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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 90, Number 3, March 1984

ON INDUCTIVELY OPEN REAL FUNCTIONS

BIAGIO RICCERI!

ABsTRACT. In this note, given a locally connected topological space X, we
characterize those continuous and locally nonconstant real functions on X
which are inductively open there.

Throughout this note, X denotes a locally connected topological space. Let f
be a real function on X. We recall that f is said to be inductively open in X
(see [1]) if there exists a set X* C X such that f(X*) = f(X) and the function
fix+: X* = f(X) is open.

Recently, in [2], as a consequence of a general lower semicontinuity theorem for
certain multifunctions, we have

THEOREM 1 [2, THEOREME 2.4]. Let X also be connected. Then any continuous
real function f on X, such that int(f~1(t)) = @ for everyt €]inf f(X),sup f(X)], 1s
inductively open in X .

It is easy to show by means of simple examples that none of the hypotheses of
Theorem 1 can be dropped. In particular, this theorem is no longer true if X is
disconnected. Indeed, it suffices to take X =[0,1]U]2,3] and f: X — R defined as
follows: "

f@)= {a: 1 1. z €10,1],
z—2 ifz€2,3]
f cannot be inductively open in X, since, otherwise, it would be open there, being
one-to-one. But f is not open in X (for instance, [0,1] is open in X but f([0,1]) is
not open in f(X)).

The aim of this note is to characterize those continuous and locally nonconstant
real functions on X which are inductively open there.

We first recall a lemma established in [3].

LEMMA 1 [3, LEMMA 3.1]. Let S be a topological space, Y a connected subset of
S, sg, 81 two points of Y, g a real function on S. Moreover, assume:
(1) so s a local mazimum (resp. minimum) point for g;
(2) g(so) < g(s1) (resp. g(s0) > g(s1));
(3) g is continuous at every point of Y.
Then there exists s* € Y with the following properties:
(i) g(s*) = g(s0);
(ii) s* is not a local mazimum (resp. minimum) point for g;
(iii) s* s not a local minimum (resp. mazimum) point for g, provided that for every
open set L C S, with QANY # O, there exists 5 € (1 such that g(3) # g(so).
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Now, we can prove

THEOREM 2. Let f be a continuous real function on X such that for every
connected component I' of f(X) and every t € int(") the set int(f~1(t)) 1s empty.

Then the following are equivalent:

(1) The function f s inductively open in X .

(2) For everyt € f(X) there exists a connected set Xy C X such that t belongs to
the interior of f(X:) in f(X).

ProoF. Let us show that (1)=(2). As f is inductively open in X, there exists
X* C X such that f(X*) = f(X) and f|x-: X* — f(X) is open. Let t € f(X).
Choose z € X* such that f(z) =t. Since X is locally connected at z, there is, in
particular, a connected neighbourhood X; of . Thus, with obvious meaning of the
symbols, we have

t €intp(x)(f(Xe N X)) Cint s (f(X3)),

so (2) follows.

Now let us show that (2)=(1). Put E = {z € X: z is a local extremum point

for f}, X = {z € X: f(z) is an extreme of a connected component of f(X) and,
for every neighbourhood V of z, f(z) € ints(x)(f(V))}, and X* = (X \E)UX. We
claim f(X*)= f(X). Indeed, let ¢t € f(X). By (2) there is a connected set X; C X
such that ¢ € inty(x)(f(X:)). Let € X; be such that f(z) =t. Suppose z ¢ X*,
that is, € £\ X. Let I'; be the connected component of f(X) containing ¢ and,
first, assume t is not an extreme of I';. Then there exist z;,z2 € X; such that
f(z1) < f(z) < f(z2). By hypothesis the interior of f~!(t) is empty. Therefore,
since z is a local extremum point for f and f is continuous, by Lemma 1, there is
a point z* € Xy N (f~1(t)\ E), so t € f(X \ E) C f(X*).
_ Now suppose t is an extreme of I';, for instance, the maximum of I';. As z ¢
X, there exists a neighbourhood V' of z such that t ¢ ints(x)(f(V')). Hence, as
t € intf(x)(f(Xt)), it follows that f(X;) is a nondegenerate interval contained in
I':. Applying Lemma 1 again, we then get a point Z € f~!(t) N X; that is not a
local minimum point for f. Thus, Z€ X so t € f(X) C f(X*). A similar argument
holds if ¢ is the minimum of I';. Now we prove that the function f |x.: X* — f(X)
is open. Let () be any open subset of X. We must show that f(2 N X*) is open
in f(X). To this end, let t € f(2NX*). Choose a point Z € 2N X* such that
f(z) =t. Furthermore, let U be an open connected neighbourhood of Z contained
in 2. Let I'; be the connected component of f(X) containing ¢. First suppose
t € int(I's), so that, by hypothesis, we have int(f~1(f)) = &. As Z # E, the set
f(U) is a neighbourhood of . But, by Lemma 1, we have int(f(U)) C f(U\ E) C
f(@NX*). Hence, { is an interior point of f(2NX*). Now suppose ¢ is an extreme
of I';, for instance, the minimum of I'z. In this case Z € X, so t € ints(x)(f(U)).
If ; = {T}, then, since f(U) C T, we have U CONX sot € int (3 (f(Q2NX™)).
If, on the contrary, I'; # {f}, then there exists € > 0 such that f(U) D [¢,t + €.
Always by Lemma 1, we have [{,T 4+ €[C f(U \ E) so [t,t +¢€[C f(2NX*). Hence
t€ints(x)(f(ANX*)). A similar argument holds if ¢ is the maximum of I's.

We conclude, observing that by means of Theorem 2 it is possible to extend
Theorems 2.8 and 2.10 of (4] as well as Theorem 2.2 of [5]. The details are left to
the reader.
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