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on the occasion of his 60th birthday

Abstract. We study monotone variational inequalities with random data and give measurability,
existence and uniqueness results in the general framework of a Hilbert space setting. Then we
turn to the more structured case where a finite Karhunen-Loève expansion leads to a separation
of the random and the deterministic variables. Here we present a discretization procedure with
respect to the random variable based on averaging and truncation and on the approximation of
the feasible random set. At last, we establish norm convergence of the approximation procedure.

1. Introduction

The theory of variational inequalities has been initiated by Stampacchia (e.g. [12]),
in connection with partial differential equations (see also [4], [6]) and has become a
powerful tool to study many problems in mechanics and physics. On the other hand,
there has been an increasing interest in the study of variational inequalities describing
equilibrium problems – mostly of finite dimension – arising in operations research and
economic theory (e.g. [7], [8], [13]), which only in special cases admit an optimization
formulation.

In this paper we study a class of variational inequalities with random data and
extend some results obtained in [9] and [10] for the case of a bilinear form in a Hilbert
space setting. Motivated by the need to cope with many nonlinear problems arising
from various fields of applied sciences we carry out our study within the theory of
monotone operators.

The paper is organized in four sections. In the following section we introduce a
general class of random variational inequalities (RVI) defined by a random monotone
operator on a random subset of a Hilbert space. We show that under suitable assump-
tions the (unique) solution of our RVI belongs to a certain Lebesgue space. Moreover,
we provide an equivalent integral formulation of our RVI. In section 3 we turn to the
more structured case where a finite Karhunen-Loève expansion ([5]) leads to a separa-
tion of the random and deterministic variables and formulate equivalent pointwise and
integral formulations of the separated RVI. Then, in section 4, we put forth our ap-
proximation procedure in the random variable. By using the Mosco convergence result
(Lemma 4.2) for the feasible random set we can prove our basic convergence theorem
(Theorem 4.1) for the approximation procedure.
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2. The general problem

Let (Ω,A ,μ) be a complete σ -finite measure space and (H,〈·, ·〉,‖ ·‖) a separa-
ble Hilbert space. For all ω ∈Ω , let K (ω) be a closed, convex and nonempty subset
of H . Consider a random vector δ in H and a Carathéodory function Φ :Ω×H �→H ,
i.e. for each fixed x ∈ H , Φ(·,x) is measurable with respect to A and to the Borel al-
gebra B(H) , and for every ω ∈Ω , Φ(ω , ·) is continuous. Moreover, for each ω ∈Ω ,
Φ(ω , ·) is a monotone operator on H , i.e. 〈Φ(ω ,x)−Φ(ω ,x′),x− x′〉 � 0, ∀x,x′ ∈ H .
Here let us simply write Φ(ω) := Φ(ω , ·) . With these data we consider the following

PROBLEM 1. For each ω ∈Ω , find x∗ω ∈ K (ω) such that

〈Φ(ω ,x∗ω ),x− x∗ω〉 � 〈δ (ω),x− x∗ω〉 , ∀x ∈ K (ω) . (1)

Let us notice that under our assumptions Minty’s Lemma holds (cfr. [12]) so that
our problem is equivalent to

PROBLEM 2. For each ω ∈Ω , find x∗ω ∈ K (ω) such that

〈Φ(ω ,x),x− x∗ω 〉 � 〈δ (ω),x− x∗ω〉 , ∀x ∈ K (ω) . (2)

Now we consider the set-valued map Σ :Ω ↪→H which, to each ω ∈Ω , associates
the solution set of (1). The measurability of Σ (with respect to the algebra B(H) of the
Borel sets on H and to the σ -algebra A on Ω) has been proved in [10] for the case of
a bilinear form. However, the proof given therein can be straightforwardly adapted to
nonlinear operators.

To progress in our analysis we shall confine ourselves to the case of strongly mono-
tone operators. The following definition will be used in the sequel.

DEFINITION 2.1. We call Φ uniformly strongly monotone, if there is some con-
stant c0 > 0 such that

〈Φ(ω ,x)−Φ(ω ,x′),x− x′〉 � c0 ‖x− x′‖2 ∀x,x′ ∈ H ,∀ω ∈Ω .

Under the additional strong monotonicity assumption, we can ensure the existence
of a unique solution to (1) (cfr. [12]). Furthermore, with some ζ0(ω) ∈ K (ω) fixed,
we get the preliminary estimate for the solution X̂(ω) := x∗ω

c0‖ζ0(ω)− X̂(ω)‖2 � ‖Φ(ω ,ζ0(ω))‖‖ζ0(ω)− X̂(ω)‖+‖δ (ω)‖‖ζ0(ω)− X̂(ω)‖
(3)

whence,

‖X̂(ω)‖ � (1/c0)‖Φ(ω ,ζ0(ω))‖+(1/c0)‖δ (ω)‖+‖ζ0(ω)‖ . (4)

In many applications the modelling is often done with polynomial cost functions.
We are then led to require the growth condition

‖Φ(ω ,z)‖ � a(ω)+b(ω)‖z‖p−1 ∀z ∈ H, (5)
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for some p � 2 which yields the following estimate for the solution:

c0‖X̂(ω)‖ � a(ω)+b(ω)‖ζ0(ω)‖p−1 +‖δ (ω)‖+ c0‖ζ0(ω)‖ . (6)

Thus, to obtain X̂ ∈Lq(Ω,μ ,H) , for some q � 1, we assume a∈Lq(Ω,μ),b∈L∞(Ω,μ) ,
δ ∈ Lq(Ω,μ) and that there exists some ζ0(ω)∈K (ω) such that ζ0 ∈ Lq(p−1)(Ω,μ)∩
Lq(Ω,μ) .

Since our final aim is to arrive at statistical quantities such as the mean value or
the variance of the solution, we shall consider the case q = 2 or, in general, q = p � 2.
Therefore we can state the following existence and uniqueness result.

THEOREM 2.1. Let (Ω,A ,μ) be a complete σ -finite measure space, and let
Φ(ω , ·) be a strongly monotone operator on H for all ω ∈ Ω . Then the variational
inequality (1) admits a unique solution X̂ : ω ∈ Ω �→ X̂(ω) ∈ K (ω) . Moreover, sup-
pose that, Φ is uniformly strongly monotone, that the random vector δ belongs to
Lp(Ω,μ ,H) , that the growth condition (5) is satisfied and that there exists
ζ0 ∈ L(p−1)p(Ω,μ ,H)∩Lp(Ω,μ ,H) such that ζ0(ω) belongs to K (ω) . Then X̂ ∈
Lp(Ω,μ ,H) .

REMARK 2.1. Since Φ is Carathéodory, it is well known that the function ω �→
Φ(ω ,u(ω)) is measurable, whenever u :Ω �→H is measurable. Thus, the Carathéodory
function Φ defines a mapping NΦ : M �→ M on the space M of all the measurable
functions on Ω , which is known as the Nemytskij operator (cfr. [1], [16]). Under our

assumption, the Nemytskij operator NΦ associated to Φ maps Lp �→ L
p

p−1 . Moreover,
if the measure μ is finite, the Nemytskij operator is also continuous and bounded. This
hypothesis is clearly verified in the probability spaces we shall deal with in the sequel.

Let us now introduce a probability space (Ω,A ,P) and the reflexive Banach space
Lp(Ω,P,H) of random vectors V from Ω to H such that

EP‖V‖p =
∫
Ω
‖V (ω)‖pdP(ω) < ∞, p � 2 (7)

and consider the convex and closed set

K := {V ∈ Lp(Ω,P,H) : V (ω) ∈ K (ω),P-almost sure} .

Under the growth condition (5) with a ∈ Lp(Ω,P),b ∈ L∞(Ω,P) , and assuming that
δ ∈ Lp(Ω,P,H) the integrals

∫
Ω
〈Φ(ω ,U(ω)),V (ω)−U(ω) 〉dP(ω),

∫
Ω
〈δ (ω),V (ω)−U(ω)〉dP(ω)

are well defined for all U,V ∈ Lp(Ω,P,H) . Therefore, we can consider the following

PROBLEM 3. Find U ∈ K such that, ∀V ∈ K ,
∫
Ω
〈Φ(ω ,U(ω)), V (ω)−U(ω)〉dP(ω) �

∫
Ω
〈δ (ω),V (ω)−U(ω)〉dP(ω) (8)
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or, in compact form using the expectation EP ,

EP{〈NΦ(U),V −U〉} � EP{〈δ ,V −U〉} . (9)

Under our assumptions, (8) has a unique solution U ∈ Lp(Ω,P,H) . Thus, by
uniqueness, Problem 1 and Problem 3 are equivalent in the sense that from the integral
formulation in Problem 3 we obtain a pointwise solution that is only defined P-a.e. on
Ω and that coincides there with the pointwise solution of Problem 1.

3. The separated case – A probabilistic approach

Here and in the sequel we shall pose further assumptions on the structure of the
random constraint set and on the operator. More precisely, with another Hilbert space
G , a convex closed cone C⊂G defining the order 0 � g∈G :⇔ g∈C , a linear operator
B : H → G and a random vector γ in G being given, we consider the random set

M(ω) := {x ∈ H : Bx � γ(ω)}, ω ∈Ω .

Moreover, we assume that the deterministic and random variables are separated via a
finite Karhunen-Loève expansion. In particular, we let the uniformly strongly monotone
operator Φ defined by

Φ(ω ,x) := A0(x)+
k

∑
j=1

S j(ω)Aj(x) ,

where all S j ∈ L∞(Ω); j = 1, . . . ,k . The uniform strong monotonicity of Φ is ensured
by the strong monotonicity of A0 and all s jA j , where s j is a positive constant such that
S j � s j P – a.s. (almost sure). We also require that Φ satisfies the growth condition
(5).

Similarly let

δ (ω) := h0 +
l

∑
j=1

Rj(ω)h j ,

where h0,h1. . . .hl ∈ H and all Rj ∈ Lp(Ω); j = 1, . . . , l , and let

γ(ω) := g0 +
m

∑
j=1

Tj(ω)g j ,

where g0,g1. . . .gm ∈ G and all Tj ∈ Lp(Ω); j = 1, . . . ,m . To simplify the notation, we
use the vector notation

S = (S1, . . . ,Sk)T , A = (A1, . . . ,Ak)T , R = (R1, . . . ,Rl)T , T = (T1, . . . ,Tm)T ,

h = (h1, . . . ,hl)T , g = (g1, . . . ,gm)T .
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Thus, we rewrite Problem 1 (ω -formulation) to that of finding X̂ : Ω �→ H such
that X̂(ω) ∈ M(ω) (P-a.s.) and the following inequality holds for P-almost every
elementary event ω ∈Ω and ∀x ∈ M(ω) ,

〈(A0 +S(ω)TA)[X̂(ω)],x− X̂(ω)〉 � 〈h0 +R(ω)Th,x− X̂(ω)〉 . (10)

Moreover, we can introduce the following closed convex nonvoid subset of Lp(Ω,P,H) :

MP := {V ∈ Lp(Ω,P,H) : BV (ω) � g0 +T (ω)T g ,P−a.s.}

and consider the following problem: Find Û ∈ MP such that, ∀V ∈ MP ,

∫
Ω
〈(A0 +S(ω)TA)[Û(ω)],V (ω)−Û(ω)〉dP(ω) (11)

�
∫
Ω
〈h0 +R(ω)Th,V (ω)−Û(ω)〉dP(ω) .

The r.h.s. of (11) defines a continuous linear form on Lp(Ω,P,H) , while the l.h.s.
defines a continuous form on Lp(Ω,P,H) which inherits strong monotonicity from the
strong monotonicity of A0 + sT A . Therefore, (see e.g. [12]), there exists a unique
solution in MP to problem (11). By uniqueness, problems (10) and (11) are equivalent.

In order to get rid of the abstract sample space Ω , we consider the joint distri-
bution P of the random vector (R,S,T ) and work with the special probability space
(Rd ,B(Rd),P) , where the dimension d := k+ l +m . To simplify our analysis we shall
suppose that R , S and T are independent random vectors. Let r = R(ω) , s = S(ω) ,
t = T (ω) . For each y = (r,s,t) ∈ R

d , consider the set

M(y) := {x ∈ H : Bx � g0 + tT g} .

Then the pointwise version of our problem now reads: Find x̂ = x̂(y) such that x̂(y) ∈
M(y) , P - a.s., and the following inequality holds for P - almost every y ∈ R

d and
∀x ∈ M(y),

〈(A0 + sT A)[x̂(y)],x− x̂(y)〉 � 〈h0 + rT h,x− x̂(y)〉 . (12)

In order to obtain the integral formulation of (12), consider the space Lp(Rd ,P,H) and
introduce the closed convex nonvoid set

MP := {v ∈ Lp(Rd ,P,H) : Bv(r,s,t) � g0 + tT g, P−a.s.} .

This leads to the problem: Find û ∈ MP such that, ∀v ∈ MP ,

∫
Rd
〈(A0 + sTA)[û(y)],v− û〉dP(y) �

∫
Rd
〈h0 + rTh,v(y)− û(y)〉dP(y) . (13)

By using the same arguments as in section 2, problems (12) and (13) are equivalent.
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4. An Approximation Procedure

Without loss of generality, we can suppose that R ∈ Lp
l (Ω,P) = [Lp(Ω,P)]l and

T ∈ Lp
m(Ω,P) are nonnegative (otherwise we can use the standard decomposition in

the positive part and the negative part). Moreover, we assume that the support (the
set of possible outcomes) of S ∈ L∞k (Ω,P) is the interval [s,s] ⊂ (0,∞)k . Further-
more we assume that the distributions PR,PS,PT are continuous with respect to the
Lebesgue measure λ , so that according to the theorem of Radon-Nikodym, they have
the probability densities ϕRj ,ϕS j ,ϕTj . Hence, P = PR ⊗PS ⊗PT , dPR(r) = ϕR(r)dr ,
dPS(s) = ϕS(s)ds and dPT (t) = ϕT (t)dt , where shortly ϕR(r) :=∏ jϕRj (r j) , ϕS(s) :=
∏ jϕS j (s j) , ϕT (t) :=∏ jϕTj (t j) . Let us note that v∈Lp(Rd ,P,H) means that (r,s,t) �→
ϕR(r)ϕS(s)ϕT (t)v(r,s,t) belongs to Lp(Rd ,λ ,H) .

Now the probabilistic integral formulation of our problem reads: Find û ∈ MP

such that, ∀v ∈ MP ,

∫
R

l
+

∫ s

s

∫
R

m
+

〈(A0 + sT A)(û),v− û〉ϕR(r)ϕS(s)ϕT (t)dy �
∫

R
l
+

∫ s

s

∫
R

m
+

〈h0 + rTh,v− û〉ϕR(r)ϕS(s)ϕT (t)dy .

In order to give an approximation procedure for the solution û , let us start with a
discretization of the space X := Lp(Rd ,P,H) and introduce a sequence {πn}n of par-
titions of the support ϒ := R

l
+× [s,s]×R

m
+ of the probability measure P induced by the

random elements R,S,T . To be precise, let πn = (πR
n ,πS

n ,πT
n ); πR

n = (πR1
n , . . . ,πRl

n ),πS
n =

(πS1
n , . . . ,πSk

n ),πT
n = (πT1

n , . . . ,πTm
n ) , where

πRj
n := (r0

n, j, . . . ,r
N

Rj
n

n, j ), πS j
n := (s0

n, j, . . . ,s
N

S j
n

n, j ), πTj
n := (t0n, j, . . . ,t

N
Tj
n

n, j ) ,

0 = r0
n, j < r1

n, j < .. . rN
Rj
n

n, j = n ( j = 1, . . . , l) ,

s j = s0
n, j < s1

n, j < .. . sN
S j
n

n, j = s j ( j = 1, . . . ,k) ,

0 = t0n, j < t1n, j < .. .tN
Tj
n

n, j = n ( j = 1, . . . ,m) .

We impose that
|πn| := max{|πR

n |, |πS
n |,πT

n |} → 0 (n → ∞) ,

where

|πR
n | := max{|πRj

n | : ( j = 1, . . . , l)} ,

|πRj
n | := max{r1

n, j − r0
n, j, . . . ,r

N
Rj
n

n, j − rN
Rj
n −1

n, j } ,

|πS
n | := max{|πS j

n | : ( j = 1, . . . ,k)} ,

|πS j
n | := max{s1

n, j − s0
n, j, . . . ,s

N
S j
n

n, j − sN
S j
n −1

n, j } ,
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|πT
n | := max{|πTj

n | : ( j = 1, . . . ,m)} ,

|πTj
n | := max{t1n, j − t0n, j, . . . ,t

N
Tj
n

n, j − tN
Tj
n −1

n, j } .

These partitions give rise to the exhausting sequence {ϒn} of subsets of ϒ , where
each ϒn is given by the finite disjoint union of the intervals:

In
h := In

hR
× In

hS
× In

hT
,

where we use the multiindices h = (hR,hS,hT ) ,

hR = (hR
1 , · · · ,hR

l ), hS = (hS
1, · · · ,hS

k), hT = (hT
1 , · · · ,hT

m)

and

In
hR

:= Πl
j=1[r

hR
j −1

n, j ,r
hR

j
n, j) , In

hS
:= Πk

j=1[s
hS

j−1
n, j ,s

hS
j

n, j) , In
hT

:= Πm
j=1[t

hT
j −1

n, j ,t
hT

j
n, j) .

For each n ∈ N let us consider the space of the Z -valued simple functions on ϒn ,
extended by 0 outside of ϒn :

Πn
0(Z) := {vn : vn(y) =∑

h

vn
h 1Inh

(y) ,vn
h ∈ Z} ,

where Z is any separable Hilbert space (here Z = H or Z = G) or a subset thereof and
1I denotes the {0,1} -valued characteristic function of a subset I .

To approximate an arbitrary function w ∈ Lp(Rd ,P,Z) we employ the mean value
truncation operator μn

0 associated to the partition πn given by

μn
0w :=∑

h

(μn
h w)1In , (14)

where

μn
h w :=

⎧⎨
⎩

1
P(Ih)

∫
Inh

w(y)dP(y) if P(In
h ) > 0;

0 otherwise.

From Lemma 2.5 in ([9]) (and the remarks therein) we obtain the following result.

LEMMA 4.1. The linear operator μn
0 : Lp(Rd ,P,Z) → Lp(Rd ,P,Z) is bounded

with ‖μn
0‖= 1 , and for n→∞ , μn

0 converges pointwise in Lp(Rd ,P,Z) to the identity.

This lemma reflects the well-known density of the class of the simple functions in
Lp space. It shows that the mean value truncation operator μn

0 acts as a projector on
Lp(Rd ,P,H) , and thus our approximation method is a projection method according to
the terminology of [14].

In order to construct approximations for

MP = {v ∈ Lp(Rd ,P,H) : Bv(r,s,t) � t , P−a.s.}
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we introduce the orthogonal projector τ : (r,s,t) ∈ R
d �→ t ∈ R

m and let, for each ele-
mentary quadrangle In

h ,

τn
h = μn

h τ ∈ R
m, μn

0τ =∑
h

τn
h 1Inh

∈Πn
0(R

m) .

Thus we arrive at the following sequence of convex, closed sets

Mn
P

:= {v ∈Πn
0(H) : Bvn

h � τn
h , ∀h} .

Note that the set Mn
P

is of polyhedral type, if H is of finite dimension.
Also we have to approximate the random variables R and S and introduce

ρn =
( N

Rj
n

∑
ν=1

rν−1
n, j 1[rν−1

n, j ,rνn, j)

)
j=1,...,l ∈Πn

0(R
l) ,

σn =
( N

S j
n

∑
ν=1

sν−1
n, j 1[sν−1

n, j ,sνn, j)

)
j=1,...,k ∈Πn

0(R
k) .

For later use we observe that σn → σ(r,s,t) = s in L∞(Rd ,P,Rk) , while, as a con-
sequence of the Chebyshev inequality (see e.g. [2]), ρn → ρ(r,s,t)= r in Lp(Rd ,P,Rl) .

Thus for each n ∈ N we are led to the following approximate problem: Find ûn ∈
Mn

P
such that, ∀vn ∈ Mn

P
,

∫
Rd
〈(A0 +σn(y)T A)[ûn(y)],vn(y)− ûn(y)〉dP(y) (15)

�
∫

Rd
〈h0 +ρn(y)T h,vn(y)− ûn(y)〉dP(y) .

The crucial step towards to the convergence of the approximation procedure de-
scribed above is the following set convergence result.

LEMMA 4.2. The set Mn
P

converges to MP in the sense of Mosco ([3], [15]), i.e.

weak-limsupn→∞Mn
P
⊂ MP ⊂ strong-liminfn→∞Mn

P
.

Proof. We can refer to [10] where we already remarked that the proof detailed
there for lemma 4.3 extends to the more general present situation, provided we can
show that the positive operator μn

0 commutes with the linear operator B . On the other
hand, the operator μn

0 can be understood as a conditional expectation operator.
Therefore it is enough to show for any u ∈ Lp(Rd ,P,H) , the following identity

for Bochner integrals:

B(
∫

v(y)dP(y)) =
∫

B(u(y))dP(y) .
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To verify this, take any η in the dual G∗ of G and use the duality relation

〈
∫

B(u(y))dP(y),η〉G×G∗ =
∫
〈B(u(y)),η〉G×G∗ dP(y)

=
∫
〈u(y),B∗η〉H×H∗ dP(y) = 〈

∫
u(y)dP(y),B∗η〉H×H∗

= 〈B(
∫

u(y)dP(y)),η〉G×G∗ .

Now, we can establish our basic convergence result. �

THEOREM 4.1. The sequence ûn generated by the approximate problems in (15)
converges strongly in Lp(Rd ,P,H) to the unique solution û of (13).

Proof.
1) We show that {ûn} is norm-bounded.
To this end let us fix arbitrarily an element v of MP . By Lemma 4.2 we can find

vn ∈ Mn
P

such that limn vn = v in Lp(Rd ,P,H) . Hence, it is sufficient to prove that
{ûn − vn} is bounded in Lp(Rd ,P,H) . But this follows from the a priori bound (3)
for the problems (15) (with ζ0 := vn ) and from the boundedness of the convergent
sequence vn .

2) We show that any weak limit point u of {ûn} – which exists due to part 1) – is
a solution of (13).

First, by the l.h.s. of Mosco convergence in Lemma 4.2, any such weak limit point
u of {ûn} is feasible, i.e. u ∈ MP . Then, thanks to Minty’s Lemma, it is sufficient to
prove that u satisfies for all v ∈ MP

∫
Rd
〈(A0 + sTA)(v),v−u〉dP(y) �

∫
Rd
〈h0 + rT h,v−u〉dP(y) . (16)

If v ∈ MP is arbitrarily chosen, let vn ∈ Mn
P

such that limn vn = v strongly in
Lp(Rd ,P,H) . Such a sequence {vn} exists thanks to MP ⊂ strong -liminfn Mn

P
ac-

cording to Lemma 4.2. By the definition of ûn in (15) and by Minty’s Lemma, we have
for all n ∈ N

∫
Rd
〈(A0 +σn(y)T A)(vn),vn − ûn〉dP(y) �

∫
Rd
〈h0 +ρn(y)T h,vn− ûn〉dP(y) .

Let us observe that since vn → v strongly in Lp(Rd ,P) , A0vn → A0v and Avn →
Av , strongly in L

p
p−1 , thanks to the continuity of the Nemystskij operators (see remark

(2.1)). Since σn → σ strongly in L∞(Rd ,P,Rk) , ρn → ρ strongly in Lp(Rd ,P,Rl) ,
vn → v strongly in Lp(Rd ,P,H) , and ûn − vn ⇀ u− v weakly in Lp(Rd ,P,H) , the
left and right hand side converge, respectively, to the left and right hand side of (16) .
Moreover, since the solution û is unique, all the sequence {ûn} converges weakly to
û .
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3) In order to show the claimed norm convergence, let us fix un ∈ Mn
P

such that
limn un = û strongly in Lp(Rd ,P,H) according to Lemma 4.2. Then by (15) we can
estimate, thanks to Minty’s Lemma and uniform monotonicity,

0 � c0 ‖un− ûn‖2
2

�
∫

Rd
〈(A0 +σn(y)T A)(un)− (A0 +σn(y)T A)(ûn),un− ûn〉dP(y)

�
∫

Rd
〈(A0 +σn(y)T A)(un),un− ûn〉dP(y)

−
∫

Rd
〈h0 +ρn(y)T h,un− ûn〉dP(y) .

Finally from σn →σ strongly in L∞(Rd ,P,Rk) , ρn → ρ strongly in Lp(Rd ,P,Rl) ,
and ûn ⇀ û weakly in Lp(Rd ,P,H) we conclude the proof. �

In future work we shall apply our theoretical findings to a class of nonlinear traffic
equilibria models on networks with random data, that parallels previous work [11] in
the case of a linear cost model, but needs extra considerations.
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