

On Inductively Open Real Functions Author(s): Biagio Ricceri Source: Proceedings of the American Mathematical Society, Vol. 90, No. 3 (Mar., 1984), pp. 485-487 Published by: <u>American Mathematical Society</u> Stable URL: <u>http://www.jstor.org/stable/2044499</u> Accessed: 14/02/2015 07:31

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

ON INDUCTIVELY OPEN REAL FUNCTIONS

BIAGIO RICCERI¹

ABSTRACT. In this note, given a locally connected topological space X, we characterize those continuous and locally nonconstant real functions on X which are inductively open there.

Throughout this note, X denotes a locally connected topological space. Let f be a real function on X. We recall that f is said to be *inductively open in* X (see [1]) if there exists a set $X^* \subseteq X$ such that $f(X^*) = f(X)$ and the function $f|_{X^*} \colon X^* \to f(X)$ is open.

Recently, in [2], as a consequence of a general lower semicontinuity theorem for certain multifunctions, we have

THEOREM 1 [2, THÉORÈME 2.4]. Let X also be connected. Then any continuous real function f on X, such that $int(f^{-1}(t)) = \emptyset$ for every $t \in]$ inf f(X), sup f(X)[, is inductively open in X.

It is easy to show by means of simple examples that none of the hypotheses of Theorem 1 can be dropped. In particular, this theorem is no longer true if X is disconnected. Indeed, it suffices to take $X = [0,1] \cup [2,3]$ and $f: X \to \mathbf{R}$ defined as follows:

$$f(x) = \begin{cases} x - 1 & \text{if } x \in [0, 1], \\ x - 2 & \text{if } x \in [2, 3]. \end{cases}$$

f cannot be inductively open in X, since, otherwise, it would be open there, being one-to-one. But f is not open in X (for instance, [0,1] is open in X but f([0,1]) is not open in f(X)).

The aim of this note is to characterize those continuous and locally nonconstant real functions on X which are inductively open there.

We first recall a lemma established in [3].

LEMMA 1 [3, LEMMA 3.1]. Let S be a topological space, Y a connected subset of S, s_0 , s_1 two points of Y, g a real function on S. Moreover, assume:

(1) s_0 is a local maximum (resp. minimum) point for g;

(2) $g(s_0) < g(s_1)$ (resp. $g(s_0) > g(s_1)$);

(3) g is continuous at every point of Y.

Then there exists $s^* \in Y$ with the following properties:

- (i) $g(s^*) = g(s_0);$
- (ii) s^* is not a local maximum (resp. minimum) point for g;
- (iii) s^* is not a local minimum (resp. maximum) point for g, provided that for every open set $\Omega \subseteq S$, with $\Omega \cap Y \neq \emptyset$, there exists $\overline{s} \in \Omega$ such that $g(\overline{s}) \neq g(s_0)$.

© 1984 American Mathematical Society 0002-9939/84 \$1.00 + \$.25 per page

485

Received by the editors April 19, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54C10, 54C30; Secondary 54D05.

¹Supported by M.P.I.

Now, we can prove

THEOREM 2. Let f be a continuous real function on X such that for every connected component Γ of f(X) and every $t \in int(\Gamma)$ the set $int(f^{-1}(t))$ is empty.

Then the following are equivalent:

(1) The function f is inductively open in X.

(2) For every $t \in f(X)$ there exists a connected set $X_t \subseteq X$ such that t belongs to the interior of $f(X_t)$ in f(X).

PROOF. Let us show that $(1) \Rightarrow (2)$. As f is inductively open in X, there exists $X^* \subseteq X$ such that $f(X^*) = f(X)$ and $f_{|X^*} \colon X^* \to f(X)$ is open. Let $t \in f(X)$. Choose $x \in X^*$ such that f(x) = t. Since X is locally connected at x, there is, in particular, a connected neighbourhood X_t of x. Thus, with obvious meaning of the symbols, we have

$$t \in \operatorname{int}_{f(X)}(f(X_t \cap X^*)) \subseteq \operatorname{int}_{f(X)}(f(X_t)),$$

so (2) follows.

Now let us show that $(2) \Rightarrow (1)$. Put $E = \{x \in X : x \text{ is a local extremum point for } f\}$, $\tilde{X} = \{x \in X : f(x) \text{ is an extreme of a connected component of } f(X) \text{ and, for every neighbourhood } V \text{ of } x, f(x) \in \inf_{f(X)}(f(V))\}$, and $X^* = (X \setminus E) \cup \tilde{X}$. We claim $f(X^*) = f(X)$. Indeed, let $t \in f(X)$. By (2) there is a connected set $X_t \subseteq X$ such that $t \in \inf_{f(X)}(f(X_t))$. Let $x \in X_t$ be such that f(x) = t. Suppose $x \notin X^*$, that is, $x \in E \setminus \tilde{X}$. Let Γ_t be the connected component of f(X) containing t and, first, assume t is not an extreme of Γ_t . Then there exist $x_1, x_2 \in X_t$ such that $f(x_1) < f(x_2)$. By hypothesis the interior of $f^{-1}(t)$ is empty. Therefore, since x is a local extremum point for f and f is continuous, by Lemma 1, there is a point $x^* \in X_t \cap (f^{-1}(t) \setminus E)$, so $t \in f(X \setminus E) \subseteq f(X^*)$.

Now suppose t is an extreme of Γ_t , for instance, the maximum of Γ_t . As $x \notin$ X, there exists a neighbourhood V of x such that $t \notin \operatorname{int}_{f(X)}(f(V))$. Hence, as $t \in int_{f(X)}(f(X_t))$, it follows that $f(X_t)$ is a nondegenerate interval contained in Γ_t . Applying Lemma 1 again, we then get a point $\tilde{x} \in f^{-1}(t) \cap X_t$ that is not a local minimum point for f. Thus, $\tilde{x} \in X$ so $t \in f(X) \subseteq f(X^*)$. A similar argument holds if t is the minimum of Γ_t . Now we prove that the function $f_{|X^*} \colon X^* \to f(X)$ is open. Let Ω be any open subset of X. We must show that $f(\Omega \cap X^*)$ is open in f(X). To this end, let $\overline{t} \in f(\Omega \cap X^*)$. Choose a point $\overline{x} \in \Omega \cap X^*$ such that $f(\bar{x}) = \bar{t}$. Furthermore, let U be an open connected neighbourhood of \bar{x} contained in Ω . Let $\Gamma_{\overline{t}}$ be the connected component of f(X) containing \overline{t} . First suppose $\overline{t} \in \operatorname{int}(\Gamma_{\overline{t}})$, so that, by hypothesis, we have $\operatorname{int}(f^{-1}(\overline{t})) = \emptyset$. As $\overline{x} \neq E$, the set f(U) is a neighbourhood of \overline{t} . But, by Lemma 1, we have $int(f(U)) \subseteq f(U \setminus E) \subseteq f(U \setminus E)$ $f(\Omega \cap X^*)$. Hence, \overline{t} is an interior point of $f(\Omega \cap X^*)$. Now suppose \overline{t} is an extreme of $\Gamma_{\overline{t}}$, for instance, the minimum of $\Gamma_{\overline{t}}$. In this case $\overline{x} \in X$, so $\overline{t} \in int_{f(X)}(f(U))$. If $\Gamma_{\overline{t}} = {\overline{t}}$, then, since $f(U) \subseteq \Gamma_{\overline{t}}$, we have $U \subseteq \Omega \cap X$ so $\overline{t} \in int_{f(X)}(f(\Omega \cap X^*))$. If, on the contrary, $\Gamma_{\bar{t}} \neq \{\bar{t}\}$, then there exists $\epsilon > 0$ such that $f(U) \supseteq [\bar{t}, \bar{t} + \epsilon]$. Always by Lemma 1, we have $]\overline{t}, \overline{t} + \epsilon \subseteq f(U \setminus E)$ so $[\overline{t}, \overline{t} + \epsilon \subseteq f(\Omega \cap X^*)$. Hence $\overline{t} \in \operatorname{int}_{f(X)}(f(\Omega \cap X^*))$. A similar argument holds if \overline{t} is the maximum of $\Gamma_{\overline{t}}$.

We conclude, observing that by means of Theorem 2 it is possible to extend Theorems 2.8 and 2.10 of [4] as well as Theorem 2.2 of [5]. The details are left to the reader.

References

- 1. A. Arhangel'skii, Open and almost open mappings of topological spaces, Soviet Math. Dokl. 3 (1962), 1738-1741.
- 2. B. Ricceri, Sur la semi-continuité inférieure de certaines multifonctions, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 265-267.
- 3. B. Ricceri and A. Villani, Openness properties of continuous real functions on connected spaces, Rend. Mat. (7) (to appear).
- 4. B. Ricceri, Applications de théorèmes de semi-continuité inférieure, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 75–78.
- 5. ____, Solutions lipschitziennes d'équations différentielles sous forme implicite, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 245–248.

Seminario Matematico, Citta' Universitaria, Viale A. Doria 6, 95125 Catania, Italy