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Abstract 

Given a finite configuration of points A in kR  endowed with the 
Manhattan distance, we prove that the ratio of the sum of the distances 
from a centroid of A over the sum of the distances from the Steiner 
center of A is bounded by ( ) ;11 kk −+  further, this bound can be 

attained. This fact extends to an arbitrary finite dimension 2≥k  a 

result proved by Fekete and Meijer for { }.3,2∈k  

1. Introduction 

Given a base space S and a finite collection of points A in S, a rather 
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common problem in discrete geometry is to find a point S∈s  such that a 
suitable distance of A from s is minimized: usually, this distance to be 
minimized is the sum of the distances of points in A from s. If the point s that 
solves the minimization problem must belong to A, then s is called a centroid 
of A; on the other hand. If the solution s is allowed not to be in A, then s is 
called the Steiner center of A. Observe that there can be several centroids of 
A, whereas, in particular metric spaces, the Steiner center is unique. 

Of course, the nature of this minimization problem depends on the base 
space S where the collection of points A is located. In most of the cases 

considered in the literature, S is the k-dimensional space kR  endowed with 
the standard Euclidean distance; other base spaces that have been examined 
are directed trees [4] and metric spaces with Hamming distance [6]. In some 
cases considered in the literature, the set $A$ is infinite, e.g., it is a subset of 
an Euclidean space with continuously many points [1]. More recently, due to 
applications in bio-informatics, some attention has been devoted to an 
abstract version of this problem, where the base space S is an arbitrary metric 
or pseudo-metric space [2, 6]. 

If the base space S is the Euclidean space ,kR  the problem of finding a 

centroid (or the Steiner center) of a finite collection A of points is known as 
the Fermat-Weber location problem [3]. (A centroid is also called a 1-median 
of A.) More general versions of the Fermat-Weber problem have been 
considered in the literature. For example, given an integer number 1≥d  and 

a finite collection A of points in ,kR  the d-median problem consists of 

finding d points (called medians) in a way such that the sum of the distances 
of each point of A from the closest median point is minimized. (For an even 
more general version of this problem, see [7].) Note that the classical Fermat-
Weber location problem is the 1-median problem. 

From a computational point of view, d-median problems in kR  with the 
Euclidean distance are rather lengthy and difficult to solve. On the other 
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hand, if we endow kR  with the Manhattan distance, then the same problems 
can be solved more effectively by means of a linear algorithm. In this paper, 

we deal with a version of the problem that takes place in the space kR  
endowed with the Manhattan distance. 

To give a more detailed account of our result, we introduce basic 

notation and definitions. A configuration in kR  is a finite multi-set A, i.e., a 

finite set of points in kR  such that some of the points can be repeated more 

than once. Let A be a configuration in .kR  For each ,A∈a  we denote by 

( )aAL  the total length of the A-star centered at a, i.e., the sum of the 

distances of a from all other points in A. Thus, a centroid of A is a point 
A∈c  such that the length of the A-star centered at c is minimum among all 

points in A; we denote by ( )ACentr  the set of all centroids in A. Since by 

definition, we have ( ) ( )cc ′= AA LL  for all ( ),Centr, A∈′cc  we simplify 

notation and write AC  for the length of the A-star centered at any of the 

centroids of A. The Steiner center of A is the unique point kR∈s  (not 
necessarily in A) that minimizes the total length of the A-star centered at it; 
we denote the length of its star by .AS  

We aim at showing that the worst-case ratio of AA SC  is independent of 

the number of points in the configuration A, being only a function of the 

dimension of the base space .kR  Specifically, we prove the following: 

Theorem 1.1. For each configuration A in ,kR  we have:  

.11 k
k

S
C

A
A −+≤  

In [5], the two authors provide separate proofs of this inequality in the 
2-dimensional and the 3-dimensional case, showing that the worst-case ratio 

of AA SC  is 23  in 2R  and 35  in .3R  In the next section, we extend their 

technique to prove Theorem 1.1. 
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2. The Result 

First, we introduce some notation. 

Notation 2.1. The set of all configurations (i.e., finite multi-sets) in kR  

is denoted by ( ).kP  In particular, the set of all configurations with n points 

in kR  is denoted by ( );k
nP  thus, ( ) ( )∪ N∈= n

k
n

k .PP  Without loss of 

generality, we work with configurations whose Steiner center is the origin 

( ) .0...,,0,0 kR∈=0  Let 

( ) { ( ) ( ) ( ) ( )}.andCentr:sup: k
nAA

k
n AALL P∈∈=ρ c0c  

We may also assume without loss of generality that the length of the A-star 
centered at the Steiner center 0 of A is 1, i.e., ( ) .1== AA SL 0  Thus, denoted 

by AC  the length of the A-star centered at any of the centroids of A, we have 

( ) { ( )} { ( )}.:sup:sup k
nA

k
nAA

k
n ACASC PP ∈=∈=ρ  

Finally, we denote by ( )kρ  the worst-case value of the ratio AA SC  for 

configurations of points in ,kR  i.e., 

( ) { ( )} { ( ) }.:sup:sup: N∈ρ=∈=ρ nASC k
n

k
AA

k P  

Remark 2.2. The assumptions that the Steiner center s of a configuration 

A in kR  is 0 and the length of its A-star is 1=AS  causes no loss of 

generality, because we are indeed working with equivalence classes of 

configurations in .kR  Specifically, given a configuration A in ,kR  the 

equivalence class of A comprises all configurations in kR  obtained from A 
by re-scaling all points by a constant factor R∈α  and/or translating all k 
coordinates of each point by the same constants ....,,2,1, kii =β  To keep 

notation simple, henceforth, we avoid any explicit mention to equivalence 
classes of configurations, implicitly selecting in each class the representative 
such that its Steiner center is 0 and the length of the A-star centered at 0 is 
equal to 1. 



An Extension to kR  of a Result by Fekete and Meijer 25 

Our goal is to prove the following result, which immediately yields 
Theorem 1.1 as a corollary: 

Theorem 2.3. For each ,2≥k  the value ( )kρ  is attained and is equal to 

( ) .11 kk −+  

Note that the equalities ( ) 232 =ρ  and ( ) 353 =ρ  yield, respectively, 

Theorems 6 and 8 in [5]. The proof of Theorem 2.3 is similar - mutatis 
mutandis - to the proofs given for the cases 2=k  and ;3=k  therefore, we 

shall only point out the necessary modifications and sketch the rest. Before 
stating all results needed to prove Theorem 2.3, we introduce some new 
definitions. 

Definition 2.4. A configuration ( )k
nA P∈  is called an extremal 

configuration if it attains the value ( ),k
nρ  i.e., ( ).k

nAA SC ρ=  

Definition 2.5. Let ( )kaa ...,,1=a  and ( )kbb ...,,1=b  be two points 

of a configuration ( ).k
nA P∈  We say that a star-dominates b if for each 

{ },...,,1 ki ∈  we have ;0 ii ab ≤≤  furthermore, if at least one of the 

inequalities is strict, then a strictly star-dominates b. 

Definition 2.6. The extremal boundary of a configuration ( )k
nA P∈  is 

the subset of ,kR  

( ) { }kkA −−= eeee ...,,,...,,: 11E  

whose 2k points are defined as follows. For each { },...,,1 ki ∈  let =:ix  

( ){ }Aaaa ni ∈= ...,,:max 1a  and ( ){ }....,,:min: 1 Aaaay nii ∈== a  

(Note that 0≥ix  and ,0≤iy  because 0 is assumed to be the Steiner center 

of A.) For each { },...,,1 ki ∈  set ( )0...,,0,,0...,,0: ii x=e  and =− :ie  

( ),0...,,0,,0...,,0 iy  where ix  and iy  are the ith coordinates of, 

respectively, ie  and .i−e  We say that A is e-closed if ( ) .AA ⊆E  



Alfio Giarlotta and Pietro Ursino 26 

Next, we state some preliminary results; their proofs are similar to those 
given in [5], and are omitted. 

Lemma 2.7. For each { },1,0\, N∈nk  there exists an extremal 

configuration ( ).k
nA P∈  

Lemma 2.8. For each extremal configuration ( ) ,k
nA P∈  we have =AL  

( ) ( )k
nAL ρ=a  for any .A=a  

Corollary 2.9. For each extremal configuration ( ) ,k
nA P∈  we cannot 

move a point such that AS  decreases by 0>ε  and AL  decreases by no 

more than ε. 

Corollary 2.10. For each extremal configuration ( ) ,k
nA P∈  we cannot 

move a point such that AS  remains the same, one or more of the ( )aAL  

increase, and none of them decreases. 

Corollary 2.11. For each extremal configuration 
( ) ,k
nA P∈  there cannot 

be two points a, A∈b  such that a strictly star-dominates b. 

Lemma 2.12. Each extremal configuration ( )k
nA P∈  is e-closed. 

Lemma 2.13. For each { },1,0\, N∈kn  we have ( ) k
rn

k
n ρ≤ρ  for all 

{ }.0\N∈r  

In [5], in order to determine the limit of the sequence ( )k
nρ  (for a fixed 

{ }),3,2∈k  the authors define a subsequence ( ),k
nβ  which is obtained as the 

supremum of the values AA SC  for all configurations ( )k
nA P∈  such that 

each point has at least one zero coordinate. They show that the following 
result holds: 

Lemma 2.14. For each extremal configuration ( ),k
nA P∈  where 

{ },3,2∈k  there can be at most k2 points such that all of their coordinates 
are nonzero. 



An Extension to kR  of a Result by Fekete and Meijer 27 

Then, with the help of Corollary 2.11, Lemma 2.13 and Lemma 2.14, the 
authors show that for configurations with a sufficiently large number of 
points, the bounded number of points having all nonzero coordinates 
becomes negligible for the worst-case ratio, namely: 

Lemma 2.15. For { },3,2∈k  we have 

( ) ( ).suplimsuplim k
n

n

k
n

n
β=ρ

∞→∞→
 

To generalize their approach, we need to define a slightly different 

subsequence. Fix .2≥k  For each ,2≥n  let ( )k
nγ  be the supremum of the 

values AA SC  for all configurations ( )k
nA P∈  such that each point of A has 

exactly one nonzero coordinate. Note that for each n, ,2≥k  we have 
( ) ( ).k

n
k

n β≤γ  In order to give a general version of Lemma 2.14 (with ( )k
nγ  in 

place of ( ) ,)k
nβ  which holds for all ,2≥k  we need a definition and a lemma. 

Definition 2.16. Denote by { }−+= ,0,S  the set of signs. Let S→σ R:  

be the sign-map in ,R defined by ( ) +=σ :x  if ( ) 0:,0 =σ> xx  if ,0=x  and 

( ) −=σ :x  if .0<x  More generally, for each ,1≥k  define the k-dimensional 

sign-map 
kkk S→σ R:  as follows: for all ( ) ∈= kxx ...,,1x  ,kR  let 

( ) ( ) ( )( );...,,: 1 k
k xx σσ=σ x  the vector ( )xkσ  is called the sign-string of x. 

Lemma 2.17 For each extremal configuration ( ) ,k
nA P∈  the sign-map 

kσ  restricted to ( )AA E\  is injective. 

Proof. We prove the result by contradiction. Assume that ( )k
nA P∈  is    

an extremal configuration such that there are two different points 
( )kaa ...,,1=a  and ( )kbb ...,,1=b  in ( )AA E\  having the same sign-

string. Without loss of generality, assume that all coordinates of a and b are 
non-negative. Since a and b do not belong to ( ),AE  Corollary 2.11 implies 

that both a and b have at least two nonzero coordinates and that there exist 
{ }kji ...,,1, ∈  such that ii ab <<0  and .0 jj ba <<  Now proceed as in 



Alfio Giarlotta and Pietro Ursino 28 

the proof of Lemma 10 in [5], and create a new configuration =′ :A  

{ } { } ( ),,,\ k
nA P∈′′ baba ∪  where the points ba ′′,  are chosen in a way 

such that ( ) ( )xx AAAA LLSS ′′ == ,  for each { },,\ bax A∈  but ( ) <aAL  

( )a′′AL  and ( ) ( ).bb ′< ′AA LL  The configuration A′  contradicts Corollary 

2.10.  

In our setting, we obtain the following generalization of Lemma 2.14: 

Corollary 2.18. For each extremal configuration ( ) ,k
nA P∈  there can 

be at most 123 −− kk  points in ( ).\ AA E  

Proof. Let ( )k
nA P∈  be an extremal configuration. The total number of 

distinct k-sequences of symbols chosen from the set { }−+= ,0,S  is .3k  If a 

is a point in ( ),\ AA E  then Lemma 2.8 and Corollary 2.11 yield that its sign-

string ( )akσ  has at least two nonzero occurrences. Thus, the claim follows 

from Lemma 2.17.  

The same technique used in [5] allows us to generalize and sharpen 
Lemma 2.15 as follows: 

Lemma 2.19. For each ,2≥k  we have 

( ) ( ).suplimsuplim k
n

n

k
n

n
γ=ρ

∞→∞→
 

At this point, we can proceed as in [5] to complete the proof of Theorem 
2.3. 
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