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a b s t r a c t

In the present paper we prove a novel multiplicity result for a model quasilinear Dirichlet
problem (Pλ) depending on a positive parameter λ. By a variational method, we prove that
for every λ > 1 problem (Pλ) has at least two non-zero solutions, while there exists λ̂ > 1
such that problem (Pλ̂) has at least three non-zero solutions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper we deal with the problem ofmultiplicity results for the following quasilinear equation coupled with
the Dirichlet boundary condition

−∆pu = λα(x)f (u) in Ω,
u = 0 on ∂Ω,

(Pλ)

where Ω is a bounded open connected set in Rn with smooth boundary ∂Ω, p > n, ∆p is the p-Laplacian operator, λ is a
positive parameter, α ∈ L1(Ω) is a non-zero potential, and f : [0, +∞[→ R is a continuous function with f (0) = 0.

Problems of the type (Pλ) have been the object of intensive investigations in the recent years, see [1–8], and references
therein. Many of the aforementioned contributions guarantee the existence of at least two non-trivial weak solutions of (Pλ)
for λ > 0 large enough where the key geometric assumptions on the nonlinear term F , where F : [0, +∞[→ R is the
primitive of f , that is F(s) =

 s
0 f (t)dt for every s ≥ 0, can be summarized as

sup
[0,+∞[

F > 0;

lim sup
s→0+

F(s)
sp

≤ 0 and lim sup
s→+∞

F(s)
sp

≤ 0.
(1.1)

In order to obtain the aforementionedmultiplicity results, various variational approaches are exploited; for instance, Morse
theory [5,6], the mountain pass theorem and Ricceri-type three critical points results [1–4,7,9].

Notice that under (1.1) one can have even an exact multiplicity result for (Pλ). To see this, let p = 2, n = 1, Ω = I ⊂ R
be a large interval, α = 1, and f : [0, +∞[→ R defined by f (s) = s(s− a)(1− s)+ with 0 < a < 1/2; here, t+ = max(0, t).
It is clear that F verifies (1.1). Moreover, via a bifurcation argument, Wei [10] proved that there exists λ0 > 0 such that for
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all 0 < λ < λ0 problem (Pλ) has no positive solution, it has exactly one positive solution for λ = λ0, and exactly two positive
solutions for λ > λ0; see also [11].

The main purpose of the present paper is to guarantee the existence of at least three non-zero, non-negative weak
solutions for (Pλ) for certain values of λ > 0 when (1.1) holds. According to the above exact multiplicity result, our aim
requires more specific assumptions both on f (or F ) and α. In order to state our main result, we introduce the notation

k∞ :=
n

−1
p

√
π


0


1 +

n
2

 1
n

p − 1
p − n

1− 1
p

m(Ω)
1
n −

1
p , (1.2)

where 0 denotes the Euler Gamma-function.
Our main result reads as follows:

Theorem 1.1. Let p > n, α ∈ L1(Ω) be a non-negative, non-zero function with compact support K . Assume that
(i) SF := sup[0,+∞[ F < +∞;
(ii) lim sups→0+

F(s)
sp ≤ 0.

Moreover, there exists c > 0 such that
(iii) F(c) = max

[0,k∞(pSF ∥α∥L1 )
1
p ]

F < SF ;

(iv) F(c)
cp >

m(Ω\K)

pdist(K ,∂Ω)p∥α∥L1
.

Then, the following statements hold:
(a) For every λ > 1, problem (Pλ) has at least two non-zero, non-negative weak solutions.
(b) There exists λ̂ > 1 such that problem (Pλ̂) has at least three non-zero, non-negative weak solutions.

Before proving Theorem 1.1 some remarks are in order.

Remark 1.1. (a) Under the assumptions of Theorem 1.1, one can prove the existence of two non-zero weak solutions for
(Pλ) for enough large values of λ > 0; the first one is the global minimum of the energy functional associated with (Pλ)with
negative energy-level, while the second one is a mountain-pass type solution with positive energy-level. A much precise
conclusion can be deduced as follows. Since (i),(ii) and (iv) imply (1.1), a suitable choice in [9] guarantees the existence of
at least two non-zero weak solutions for (Pλ) for every λ > λ0, where

λ0 = inf
 

Ω
|∇u|p

p

K α(x)F(u(x))dx

: u ∈ W 1,p
0 (Ω),


K

α(x)F(u(x))dx > 0


. (1.3)

A simple estimate by means of a suitable truncation function and assumption (iv) show that

λ0 <
cpm(Ω \ K)

pF(c)dist(K , ∂Ω)p∥α∥L1
< 1,

which concludes the proof of (a) in Theorem 1.1; for details see (3.6). Even more, under these assumptions, Ricceri’s result
(see [9]) provides a stability of problem (Pλ) with respect to any small nonlinear perturbation whenever λ > λ0. However,
for λ > 0 small enough, problem (Pλ) has usually only the trivial solution. Example 3.1 supports this fact as well.

(b) Assumption (iii) requires that the function F has a local maximum c > 0 on a quite large set whose size depends on
the function F itself, namely, on the interval IF := [0, k∞(pSF∥α∥L1)

1
p ]. Note that a simple estimate together with hypothesis

(iv) shows that c belongs to the interval IF . In view of the above discussion, the technical assumption (iii) is behind on the
existence of a third non-zero weak solution for (Pλ).

Remark 1.2. Note that in Theorem 1.1 we are able to prove the existence of a single value of λ̂ > 1 such that problem
(Pλ̂) has at least three non-zero, non-negative weak solutions. A challenging problem is to know if this phenomenon is
stable/unstable with respect to the parameter λ; namely, to confirm/infirm the existence of certain functions f satisfying all
the assumptions of Theorem 1.1 such that problem (Pλ) has exactly two non-zero weak solutions for λ ∈]1, +∞[\{λ̂} and
at least three solutions for λ = λ̂.

Remark 1.3. Taking into account the special character of the function α (i.e., α has a compact support K in Ω), we could
expect to construct in a trivial way some weak solutions for (Pλ) via p-harmonic functions. The reason is the following; for
simplicity, let us consider the case when Ω = B(0, R) and K = B(0, r) for some 0 < r < R. Due to (iii), the nonlinearity f
attains the zero value at least in two points (c being one of them since it is a local maximum for F ). Let us denote such an
element by c > 0. A simple calculation shows that the function ũc ∈ W 1,p

0 (B(0, R)) defined by

ũc(x) =


c if x ∈ K = B(0, r),

c
|x|

p−n
p−1 − R

p−n
p−1

r
p−n
p−1 − R

p−n
p−1

if x ∈ B(0, R) \ K ,
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verifies almost everywhere problem (Pλ) for every λ ∈ R. Thus, one can construct in a direct way two almost pointwise
solutions of (Pλ) for every λ ∈ R. However, it is worth noticing that ũc is not a weak solution for (Pλ). Indeed, according to
a standard regularity result (see for instance Lieberman [12, Theorem 1]), a bounded weak solution of (Pλ) is a function of
class C1,β for some β > 0which is not our case. Note that without α having compact support K inΩ we are not able to state
a similar multiplicity result as Theorem 1.1; we postpone this discussion after giving the whole proof (see Remark 3.1).

Remark 1.4. We are able to state a similar result also in the case when SF := sup[0,+∞[ F = +∞. Note that in this case the
assumptions/proof are more involved, see Theorem 3.1.

We conclude this section with a simple consequence of Theorem 1.1 when we are dealing with a highly quasilinear
problem, i.e., the value of p in the p-Laplacian is large enough. Namely, we have

Corollary 1.1. Let α ∈ L1(Ω) be a non-negative, non-zero functionwith compact support K , and besides of (i) from Theorem 1.1,
we assume that 0 is a local maximum of F , and that there exist constants c, δ, with 0 < c < k∞ < δ and c ≤ dist(K , ∂Ω) such
that 0 < F(c) = max[0,δ] F < SF . Then, there exists p0 > n such that for each p ≥ p0, both conclusions of Theorem 1.1 hold.

The proof of Corollary 1.1 is based on the observations that limp→∞(pSF∥α∥L1)
1
p = 1 and limp→∞(c/dist(K , ∂Ω))p/p = 0;

these limits are used to prove items (iii) and (iv) from Theorem 1.1, respectively.

2. Preliminaries

Our main tool is the following theorem by Ricceri which is a consequence of a more general result [13, Theorem 1]:

Theorem 2.1. Let (X, ∥ · ∥) be a reflexive real Banach space, p > 1, J : X → R a C1 functional, with compact derivative such
that J(0) = 0 and

max

lim sup

u→0

J(u)
∥u∥p

, lim sup
∥u∥→∞

J(u)
∥u∥p


≤ 0.

Moreover, assume that there exist γ > 0, ρ ∈ R, ν ∈ [0, 1
p [, u1 ∈ X \ {0}, u2 ∈ X such that

(j) J(u) ≤ γ + ν∥u∥p for all u ∈ X;
(jj) ∥u1∥

p
≤ pJ(u1) and ∥u2∥

p < p(J(u2) + ρ);
(jjj) J(u2) = sup

∥u∥p≤ p(ρ+γ )
1−pν

J(u) < supX J .

Then, there exists λ̂ > 1 such that the functional Φ : X → R defined by

Φ(u) =
1
p
∥u∥p

− λ̂J(u)

has at least three non-zero critical points.

Remark 2.1. Notice that, from the assumptions of Theorem 2.1 one has also that 0, being a strict local minimum, belongs to
the set of the critical points of Φ . Also, one has that u2 is a local maximum of J , hence a critical point of J .

In the sequel we will denote by X the space W 1,p
0 (Ω) endowed with the usual norm

∥u∥ =


Ω

|∇u(x)|pdx
 1

p

.

Since p > n, the embedding of X into C0(Ω̄) is continuous and compact. Let c∞ be the embedding constant, that is

c∞ = sup
u∈X\{0}

max
Ω̄

|u|

∥u∥
.

We have the following estimate for c∞, see [14]:

c∞ ≤
n

−1
p

√
π


0


1 +

n
2

 1
n

p − 1
p − n

1− 1
p

m(Ω)
1
n −

1
p ,

where0 denotes the Euler Gamma-function, and equality occurswhenΩ is a ball. From (1.2), we clearly have that c∞ ≤ k∞.
Recall that by a weak solution of (Pλ̂) we mean a function u ∈ X such that

Ω

|∇u|p−2
∇u∇v − λ̂


Ω

α(x)f (u)v = 0,

for every v ∈ X . It is well known that critical points of Φ are weak solutions of (Pλ̂).
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3. Proof of Theorem 1.1

Without loss of generality we can assume that f is defined on the whole real axis, putting f (s) = 0 for all s ≤ 0. If we
still denote by F the primitive of f , then F(s) = 0 for all s ≤ 0. Define J : X → R by

J(u) =


Ω

α(x)F(u) for all u ∈ X .

The functional J is of class C1, has compact derivative and J(0) = 0. Assumption (i) implies that J is bounded and

sup
X

J ≤ sup
[0,+∞[

F∥α∥L1 = SF∥α∥L1 . (3.1)

In particular,

lim sup
∥u∥→∞

J(u)
∥u∥p

≤ 0. (3.2)

Moreover, from (ii) it follows that for fixed ε > 0, there exists s0 > 0 such that F(s) ≤ εsp for all s ∈ [0, s0] and so,
F(s) ≤ ε|s|p for all s ∈ [−s0, s0]. Then, if u ∈ X and ∥u∥ ≤

s0
c∞

, one has

F(u(x)) ≤ ε|u(x)|p for every x ∈ Ω.

So,

J(u) ≤ ε∥α∥L1∥u∥
p
∞

≤ ε∥α∥L1c
p
∞

∥u∥p,

which implies at once

lim sup
u→0

J(u)
∥u∥p

≤ 0. (3.3)

We claim to apply Theorem 2.1 to the functional J defined above which, in view of (3.2) and (3.3), verifies

max

lim sup

u→0

J(u)
∥u∥p

, lim sup
∥u∥→∞

J(u)
∥u∥p


≤ 0.

Denote by δ = dist(K , ∂Ω) and define uc : Ω → R as it follows:

uc(x) =


c if dist(x, K) = 0

c

1 −

dist(x, K)

δ


if 0 < dist(x, K) ≤ δ

0 if dist(x, K) > δ,

(3.4)

where c is from assumption (iii). Notice that the function uc ∈ X is Lipschitzian and |∇uc(x)| ≤
c
δ
for almost every x ∈ Ω .

One has that

∥uc∥
p

=


Ω\K

|∇uc |
p

≤
cp

δp
m(Ω \ K).

Also, since K is the support of the function α, one has

J(uc) =


Ω

α(x)F(uc) = F(c)∥α∥L1 , (3.5)

and assumption (iv) implies at once that

∥uc∥
p < pJ(uc). (3.6)

From assumption (iii) we have also that uc is not a global maximum of J . Indeed, if d is a positive number such that
F(d) > F(c), then defining ud as in (3.4), we have that

J(ud) = F(d)∥α∥L1 > F(c)∥α∥L1 = J(uc). (3.7)

It is easily seen that
u ∈ X : ∥u∥ ≤ (pSF∥α∥L1)

1
p


⊆


u ∈ X : ∥u∥∞ ≤ k∞(pSF∥α∥L1)

1
p


.

So, if u ∈ X and ∥u∥ ≤ (pSF∥α∥L1)
1
p , then, due to assumption (iii),

J(u) ≤ J(uc),
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that is, together with the fact that ∥uc∥ ≤ (pSF∥α∥L1)
1
p (cf. (iv)),

J(uc) = max
B̄

0,(pSF ∥α∥L1 )

1
p

 J, (3.8)

where B̄(0, σ ) denotes the closed ball in X centered at zero of radius σ .
Assumptions (j)–(jjj) of Theorem 2.1 are immediately verified with the choices γ = SF∥α∥L1 , ρ = ν = 0 and u1 = u2 =

uc . Indeed, condition (j) follows from (3.1) while (jj) is a consequence of (3.6). Finally, (3.7) and (3.8) imply at once (jjj). All
the assumptions of Theorem 2.1 are satisfied. Then, there exists λ̂ > 1 such that the functional

u →
1
p
∥u∥p

− λ̂J(u)

has at least three non-zero critical points. As critical points of this functional are non-negative weak solutions of problem
(Pλ̂), our conclusion is achieved. �

Remark 3.1. As we already pointed out in the Introduction, without α having compact support K in Ω we meet several
obstacles to apply Theorem 2.1. Indeed, in order to ensure the existence of a non-zero, local (but not global) maximum
point u2 = uc for J , careful estimates are needed with specific truncation functions in X , see relations (3.5), (3.7) and (3.8);
otherwise, the aforementioned expressions will become much involved. Notice that if in (Pλ) we have a zero Neumann
boundary condition instead of the zeroDirichlet boundary condition, the arguments becomemuch simpler andno restriction
is needed on α.

We propose now an example of nonlinearity satisfying the assumptions of Theorem 1.1.

Example 3.1. Let q > p > n, α ∈ L1(Ω) be a non-negative function with compact support K satisfying

∥α∥L1 >
m(Ω \ K)

pdist(K , ∂Ω)p

πp−1

(
√
2)q+1

.

Assume also thatm is an integer, verifying

m >
k∞

(2π)
1− 1

p
(p∥α∥L1)

1
p .

Define f : [0, +∞[→ R by

f (s) =


sign(π − s)| sin s|q−1 if s ∈ [0, 2π [

2| sin s|q−1χ[2mπ,(2m+1)π ](s) if s ∈ [2π, +∞[

where χ[2mπ,(2m+1)π ] is the characteristic function of the interval [2mπ, (2m + 1)π ].
First, for λ ∈]0, c−p

∞ ∥α∥
−1
L1

[, problem (Pλ) has only the zero solution. On the other hand, according to Theorem 1.1, for
every λ > 1 problem (Pλ) has at least two non-zero weak solutions, and there exists λ̂ > 1 such that problem (Pλ̂) has at
least three non-zero, non-negative solutions.

In the previous result and example we treated the case of bounded primitive F . It is also possible to handle the case when
F is unbounded under more technical assumptions. We conclude the present paper by stating such a result without giving
its explicit proof.

Theorem 3.1. Let p > n, α ∈ L∞(Ω) be a non-negative, non-zero function with compact support K . Assume that

(i) sup[0,+∞[ F = +∞;
(ii) lim sups→0+

F(s)
sp ≤ 0; lim sups→+∞

F(s)
sp ≤ 0.

Moreover, assume that there exist γ > 0, ν ∈ [0, 1
p [ and c > 0 such that

(iii) F(c) = max
[0,k∞


pγ

1−pν

 1
p

]

F ;

(iv) F(c)
cp >

m(Ω\K)

pdist(K ,∂Ω)p∥α∥L1
;

(v) ∥α∥L∞F(s) − ν(k∞m(Ω))−1sp ≤
γ

m(Ω)
for all s ≥ 0.

Then, there exists λ̂ > 1 such that problem (Pλ̂) has at least three non-zero, non-negative solutions.
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