now vari-
ably present in some animal isolates); an autolysin (Atn formerly
AtlA); a sugar-binding transcriptional regulator (BopD); a secreted
proteases gelatinase (GelE); a cell-anchored protein (Bee); and a
sortase associated to surface pili formation (Ebp; Singh et al., 1998,
2005; Rich et al., 1999; Eaton and Gasson, 2002; Hufnagel et al.,
2004; Mohamed et al., 2004; Shankar et al., 2004; Tendolkar et al.,
2006; Schluter et al., 2009; Heikens et al., 2011; Nallapareddy et al.,
2011; Pinkston et al., 2011).

It has been ascertained that E. faecalis is more virulent than
E. faecium. Even if in the past E. faecium have been less studied,
recently various aspects regarding its virulence and pathogenicity
have examined. A glycosyl hydrolase, encoded by the hylEfm gene,
has been hypothesized to be involved in infections of hospital-
associated E. faecium, but a recent study performed on a murine
peritonitis E. faecium model, did not show any in vivo effect on
virulence (Willems et al., 2001; Woodford et al., 2001; Coque et al.,
2002; Rice et al., 2003; Leavis et al., 2004; Panesso et al., 2011).
Recently, the group of Murray demonstrated the involvement of
two gls-loci in the adaptation to the intestinal environment and
virulence, in response to the in vitro bile salts stress, and the pres-
ence of the ebpABCfm locus encoding pili, in E. faecium TX82,
confirming their role in pathogenicity and biofilm formation (Sil-
lanpää et al., 2010; Choudhury et al., 2011). As in E. faecalis, the
role of Esp in forming biofilm has been demonstrated also in E.
faecium (Sava et al., 2010).

It is clear that the presence of a specific virulence trait can not
be always considered predictive of pathogenicity in itself: com-
plex interactions between these and other traits, as well as host
and environmental conditions, can influence microbial behavior;
in this context, the study of key regulators of gene expression
is of great importance, such as the recent identification of small
RNAs (sRNA) as mediators of virulence and stress inducible gene
expression, in E. faecalis V583 (Shioya et al., 2011).

KNOWLEDGE ON POPULATION BIOLOGY OF
DRUG-RESISTANT ENTEROCOCCI FROM HOSPITAL AND
NON-HOSPITAL ORIGINS
Many studies published in recent years have indicated that
hospital-derived strains have acquired traits involved in resistance
and pathogenesis (Baldassarri et al., 2001; Willems et al., 2001;
Woodford et al., 2001). These studies have recently been supported
by more global experimental designs able to give a more complete
perspective.

We report here results of different studies aiming to improve
our understanding on the population biology diversity of entero-
cocci isolated from different hosts.

A recent comparative genomic hybridization study using a
mixed whole genomic array (Leavis et al., 2007) on strains of
E. faecium isolated from various genetic and ecological back-
grounds, demonstrated that: (i) hospital-derived isolates were
grouped together; and (ii) IS elements together with resistance
genes, genes encoding novel metabolic pathways, genes encod-
ing membrane proteins and regulatory genes, were more that
80% specifically associated. Furthermore, in MLST-based stud-
ies, antibiotic-resistant strains that cause infections clustered into
distinct groups with respect to strains colonizing the gastrointesti-
nal tract of healthy individuals in the community (Willems and
van Schaik, 2009). As stated before, in addition to possessing resis-
tances to multiple antibiotics such as vancomycin, enterococcal
strains often possess a set of genes that contribute to virulence
(van Schaik and Willems, 2010). Potential virulent strains can also
arise in the same clonal complex (CC), due to the acquisition of
virulence factors carried by PAI elements, that could contribute to
change commensal E. faecalis strains into pathogenic ones, to con-
fer and increase their ability to colonize different gastrointestinal
tract niches (Coburn et al., 2007; Willems and van Schaik, 2009).

Even if only few lineages/clonal complexes (CCs) of E. fae-
cium and E. faecalis have been currently associated with hospital
outbreaks, the large number of resistance and colonization traits
harbored in hospital isolates suggests consecutive cumulative gene
acquisition, integration and successful adaptation to these new
conditions (Baquero, 2004; Leavis et al., 2007; McBride et al.,
2007).

Several other recent studies have demonstrated that hospital-
acquired isolates clustered in few clonal complexes – CC2 and CC9
in E. faecalis and CC17 in E. faecium – these have also been recov-
ered from farm animals and pets; moreover, strains belonging to
CCs commonly found among animals have also been isolated from
humans (E. faecium CC5, E. faecalis CC16 or CC21; Leavis et al.,
2006a; Biavasco et al., 2007; Damborg et al., 2009; Freitas et al.,
2009a,b; Willems and van Schaik, 2009; Larsen et al., 2010).

Many enterococcal strains from human and swine hosts – all
vancomycin-resistant (VRE) – showed different STs (clustering
mainly in E. faecium CC17 and CC5, and E. faecalis CC2), har-
bored Tn1546 on indistinguishable plasmids (Freitas et al., 2011).
In surveillance studies performed in Portugal, Denmark, Spain,
Switzerland, and the United States from 1995 to 2008, a sample
of VRE isolates from pigs and healthy people was compared with
outbreak/prevalent VRE clinical strains (isolated from 23 coun-
tries in the same period). This study demonstrated intra- and
inter-national diffusion of E. faecium and E. faecalis strains show-
ing the same CCs and plasmids among swine and humans (Freitas
et al., 2011).

In another MLST-based study in which ampicillin-resistant
E. faecium isolates from dogs and humans were compared, the
widespread occurrence of hospital-associated lineages in dogs was
demonstrated (Damborg et al., 2009) and two of them, i.e., ST78
and ST192 are among the most common lineages causing infec-
tions in European and Asian hospitals (Ko et al., 2005; Bonora
et al., 2007; Werner et al., 2007; Top et al., 2008). The knowl-
edge of the host-specificity of E. faecium and E. faecalis genetic
backgrounds that cluster according to the species of origin was
not confirmed here, indicating that dogs may play a role in the
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spread of this nosocomial pathogen (Willems et al., 1999, 2000;
Leavis et al., 2006a; Damborg et al., 2009). Damborg et al. (2009)
demonstrated that what distinguished canine from human isolates
were the virulence and antimicrobial resistance profiles observed:
those strains causing human infections were MDR and virulent
bacterial populations, despite the genetic similarities observed.

The above mentioned ST78 and ST192, together with ST19,
ST117, 202 and 18 – all included in the hospital-associated CC17 –
were also the first beta-lactamase producing E. faecium recently
isolated in Italy (Sarti et al., 2011; Sarti et al., 2012. Analyzing MLST
data from deposited E. faecium sequences and making a compari-
son with beta-lactamase producing strains, belonging to different
PFGE, a clear ST clustering of hospital isolates together with iso-
lates from dogs and cats and, less frequently, with non-hospital
strains, was found (data not shown; Sarti et al., 2011).

As reported before, dogs can be frequent carriers of CC17-
related lineages, in particular ST78 and ST192 and the human
microbiota can indeed be an excellent hot-spot of recombination
for the transfer of resistance mechanisms, including beta-lactams
(Damborg et al., 2009). Even if mechanisms of the ecological
dominance of these CC17 hospital-acquired E. faecium strains
are not well understood, there are hypotheses that the acquisition
of antibiotic-resistance traits, together with cell-surface proteins,
may have contributed to their success (Leavis et al., 2006b; Heikens
et al., 2008).

ENTEROCOCCAL GENOMES AND GENOME-BASED STUDIES
Enterococcal genome sequences still remain relatively limited,
especially for E. faecium strains, making difficult the understand-
ing of their fundamental biology and virulence-associated traits,
when compared to E. faecalis.

The sequencing of the E. faecalis V583 genome was under-
taken in the late 1990s and completed in 2002, and revealed a
large content of PAI, mobile genetic elements (MGE) and plas-
mids carrying antibiotic-resistance determinants, but lacked the
esp and cyl genes because a 17-kb DNA fragment carrying these
genes had been excised from the PAI itself (Paulsen et al., 2003).
The sequencing of the V583 genome appeared to provide new
insight into enterococcal genomes, into their genetic makeup
and biology. Unfortunately, since then only two other E. fae-
calis genome sequences have been published (OG1RF and EF62),
for which the publicly available genome sequence is not com-
pletely annotated, reducing their usefulness as a starting-point
for genome-wide studies (Bourgogne et al., 2008). With regard
to E. faecalis EF62, this strain was isolated in a healthy Norwe-
gian infant in 2006 and belonged to CC6, which had never been
associated with nosocomial infections. In this genome, the pres-
ence of genomic islands (GIs) carrying genes involved in lactose
and other carbohydrate metabolisms instead of virulence deter-
minants, emphasized its adaptation to its commensal existence
(Solheim et al., 2011).

In 2007, a partial genome analysis of the commercial probiotic
strain E. faecalis Symbioflor (Symbiopharm, Herborn, Germany)
was made; this strain does not possess any virulence determinants,
and for this reason was proposed as a probiotic, but no informa-
tion was available due to the absence of sequence data for this
strain (Domann et al., 2007).

Even less sequence information is available for E. faecium, mak-
ing it the only major nosocomial pathogen for which no complete
genome sequence is publicly available. In fact, the E. faecium strain
TX0016 genome sequence (Acc. No. ACIY00000000); (formerly E.
faecium DO strain, isolated in 1992 from a case of endocarditis),
already announced in 2000, has not yet been finished (van Schaik
and Willems, 2010). Furthermore, annotations regarding genes
encoding essential products – such as ribosomal proteins – are
missing, indicating an incomplete assembly.

Recently, van Schaik et al. (2010) have undertaken a genome
sequencing project of seven E. faecium strains, isolated from dif-
ferent ecological niches in different periods, using pyrosequencing
technology, to partially resolve the current lack of genomic infor-
mation on this species. Briefly, their conclusions can be summa-
rized in three important messages: (i) hospital-associated isolates
accumulate genomic differences related to antibiotic resistance
and colonization genes; (ii) strains belonging to the same CC,
i.e., CC17, are closely related in the core genome, but still have
a large difference in the gene content; and (iii) the pan-genome
analysis of E. faecium indicated that the total available gene pool
within this species is essentially unlimited, depending on the eco-
logical niches that this species can colonize. The gain and/or loss
of MGEs, rather than evolutionary descent, is the most important
driving force in enterococci.

In addition to this, an interesting report was published in 2010,
in which the draft genome sequences for 28 enterococcal strains
of diverse origin, including the species E. faecalis, E. faecium, Ente-
rococcus casseliflavus, and Enterococcus gallinarum, were analyzed.
These new data could possibly fill the gap in enterococcal genome
data and provide new insights into basic enterococcal physiology
(Palmer et al., 2010a).

All these published genome-based studies of enterococci have
contributed to our understanding of genomic diversity, especially
in E. faecalis and E. faecium, confirming the affirmation of specific
sub-populations associated with humans, which possess large dif-
ferences in their accessory genes, including MGEs, making them
an important factor in phenotypic characteristics.

Comparative and genome hybridization studies published so
far are going in the same direction as previous studies, that ente-
rococcal diversity depends on a considerable inter-strain genomic
diversity due to genetic exchange, which is mainly linked to the
variable presence of phages, plasmids, PAI, and conjugative ele-
ments. A recently described mechanism of PAI movement by
plasmid integration, due to a pheromone-responsive plasmid as
mediator of genome plasticity, was described in E. faecalis. The
Authors observed that the amount of transferred chromosome
varied considerably, mainly when the V583 genome was used as
donor chromosome from which the largest transfer (over 25%)
was obtained. Traits that were mobilized into the E. faecalis OG1RF
recipient included a capsule locus, a vancomycin-resistance trans-
poson, the PAI, and even MLST markers, creating a double locus
variant of the parental strain in a single event (Manson et al., 2010).

In a recent study, the differences and identities among 16 E.
faecalis draft genome sequences were correlated to the location
and content of “Clustered, regularly interspaced short palindromic
repeats” (CRISPR) loci (Palmer and Gilmore, 2010). CRISPR loci
have been shown in Bacteria and Archaea to confer resistance
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to plasmid and phage entry, in a manner analogous to acquired
immunity. This immunity depends on the presence of specific
target-derived spacer sequences, the intervening repeat palin-
dromes, and nuclease activity encoded by the cas genes (Barrangou
et al., 2007; Marraffini and Sontheimer, 2008, 2010; Horvath and
Barrangou, 2010). The comparison of the genomic sequence of
E. faecalis OG1RF and E. faecalis V583, revealed that the for-
mer possesses two CRISPR loci – a CRISPR locus carrying their
cas genes (CRISPR1-cas), and an orphan locus lacking cas genes
(CRISPR2) – differing from the latter, which showed only the
orphan CRISPR2 locus, and lacking CRISPR1-cas. (Barrangou
et al., 2007; Marraffini and Sontheimer, 2008, 2010; Horvath and
Barrangou, 2010).

In E. faecalis V583, the absence of CRISPR-cas may have
reduced the barrier to entry of foreign elements, resulting in the
convergence and accumulation of 6 plasmids or plasmid rem-
nants, 7 phage or phage remnants, and over 40 IS elements, while
OG1RF natively lacks plasmids (McBride et al., 2007; Bourgogne
et al., 2008). The same Authors also found a highly significant
inverse relationship between the presence of a CRISPR-cas locus
and acquired antibiotic resistance in E. faecalis and similarly in
additional 8 genomes, suggesting that antibiotic use inadvertently
selects for enterococcal strains with compromised genome defense
(Palmer and Gilmore, 2010). It is interesting that no CRISPR spac-
ers have yet been identified with sequence identity to conjugative
transposons such as Tn916 and, in a similar manner, spacers tar-
geting the Inc18 plasmid family, with the “crucial” role in the
dissemination of vancomycin-resistance genes from enterococci
to MRSA are also absent (Sieradzki et al., 1999; Tenover et al.,
2001; Srinivasan et al., 2002; Chang et al., 2003; Malachowa and
DeLeo, 2010; de Niederhausern et al., 2011). In all these cases it
has been possible to hypothesize that these elements may evade
the CRISPR-cas system defense.

A recent paper of van Schaik et al. (2010) has demonstrated
the lack of the CRISPR-cas in 7 pyrosequenced-based E. faecium
genome analyses.

DOES THE MOBILOME DRIVE THE CHANGE?
The mobilome, defined as all MGEs able to move around within or
between genomes, contributes to genome plasticity as well as dis-
semination of antibiotic-resistance genes and pathogenicity. For
our purposes here, for example in E. faecalis V587, mobile ele-
ments, that constitute one-quarter of its genome, include three
independently replicating plasmids, three chromosomally inte-
grated plasmid remnants, seven prophages, and a PAI (Shankar
et al., 2002; Paulsen et al., 2003). It has been also reported that
the acquisition of exogenous DNA could be involved in the con-
version from a commensal to a pathogenic behavior in E. faecium
(Willems and van Schaik, 2009).

The E. faecium strains belonging to CC17, are similarly char-
acterized by an abundance of exogenously acquired genes, includ-
ing insertion sequences, phages, and antibiotic-resistance genes
carried on transposons (Leavis et al., 2007).

In this respect, the first CTn (conjugative transposon), Tn916,
was originally discovered in the late 1970s in E. faecalis when
tetracycline resistance was demonstrated to be transferable from
E. faecalis DS16 to E. faecalis JH2-2. Tn916 belongs to the

Tn916 /Tn1545 family and contains 24 ORFs involved in conju-
gal transfer, excision, integration, and antibiotic resistance. This
genetic element has an extraordinary ability to acquire accessory
genes such as resistance genes to various antibiotics or lantibiotic
immunity, and it is able to transfer onto over 35 different genera of
bacteria. For all these reasons, Tn916-like elements assume a piv-
otal role as vectors in the dissemination of various traits among
environmental, commensal, and pathogenic bacteria (Roberts and
Mullany, 2009).

After the emergence of enterococcal antibiotic resistance to
beta-lactams and aminoglycosides in the 1980s, the first reports
on vancomycin resistance in hospital isolates in Europe (Uttley et
al., 1988) were very disturbing; but more disturbing was the detec-
tion of this resistance outside health-care settings, and precisely in
the feces of pigs, poultry, and pets in Europe, for the first time, in
1993, inducing the European Union to ban glycopeptide use as a
growth promoter in animals (Bates et al., 1994; Klare et al., 1995;
Bates, 1997; van den Bogaard et al., 2000).

Resistance to glycopeptides in enterococci is mediated by
nine different vancomycin-resistance determinants, but major
vancomycin-resistance phenotypes are VanA and VanB (Cour-
valin, 2006; Boyd et al., 2008; Lebreton et al., 2011). The former
is associated with Tn1546 carrying the vanA gene, often located
on a plasmid belonging to the broad host range Inc18 fam-
ily, involved in the vanA transfer from enterococci to MRSA;
while the vanB operon, carried by the Tn1549 conjugative
transposon, can be frequently part of large conjugative chro-
mosomal elements or integrated in conjugative plasmids. More
recently, the first description of a vanB2-Tn1549-like element
in pheromone-responsive (pCF10-like) plasmids in E. faecalis
strains has been reported. This transfer was mediated by a sin-
gle event, resulting in the contemporary acquisition of: (i) the
conjugative transposon Tn1549 carrying the vanB2-type gene;
(ii) genes involved in the pheromone-response of self-transferable
plasmids; and (iii) the origin of plasmid transfer (oriT; Zheng
et al., 2009; Hegstad et al., 2010). In addition, Tn1546 has
undergone a large number of changes in VRE and a total of
22 different Tn1546-like elements have been identified: they
can contain mutations, deletions or insertions of IS (IS1216V,
IS1251, IS1216V-IS3-like, ISEf1; Novais et al., 2008; Werner et al.,
2008).

Composite multi-resistance elements have also been described:
among them, Tn5385 is a 65-kb element integrated into the
chromosome of a clinical E. faecalis, carrying genes involved in
erythromycin, streptomycin, tetracycline/minocycline, penicillin,
and mercury resistance. This composite element contains regions
previously found in staphylococcal and enterococcal transposons:
Tn5381 and Tn5385 from enterococci and Tn4001 and Tn552
from staphylococcal origin, carrying respectively aminoglycosides
(aacA-aphD) and beta-lactams (blaI-blaR1-blaZ; Rice and Carias,
1998).

Plasmids are abundant in enterococci and they comprise a sub-
stantial part of the auxiliary genome: they are responsible for much
of the horizontal gene transfer that has allowed antibiotic and vir-
ulence traits to converge in hospital adapted lineages (Palmer et al.,
2010b; Rosvoll et al., 2010). The pheromone-responsive plasmids
have been described mainly in E. faecalis (Palmer et al., 2010b;
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Laverde Gomez et al., 2011a,b). pAD1, and subsequently, pCF10
were the first plasmids to be described with pheromone-mediated
transfer, even between different species (Dunny et al., 1978, 1981;
An and Clewell, 1997).

Recent studies described the location of hylEfm gene in associa-
tion with other resistance determinants such as the vanA operon,
the ermB gene and the tcrYAZB operon (heavy metal resistance) in
a large conjugative plasmids, pLG1 (281.02 kb) in E. faecium CC17.
The hylEfm gene, encoding a putative hyaluronidase, an important
factor involved in colonization and adhesion, is also described as
a part of a genomic island (GI). The diffusion of a multi-resistant
megaplasmid pLG1 carrying hylEfm could explain the diffusion
of the so frequent hospital-associated E. faecium CC17 genotype
(Freitas et al., 2010; Kim et al., 2010; Laverde Gomez et al., 2011b;
Panesso et al., 2011).

CONCLUSION
In conclusion, population biology and genome sequence-based
studies have greatly improved our understanding on enterococci,
at least with respect to the most diffused and studies species, i.e.,
E. faecalis and E. faecium.

Even if not conclusive and not valid for all species, from the
numerous studies involving strains isolated from different origins

(humans, animals, various environments), it is becoming more
evident the role of the mobilome in driving the colonization of
new niches and hosts, eventually influencing their evolution.

Mobile genetic elements are important forces of evolution in
many bacterial species: the discovery that up to 25% of the E.
faecalis V583 genome is made up of exogenous mobile genes,
opens the question if this is a limited characteristic or an ente-
rococcal genome character. Important contributions will come
from the complete genome sequence comparisons, now more eas-
ily obtainable by using next generation sequencing technologies,
and probably all these studies will resolve many questions related
to the ability of these microorganisms to be, at the same time,
host-specific and host-variable, to be harmless and opportunistic
pathogens. Furthermore, studies on gene regulation in different
hosts and environments, involving, for example, global regulators
such as sRNA, will probably give further insight into this flexible
group of microorganisms.
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