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Abstract
We study the effect of low-frequency noise in ac-driven two- or many-level coherent
nanodevices. Fluctuations in the properties of the device are translated into equivalent
fluctuations of the driving fields. The impact on Rabi oscillations can be modulated with the
detuning and minimized at resonance. In three-level atoms slow noise produces qualitative
changes for protocols as coherent population transfer. We propose a strategy allowing us to
operate at parity symmetry points, where the device is well protected against noise, despite
selection rules preventing direct couplings to external fields of involved transitions.

PACS numbers: 03.67.Lx, 85.25.-j, 03.65.Yz

(Some figures may appear in color only in the online journal)

1. Introduction

Quantum dynamics of solid-state nanosystems is nowadays
a fertile subject of investigation which has been boosted
over the last decade by research towards the implementation
of quantum state processors [1]. Nanodevices behaving like
artificial atoms have allowed demonstration on a mesoscopic
scale of coherent phenomena proper of the microscopic realm.
Advances in fabrication offer a possibility of exploring several
different designs of quantum bits based on semiconductors
and superconductors [2–4]. In the latter, mechanisms and
typical features of decoherence [4–6] are now well understood
and several strategies for minimizing them have been tested.
This has allowed fabrication of more complex architectures
which in particular have demonstrated quantum optics on
a chip [7] and to stimulate the exploration of new designs
beyond atomic analogues. To proceed in this direction,
quantum control of coherence in driven superconducting
multilevel open nanostructures has to be achieved. A key
step is understanding how peculiar signatures of interference,
such as those exhibited in driven multilevel systems [8], are
sensitive to the presence of environments unconventional [9]
in atomic physics.

Artificial atoms [10] are different from their natural
counterpart in many respects. Indeed, their properties can

be engineered and are easily tunable. The impact on one of
the major issues of coherent dynamics, namely resilience to
noise, is large and has been exploited in a twofold way. First
of all, devices can be tuned to optimal bias points where
symmetries enforce protection from decoherence [11–13].
On the other hand, the possibility of manipulating various
external knobs allows us to extract valuable information on
the sources of decoherence. In recent years, environment
spectroscopy techniques that use as meters both undriven and
driven (pulsed or continuously) coherent nanodevices have
been developed [15–19]. Nanodevices offer the possibility of
designing couplings, with external fields or between subunits,
which are much stronger than what is found in atomic
systems [7]. Therefore they may allow for faster operation,
but on the other hand, noise may be large, determining smaller
decoherence times.

We stress that the relation between tunability and
resilience to noise has special significance for solid-state
nanodevices because of the central role played by
low-frequency noise in determining dephasing [5, 6, 20].
Indeed, the sensitivity of qubit performances both to
fabrication parameters, whose fluctuations represent a major
issue in the scalability of the architectures, and to external
bias, whose fluctuations act as stray parameters during the
operations, is well known.
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In this work, we focus on the effects of low-frequency
noise in driven systems, with the goal of both maximization
of the efficiency of external controls and enhancement of
protection against noise. These are often conflicting require-
ments; therefore it must be understood how is the tradeoff
optimized. In section 2, we derive a phenomenological
Hamiltonian starting from the general model of a noise-driven
nanodevice and state the approximations to be used
subsequently. In section 3, we study the effect of low-
frequency noise on a driven two-level nanodevice. In
section 4, we discuss the qualitative impact of low-frequency
noise and the role of selection rules in the implementation
of a conventional protocol for coherent population transfer
in nanodevices, and in section 5, we propose a new scheme
allowing us to operate at a symmetry-protected working point.

2. Model for driven noisy quantum devices

We start from the macroscopic Hamiltonian of the device,
H0 = H0(q), which is an operator onto an n-dimensional
Hilbert space H. It depends on the parameter q fixing the
bias (operating) point. The ‘local’ basis of H is composed
of the eigenstates {|φi (q)〉 : i = 1, . . . , n} of H0(q). In this
‘laboratory frame’ the Hamiltonian is

H0 =

n∑
i=1

Ei (q) |φi (q)〉〈φi (q)|. (1)

External control is described by a time-dependent term. In
a one-port design the driving field A(t) couples to a single
time-independent system operator Q̂

Hc(t) = A(t) Q̂, (2)

which is Hermitian and traceless. In general, control is
operated via the same port, i.e. by allowing the bias in H0(q)

to depend on time. We let q → q(t) + qc(t), splitting it into
a slow q(t) which includes static bias, and the fast control
parameter qc(t). Accordingly, we split

HS = H0[q(t) + qc(t)] := H0[q(t)] + Hc(t), (3)

where Hc(t) describes (fast) control; in relevant situations
it can be linearized in qc(t), yielding the structure of
equation (2). Note that while Q̂ is an observable and does
not depend on the local basis, its matrix representation does.
The physical consequence is that the effectiveness of the fast
control qc(t) in triggering transitions depends also on the
slow q(t), a feature of artificial atoms reflecting their ease of
tunability.

The interaction with the complicated environment of
microscopic degrees of freedom in the solid state can
be modeled by a phenomenological Hamiltonian. We first
consider classical noise and assume that it also acts through
the same control port; therefore it can be modeled by adding
a stochastic component x(t) to the drive. Again we split slow
and fast noise, x(t) → x(t) + xf(t), and include the slow part
in H0. The same steps leading to equation (3) yield the noisy
Hamiltonian

H = H0[q(t) + x(t)] + A(t) Q̂ + Hn f , (4)

where Hn f describes Markovian high-frequency classical
noise. ‘Quantization’ of this term, Hn f (t) → X̂ Q̂ + HR,
yields the final system–environment Hamiltonian. Here X̂
operates on the environment and HR is its Hamiltonian, plus
possibly suitable counterterms.

From the physical point of view, the phenomenological
Hamiltonian treats on different footings environmental modes
exchanging energy with the system, which are treated
quantum mechanically, and slow modes responsible for
pure dephasing, which are accounted for classically. The
results of measurements involve both quantum and classical
ensemble averaging. From a technical point of view, the
effects of Markovian noise alone are studied by weak coupling
quantum optical master equations. This approach fails for
low-frequency noise (e.g. 1/ f ), which is large in solid-state
systems. To overcome this problem, a multistage approach has
been proposed [20] for undriven systems subject to broadband
noise, which quantitatively explains the decoherence observed
in superconducting qubits of different nature [15, 18, 19].
In these cases the leading contribution of low-frequency
noise was captured by a static-path approximation (SPA),
i.e. approximating x(t) by a suitably distributed random
variable x [15, 20]. Despite its simplicity, this approximation
provides a powerful framework for applications to more
complex architectures. In recent years, it has been used to
propose a design of optimal tuning of multiqubit systems
[12, 13] and extended to the analysis of a 3 system [14].
An important feature of superconducting nanodevices is that
the Hamiltonian H0[q] can be tuned in such a way that
parity symmetries are enforced where Ai ≡ ∂ Ei/∂q = 0 and
selection rules hold affecting the matrix elements Qi j in the
local basis. In these parity symmetry points, the device is well
protected against noise.

In this work, we will study ac-driven nanodevices
addressing the effects of low-frequency noise in the SPA.
We will focus on the single-port scheme where control, noise
and environmental modes all couple to the same operator Q̂.
Now, it is apparent that different channels for decoherence
will be strongly correlated: this has consequences for quantum
control. The single-port scheme provides the simplest model
displaying these features, and at the same time it describes
experimentally relevant devices affected by a dominant source
of decoherence. A more general multiport scheme would
exhibit an even richer behavior of correlation, whose essence
stems from the non-Markovianity of noise.

3. ac-driven two-state systems

We model a nanodevice in an external ac field by the
Hamiltonian

H(t |x) = H0[q + x] + A(t) Q̂, (5)

where A(t) =A cos φ(t) is the control field with carrier
frequency ω. The device is nominally biased at q with
a random additive component x distributed with a zero
average P(x). We consider H0[q + x] and for each x
we define (dependence on q is omitted hereafter) the
‘x-basis’ {|φi (x)〉} of its eigenstates and the conditional
(Schrödinger or laboratory frame) propagator US(t |x)
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corresponding to H(t |x). Usual protocols in nanodevices
start with an imperfect (x-dependent) initialization in
the lowest energy state, ρ(0) =

∫
dxP(x) |φ0(x)〉〈φ0(x)|.

Then the system evolves conditionally to x as ρ(t |x) =

US(t |x) |φ0(x)〉〈φ0(x)| U †
S (t |x). Finally, populations of the

x-dependent eigenstates are measured, yielding

Pi (t) =

∫
dx P(x) 〈φi (x)|ρ(t |x)|φi (x)〉, (6)

i.e. the simple ensemble average of conditional population
histories. Averaging defocuses the coherent signal, which
appears to be suppressed in time. Alternative preparations
and readout of different observables may lead to further
suppression of the signal, which however does not accumulate
in time. In these cases equation (6) is not exact, but it is still a
good approximation.

We now derive US(t |x) in the rotating wave
approximation (RWA). To this end, we represent in the
x-basis, Hc(t) = A(t) Q̂ =

∑
i j A(t)Qi j (x), and approximate

this control Hamiltonian by retaining only off-diagonal
quasi-resonant entries, Qi j such that |Ei − E j | ∼ ω, and by
neglecting the counter-rotating part of the field. If only the
lowest doublet is addressed, this yields

HRW(t |x) =
A
2

e−iφ(t) Q10(x) P̂10(x) + h.c.,

where P̂ i j (x) = |φi (x)〉〈φ j (x)| are the transition operators.
Physically, the RWA keeps only control entries ‘effective’ in
triggering transitions between different states. Note that this
effective part of the control depends on the random variable
x . Terms we neglect produce a small shift in the frequencies
and a small fast modulation of the signal.

3.1. Rabi oscillations

Rabi oscillations are studied in a rotating frame (RF) obtained
by the unitary transformation Urf(t |x) = e−iφ(t)P̂11(x), such
that US(t |x) = Urf(t |x) U (t |x), U (t |x) being the propagator
in the RF. The transformation does not affect population
histories, equation (6); therefore we only need U (t |x) given
by the corresponding RF Hamiltonian. The relevant dynamics
is described by the restriction onto the {|φi (x)〉, i = 0, 1}

subspace, which reads

H̃(t |x) =

[
0 �∗

R(x)/2

�R(x)/2 δ(t |x)

]
. (7)

Here �R(x) =A Q10(x) is the peak Rabi frequency and
δ(x) = E1(x) − ω is the detuning for a monochromatic
field φ̇(t) = ω (we let E0 = 0). Note that the effect of
low-frequency noise in artificial atoms, which is due to
their internal fluctuations, is conveniently recast in terms of
sensitivity to imperfections (both in phase and in amplitude)
of a fictitious drive. The corresponding populations are
readily found, e.g. P1(t |x) = �R/(2�fl) [1 − cos(�flt)] where
the flopping frequency for Rabi oscillations is �fl(x) =√

δ2(x) + �2
R(x). The average, equation (6), yields

P1(t) = P̄1 − P̄1Re〈e−i�fl(x)t
〉,

Figure 1. Decay time TR of Rabi oscillations (obtained from
Im 8(TR) = −1) as a function of the nominal detuning δ0 for a
CPB in the charge regime. The curve q = 0.5 refers to the symmetry
point, whereas the others q = 0.48, 0.46 refer to the devices biased
off-symmetry. The top line TR = const = 2/γ is the decay time for
spontaneous emission which is added to each curve.

where we neglected amplitude fluctuations, approximating

P̄1 ≈ �R0/

√
δ2

0 + �2
R0 with values at x = 0 (still depending

on the bias q). This requires small x-induced fluctuations
of the Rabi couplings and of the level splitting. Under the
same conditions we can calculate the average by expanding
to second order �fl(x) ≈ �fl(0) + Ax + 1

2 Bx2, and assuming
that P(x) is a Gaussian with variance σx , obtaining

〈e−i�fl(x)t
〉 = e−i�fl(0)t e−i8(t) (8)

e−i8(t)
=

1√
1 + iBσ 2

x t
exp

[
−

A2σ 2
x t2

2(1 + iBσ 2
x t)

]
. (9)

This equation describes different regimes for the decay of
Rabi oscillations, namely a Gaussian time decay |e−i8(t)

| ∼

e−
1
2 A2σ 2

x t2
when the linear term in the expansion dominates,

and power-law behavior ∼ 1/(σx

√
Bt) when A → 0. In this

regime, equation (9) describes the initial suppression of the
signal. On longer time scales in fact, physical systems usually
decay exponentially, ∼ |e−i8(t)

| eγ t/2, due to spontaneous
decay processes with rate γ , not accounted for in the SPA.

The important point is that the coefficients of the
expansion depend on several parameters, as A = A(q, qc, δ0),
where qc is the amplitude of the control and δ0 the nominal
detuning (see the appendix). Since they are tunable, a
systematic investigation can be made. Further information
needed, i.e. the dependence on q of the energy spectrum, and
of matrix elements Qi j (q), comes from the characterization
of the device. The choice4 of a Gaussian P(x) can be
physically motivated and its variance can be related to the
integrated power spectrum of low-frequency noise, σx =∫
(dω/π)〈x x〉ω [5, 20]. This information can be extracted

from free induction decay or Ramsey experiments [15, 19];
therefore equation (9) can be checked with no free parameters.

Note that even if equation (9) describes the same regimes
of the SPA for coherent oscillations of undriven systems [20],
here the situation is different. In particular, equation (9)
quantitatively accounts for the fact that ac driving greatly
reduces decoherence compared to undriven systems. This
is a common statement based on the intuitive expectation

4 For more general distributions the average in equation (9) can be calculated
with the steepest descent method, yielding, for small enough σx , a result with
the same structure.
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Figure 2. STIRAP in a three-level system (|φi 〉 ≡ |i〉). (a) Pulses in a counterintuitive sequence, the Stokes field being switched on before
the pump field (here �0 = �p fixes the scale, κ = �s/�p = 1.5 and the reduced pulse width is �0T = 15); in the inset the Lambda
configuration. (b) Population histories for nearly ideal STIRAP: population starts in |φ0〉 (P0(−t0) = 1) and ends in |φ1〉 (P1(t0) = 1), while
|φ2〉 is almost never populated; in the inset the instantaneous eigenstates, the dark state corresponding to the zero eigenvalue.

that an ac field may average effects of noise, as corroborated
by experiments [15]. To be more specific, let us neglect,
for the moment, fluctuations of Qi j . At resonance, δ0 = 0,
non-vanishing linear fluctuations of the spectrum, A1 6= 0,
determine quadratic fluctuations of �fl(x). Therefore
A = 0 and Rabi oscillations undergo power-law decay,
whereas in the absence of drive they determine the much
stronger Gaussian decay ∼ e−

1
2 A2

1σ
2
x t2

of coherent oscillations.
In this regime, measurements of Rabi oscillations [18] have
been used to probe the environment5 of a flux qubit. At
symmetry points, where A1 = 0, coherent oscillations decay
with a power law, whereas Rabi oscillations are practically
unaffected by low-frequency noise, and in physical systems
they decay only due to spontaneous emission.

Exploiting the dependence on the detuning, we find that
for non-vanishing δ0 the decay laws are the same as those
for coherent oscillations (figure 1). In particular at symmetry
points low-frequency noise determines an initial decoherence
which takes over spontaneous decay. An even stronger
suppression of coherence occurs off-symmetry. Therefore for
increasing δ0 we expect dephasing to interpolate between
the behaviors of ac-driven and undriven systems, all the
phenomenology depending on the single noise figure σx .

The above picture is applicable to many physical
situations, since fluctuations of Qi j are small. Indeed, they
correspond to a fraction of �R 6= 0, whereas δ(x) fluctuates
on the scale of the Bohr splitting E1 − E0 � �R and may
be particularly relevant for δ0 = 0. However, the dependence
Qi j (q) may lead to consequences for multilevel systems. We
will come back to this point in the conclusions.

4. Coherent population transfer

We now apply the approach of the last section to driven
three-level systems whose coherent dynamics clearly displays
new beautiful interference phenomena [8] when addressed
by two laser fields quasi-resonant with two of the three
transition energies. Several protocols have been suggested
for artificial atoms which may help overcome difficulties in

5 In this case, the noise source and drive were not referring to the same port;
the results of this work can be easily extended to devices with many noise
ports.

performing certain tasks, related to the precise shaping of the
pulses in the presence of imperfections ([21] and references
therein). Related examples are electromagnetically induced
transparency [22] and population transfer between given
states [23–26], which may be implemented by using two-tone
pulses in the Lambda configuration (figure 2(a)) A(t) =

Ap(t) cos φ(t) +As(t) cos φs(t). The effective Hamiltonian is
obtained starting from equation (5) and retaining in the control
part only quasi-resonant entries in the RWA

HRW(t |x) =
1

2

[
Ap e−iφp(t) Q20(x) P̂20(x)

+As e−iφs(t) Q21(x) P̂21(x)
]

+ h.c. (10)

Then we define a doubly RF by the transformation Urf(t |x) =

ei[φp(t)P̂00(x)+φs(t)P̂11(x)] and project onto the lowest three-level
(x-dependent) subspace, obtaining

H̃(t |x) =


0 0 �∗

p(t)/2

0 δ(x) �∗
s (t)/2

�p(t)/2 �s(t)/2 δp(x)

 , (11)

where δ(x) = E1(x) − (ωp − ωs) is the two-photon detuning,
δp(x) = E2(x) − ωp is the pump pulse detuning and �i (t) are
pulses of width T and peak Rabi frequency �p = Q02 Ap and
�s = Q12 As, respectively.

In the ideal STIRAP ([27] and references therein;
[28]), the protocol is carried at two-photon resonance,
δ = 0, and in this case the system is trapped in a ‘Dark
state’. By shining pulses in the counterintuitive sequence
(figure 2(a)) the dark state evolves adiabatically from |φ0〉 to
|φ1〉 implementing faithful and selective coherent population
transfer (figure 2(b)), a procedure named the stimulated
Raman adiabatic passage (STIRAP). Adiabaticity is enforced
by the opening of field-induced Autler–Townes (AT) splittings
between instantaneous eigenstates.

The model Hamiltonian equation (11) has been used
to study the implementation of a Lambda configuration in
superconducting devices based on the Cooper pair box (CPB)
design in the presence of low-frequency noise [14, 29].
Several theoretical proposals [21, 23, 25] pointed out that
close to symmetry points the pump coupling is very small due

4
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Figure 3. Left panel: typical LZ patterns with one crossing in the
Stokes-AT phase, one crossing in the pump-AT phase and two
crossings. Right panel: efficiency diagram P1(tf) versus the
detunings. The configurations (δ, δp) determine the typical LZ
pattern as indicated in the regions of the phase diagram. By
increasing the Stokes field amplitude (increasing κ) the efficiency in
region (a) increases, minimizing the effect of the corresponding
avoided crossing.

to selection rules; therefore the device must be biased slightly
off-symmetry. As a consequence, decoherence increases and
optimization of the tradeoff between efficient coupling and
protection against low-frequency noise is necessary [14].

In what follows, we discuss a striking consequence of
non-Markovianity of noise emerging already at the SPA
level, namely that correlation between energy fluctuations are
important since they qualitatively affect population transfer
and possible control strategies to increase the efficiency.

While fluctuations of the energy spectrum of the device
appear as random detunings, in equation (11) we have omitted
fluctuations of �i induced by the random Qi j (x), as suggested
by the argument of section 3. Indeed, a detailed theoretical
analysis for the CPB design [29] has shown that STIRAP is
successful only for a bias (off-symmetry) such that energy
fluctuations are linear in x and the dependence Qi j (x) is
slow. Fluctuations of Q20(x) are important only closer to
the symmetry point [29], where however STIRAP is already
prevented by selection rules.

The mapping of energy fluctuations onto δ(x) allows
us to translate to solid-state devices several results from the
quantum optics realm. For instance, the well-known critical
sensitivity to two-photon detuning [28] implies that the main
figures to be minimized for efficient population transfer in
nanodevices are fluctuations of the lowest energy splitting,
E1. This is the same requirement for the two-state system
to efficiently work as a qubit. Non-zero δ modify the whole
adiabatic picture of STIRAP [28] since the dark state is no
longer an instantaneous eigenstate and there is no adiabatic
connection from the initial to the target state. However,
non-ideal STIRAP may still take place via non-adiabatic
transitions between adiabatic states. For small values of δ,
narrow avoided crossings between instantaneous eigenvalues
occur and the population is transferred by the Landau–Zener
(LZ) tunneling [27, 28] (see figure 3). Increasing δ reduces

the transfer efficiency and, in general, the excited state |φ2〉 is
populated during the protocol.

Non-adiabatic LZ patterns for STIRAP can be classified
into three categories, namely: (a) a single (avoided) crossing
is present at the beginning (Stokes-AT phase) of the protocol;
(b) one crossing at the end (pump-AT phase); (c) two
crossings, one in each phase (see figure 3, left panel).
Each category corresponds to a specific relation between
the detunings, e.g. pattern (b) is obtained for anticorrelated
detunings sign(δ) = −sign(δp), as illustrated in figure 3(b).
This correspondence can be understood by inspection of
the eigenvalues in the AT phases. For instance, during the
pump-AT phase �s = 0, the energy δ of |φ1〉 is constant,
whereas �p 6= 0 determines further splitting (AT effect)
between |φ0〉 and |φ2〉 which disappears at the end of the
protocol.

This classification finds a physical realization in
nanodevices since detunings are not independent, the
corresponding energy fluctuations reflecting the behavior of
the spectrum as a function of the bias parameter q. For
instance, in CPB’s charge, noise determines anticorrelated
fluctuations of detunings, and LZ pattern (b), whereas
fluctuations of the Josephson energy would determine
correlated detunings, and LZ patterns (a).

Since efficient STIRAP requires large LZ tunneling, a
way to minimize the effect of stray detunings is to use, if
possible, fields with larger amplitude closing the gap between
avoided crossings. In particular, a larger �s increases the
efficiency for patterns (a) and a larger �p for patterns (b). In
figure 3 (right panel), it is shown how a larger �s, which is not
suppressed by selection rules, may widen the stability region
against correlated fluctuations (a) of the detunings.

In general, specific strategies to increase the efficiency
depend on the properties of the band structure, such as
correlations of the parametric fluctuations of the splittings.
From a different point of view, this result suggests that a
proper band structure may be engineered where effects of
noise can be dynamically minimized by the available control.
It is worth stressing that this picture relies on correlations
enforced by the non-Markovianity of noise. Indeed, pure
dephasing due to Markovian processes determines a loss of
efficiency which does not depend on the external fields and
therefore cannot be dynamically suppressed [30].

5. STIRAP at a symmetry point

A careful study demonstrated the possibility to realize a
Lambda configuration allowing for STIRAP implementation
in a superconducting device such as the CPB biased
off-symmetry, in the presence of broadband noise [29].
However, the efficiency would be strongly limited and noise
correlations arising from the band structure might be reduced
only employing far too large pump pulses. The same is true
for flux qubit.

In the following, we propose an implementation of
the Lambda scheme at the symmetry point where energy
fluctuations are greatly reduced. Since the pump field cannot
be directly coupled to the transition, we seek two-photon
pump coupling. To this end, we address the three-level system
by a three-tone drive (figure 4(a)) A(t) =

∑
k Ak(t) cos φk(t).

5
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Figure 4. (a) Lambda scheme with a two-pump fields (p1,p2)
providing an effective (0, 2) two-photon pump coupling, but
producing in addition Stark shifts (S1,S2) of the undriven levels. (b)
Off-diagonal matrix element of a CPB as a function of E J /EC .
Matrix elements Q01 and Q12 (divided by 5) are large at the
symmetry point, therefore the effective coupling ∝ Q01 Q12/δ2 is
large enough and increases with E J /EC . In contrast, Q02 (here
off-symmetry) is non-monotonic.

Here k = s labels a component with carrier frequency close
to the Stokes transition, whereas k = p1, p2 refers to two
drives implementing two-photon Rabi oscillations [28] at the
pump transition, |φ1〉 being the intermediate level (figure 4).
Thus the drives k = p1, p2 must couple |φ1〉 in the dispersive
regime, i.e. their carrier frequencies ωk must be sufficiently
detuned from resonance. If we define E1 − ωp1 = δ2 and E2 −

E1 − ωp2 = δp − δ2, the condition is �k � |δ2|, |δp − δ2|. The
dispersive coupling ensures that |φ1〉 is not populated by the
pump pulse. Rabi frequencies and detuning must of course
be much smaller than the corresponding bare level splittings.
Neglecting the Stokes field, we write the RW Hamiltonian in
a doubly RF defined by Urf(t) = ei[φp1(t)P̂00−φp2(t)P̂22]

H̃ p =


0 �∗

p1/2 0

�p1/2 δ2 �∗

p2/2

0 �∗

p2/2 δp

 . (12)

An effective Hamiltonian, which captures the coarse-grained
dynamics over times 1t such that �, δ � 1/1t � |Ei −

E j |, can be obtained by adiabatic elimination, considering
that in the dispersive regime the intermediate level is
effectively uncoupled, and accounting for its Stark shift
in second-order perturbation theory, which leads to an
intuitive result shown in figure 4. The effective Hamiltonian
can also be obtained employing the average Hamiltonian
theory [31, 32]. This approach also shows that the Stokes
pulse adds independently to the effective Hamiltonian at
the same level of coarse graining. This statement is valid
provided the individual pump pulses are in the dispersive
regime, which is relevant for STIRAP, even when |φ1〉

is populated. Based on these considerations, the RWA
Hamiltonian for the three-photon Lambda scheme is obtained
by adding to equation (12) the Stokes pulse Hamiltonian
H̃s, H̃s =

1
2

[
�s(t) e−iφ(t)

|2〉〈1| + h.c.
]
, where φ(t) = φs(t) −

φp2(t). The phase is related to detunings φ̇(t) = δ(t) − δ2(t);
thus it is slowly varying, as well as �s(t). The coarse-grained
version of the Hamiltonian is

H̃ ≈ H̃ ave =


S1 0 �∗

p/2

0 δ2 − (S1 + S2) �∗
s eiφ(t)/2

�p/2 �s e−iφ(t)/2 δp + S2

 ,

where the effective pump frequency �p and the Stark shifts Si

are given by

�p = −
�p1�

∗

p2

2δ2
, S1 = −

|�p1|
2

4δ2
, S2 = −

|�p2|
2

4(δ2 − δp)
.

Performing a unitary transformation gauging away δ2(t) we
finally obtain

H̃ ′

ave =


0 0 �∗

p/2

0 δ − (2S1 + S2) �s/2

�p/2 �s/2 δp + (S2 − S1)

 . (13)

This Hamiltonian has the standard structure of equation (11),
apart for the Stark shifts Si . Thus the three-tone drive could
yield successful STIRAP also at the symmetry point, where
the matrix elements Q01 and Q12 needed for coupling the
two-pump field are large (see figure 4). The presence of
the Stark shifts requires some care, since they produce
large stray detunings, comparable with the amplitudes of
the effective fields. In particular, since δ − [2S1(t) + S2(t)]>
�p(t), coherent population transfer is suppressed even for
δ = 0 (see figure 5, top panel).

This drawback can be avoided by a suitable pulse
shaping, a problem addressed in optimal control theory [33].
Indeed, the structure of the average Hamiltonian allows us
to foresee a way to reduce the impact of pump-induced
shifts by only reshaping the Stokes pulse. We assume
equal pump pulse amplitudes, �p1(t) = �p2(t), and we add
an extra phase modulation to the Stokes pulse, φ′

s(t) =∫ t
0 dt ′ 3|�pi (t)|2/(4δ2). The resulting average Hamiltonian is a

straightforward modification of equation (13), where �s(t) →

�s(t) e−iφ′
s(t). Indeed, the dispersive condition means that

|�pi (t)|2/δ2 � δ2 � ωk , implying that the approximations
leading to the RWA are still valid and that the new envelope is
still slowly varying on the scale of δ2 (inset of figure 5—the
bottom panel), allowing us to rederive equation (13). At this
stage a final transformation gauges away both Stark shifts,
leading exactly to the standard form (11). Therefore, we
expect a large efficiency, the critical requirement being δ �

�p. This expectation is confirmed by the numerical evaluation
of the dynamics determined by the RWA Hamiltonian H̃p + H̃s

with the modulated Stark pulse (figure 5, bottom).
From the physical point of view, working at the symmetry

point ensures that the decoherence due to low-frequency noise
is strongly suppressed, still allowing large enough values of
the effective �p ∼ |�pi |

2/δ2. An appealing feature of devices
such as the CPB and flux qubits is that both protection
from noise and coupling to the drive improve for increasing
values of E J /EC , contrary to what happens for conventional
STIRAP at off-symmetry bias [29], due to the behavior of
matrix elements Qi j (E J /EC) (see figure 4(b)). This favorable
trend is, however, expected to weaken for larger and larger
E J /EC , when the spectrum becomes nearly harmonic and the
system may climb the ladder multilevel structure under the
action of ac drives [32].

6. Conclusions

Superconducting circuits are a promising technology for the
realization of quantum information on a solid-state platform.
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Figure 5. Exact population histories for a three-level system subject
to a three-tone external drive (gray curves) are compared with the
coarse-grained version (black lines) obtained by equation (13). The
agreement of the average Hamiltonian approximation is excellent.
Top: population histories for monochromatic pulses at nominal
two-photon resonance δ = 0, where stray Stark shifts prevent
efficient STIRAP. Bottom: population histories with the phase
corrected Stokes field (in the inset) which allows for faithful
population transfer. Here the peak Rabi frequencies are
�s = �p1 = �p2 =: �0, �0 T = 200 and δ2 = 5�0. The relevant
figure for STIRAP is approximately ∼ �pT = 20.

The design of several types of qubits [4] may allow us to
fabricate novel architectures where new protocols of advanced
quantum control by ac fields can be demonstrated. The ability
to manipulate interference effects in multilevel artificial atoms
even in the presence of low-frequency noise may open up
an exciting perspective when coupling with electrical [7]
or nanoelectromechanical [23, 34] resonators, where they
may be used as switches or generate non-classical photon or
phonon states, or used in hybrid platforms [10]. Interesting
applications to quantum state processing have also been
proposed such as the implementation of gates and memories
using dressed states [35].

A general mathematical issue is that fluctuations in the
properties of the device can be translated into equivalent
fluctuations of the driving fields. Actually, from the physical
point of view, decoherence due to the smaller resilience of
artificial atoms has a counterpart in the fact that microwave
sources needed for the latter are more stable than optical
sources in atomic physics. This allows us to explore the fact
that control fields have different limitations.

An interesting aspect emerging from this work is that as
long as we consider slightly more complex architectures, such

as three-level structures, the physical picture is enriched by
qualitatively new phenomena. In this case the challenge is to
find, if any, few relevant figures of merit which summarize the
properties of quantum dynamics.

Note that Rabi spectroscopy could be richer in multilevel
systems. For instance, oscillations between the ground and
the second excited state of a superconducting nanocircuit
may suffer large fluctuations δQ20(x) near the symmetry bias
point, where Q20 = 0 vanishes due to selection rules. Since
this coupling would be essential for the implementation of the
conventional Lambda scheme (section 4), the observation of
Rabi oscillations between these almost forbidden transitions
would be an important step.

Finally, we note that from the technical point of view
it is remarkable that adiabatic elimination performs so well
(see figures 5) for STIRAP at the symmetry point, since the
assumption of depopulated intermediate state of the usual
derivation of the effective two-photon pump drive is not met
during the central ‘adiabatic passage’ phase. We stress that,
although sharing some similarity with the so-called chirped
STIRAP [36], it is different since it is a sort of self-consistent
and pulse-dependent optimization. We expect that a full
numerical optimization [33, 37] will improve this part of the
protocol further suppressing population of |φ2〉.
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Appendix. Parametric dependence of decay

The decay law equation (9) depends on the spectrum via the
series expansion of �fl(x). We define the derivatives
of the spectrum Ai = ∂ Ei/∂q and Bi = ∂2 Ei/∂q2 and
the coefficients aR = (∂ Q10/∂q)/Q10 and bR = (∂2 Q10/

∂q2)/Q10 and expand

δ(q + x) ≈ δ0 + A1(q) x + 1
2 B1(q) x2,

�R(q + x) ≈ �R0
[
1 + aR(q) x + 1

2 bR(q) x2
]
.

This makes explicit the dependence on the parameters
(q, �R0, δ0) which are taken as independent. We also define
(AR, BR) = �R0(aR, bR) which scales with �R0; note that
(A1, B1) scale with the much larger Bohr splitting. With this
notation, coefficients entering equation (9) read

A(q, �R0, δ0) = [δ0 A1 + �R0 AR]/�fl,

B(q, �R0, δ0) = [A2
1 + A2

R − A2 + δ0 B1 + �R0 BR]/�fl.

At resonance they reduce to A = AR and B = A2
1/�R0 + BR,

which would imply a Gaussian time decay if fluctuations
of Q10 were important; otherwise the decay has essentially
power-law behavior. In the dispersive regime we would have
A ≈ A1, i.e. when energy fluctuations are linear we recover
the Gaussian decay law of coherent oscillations, and B ≈

(B1 + A2
R)/�fl.
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