Analisi non lineare del cedimento di un palo singolo

F. CASTELLI, M. MAUGERI, E. MOTTA*

Abstract

Sommarto. Utilizzando il metodo delle funzioni di trasferimento è stato studiato un modello per l'analisi del cedimento di un singolo palo trivellato soggetto a carico assiale. La possibilità di legare i parametri caratteristici della funzione di trasferimento ad alcuni parametri geotecnici ha permesso, attraverso un codice di calcolo appositamente realizzato, la simulazione numerica di 12 prove di carico di pali strumentati in vera grandezza reperite in bibliografia. Il buon accordo riscontrato tra i valori sperimentali e quelli ottenuti dalle simulazioni numeriche, oltre a verificare la validità del procedimento, ha permesso di ricavare delle espressioni dei parametri delle funzioni di trasferimento ai fini del calcolo dei cedimenti non lineari del palo singolo.

1. Introduzione

L'analisi del comportamento di un palo sottoposto a carico assiale e la previsione dei conseguenti cedimenti, rappresentano un classico tema di ricerca nel campo della Geotecnica.

Ai metodi tradizionali di calcolo basati su correlazioni empiriche, sono seguite analisi teoriche di tipo elastico [Randolph e Wroth, 1978], come anche procedure numeriche basate sul Metodo degli Elementi Finiti [Zienkiewicz, 1971].

Tra i modelli di comportamento elastico del complesso palo-terreno, il metodo di Poulos [1979] rappresenta forse lo strumento più utilizzato in sede di previsione dei cedimenti.

Le prove di carico su pali strumentati in vera grandezza, evidenziano tuttavia che il complesso paloterreno presenta una marcata non-linearità della curva carico-cedimenti, anche per modesti livelli di carico applicato.

Considerazioni teoriche mostrano che le tensioni tangenziali che insorgono nel terreno a seguito del carico assiale, diminuiscono con legge inversamente proporzionale alla distanza dal palo [Baguelin et al., 1975]; di conseguenza, mentre nel terreno prossimo al palo le deformazioni sono elevate, in una zona sufficientemente distante si riducono sensibilmente.

Oggi è unanimamente riconosciuta la presenza (Fig. 1) di una zona 1 a comportamento non-lineare, ed una zona 2 a comportamento elastico [MarChetti, 1989].
. Una schematizzazione del genere è stata implicitamente impiegata da Caputo e Viggiani [1984] per lo studio della ripartizione del carico in una palificata. Per una previsione più realistica dei cedimentì

[^0]dei pali sottoposti a carichi assiali, è necessario pertanto prendere in considerazione l'aspetto non-lineare dell'interazione palo-terreno.

Una procedura di calcolo che si presta ad un'analisi di tipo non-lineare, è quella delle funzioni di trasferimento del carico.

Il metodo è basato in generale su relazioni ricavate dal rilievo sperimentale dello spostamento e della resistenza mobilitata in vari punti del palo; l'elaborazione di tali dati consente di ricavare la «curva di trasferimento», ovvero la relazione che lega la tensione mobilitata e lo spostamento, misurati a varie profondità, nel corso di prove di carico su pali strumentati in vera grandezza.

Una volta note le caratteristiche geometriche del palo e quelle geotecniche del terreno, mediante la funzione di trasferimento è possibile costruire una curva carico-cedimento aderente alla realtà sperimentale. Esistono in letteratura funzioni di trasferimento ricavate da vari autori sulla base di osservazioni sperimentali; la tabella 1 ne riporta alcune tra le più note.

Il primo tentativo di definire una funzione di tra-

Fig. 1 - Schematizzazione del terreno nella zona a comportamento non-lineare (1) e nella zona a comportamento elastico (2).
sferimento si deve forse a Kezdi [1957]; indicando con wil cedimento prodotto dal carico applicato e con f la corrispondente resistenza mobilitata, la funzione di trasferimento risulta completamente definita una volta noti i valori di wo e K (Tab. 1), rappresentanti rispettivamente lo spostamento che mobilita la resistenza massima ed una costante dipendente dal tipo di terreno.
Tale funzione di trasferimento è stata ripresa da [Reese et al., 1969]; successivamente una curva di trasferimento di tipo iperbolico è stata proposta da Chin [1970], che ha definito i parametri b ed a (Tab. 1), in funzione rispettivamente della resistenza massima e delle caratteristiche di deformabilità del terreno. Più recentemente sono state proposte delle curve di trasferimento che permettono di mettere in conto un importante aspetto del meccanismo d'interazione palo-terreno, ovvero la zona entro cui si risente la presenza della struttura.

Tabella 1 - Espressioni delle Funzioni di Trasferimento proposte da vari Autori.

AUTORE		FUNZIONE DI TRASFERIMENTO
KEZDI	(1957)	$\mathrm{f}=\mathrm{Ko} \mathrm{\gamma} \mathrm{z} \operatorname{tg} \delta[1-\exp (-\mathrm{K}(/ \mathrm{w} / \mathrm{wo}-\mathrm{w}))]$
COYLE, REESE (1966)	Sperimentale	
REESE et al.	(1970)	$\mathrm{f}=\mathrm{K}[2 \mathrm{w} / \mathrm{wo}-\mathrm{w}-(\mathrm{w} / \mathrm{wo}-\mathrm{w})]$
CHIN	(1970)	$\mathrm{f}=\mathrm{w} /(\mathrm{a}+\mathrm{bw})$
KRAFT et al.	(1981)	$\mathrm{z}=\left(\tau_{0} \mathrm{r}_{0} / \mathrm{G}\right) \ln (\mathrm{rm} / \mathrm{ro})$

In una di queste funzioni di trasferimento proposta da [Kraft ef al., 1981], la resistenza laterale τ_{o} mobilitata dal palo all'interfaccia con il terreno risulta funzione: del cedimento z , del raggio ro del palo, del modulo di taglio G del terreno e del raggio rm della zona entro cui si risente, significativamente, dell'effetto del palo.
La difficoltà di utilizzare il metodo delle funzioni di trasferimento, risiede nel fatto che per una affidabile previsione dei cedimenti occorre conoscere preventivamente i valori appropriati dei parametri caratterizzanti le curve.
Allo scopo di permettere una loro valutazione, si è pensato di eseguire un'analisi a posteriori di prove dị carico su pali in vera grandezza, mediante simulazioni numeriche condotte attraverso un codice di calcolo appositamente realizzato. La possibilità di legare alcuni parametri della curva alle caratteristiche di resistenza dei terreni, ha consentito di realizzare una procedura di facile utilizzazione per la previsione del cedimento di tipo non-lineare di pali singoli.

2. Meccanismo di trasferimento del carico

Ai fini dello studio dei cedimenti prodotti da un carico assiale su un palo singolo, interessa essenzialmente il comportamento del terreno nella zona 1 (Fig.1); la zona 2 assume maggiore interesse nello studio degli effetti di interazione tra pali contigui.
Si considera pertanto il meccanismo di trasferimento del carico alla sola zona di terreno adiacente alla struttura a comportamento non-lineare, supponendo che le deformazioni elastiche della zona 2 ab biano influenza trascurabile sui cedimenti del palo.
L'interazione tra struttura e terreno può essere studiata mediante il modello meccanico illustrato in figura 2 [Covle Reese, 1966; Reese e Hudson, 1968] citato in [Jamiolkowski, 1973].

Fig. 2 - Modello Meccanico.

In questo modo la connessione tra struttura e terreno viene realizzata attraverso un numero finito di legami di tipo non-lineare tra loro indipendenti.
Ovviamente la bontà delle previsioni di questo modello è condizionata dalle leggi attribuite alle funzioni di trasferimento che debbono essere determinate sperimentalmente.
Le funzioni utilizzate nel presente lavoro per simulare il meccanismo di trasferimento del carico sono di tipo iperbolico, con equazione [Chin, 1970]:

$$
\begin{equation*}
q(z)=-\frac{w(z)}{a+b \cdot w(z)} \tag{1}
\end{equation*}
$$

essendo wil cedimento eq la tensione unitaria mobilitata, alla profondità z. Con q si indica sia la tensione tangenziale sulla superficie laterale del palo, sia la tensione normale alla punta.

La funzione di trasferimento iperbolica è illustrata in Fig. 3, in essa i parametri a e b assumono, con i simboli riportati in figura, il significato:

$$
\begin{align*}
& \lim _{w \rightarrow 0} \frac{d q}{d w}=K I=-\frac{1}{a} \\
& \lim _{w \rightarrow \infty} q=q_{l i m}=\frac{1}{b} \tag{2}
\end{align*}
$$

pertanto l'espressione della funzione di trasferimento può essere anche scritta:

$$
\begin{equation*}
q=\frac{w(z)}{\frac{1}{\operatorname{KI}(z)}+\frac{\mathrm{w}(\mathrm{z})}{\mathrm{q}_{\mathrm{lim}}(\mathrm{z})}} \tag{3}
\end{equation*}
$$

Nella (3) KI e qlim rappresentano rispettivamente il valore iniziale della rigidezza, che ha dimensioni $\left[\mathrm{F} \bullet \mathrm{L}^{-3}\right]$, e la portata unitaria limite laterale o alla punta del terreno in cui si trova immerso il palo.
La funzione di trasferimento iperbolica utilizzata per simulare l'interazione tra la struttura ed il terreno, si può considerare completamente definita solo dopo aver assegnato un valore ai due parametri a e b dell'equazione (1).

Laddove possibile la resistenza del terreno, ovvero il coefficiente b del modello, andrebbe valutato me-

Fig. 3 - Funzione di Trasferimento [Chin, 1970]: (a) Legame iperbolico; (b) Iperbole normalizzata.
diante prove di carico su pali in vera grandezza. Qualora ciò non fosse possibile, può essere conveniente determinare il parametro b mediante prove penetrometriche statiche e dinamiche condotte in situ.
In alternativa si può ricorrere ad una valutazione mediante formule analitiche del tipo:

$$
\begin{gathered}
\mathrm{qp}_{\mathrm{lim}}=\alpha_{c} \cdot \mathrm{C} \cdot \mathrm{~N}_{\mathrm{c}}+\alpha_{\mathrm{q}} \cdot \mathrm{q} \cdot \mathrm{~N}_{\mathrm{q}} \\
\mathrm{qL}_{\mathrm{lim}}=\alpha \cdot \mathrm{C}+\mathrm{f} \cdot \sigma_{\mathrm{h}}
\end{gathered}
$$

Una dettagliata trattazione della forma assunta da queste espressioni per le diverse condizioni di calcolo del carico limite, è riportata ad esempio da Viggiani [1975].

Il coefficiente a dell'Eq.(1), esprime le caratteristiche di deformabilità del mezzo in cui si trova immerso il palo; anche il suo valore andrebbe determinato mediante prove di carico su pali in vera grandezza; tuttavia vi sono delle difficoltà ad esplorare il reale andamento della curva carichi-cedimenti nel tratto iniziale.

Come è noto, la resistenza alla punta di un palo si mobilita solo a seguito di cedimenti relativamente elevati. Pertanto nel tratto iniziale della curva carichicedimenti essa potrà essere trascurata e si potrà fare riferimento alla sola funzione di trasferimento della portata laterale.
Esprimendo quest'ultima secondo un'equazione lineare del tipo [Randolph e Wroth, 1978]:

$$
\begin{equation*}
q=\frac{G}{R o} \cdot \frac{1}{\ln (R / R o)} w \tag{4}
\end{equation*}
$$

si può introdurre come elemento caratteristico del terreno, il modulo di taglio G.
In questa espressione Ro rappresenta il raggio del palo, mentre R è il raggio della zona entro cui si risente significativamente della presenza della struttura.
Il suo valore può essere determinato secondo la relazione $\mathrm{R}=2.5(1-v) \mathrm{L}$ [Randolphe. Wroth, 1978] dove v è il coefficiente di Poisson ed L la lunghezza del palo, oppure assumendo $\ln (\mathrm{R} / \mathrm{Ro})=3 \div 5[\mathrm{BA}-$ guelin e Frank, 1975].
Il parametro a definito dalla (2) può essere determinato in funzione del valore della rigidezza iniziale laterale (KI_{L}) del legame iperbolico, sostituendo al valore del modulo di taglio generico definito dalla (4), il suo valore iniziale G_{o}; si ottiene così:

$$
\begin{equation*}
a=\frac{1}{K_{\tilde{I}_{L}}}=\frac{R o \ln (R / R o)}{G_{0}} \tag{5}
\end{equation*}
$$

In questo modo si riesce a legare il parametro a
del modello ad un parametro del terreno preso in considerazione il cui valore non varia (Fig.4), passando dalle condizioni non drenate alle condizioni drenate; è tuttavia da osservare che tale passaggio, determina in genere un aumento della capacità portante del palo e di conseguenza una diminuzione del parametro b del modello.

Il modulo di taglio iniziale G_{o} andrebbe determinato attraverso prove di laboratorio; nel caso in cui ciò non fosse possibile può essere ricavato mediante correlazioni che lo legano ad alcune proprietà dei terreni.

A questo proposito, per i terreni argillosi si ricordano le relazioni adottate dall'Applied Technology Council [1979], che per il rapporto $\mathrm{G}_{0} / \mathrm{C}_{\mathrm{u}}$ riporta un intervallo di valori compreso tra 250 e 2500 , suggerendo di adottare il valore indicativo $\mathrm{G}_{\mathrm{o}} / \mathrm{C}_{\mathrm{u}} \approx 1000$.

Kubara [1981], sulla base di risultati di prove di carico su pali, eseguite da Соoкe et al. [1979] neil'argilla di Londra, consiglia di assumere $\mathrm{G}_{\mathrm{o}} / \mathrm{C}_{\mathrm{u}}=400 \div 900$; Carrubba e Maugeri [1988b], mediante prove di colonna risonante [CARRUBba e MauGERI, 1988a], trovano per l'argilla normalconsolidata della Piana di Catania un valore $\mathrm{G}_{0} / \mathrm{C}_{\mathrm{u}}$ compreso tra 250 e 1700:

Di recente sono apparse alcune correlazioni esistenti tra il modulo dinamico iniziale G_{o} e la resistenza alla punta q_{c} della prova penetrometrica statiea.
Tra queste ricordiamo la correlazione $\mathrm{G}_{\mathrm{o}} / \mathrm{q}_{\mathrm{c}}=20$, valida per le argille nörmalconsolidate della Piana di Catania, determinata da Maugeri et al. [1988].

Per i terreni incoerenti, ricordiamo la correlazione $\mathrm{G}_{\mathrm{o}} / \mathrm{q}_{\mathrm{c}}=6.9 \div 1.7$, proposta da Bellotti et al. [1986] per il sito di Mantova e per le sabbie del Po.

Fig. 4 - Parametri a e b del modello in Fig. 3, per le condizioni nondrenate (u-u).e drenate (d).

3. Modellazione dell'interazione palo-terreno

In Fig. 5 è riportata la discretizzazione del palo [Berardi et al., 1973; Berardi et al., 1981] utilizzata per la implementazione su calcolatore (Fig. 6) del modello descritto al paragrafo precedente.

Il palo di lunghezza Lè diviso in n conci, ciascuno vincolato al terreno circostante attraverso la funzione di trasferimento di tipo non-lineare (3).

Ognuno di questi è inoltre contrastato da quelli adiacenti a mezzo di due molle di tipo elastico lineare. Il concio i-mo, con modulo di Young E del calcestruzzo, è pertanto soggetto alle seguenti forze:

- Azioni normali N_{i} scambiate mutuamente tra i conci in cui è diviso il palo.
- Resistenza laterale QL_{i}, mobilitata dal terreno all'interfaccia con il palo.

Ai fini del calcolo dei cedimenti viene trascurato il peso proprio del palo, in modo da tenere conto soltanto degli effetti indotti dall'applicazione del carico.

Sul primo concio ($\mathrm{i}=1$), agiscono le forze normali dovute al carico P applicato al palo ed alla forza mu-

Fig. 5 - Discretizzazione del complesso palo-terreno.
tua N_{i} scambiata tra il concio 1 ed il successivo; sull'ultimo concio $(i=n)$, agiscono la forza mutua N_{n-1} scambiata con il sovrastante concio i-1 e la reazione mobilitata alla punta Qp.
Se w_{i} è l'abbassamento del baricentro del generico concio, l'azione normale tra il concio i ed il concio $i-1$ assume la seguente espressione:

$$
\begin{equation*}
N_{i-1}=\frac{E A\left(w_{i-1}-w_{i}\right)}{L c} \tag{6}
\end{equation*}
$$

l'azione normale tra il concio i ed il concio i+1 assume la seguente espressione:

$$
\begin{equation*}
N_{i}=\frac{E A\left(w_{i}-w_{i+1}\right)}{L c} \tag{7}
\end{equation*}
$$

essendo A l'area della sezione trasversale del palo e Lc la lunghezza del concio.

L'equilibrio alla traslazione verticale delle forze agenti su tuttì i conci in cui è stato suddiviso il palo, consente di ottenere il sistema risolvente di equazioni:

$$
\begin{align*}
& \mathrm{P}-\mathrm{QL}_{1}-\mathrm{N}_{1}=0 \tag{8}\\
& \hline \mathrm{~N}_{\mathrm{i}}-\mathrm{QL}_{\mathrm{i}}-\mathrm{N}_{\mathrm{i}-1}=0 \\
& \hline \mathrm{~N}_{\mathrm{n}-1}-\mathrm{QL}_{\mathrm{n}}-\mathrm{Qp}=0
\end{align*}
$$

ovvero in forma globale:

$$
\mathrm{P}-\Sigma \mathrm{QL}_{\mathrm{i}}-\mathrm{Qp}=0
$$

Mentre le forze N_{i} sono funzioni lineari di w_{i} secondo le equazioni (6) e (7), i valori QL_{i} e Qp sono da esplicitare in base all'ipotizzato meccanismo di trasferimento di carico dato dalla (1).

Esprimendo secondo l'equazione (3) la resistenza laterale mobilitata in ciascun concio in cui è stato diviso il palo, si ottiene:

$$
\begin{equation*}
\mathrm{QL}_{\mathrm{i}}=\frac{\mathrm{W}_{\mathrm{i}}}{\frac{1}{\mathrm{KI}_{\mathrm{L}, \mathbf{i}}}}+\frac{\mathrm{w}_{\mathrm{i}}}{\mathrm{qL}_{\mathrm{i}}} \mathrm{lim} \quad . \mathrm{L}_{\mathrm{i}} \tag{9}
\end{equation*}
$$

essendo AL_{i} la superficie laterale del concio.
Ponendo:

$$
\begin{equation*}
\mathrm{KL}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{1}{\frac{1}{\mathrm{KI}_{\mathrm{k}, \mathrm{i}}}+\frac{\mathrm{w}_{\mathrm{i}}}{\mathrm{qLi}_{\mathrm{lim}}}} \tag{10}
\end{equation*}
$$

si ha:

$$
\begin{equation*}
\mathrm{QL}_{\mathrm{i}}=\mathrm{KL}\left(\mathrm{w}_{\mathrm{i}}\right) \cdot \mathrm{w}_{\mathrm{i}} \cdot \mathrm{AL}_{\mathrm{i}} \tag{11}
\end{equation*}
$$

Sull'ultimo concio è presente anche la reazione alla punta che analogamente assume l'espressione:

$$
\begin{equation*}
\mathrm{Qp}=\frac{\mathrm{w}_{\mathrm{n}}}{\frac{1}{\mathrm{KI}_{\mathrm{p}}}+\frac{\mathrm{w}_{\mathrm{n}}}{\mathrm{qp}_{\mathrm{lim}}}} \cdot \mathrm{~A}_{\mathrm{p}} \tag{12}
\end{equation*}
$$

essendo A_{p} la sezione trasversale del palo a diametro costante.

Ponendo:

$$
\begin{equation*}
K p\left(w_{n}\right)=\frac{1}{\frac{1}{K I_{p}}+\frac{w_{n}}{q_{p l i m}}} \tag{13}
\end{equation*}
$$

si ha:

Fig. 6 - Schema a blocchi.

Sostituendo nel sistema di equazioni (8) le espressioni ottenute per le portate laterale (9) ed alla punta (12), si ricava un sistema di equazioni non lineari che può essere risolto per successive iterazioni [Duncan e Chang, 1970]. Oltre al programma principale di tipo iterativo, il codice di calcolo è costituito da subroutine secondarie per la valutazione dei parametri del modello e per la stampa deị risultati (Fig. 6).

La determinazione dei parametri a e b, come si è detto, può essere eseguita sulla base delle conoscenze dei valori dei parametri geotecnici del terreno, oppure attraverso l'interpretazione dei risultati di prove di carico.

In quest'ultimo caso, il confronto tra le previsioni del modello ed i risultati sperimentali, consente di affinare la valutazione dei parametri richiesti per il calcolo dei cedimenti.

Dalla stampa dei risultati è possibile ottenere tutte le informazioni sui fattori che influenzano significativamente la soluzione del problema. In particolare è stata elaborata una subroutine grafica che consente di rappresentare: le curve carico-cedimenti; la ripartizione del carico applicato tra punta e superficie laterale; la variazione del carico assiale lungo il palo (curva di trasferimento).

4. Analisi a posteriori di esperienze in vera grandezza

La simulazione numerica è stata condotta su 12
prove di carico su pali strumentati in vera grandezza, reperite tra la bibliografia esistente su questo argomento [Calabresi, 1968; Colombo, 1971; Ottaviani e Esu, 1973; Marchetti e D'Angelo, 1976; Viggiani e Vinale, 1983; Caputo et al., 1989].

I casi esaminati si riferiscono prevalentemente a pali trivellati con lunghezza compresa tra 14 e 42 m e con diametro variabile tra 0.42 e 2 m , comprendendo situazioni notevolmente diverse sia relativamente alle caratteristiche geometriche della struttura, che a quelle geotecniche dei terreni da essa interessati. In tabella 2 sono sinteticamente riportati alcuni dati delle prove di carico prese in considerazione; per alcune di esse (Figg. 7-14), è riportato il confronto tra i dati della prova reale e quelli ricavati dalla corrispondente simulazione con il codice di calcolo descritto al paragrafo precedente.

La simulazione numerica di ciascuna prova, ha richiesto la valutazione preventiva dei parametri a e b (Fig. 3b), introdotti nell'Eq.(1) e definiti dall'Eq. (2). Tali parametri sono legati alle caratteristiche geometriche del palo, nonché alle caratteristiche geotecniche dei terreni da esso attraversati; per questo motivo sono stati presi in considerazione soltanto quei lavori in cui, unitamente ai risultati della prova in situ, veniva riportata una sufficiente descrizione delle proprietà geotecniche dei terreni interessati.

La valutazione della portata limite laterale e della portata limite alla punta si rende necessaria nei casi in cui la prova di carico non viene spinta fino a rottura.

Tabella 2 - Confronto dei valori di rigidezza iniziale laterale determinati dalla correlazione con G_{0} e quelli ottenuti dalla simulazione numerica delle prove di carico

	CASI ESAMINATI		TIPO DI TERRENO	L (m)	D (m)	$q_{\text {lim }}(\mathrm{KPa})$	$\mathrm{KIL}\left(\mathrm{MN} / \mathrm{m}^{3}\right)^{*}$	$\mathrm{K} \mathrm{I}_{\mathrm{L}}\left(\mathrm{MN} / \mathrm{m}^{3}\right)^{* *}$
1	Viggiani, Vinale	(1983)	Pozzolana, Sabbia	42.00	1:50	52.00^{\triangle}	20.00	21.00
2	Vigciani, Vinale	(1983)	Pozzolana, Sabbia	42.00	2.00	52.00^{\triangle}	16.00	20.00
$\because 3$	Caputo et al.	(1989)	Pozzolana, Sabbia	43.30	1.50	80.00^{\triangle}	45.00	43.00
4	Caputo et al.	(1989)	Pozzolana	25.00	0.80	98.00^{\triangle}	76.00	80.00
5	Caputo et al.	(1989)	Pozzolana	35.00	1.00	55.50^{\triangle}	36.00	36:00
6	Marchetti, D'Angelo	(1976)	Lino, Argilla, Sabbia	22.00	1.00	$62.50^{\text {- }}$	40.00	38.00
7	Marchetti, D'Angelo	(1976)	Lino, Argilla	23.50	0.60	$91.00^{\text {E }}$	100.00	120.00
8	Calabresi	(1968)	Argilla	20.00	0.42	$30.00 \square$	17.50	15.00
9	Colombo	(1971)	Lino, Argilla, Sabbia	32.50	1.50	100.00^{\triangle}	70.00	80.00
10	Ottaviani, Esu.	(1973)	Argilla	14.00	0.53	40.00^{\square}	32.00	35.00
11	Ottaviani, Esu	(1973)	Argilla	25.00	0.42	20.00^{\square}	12.00	11.00
12	Ottaviani, Esu	(1973)	Lino, Argilla, Sabbia	29.00	0.77	$15.00{ }^{\square}$	10.00	9.00

\square Valore medio da prove di laboratorio

* Da correlazione con G_{o}
\triangle Valore medio da prova penetrometrica
- Valore medio da metodo $\alpha \mathrm{Cu}$

Per molte delle prove di carico esăminate, la determinazione della capacità portante dei pali, è stata fatta preventivamente, sulla base delle misure di resistenza eseguite con prove penetrometriche statiche e dinamiche.

In alcuni dei casi studiati si era direttamente in possesso dei valori della resistenza laterale determinati con tali prove [Colombo, 1971], in altri [Viggiani e Vinale, 1983; Caputo et al., 1989] è stato necessario valutare la resistenza laterale attraverso le re-
lazioni che legano il suo valore alla resistenza penetrometrica alla punta.

Per i restanti casi, [Calabresi, 1968; Ottaviani e Esu, 1973; Marchetti e D'Angelo, 1976], in cui non si avevano informazioni da indagini penetrometriche, la portata laterale è stata calcolata tramite gli usuali metodi $\alpha \mathrm{C}_{\mathbf{u}}$, assumendo per α i valori consigliati dalle Raccomandazioni AGI.

Tutte le simulazioni numeriche sono state eseguite definendo la portata alla punta per mezzo delle for-

Prova di Carico in Situ

Fig. 7 - Risultati sperimentali forniti da Colombo (1971).
mule statiche in precedenza menzionate. In un solo caso [VigGiani e Vinale, 1983] è stato possibile confrontare il carico limite così ottenuto, con quello rilevato durante la prova in situ.

La possibilità di conoscere il carico limite di alcuni pali per i quali la prova di carico è stata spinta fino a rottura, ha consentito una migliore approssimazione della resistenza da assegnare al terreno, così da ottenere anche dalla simulazione numerica un valore del carico limite più vicino possibile a quello reale.

Questo tipo di indagine ha permesso di riscontrare un buon accordo tra i valori sperimentali di resistenza e quelli trovati per mezzo delle relazioni che associano la resistenza laterale a quella alla punta di una prova CPT.

Partendo dal presupposto di poter stabilire con buona approssimazione il valore della resistenza limite del terreno e quindi il coefficiente b dell'Eq.(1), l'unica incognita del problema resta il valore iniziale da assegnare al coefficiente a (Fig.3b) della funzione di trasferimento.

Essendo nota per i terreni attraversati dal palo la resistenza al taglio non drenata $\mathrm{C}_{\mathbf{u}}$ o quella misurata attraverso prove penetrometriche, si è potuta valutare la rigidezza iniziale da inserire nel legame iperbolico tramite la relazione (5), la quale presuppone la conoscenza del modulo di taglio iniziale G_{o}.

Non essendo questo noto per le prove di carico prese in esame, ne è stata fatta una valutazione attraverso le relazioni riportate al par. 2, assumendo

Simulazione numerica

Fig. 8 - Confronto con i risultati sperimentali riportati in Fig. 7.
nel caso delle prove di Viggiani e Vinale [1983] e Caputo et al. [1989], un rapporto $\mathrm{G}_{\mathrm{o}} / \mathrm{q}_{\mathrm{c}}=7$, ed il rapporto $\mathrm{G}_{0} / \mathrm{C}_{\mathrm{u}}=1000$, nel caso delle esperienze di Ottaviani e Esu [1973] e Marchetti e D'Angelo [1976].

Le simulazioni numeriche sono state dapprima eseguite ipotizzando valori di rigidezza iniziale diversi per ciascuno strato di terreno presente lungo il fusto del palo; a ciascun concio sono stati pertanto assegnati parametri caratteristici delle curve di trasfe-
rimento variabili con le caratteristiche di resistenza di ciascuno strato.

Le stesse simulazioni sono state successivamente ripetute considerando il terreno omogeneo; sono state pertanto definite soltanto due funzioni di trasferimento, valutando i parametri caratteristici a e b per ciascuna funzione sulla base del valore medio della resistenza laterale e del valore della resistenza alla punta.

Nel caso di terreno stratificato i risultati non si

Prova di Carico in Situ

Fig. 9 - Risultati sperimentali forniti da Marchetti e D'Angelo [1976].

Simulazione numerica

Fig. 10 - Confronto con i risultati sperimentali riportati in Fig. 9.

Prova di Carico in Situ

Fig. 11 - Risultati sperimentali forniti da Viggiani e Vinale [1973].

Fig. 12 - Confronto con i risultati sperimentali riportati in Fig. 11.

Prova di Carico in Situ

Fig. 13 - Risultati sperimentali forniti da Viggiani e Vinale [1973].

Simulazione numerica

Fig. 14 - Confronto con i risultati sperimentali riportati in Fig. 13.
discostano significativamente da quelli ottenuti nell'ipotesi semplificativa di terreno omogeneo, con valore di rigidezza determinato a posteriori dai risultati della prova di carico (Fig.15).

Qualora non si disponga di una prova di carico si presenta il problema di determinare il valore di una rigidezza «equivalente» per potersi riferire al caso semplificato di terreno omogeneo. Su tale argomento si riferirà al par. 5 .

Nella tabella 2, unitamente ad alcuni dati caratteristici delle prove di carico prese in considerazione, come le dimensioni del palo, il tipo di terreno in cui esso si trova, la resistenza laterale media, sono riportati il valore medio della rigidezza iniziale determinato preliminarmente sulla base del valore del mo-
dulo G_{o} tramite la relazione (5), nonché il valore della rigidezza iniziale che attraverso la simulazione numerica, meglio approssima il caso reale.

La sperimentazione numerica eseguita, ha permesso di ricavare, sulla base dei risultati delle prove sperimentali, alcune correlazioni empiriche, espresse in forma adimensionale, che consentono di valutare la pendenza iniziale KI_{L} per la funzione di trasferimento relativa alla portata laterale:
$\frac{\mathrm{q}_{\mathrm{lim}}}{\mathrm{KIL}_{\mathrm{L}} \cdot \mathrm{D}}=0.005 \div 0.002$ per $\mathrm{q}_{\mathrm{lim}} \leq 50 \mathrm{KPa}$
$\frac{\mathrm{q}_{\text {lim }}}{\mathrm{KI}_{\mathrm{L}} \cdot \mathrm{D}}=0.002 \div 0.001$ per $q_{\text {lim }}>50 \mathrm{KPa}$

Fig. 15 - Confronto tra la curva sperimentale carico-cedimenti e i valori ottenuti dalla simulazione numerica con rigidezza costante e rigidezza variabile con la profondità.
dove $q_{\text {lim }}$ rappresenta la resistenza laterale unitaria e D il diametro del palo.

La Fig. 16 riporta i valori di $q_{l i m}$ e del prodotto $\mathrm{KI}_{\mathrm{L}} \cdot \mathrm{D}$ relativi alle 12 prove di carico esaminate, nonché i campi individuati dalle relazioni (15) e (16).

Analogamente a quanto fatto per la portata laterale, si è cercato di individuare una relazione che permettesse di valutare la pendenza iniziale KI_{p}, per la funzione di trasferimento alla punta del palo.

In questo caso una delle maggiori difficoltà da superare, è la scarsa quantità di informazioni disponibili su cui basare un tale tipo di indagine.

In realtà le analisi condotte hanno permesso di stabilire che la rigidezza assegnata al terreno in corrispondenza della punta, non gioca un ruolo molto importante fintantoché il carico applicato è lontano dal suo valore limite (Fig.17). Nell'ambito della casistica esaminata, si è osservato che l'eventuale errore commesso sulla valutazione di questo parametro, non pregiudica significativamente i valori calcolati dei cedimenti alla testa del palo, perlomeno fino al carico di esercizio, valutato convenzionalmente quest'ultimo come il rapporto tra il carico limite ed un coefficiente di sicurezza pari a 2.5 , secondo Normativa.

Con l'aumentare del carico applicato, e quindi con una maggiore mobilitazione della resistenza alla punta, anche il valore assegnato al coefficiente a in tale funzione di trasferimento (a_{p}) può influenzare in modo apprezzabile i risultati.

Tra i lavori reperiti in bibliografia soltanto quello di Viggiani e Vinale [1983], riporta dettagliatamente quanto rilevato alla punta del palo nel corso di due prove di carico.

Fig. 16 - Correlazione fra la rigidezza iniziale laterale e la portata limite laterale.

Fig. 17 - Curve carico-cedimenti al variare del rapporto $\mathrm{a}_{\mathrm{p}} / \mathrm{a}_{\mathrm{L}}$.

Dal confronto tra la resistenza alla punta misurata con una prova penetrometrica (q_{c}) ed i valori di rigidezza iniziale alla punta (KI_{p}) ottenuti dalla simulazione numerica delle due prove di carico, è stata determinata la seguente correlazione:

$$
\begin{equation*}
\frac{\mathrm{q}_{\mathrm{c}}}{\mathrm{KI}_{\mathrm{p}} \cdot \mathrm{D}}=0.03 \tag{17}
\end{equation*}
$$

Un confronto tra il valore del coefficiente $\mathrm{a}_{\mathrm{L}}=1 / \mathrm{KI}_{\mathrm{L}}$ determinato tramite le espressioni (15) e (16), con quello ricavato da analoghe correlazioni trovate dà Hirayama [1990], permette di rilevare un buon accordo relativamente ai parametri assegnati alla funzione di trasferimento per la portata laterale.

Una certa differenza è stata osservata circa i valori a e b relativi alla funzione di trasferimento per la portata alla punta; una giustificazione di tale divergenza potrebbe essere individuata nel fatto che le prove di carico esaminate da Hirayama si riferiscono a pali di considerevoli dimensioni, in cui si è verificata una mobilitazione della resistenza alla punta molto modesta.

Nella Fig. 18 è riportato un confronto tra le curve carico-cedimenti ottenute con le relazioni di Hi rayama e con le correlazioni (15) e (17) proposte nel presente lavoro.

Fig. 18 - Confronto delle correlazioni (15) e (17) con quelle fornite da. Hyrayama [1990].

5. Modello semplificato per la previsione dei cedimenti

Allo scopo di consentire una semplice e pratica utilizzazione del modello, può essere opportuno ricavare delle relazioni che consentono di valutare il cedimento alla testa del palo, senza l'ausilio di un codice di calcolo.

Questo cedimento può essere pensato come somma di due contributi, il primo w_{r}, dovuto alla deformazione del complesso palo-terreno nell'ipotesi di palo rigido, il secondo w_{e}, dovuto all'accorciamento elastico del palo, cioè:

$$
\begin{equation*}
\mathrm{w}=\mathrm{w}_{\mathrm{r}}+\mathrm{w}_{\mathrm{e}} \tag{18}
\end{equation*}
$$

Il valore di w_{r} può essere espresso partendo da considerazioni sul legame iperbolico adottato per simulare l'interazione tra palo e terreno.

Ponendo:

$$
\begin{equation*}
\eta=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{lim}}} \tag{19}
\end{equation*}
$$

dove $\mathrm{P}_{\text {lim }}$ rappresenta: il carico assiale ultimo del palo e P il carico generico applicato, si può allora scrivere:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{r}}=\frac{\mathrm{P}}{K I^{*} \cdot(1-\eta)} \tag{20}
\end{equation*}
$$

dove KI^{*}, che ha dimensioni $\left[\mathrm{F} \cdot \mathrm{L}^{-1}\right.$], rappresenta la rigidezza iniziale di una funzione di trasferimento
unica per la resistenza laterale e per la resistenza alla punta, che nell'ipotesi di piccoli spostamenti w_{r}, può essere assunta pari a:
$K I^{*}=\left(\mathrm{KL}_{\mathrm{L}}+\mathrm{KI}_{\mathrm{p}}\right)=\left(\Sigma \mathrm{KL}_{\mathbf{L}, \mathrm{i}} \cdot \mathrm{AL}_{\mathrm{i}}+\mathrm{KI}_{\mathrm{p}} \cdot \mathrm{A}_{\mathrm{p}}\right)$
essendo:
$-\mathrm{KI}_{\mathrm{L}}=$ Rigidezza iniziale dei legami iperbolici relativi alla superficie laterale del palo.

- $\mathrm{KI}_{\mathrm{p}}=$ Rigidezza iniziale del legame iperbolico relativo alla punta del palo.
$-\mathrm{AL}_{\mathrm{i}}=$ Superficie laterale del palo, in cui $\mathrm{KI}_{\mathrm{L}, \mathrm{i}}$ può ritenersi costante.
- $\mathrm{A}_{\mathrm{p}}=$ Area sezione trasversale in corrispondenza della punta del palo.

La determinazione dell'accorciamento elastico presenta forse maggiori incertezze, dovute alla difficoltà di prevedere la reale distribuzione della sollecitazione di sforzo normale $\mathrm{N}(\mathrm{z})$ lungo il palo; risulta infatti in generale:

$$
\begin{equation*}
w_{\mathrm{e}}=\int_{0}^{\mathrm{L}} \frac{\mathrm{~N}(\mathrm{z})}{\mathrm{EA}} \mathrm{dz} \tag{22}
\end{equation*}
$$

essendo E il modulo di Young del calcestruzzo ed A l'area della sezione trasversale del palo.

Per ricavare una soluzione analitica della (22) si può, in prima approssimazione, pensare che il palo sia immerso in uno spazio elastico alla Winkler, con molle di costante elastica K_{L} disposte lungo il fusto e vincolato in corrispondenza della punta, con una molla di costante elastica K_{p}, come illustrato in Fig. 19a.

Isolando un concio infinitesimo di ampiezza dz (Fig. 19b) l'equazione di equilibrio nella direzione verticale, può scriversi:

$$
\begin{equation*}
\mathrm{N}+\mathrm{dN}-\mathrm{N}+\mathrm{p}(\mathrm{z}) \mathrm{d} \mathrm{z}=0 \tag{23}
\end{equation*}
$$

dove N è lo sforzo assiale agente e p la reazione offerta dal suolo alla Winkler. Combinando la (22) con la (23) si ottiene l'equazione differenziale di equilibrio:

$$
\begin{equation*}
\mathrm{y}^{\prime \prime}+\frac{\mathrm{p}}{\mathrm{EA}}=0 \tag{24}
\end{equation*}
$$

Sostituendo nella (24) la reazione p, funzione dello spostamento verticale y del palo secondo l'espressione:

$$
\mathrm{p}=-\mathrm{K}_{\mathrm{L}} \cdot \mathrm{y}
$$

Fig. 19 - Modello di calcolo per il cedimento elastico.
dove $K_{L}=K_{L} \cdot \pi \cdot \mathrm{D}$ e K_{L} una rigidezza unitaria con dimensioni $\left[F \cdot L^{-3}\right]$, si ottiene in definitiva:

$$
y^{\prime \prime}-\frac{K_{\mathrm{L}}}{E A} y=0
$$

pertanto posto $\alpha^{2}=K_{L} / E A$, l'equazione differenziale della linea elastica che regge il problema è la seguente:

$$
\begin{equation*}
y^{\prime \prime}-\alpha^{2} y=0 \tag{25}
\end{equation*}
$$

Essa ammette una soluzione del tipo:

$$
\begin{equation*}
\mathrm{y}=\mathrm{C}_{1} \cdot \mathrm{e}^{a \mathrm{x}}+\mathrm{C}_{2} \cdot \mathrm{e}^{-a \mathrm{x}} \tag{26}
\end{equation*}
$$

Imponendo le condizioni al contorno:

$$
\begin{align*}
& \mathrm{EAy}^{\prime}(0)=-\mathrm{P} \tag{27}\\
& \operatorname{Eay}^{\prime}(\mathrm{L})=-\mathrm{Rp}=-K_{p} \cdot \mathrm{y}(\mathrm{~L})
\end{align*}
$$

dove Rp è la reazione mobilitata alla punta del palo,
si possono ricavare i seguenti valori delle costanti Cl e C2:

$$
\begin{align*}
& C_{1}=\frac{1}{\alpha E A} \cdot \frac{e^{-\alpha L}(1-\beta)}{\left(e^{\alpha L}-e^{-\alpha L}\right)+\beta\left(e^{\alpha L}+e^{-\alpha L}\right)} \cdot p \tag{28}\\
& C_{2}=\frac{1}{\alpha E A} \cdot \frac{e^{\alpha L}(1+\beta)}{\left(e^{\alpha L}-e^{-\alpha L}\right)+\beta\left(e^{\alpha L}+e^{-\alpha L}\right)} \cdot p \tag{29}
\end{align*}
$$

$\operatorname{con} \beta=K_{p} / \alpha E A$.
Sostituendo le espressioni di C_{1} e C_{2} nella (26), viene definita l'equazione della linea elastica, ed è possibile valutare la reazione mobilitata alla punta del palo:

$$
\begin{equation*}
R p=\frac{2 P \beta}{e^{\alpha L}(1+\beta)-e^{-\alpha L}(1-\beta)} \tag{30}
\end{equation*}
$$

nonché l'accorciamento elastico w_{e} tramite l'espressione (21).

Con qualche semplice passaggio si ottiene in definitiva:

$$
\begin{equation*}
w_{e}=C \cdot \frac{P}{\alpha E A} \tag{31}
\end{equation*}
$$

essendo C un coefficiente espresso dalla relazione:

$$
\begin{equation*}
C=\frac{e^{\alpha L}(1+\beta)+e^{-\alpha L}(1-\beta)-2}{e^{\alpha L}(1+\beta)-e^{-\alpha \mathrm{L}}(1-\beta)} \tag{32}
\end{equation*}
$$

In Fig. 20 viene riportata la variazione del coefficiente C al variare dei parametri adimensionali $\alpha \mathrm{L}$ e β, per un campo di valori che si è ritenuto maggiormente rappresentativo delle situazioni reali.

L'accorciamento elastico espresso dall'equazione (31), risulta dipendente dai valori assegnati alle molle K_{L} e K_{p}.

Tali parametri devono essere opportunamente valutati in considerazione della non-linearità delle funzioni di trasferimento; essi pertanto risultano funzionid del livello di carico e degli spostamenti da esso prodotti. Se si suppone che la punta del palo non sia attestata in uno strato rigido, e/o il carico è contenuto entro limiti di esercizio, è lecito assumere che la reazione mobilitata alla punta sia di entità modesta.

In tale ipotesi semplificativa si puọ̀ trascurare la non-linearità del parametro K_{p}, mantenendolo costante al suo valore iniziale KI_{p} espresso dalla (17).

Per quanto concerne il valore da assegnare alle molle K_{L}, è ínvece opportuno considerare la non-

Fig. 20 - Valori del coefficiente C definito dalla (32) per il calcolo del cedimento elastico.
linearità assumendo una rigidezza funzione del livello di carico agente.

Sempre nell'ipotesi che la resistenza mobilitata alla punta sia modesta, secondo la (19) il valore da attribuire alle molle K_{L} può assumersi pari a :

$$
\begin{equation*}
\mathrm{K}_{\mathrm{L}}=\mathrm{KI}_{\mathrm{L}} \cdot(1-\eta) \cdot \pi \cdot \mathrm{D} \tag{33}
\end{equation*}
$$

dove KI_{L} risulta espresso dalle relazioni (15) e (16).
A verifica dell'attendibilità del procedimento utilizzato è stato eseguito un confronto tra i cedimenti reali e quelli calcolati con il codice di calcolo e con quest'ultima procedura semplificata.

Per brevità di esposizione, viene riportato in Fig. 21 tale confronto relativamente ai casi 1 e 4 della Tab. 2.

L'esame della figura evidenzia che la procedura consente di ottenere in maniera sufficientemente accurata, almeno per la casistica esaminata, í risultati ricavati per via sperimentale.

In Fig. 22 viene inoltre evidenziato il contributo dato dall'accorciamento elastico w_{e} al cedimento totale; per il caso preso in esame, in corrispondenza del carico di esercizio, tale valore risulta dello stesso ordine di grandezza di quello dovuto al terreno nell'ipotesi di palo rigido.

Fig. 21 - Confronto dei cedimenti sperimentali con quelli ricavati attraverso le procedure proposte.

Fig. 22 - Contributo dell'accorciamento elastico w_{e} al cedimento totale w.

6. Considerazioni conclusive

Nonostante il metodo delle funzioni di trasferimento sia noto da tempo, di rado esso viene impiegato per il calcolo dei cedimenti di un palo. Cio è dovuto principalmente alla difficoltà di definire e misurare i parametri che intervengono nella formulazione delle funzioni stesse.
Una corretta determinazione di tali parametri presuppone la realizzazione di prove di carico su pali strumentati in vera grandezza, che possono essere giustificate solo per opere di particolare impegno.
Tuttavia anche in tal caso, molto spesso l'interpretazione dei risultati di tali prove è stata mirata all'introduzione di coefficienti empirici che hanno validità limitata al caso specifico senza fornire valide indicazioni sui valori che questi coefficienti possono assumere per terreni e caratteristiche geometriche differenti da quelli di prova. Nel presente lavoro è stato elaborato un codice di calcolo che consente di valutare i cedimenti di un palo singolo considerando un comportamento non-lineare di un terreno comunque stratificato.

Il codice di calcolo è stato validato confrontando i risultati ottenuti per via numerica con quelli sperimentali relativi ad un numero significativo di prove di carico, eseguite da vari Autori su terreni di differenti caratteristiche.
L'analisi a posteriori di tali prove ha permesso di formulare curve di trasferimento per diversi tipi di terreno e di pali, consentendo di definirne i parametri caratteristici sulla base di correlazioni empiriche con parametri geotecnici di usuale determinazione.
Nel caso in cui non siano disponibili delle prove
di carico, mediante il codice di calcolo è possibile valutare i cedimenti non-lineari di un palo singolo, utilizzando parametri delle curve di trasferimento correlati alla portata limite del palo medesimo ed a parametri geotecnici quali la resistenza penetrometrica alla punta ed il modulo di taglio iniziale G_{o}.

Il vantaggio di correlare la rigidezza laterale a quest'ultima grandezza, è che essa non varia passando dalle condizioni non drenate a quelle drenate. Le condizioni drenate peraltro si raggiungono di norma anche nelle prove di carico di pali in terreni argillosi, qualora il carico venga incrementato con intervalli di tempo appropriati.
Tale situazione potrebbe essere altresì rappresentativa dei cedimenti dei pali sotto i carichi di esercizio dovuti alle sovrastanti costruzioni.

Nei casi in cui l'entità del lavoro non giustifica la realizzazione di prove di carico su pali strumentati, non è consigliabile usare un algoritmo di calcolo complesso, giacché l'incertezza sull'effettivo valore dei parametri geotecnici vanifica in ogni caso l'accuratezza dei risultati.

In tal caso è fornita una procedura semplificata per la previsione dei cedimenti del palo singolo, che permette di esprimere tale cedimento mediante soluzioni analitiche in forma chiusa, nell'ipotesi semplificativa di terreno omogeneo e portata alla punta trascurabile rispetto a quella laterale.

Quest'ultima ipotesi è accettabile qualora, in presenza di cedimenti modesti, possa essere rimossa la condizione di terreno non omogeneo, utilizzando una rigidezza equivalente costante con la profondità ed espressa dalla (21). Qualora la procedura di calcolo semplificata sia basata su un'accurata cáratterizzazione geotecnica del terreno, essa può fornire risultati sufficientemente accurati, permettendo inoltre di cogliere la non-linearità dei cedimenti prodotti dal carico applicato a differenza dei metodi comunemente utilizzati.

Ringraziamenti

Gli autori ringraziano il Prof. Ing. Alberto Burghignoli per i suggerimenti e la revisione del testo.
a.

BIBLIOGRAFIA

Berardi G., Dalerci G., La Magna A. (1973) - Stato di TensioneDeformazione, in Fase di Esercizio, del Palo in Terreno Incoerente. Atti XI Convegno Italiano di Geotecnica, Milano. T.1-3, p. 36.

Berardi G., La Magna A., Passalacqua R. (1981) - Pile Embedded into Nonlinearly Elastic Medium. X ICSMFE, Stockholm, Vol. II, pp. 619-624.
Bellotti R., Ghionna V., Jamiolkówski M., Lancellotta R., Manfredin G. (1986) - Deformation characteristics of cohesionless Soils from in situ test. Proc. Use of in Situ Tests in Geotech. Eng. ASTM, Geotech. Spec. Publ., n.6, Virginia, Blacksburg.

Calabresi G. (1968) - Comportamento di un alto edificio fondato su argille sopraconsolidate. Rivista Italiana di Geotecnica vol. II, pp. 57-67.
Caputo V., Viggiani G. (1984) - Pile foundation analysis: a simple approach to nonlinearity effects. Rivista Italiana di Geotecnica, vol. XVIII, pp. 32-51.
Caputo V., Gambacorta F., Viggiani C. (1989) - Pali Trivellati di grande diametro in terreni piroclastici del Napoletano. Assoc. Geot. Ital. XVII Convegno Nazionale di Geotecnica, Taormina. vol. I, pp. 63-79.
Carrubba P., Maugeri M. (1988a) - Determinazione delle proprietà dinamiche di un'argilla mediante prove di colonna risonante. Rivista Italiana di Geotecnica. vol. XXII, pp. 101-113.
Carrubba P., Maugeri M. (1988b) - Sulle correlazioni tra il modulo dinamico trasversale e le caratteristiche dei terreni in campo statico. Atti Convegno C.N.R., Monselice (PD), 5-6 Ottobre 1988, pp. 1-305, 1-325.
Chin T.K. (1970) - Estimation of the ultimate load of piles from tests not carried to failure. Proc. Il South East Asian Conf. Soil Mech. Found. Eng.
Cooke R.W., Price G., Tarr K. (1979) - Jacked piles in London Clay. Geotechnique, vol. XXIX, n. 2, pp. 113-147.
Coyle H.M., Reese L.C. (1966) - Load Transfer for Axially Loaded Piles in Clay. Journ. Soil Mechanics Found. Div., vol. XCII, SM2, pp. 1-26.
Colombo P. (1971) - Osservazioni sul comportamento di pali a grande diametro. Rivista Italiana di Geotecnica, vol. V, pp. 163-172.
Duncan J., Chang C.Y. (1970) - Nonlinear Analysis of Stress and Strain in Soil. J. Soil Mechanics Found. Div., vol. XCVI, SM5, pp. 1629-1653.
Hrayama H. (1990) - Load-Settlement analysis for bored piles using hyperbolic transfer functions. Soils and Foundations vol. XXX, n. 1, pp. 55-64.

Jamolkowsky M. (1973) - Alcune osservazioni sullo stato attuale delle conoscenze sul calcolo dei pali di fondazione. Associazione Geotecnịca Ital., XI Convegno Naz.di Geotecnica, Milano. T.I.0 -RG.
Kezdi A. (1957) - Bearing capacity of piles and pile groups. Proc. IV ICSMFE, London, vol. II, pp. 47-51.
Kraft L.M., Ray R.P., K̇́ Journal of the Geotech. Eng. Div., vol. CVII, N.GT11, pp. 1543-1561.
Kuwabara F. (1991) - Settlement behaviour of non-linear soil around single piles subjected to vertical loads. Soils and Foundations vol. XXXI, n. 1, Mar. pp. 39-46.
Marchetti S., D'Angelo L. (1976) - Misure di sollecitazione nei pali di fondazione in calcestruzzo. Rivista Italiana di Geotecnica, vol. X, pp. 178-204.
Marchetti S. (1989) - Alcuni recenti orientamenti nell'Analisi dei Pali di Fondazione. Assoc. Geot. Italiana, XVII Convegno Nazionale di Geotecnica, Taormina. vol. II, pp. 7-37.
Maugeri M., Carrubba P., Carrubba A. (1988)-Caratterizzazione dinamica e risposta del terreno nella zona industriale di Catania. Ingegneria Sismica, n. 2, pp. 9-18.
Ottaviani M., Esu F. (1973) - Interpretazione dei risultati di prove di carico su pali di fondazione mediante il metodo degli elementi finiti. Assoc. Geot. Italiana, XI Convegno Nazionale di Geotecnica, T.I. 10.
Poulos H.G. (1979) - Settlement of Single Piles in Nonhomogeneous Soil. Journal of the Geotech. Engineering Div. Gt5, pp. 627-641.
Randolph M.F., Wroth C.P. (1978) - Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotech. Engineering Div. Gt12, pp. 1465-1488.
Reese L.C., Hudson R.W. (1968) - Field Testing of Drilled Shafts to Develop Design Methods. Res. Rep. 89-1, University of Texas, Austin, Center for Highway Research.
Resse L.C., Hudson W.R., Vidayvergrya V.N. (1969) - An investigation of the interaction between bored piles and soil. Proc. Seventh Intern. Conf. Soil Mech. Found. Eng., vol. II Mexico City.
Viggiani C. (1975) - Significato e limiti dei procedimenti per il calcolo del carico limite dei pali di fondazione. VI Ciclo Annuale di Conferenze dedicate ai problemi di Meccanica dei Terreni e Ingegneria delle Fondazioni, Torino.

Vigglani C., Vinale F. (1983) - Comportamento di Pali Trivellati di grande diametro in terreni piroclastici. Rivista Italiana di Geotecnica, vol. XVII, pp. 59-83.
Zienkiewicz O.C. (1971) - The Finite Element Method in Engineering Science. London, McGraw-Hill, pp.87-88.

SUMMARY

The most common procedure for the evaluation of a pile settlement is the method of Poulos [1979], that is based on the assumption that the soil behaves as a linearly-elastic material.
On the contrary, results of full scale loading tests on piles, confirm that soils show non-linear stress-strain behaviour at least around the pile (Fig.1). In this paper, a model for analyzing the non-linear load- settlement behaviour of a single pile subjected to vertical loads is presented (Fig. 2). The model employs a hyperbolic load-transfer function (Tab. 1), in which the non-linear soil-pile interaction can be simulated with the following equation [CHIN, 1970]:

$$
\begin{equation*}
q(z)=-\frac{w(z)}{a+b \cdot w(z)} \tag{1}
\end{equation*}
$$

The function is characterized by two parameters: the constant a is the reciprocal of the initial tangent KI as shown in Fig.3b, while the constant b is the reciprocal of limiting tip and side resistance.
The main difficulty of applying this method is the correct determination of function's parameters for a realistic evaluation of pile settlements.
The back analysis of loading tests is the best way to evaluate the abovementioned parameters a e b. Alternatively, the constant b may be estimated from usual in-situ tests, such as cone penetration tests (CPT) and standard penetration tests (SPT), or using bearing capacity equations.
If no loading tests are allowable, the following equation proposed by Randolph and Wroth [1978] for an elastic soil, can be used to determine the constant a :

$$
\begin{equation*}
q=\frac{\dot{G}}{R o} \cdot \frac{1}{\ln (R / R o)} w \tag{4}
\end{equation*}
$$

in which Ro is the radius of the pile shaft, w is the settlement of the pile, G is the shear modulus of the soil and R is a radial distance at which the shear stress becomes neglegible. Being $a=1 / K I$ as shown in Fig. 3b and considering the shear modulus at small strain G_{0}, is possible to obtain:

$$
\begin{equation*}
a=\frac{1}{\mathrm{KI}}=\frac{\mathrm{Ro} \ln (\mathrm{R} / \mathrm{Ro})}{\mathrm{G}_{\mathrm{o}}} \tag{5}
\end{equation*}
$$

by which the parameter a of the model is connected with the characteristic parameter of soil G_{0}; then a, as G_{0}, became indipendent of the drainage conditions (Fig. 4).
G_{o} can be determined by means of resonant column test or alternatively by empirical correlations with the CPT point resistance or with undrained shear strenght.
To validate the effectiveness of the correlation proposed for the evaluation of parameters a and b, the pile was discretized as shown in Fig. 5 and a computer code was compiled (Fig. 6); then a comparison between field measurements and numerical analysis has been made.
Twelve loading tests of bored piles have been studied and a good agreement was observed between measured and computed non-linear settlements (Figs. 7-14), for homogeneous and nonhomogeneous soils (Fig. 15).
With reference to the loading tests shown in Tab. 2, the following relationships between ultimate skin friction and initial tangent of loadtransfer function, has been found (Fig. 16):

$$
\begin{equation*}
\frac{\mathrm{qlim}_{\mathrm{lim}}}{\mathrm{KI}_{\mathrm{L}} \cdot \mathrm{D}}=0.005 \div 0.002 \quad \mathrm{q}_{\mathrm{lim}} \leq 50 \mathrm{Kpa} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{q}_{\mathrm{lim}}}{\mathrm{KI}_{\mathrm{L}} \cdot \mathrm{D}}=0.002 \div 0.001 \quad \mathrm{q}_{\mathrm{lim}}>50 \mathrm{KPa} \tag{16}
\end{equation*}
$$

The influence on pile settlement of the ratio between the point value a_{p} and the side value a_{L}, has been investigated (Fig. 17); the influence on pile settlement given by lateral stiffness evaluated according to eq. (15) and according to Hirayama [1990] is shown in Fig. 18.

A simple procedure for evaluating non-linear settlement at pile top, is also proposed (Fig. 19).
The settlement of the pile top is computed as the sum of the settlement w_{I} due to soil deformation, assuming the pile as rigid, and the elastic shortening w_{c} of the pile.

The value of w_{r} can be obtained by a relationship directly derived from the equation of load-transfer function:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{r}}=\frac{\mathrm{P}}{\mathrm{KI} \cdot \cdot(1-\eta)} \tag{20}
\end{equation*}
$$

in which P is applied load, η is the load level, that is the ratio of the applied load over the ultimate load $\mathrm{P}_{\mathrm{lim}} ; \mathrm{KI}^{*}$, assuming small deformation, is given by eq. (21).

Assuming an elastic soil-pile interaction along the pile shaft and at the tip as a Winkler model, it is possible to derive an equation in closed form, which gives the elastic deformation of the pile subjected to vertical load:

$$
\begin{equation*}
w_{e}=C \cdot \frac{P}{\alpha E A} \tag{28}
\end{equation*}
$$

where:

- $\mathrm{C}=$ Non-dimensional parameter, given by eq. (32), as shown in Fig. 20.
$-\mathrm{E}=$ Young modulus of the pile.
- $\mathrm{A}=$ Area of the pile cross section.
- $K=$ Winkler stiffness evaluated for unit length of the pile.

Due to the non-linearity of the soil-pile interaction, K_{L} should be chosen depending on the load level, according to equation (33).

Fig. 21 shows a comparison among the settlement measured and that computed both by computer code and by the semplified procedure.

Fig. 22 shows also the contribute of clastic shortening of the pile w_{e} on the total settlement w.
This simple proposed procedure, when based on accurate soil pro-
perties evaluation, can be used successfully for a prevision of nonlinear pile settlements.

Elenco dei Simboli

A : Area della sezione trasversale del palo.
Ap : Area della sezione trasversale alla punta del palo.
AL_{1} : Area laterale del concio i-mo.
a : Inverso della rigidezza iniziale.
b : Inverso della portata limite.
D : Diametro del palo.
E : Modulo di Young del calcestruzz̧o.
G : Modulo di taglio del terreno.
$\mathrm{G}_{\mathrm{o}} \quad:$ Modulo di taglio iniziale.
$\mathrm{KI}(\mathrm{z}) \quad$: Rigidezza iniziale alla profondità z.
KI_{L} : Rigidezza laterale iniziale.
$\mathrm{KI}_{\mathrm{p}} \quad$: Rigidezza iniziale alla punta del palo.
$\mathrm{KL}\left(\mathrm{w}_{\mathrm{i}}\right)$: Rigidezza secante laterale in corrispondenza del concio i-mo.
$K p\left(w_{n}\right)$: Rigidezza secante in corrispondenza della punta del palo.
KI* : Rigidezza iniziale per una funzione di trasferimento unica per la resistenza laterale ed alla punta.
$\mathrm{K}_{\mathrm{L}} \quad$: Costante elastica molle nel suolo alla Winkler.
$\mathrm{K}_{\mathrm{p}} \quad$: Costante elastica molla alla punta del palo.
L : Lunghezza del palo.
Lc : Lunghezza del concio i-mo.
N_{i} : Azioni normali scambiate tra i conci.
$\mathrm{N}(\mathrm{z}) \quad$: Carico assiale alla profondità z .
$P \quad$: Carico assiale applicato alla testa del palo.
$\mathrm{q}_{\mathrm{c}} \quad$: Resistenza alla punta di una prova CPT.
$q_{\text {lim }} \quad:$ Portata unitaria limite.
$\mathrm{q}(\mathrm{z}) \quad:$ Portata unitaria mobilitata alla profondità z .
QL : Portata laterale mobilitata sul concio i-esimo.
Qp : Portata mobilitata alla punta.
Ro : Raggio del palo.
R : Raggio della zona in cui si risente della presenza del palo.
Rp : Reazione mobilitata alla punta del palo.
$\mathrm{w}(\mathrm{z}) \quad$: Cedimento del palo alla profondità z .
$w_{i} \quad:$ Cedimento del baricentro del concio i-mo.
w $\quad:$ Cedimento alla testa del palo.
$\mathrm{W}_{\mathrm{e}} \quad$: Accorciamento elastico alla testa del palo.
$\mathrm{w}_{\mathrm{r}} \quad$: Cedimento alla testa del palo dovuto alla deformazione del complesso palo-terreno nell'ipotesi di palo rigido.
: Livello di carico agente.

[^0]: * F. Castelli, Contrattista C.N.R.; M. Maugeri, Professore Straordinario di Geotecnica; E. Motta, Ricercatore Confermato di Geotecnica. Facoltà di Ingegneria - Università di Catania.

