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A b s t r a c t - - I n  this paper, we outline the construction of Maple routines for the solution of the  
Helmholtz equation V2~b + k2~2 -~ 0 with Dirichlet boundary conditions in two-dimensional domains. 
By means of the symbolic manipulator, we are able to perform a numerical study of the eigenvalues 
for quan tum billiards. (~) 2001 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

With the more widespread availability of PCs for the general public, in the very recent past 
many high-level languages have been developed, with the ultimate aim of sparing the unsophis- 
ticated end-user the burden of programming, in the opinion of some computer scientists. New 

environments like the world wide web have stimulated this development, to make full use of its 
resources. Consider, for instance, search engines and browsers, as well as tools for graphics and 
animations. On the other hand, heavy scientific computation has relied on the use of Fortran 
since its invention in the 1950s. Contrary to expectations, the use of this language does not 
die, in spite of the wider attention received in recent years by other more modern languages, 
e.g., C. This might very well be due to the heavy investment in computer codes, the result of 
decades of efforts by the early developers, through all the various releases of the language that 
appeared in the past decades. It is indeed probably easier to "update" a code to a new version 
of the very same basic language than to rewrite it completely from scratch. Moreover, until a 
few years ago at least, the lack of reliable numerical libraries of C routines was hindering the 
use of the latter language in scientific milieus. An example of this situation is given by Linpack 
and Eispack, the classic free on-line basic set of codes for linear algebra problems. It is only 
in recent years that the C version of these routines has become available, together with their 
newer version Lapack, which not only merges the two libraries, but also optimizes them both for 
vector and parallel supercomputers. Nowadays, reliable and sophisticated symbolic manipulators 
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have also become available, whose power goes far beyond the pure ability of manipulating strings 
of characters. From the numerical point of view, they are able to perform computations with 
a variable wordlength, thus, allowing in a sense, arbitrarily high precision in the course of the 
calculations. Although computationally intensive, this is certainly a great benefit when one has 
to deal with ill-posed or badly conditioned problems, so that the accuracy of the result can be 
tailored to the needs of the scientist performing the calculation. 

Among these evolved symbolic languages, Maple plays an important role, due both to the 
quality of the institution releasing it, and to its computational power and friendly user interface. 
In particular, it provides a huge set of special libraries for specific mathematical subdomains, 
which can be loaded at the user's request [1]. In linear algebra, these allow the use of basic codes 
for purposes ranging, e.g., from the symbolic evaluation of the determinant to the computation 
of Sylvester's matrix from two polynomials. Evidently, the power of such a tool can only be 
beneficial if used in computationally intensive environments. With the aid of these resources, it 
is possible to write very powerful programs by means of extremely short codes. 

In this paper, we discuss an instance of an application of this symbolic manipulator to an ad- 
vanced physics current research problem. Namely, we consider an eigenvalue problem arising in 
quantum physics and tackle it using a well-known technique, the boundary collocation method. 
The domain in which the governing equation is formulated is in a certain sense arbitrary, how- 
ever. It does not allow separation of variables, which is the usual textbook example. By using 
an eigenfunction expansion with unknown coefficients for the solution and then imposing the 
boundary condition, we obtain a homogeneous system, the nontrivial solution of which gives the 
sought eigenvalues of the problem. 

In this note, we analyze the method and implement the corresponding algorithm in Maple. In 
view of the versatility of Maple, and of the fact that it can work with arbitrary precision, we are 
able to keep under control numerical errors in a better way than by using a Fortran code. 

The paper is organized as follows. In the next section, we present the physical problem, while 
the mathematical method is expounded in Section 3. The interpretation of the numerical results 
is discussed in Section 4. Section 5 is devoted to a detailed analysis of the strategy used for 
implementing the computations and to some more specific comments on the Maple programs. 
Finally, the last section contains an application to an important problem in electromagnetics, 
concerning the determination of the eigenfrequencies in waveguides. 

2. T H E  P R O B L E M  

Various kinds of physical problems involve the solution of the 2D Helmholtz equation: 

v2¢  + k2¢ = 0, (1) 

plus boundary conditions, from the classical problem of the vibrating membrane, to electro- 
magnetic propagation in waveguides. An important example in electromagnetic applications is 
treated in the last section. In recent years, however, the need for good and powerful numerical 
methods for solving (1) has increased because of new developments in quantum mechanics. From 
the mathematical point of view, the Helmholtz equation is identical to the Schroedinger equation 
of quantum mechanics. In this context, the eigenvalues (E = k 2) represent the allowed energies 
of a quantum particle, i.e., of an electron, confined to a two-dimensional region, usually called 
a quantum billiard, while the norms of the eigenfunctions give the probability density function 
of finding the particle, with a given energy, in a certain region of space. Usually, all textbook 
examples or problems deal with the very few cases in which one can separate the variables in (1). 
However, physicists have now recognized that, in quantum mechanics, the problem of separation 
of variables, or of integrability, is very subtle [2] and that the solutions of (1) present particular 
features if the variables cannot be separated. In addition, it should be self evident that most of 
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the real physical problems connected with (1) do not admit exact, i.e., analytical, solution, so 

that  one has to use numerical methods. 

Direct discretization of (1) requires a great computational effort. On the other hand, boundary 
methods eliminate one degree of freedom, since all information on the shape is given with the 
boundary, allowing a large reduction of CPU time. The most common method in the recent 

physical works is probably the boundary integral method (BIM) [3], which leads to an integral 
eigenvalue equation associated with (1). However, in order to avoid singularities due to the Green 
function, the authors are forced to introduce spurious eigenvalues. 

3. T H E  M E T H O D  

As in [4], our starting point is the fact that  the solution in R 2 of (1) is known. Only regu- 

lar eigenfunctions at the origin are considered, the regularity condition being needed to ensure 
boundedness of the physical quantities in the problem. In polar coordinates, in particular, the 
former eigenfunctions are 

(r, o) = Jm(kr)e  

where Jm(x) denotes the integer Bessel function. Let us stress the fact that  the energy eigenvalue 
(E = k 2) does not depend on m, so that  the general eigenfunction with associated eigenvalue E 
is 

kO (r, O) = E CmJm(kr)eim°" (2) 
Tr$ 

Let us now consider our two-dimensional region of boundary % and impose the Dirichlet 
boundary condition 

ko (r, O) = O, (r, O) E % (3) 

This condition can be satisfied only for some discrete values of k which are the eigenvalues of (1). 
To carry out the discretization procedure, we select N points along the boundary. Replacing then 
the series by a finite sum and satisfying the boundary condition (3) at the nodes, we obtain 

M 

luuuuw (r j ,  Oj) = E Jm ( k r j )  [Crn cos rr~0 + D m sin mO] + Co Jo ( k r j )  . (4) 
rn=l 

The choice 2M + 1 = N leads to a homogeneous system possessing nontrivial solutions if 

det M(k) = 0, (5) 

where the matrix M(k) has the structure 

J0 (krl)  J1 (krl)  cos01 J1 (krt)sin01 

Jo(krN) gl (krN)cOSON Jl (krN)sinON • .. J M  ( k r N )  cos LION / 

In our calculations, we have chosen the following domain: 

r = r0 (1 + c~cos20). (6) 

For c~ = 0, this is the parametric equation of a circle of radius r0 and area 7rr~. If we give (~ 
a small value, we weakly deform the shape of the circle, but this suffices to lose separability 
(i.e., integrability) of the problem. In view of the symmetry of the domain, the eigenfunction 
and the spectrum can be partitioned into classes. For instance, in order to get the even-even 
eigenfunctions, we have to impose the (+, +) symmetry conditions: 

(r,  e )  = • (r,  - e )  = • e - (7)  
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This requirement selects the even value of m and only the cosine terms in the sum (4). It also 
avoids eigenvalue degeneracies due to the symmetry of the domain. The other symmetries used 

are the following ones: 

( + , - ) :  

( - , + )  : 

( - , - )  : 

• ( r , e )  = 

• ( r , e )  = 

• ( r , e )  = = 

As an example, let us choose a = .2 and r0 = 1, fix a value for N,  and define f = de t (M(k) )  

as a Maple procedure. This can be easily done since Bessel functions are built in s tandard Maple 

libraries. We then decide the resolution for the sought eigenvalues, i.e., the stepsize with which 
the sweeps through a given interval are taken. Then f is evaluated at points of the interval whose 

distance is given by the chosen stepsize. Once a sign difference between two consecutive values of 

f is encountered, the so found abscissae are recorded, as start ing values for the bisection method.  

We then s tar t  the bisection method in each marked subinterval, until a zero of f (k)  is found to 

within a given tolerance. 

In order to validate our method, we have calculated a few eigenvalues of the rectangular billiard 

of dimensions a and b. The former are known exactly because the problem is separable. The 
exact eigenvalues are analytically evaluated by means of the formula ~rv/(m/a) 2 ÷ (n/b) ~, while 

the numerical eigenvalues are calculated using the proposed method with a matr ix  of dimension 
N = 12, resolution 0.1, and tolerance 0.01. In these calculations, the dimensions chosen for the 

rectangle are a = 2, b = 1. In Tables 1-4, we show the good agreement between the exact and 

the approximated eigenvalues related to each symmetry  class. The results are quite satisfactory 

in spite of the small dimension of the matr ix  and in spite of the fact that ,  in our method,  we 

use Bessel functions. The latter are indeed supposed to give the best results for domains not too 

much different from circles, but perform well enough even in the rectangular case. 

Notice tha t  in Tables 1-4, one eigenvalue is evaluated twice analytically, but it is not found 

numerically. This happens because the symmetry  implies degeneracy, and the proposed method 

cannot find degenerate eigenvalues. Indeed, in such a case, the determinant  changes sign twice, 

i.e., does not change sign for the degenerate eigenvalue. It  is thus necessary to solve for all 

four symmetries in order to find all the required eigenvalues. Analytically, of course, there is 
no need to account for the symmetries,  since the formula gives all the eigenvalues. However, we 

have listed the analytical values separately in each table to facilitate the comparison with the 

numerical values. The double values appearing among the analytical values are caused by the 

fact tha t  they are degenerate. For example, 9.93 is a degenerate eigenvalue since it can be obtain- 

Table 1. Eigenvalues from the (- ,  - )  symmetry of the rectangle, with a = 2, b -- 1, 
N =  12. 

Numerical Analytical = 7 r ~ / ~  + n 2 

6.478125000 6.476559175 

7.853125000 7.853981635 

3 10.05937500 

4 13.42187500 

5 14.82187500 

10.05800404 

12.66416486 

12.66416486 

13.42088970 

14.81886291 

m n 

1 2 

3 2 

5 2 

1 4 

7 2 

3 4 

5 4 



Eigenfrequency Determination 

Table 2. Eigenvalues from the ( - ,  +)  symmetry of the rectangle, with a = 2, b = 1, 
N = 1 2 .  

k Numerical Analytical = ~r~ff~-~ + n 2 m n 

1 7.021875000 7.024814734 2 2 

2 8.884375000 8.885765876 4 2 

3 11.32812500 11.32717340 6 2 

4 12.95312500 12.95311835 2 4 

14.04962947 4 4 

14.04962947 8 2 

Table 3. Eigenvalues from the (+, - )  symmetry of the rectangle, with a = 2, b = 1, 
N = 1 2 .  

k Numerical Analytical = 7 r ~  + n 2 rn n 

1 4.440625000 4.442882938 2 1 

2 7.021875000 7.024814734 4 1 

9.934588267 2 3 

9.934588267 6 1 

3 11.32812500 11.32717340 4 3 

4 12.95312500 12.95311835 8 1 

5 13.32812500 13.32864881 6 3 

Table 4. Eigenvalues from the (+, +)  symmetry of the rectangle, with a = 2, b -- 1, 
N = 1 2 .  

Numerical Analytical = 7 r ~ ' 2 ~  + n 2 

3.509375000 3.512407367 

5.665625000 5.663586700 

8.459375000 8.458997100 

9.553125000 9.554781040 

10.53437500 10.53722210 

11.43437500 11.43556988 

12.26562500 12.26831151 

14.48202657 

14.48202657 

m n 

1 1 

3 1 

5 1 

1 3 

3 3 

7 1 

5 3 

7 3 

9 1 
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e d  f r o m  t h e  f o r m u l a  for  t h e  p a i r s  ( re ,  n )  = (2, 3),  or  a l t e r n a t i v e l y ,  ( rn ,  n )  - -  (6, 1), see  T a b l e  3. 

T h i s  d e g e n e r a c y  is n o t  d u e  t o  s y m m e t r i e s ,  so t h a t  o n  t h i s  p a r t i c u l a r  e i g e n v a l u e ,  t h e  m e t h o d  is 

n o t  w o r k i n g  co r r ec t l y .  

A f t e r  t h i s  n e c e s s a r y  c h e c k  for  c o n s i s t e n c y ,  we t u r n e d  to  o u r  o r i g i n a l  p r o b l e m  o v e r  t h e  d o m a i n  

g i v e n  b y  (6) .  I n  t h i s  case ,  we a p p l i e d  t h e  p r o p o s e d  m e t h o d ,  s e a r c h i n g  for  e i g e n v a l u e s  in  t h e  
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interval  [0, 10] with a resolut ion of 0.1 and  a tolerance of 0.01. In  order to check the  s tab i l i ty  

of our me thod  for small  values of k, we have calculated the zero of f ( k )  fixing N = 10, 15. The  

results are shown in Tables 5-8. 

Table 5. Numerically found eigenvalues for the ( - , - )  symmetry in (0, 10) for the 
billiard (6) with a = 0.2, ro = 1. 

N =  10 N =  15 

4.305566407 4.305566865 

6.204199220 6.204199083 

8.141503907 8.141503685 

8.385839844 9.385839859 

Table 6. Numerically found eigenvalues for the ( - ,  +) symmetry in (0, 10) for the 
billiard (6) with a -- 0.2, ro = 1. 

N =  10 N =  15 

5.177050782 5.177050978 

7.275292970 7.275287740 

8.886425722 8.886425782 

Table 7. Numerically found eigenvalues for the ( + , - )  symmetry in (0, 10) for the 
billiard (6) with a = 0.2, ro = 1. 

N =  10 

3.440798728 

6.344484829 

N =  15 

3.440728332 

6.344487879 

7.040726372 7.040738294 

7.352473738 7.352483683 

Table 8. Numerically found eigenvalues for the (+, +) symmetry in (0, 10) for the 
billiard (6) with a = 0.2, ro = 1. 

N =  10 N =  15 

2.472184737 2.482737373 

4.643838377 4.646362688 

6.218938383 6.212983747 

7.270527272 7.283838661 

4. D I S C U S S I O N  

In  this  note,  we have presented a simple method  based on a Maple program, to calculate  the  

first eigenvalues of (1) over a rb i t ra ry  domains,  here given by (6). Two ma in  features s t and  out  

from our analysis,  one on the  positive side, the other one somewhat  negative. 

The  ma jo r  advantage  of this method  is t ha t  it is widely independen t  of the shape of the doma in  

chosen (as we have tested).  An  addi t ional  advantage of using Maple is t ha t  we can decide the  

precision of our calculat ion.  This  is indeed another  major  help fo r  the calculat ions,  since the  

values of f become very small  as the d imension of the mat r ix  increases. Of course, an  increase 

in the precision of the calculat ion will entail  a corresponding increase of C P U  time. 
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On the other hand, we also noticed that  the stability found in analyzing the low part of the 
spectrum, which can be observed by looking at Tables 5-8, is lost if we increase the dimension of 

the matrix. This fact could be related to the values of f approaching zero as mentioned above. 

This will indeed cause some problems, should one want to explore a larger part of the spectrum 
or determine eigenvalues far away from the origin. 

5. C O M M E N T S  ON THE I M P L E M E N T A T I O N  

Here we present some more specific comments on the routines used for the above computations. 
We have used the symbolic manipulator Maple in its version MapleV.3, in a Windows NT 

environment, on a Pentium PC running at 300 MHz. 

An immediate example of the power of Maple is given by the fact that  the eigenfunction 
expansions have been implemented by using a call to the appropriate library for Bessel functions. 
The following strategy was used for tackling the problem. First, we wrote a routine for the 

calculation of the value of the determinant. It has been recursively used to determine the sign 
of the determinant function, saving in a file the intervals in which the determinant changed sign. 
Starting from the value .1, we increased the value of the independent variable by a .1 stepsize 
up to a value of about 15, iteratively recording the intervals containing the determinant sign 

changes. To check the work, we used different "approximation degrees", i.e., we first run the 
program with 15 terms in the eigenfunction expansion, then repeated the computations using 20 
terms, to make sure no appreciable changes occurred in the intervals thus found. 

We then constructed a routine for implementing the rootfinding bisection method. It is well 
known that  this is a slow method, but it has the advantage of being reliable and in this situation 
robustness is the key issue. We sacrificed speed for the sake of accuracy. The output  file of the first 

program has been used as input for the calls to the bisection method, giving the starting intervals 
in which to search for the zeros of the determinant function. The final tolerance used to terminate 
the iterations of bisection has been fixed to 10 -5, thus guaranteeing at least 4 digit accuracy. 

To check that  we did not miss any eigenvalue, we then repeated the eigenvalues calculation, by 
determining once more the starting intervals for the bisection with the very same criteria exposed 
above, starting now from the value .05, still with increments of .1. Let us remark indeed that  
the procedure followed does not guarantee that all eigenvalues will be found. Actually, no such 
strategy exists, since in an arbitrarily small interval with no sign change, there could, in principle, 
always be an even number of zeros for the function under scrutiny. Since decreasing the stepsize 
would entail too many computations even in a fast environment, we chose to use a different 
starting point to double-check that  the initial intervals for the bisection method were indeed the 
same, so that  no other zeros were present at least in the interval [0, 10]. The occurrence of this fact 
would have indeed denoted that  we missed some eigenvalues in the previous code runs. At this 
point, we were confident that  the interval [0, 10] had been thoroughly investigated. At times, we 
experienced some problems in the implementation, originating from the use of a student version 
of Maple, these being mainly due to lack of memory. But we were able to overcome them by 
splitting the runs of the code over smaller subtasks. Indeed, by saving the partial results to a file, 
we were able to suitably restart the code every time it crashed. Omitting the work already done, 
whose results were already saved, by restarting the program from the point where it crashed 
before, we have finally been able to complete the task. 

6. A P P L I C A T I O N S  

In this section, we outline the possible application of our calculation to the problem of elec- 
tromagnetic propagation in waveguides. The interested reader can find further details in any 
standard book of electromagnetism. In the following, we will introduce physical constants and 
dimensions. In particular, notice the following change of notation. According to physics notation, 
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the symbol k which we are going to introduce is the wave number and should therefore not be 

confused with the adimensional parameter  appearing in equation (1). 

In a waveguide of constant cross-section, the transverse electric and magnetic fields are related 

according to 

Ht  = :t:Z e3 × Et .  

This relation is valid both for TM waves and TE waves. As it is well known, transverse fields are 

determined by the longitudinal ones according to 

i k  Ce+ikz E t  -= q - -~Vt~) ,  -~ Ez; TM waves, 

i k  ~;e+ik z Ht  = : t : ~ V t ¢ ,  = Hz;  TE waves, 

02 0 ~ where 7 2 = # e ( w 2 / c  2) - k 2 and Vt -- ~ + b-~" The scalar function ¢(x,  y) satisfies the 2D 

equation 
2 2 V t ¢ + 7  ¢ = 0 .  

The boundary  condition for the TM case is that  ¢ -- 0 on 0S, where S represents the cross- 

section of the waveguide. The last equation is an eigenvalue problem, i.e., there exists a spectrum 

of eigenvalues 72 and of associated eigenfunctions Cn. For each frequency w, the wave number  
k is determined, for each value of n by k2n = # e ( w 2 / c  2) - 72n . If  we define the cut-off frequency 

wn = C(~n/v/-fi'g), the wave number kn can be written as ( 1 / c ) x / ~ V / - ~  - w~. Let us notice that ,  
for a~ > wn, the wave number is real, while below the cut-off frequency, it is imaginary, giving 

rise to t h e s o  called evanescent waves. Thus, for each prescribed frequency, there is only a finite 

number  of modes tha t  can propagate. In this context then, the method presented in this work 

becomes useful to determine the eigenfrequencies of the waves propagating in the waveguide. 
The  application to the analysis of waveguides outlined in this section has to be regarded as a 

conceivable application of the method proposed in this paper. Technical generalizations can be 

developed towards the analysis of the eigenvalue problem related to the Schr5dinger equation [5] 

(possibly related to control problems); to the analysis of hte linear wave equation [6]; and so on. 

The interested reader should hopefully find sufficient information to exploit the computat ional  

procedure proposed in this paper. 
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