IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Quantum capacity of dephasing channels with memory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2007 New J. Phys. 9 310
(http://iopscience.iop.org/1367-2630/9/9/310)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 151.97.12.54
The article was downloaded on 20/11/2012 at 00:23

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/9/9
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

New Journal of Physics

The open-access journal for physics

Quantum capacity of dephasing channels
with memory

A D’Arrigo 14, G Benenti %° and G Falci !

1 MATIS CNR-INFM, Catania and Dipartimento di Metodologie Fisiche e
Chimiche per I'lngegneria, Universita degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy

2CNISM, CNR-INFM and Center for Nonlinear and Complex Systems,
Universita degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy

3 |stituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16,
20133 Milano, Italy

E-mail: antonio.darrigo@dmfci.unict,igiuliano.benenti@uninsubria.it
andgfalci@dmfci.unict.it

New Journal of Physics 9 (2007) 310
Received 18 May 2007
Published 7 September 2007
Online athttp://www.njp.org/
doi:10.1088/1367-2630/9/9/310

Abstract. We show that the amount of coherent quantum information that can

be reliably transmitted down a dephasing channel with memory is maximized by
separable input states. In particular, we model the channel as a Markov chain or a
multimode environment of oscillators. While in the first model, the maximization

is achieved for the maximally mixed input state, in the latter it is convenient to
exploit the presence of a decoherence-protected subspace generated by memory
effects. We explicitly compute the quantum channel capacity for the first model
while numerical simulations suggest a lower bound for the latter. In both cases
memory effects enhance the coherent information. We present results valid for
arbitrary input size.
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1. Introduction

Quantum communication channels P] use quantum systems to transfer classical or quantum
information. In the first case, we can encode classical bits by means of quantum states. In the
latter case, we may want to transfer an unknown quantum state between different units of a
guantum system, for instance of a quantum computer, or to distribute entanglement between
communicating parties. In both cases, the fundamental question is what is the maximum rate
of classical or quantum information that can be faithfully transmitted. Classical and quantum
capacities defined as the maximum number of bits/qubits that can be reliably transmitted per
channel use, provide the answer to this question.

Quantum channels with memory are the natural theoretical framework for the study
of any noisy quantum communication system where correlation times are longer than the
time between consecutive uses. This scenario applies to optical fibers which may show a
birefringence fluctuating with characteristic time longer than the separation between successive
light pulses B] or to solid state implementations of quantum hardware, where memory effects
due to low-frequency impurity noisd] produce substantial dephasirig.|

Some theoretical results on quantum channels with memory have been already discussed
for transmission of both classical and quantum information through a quantum channel. With
regard to classical information transmission down a memory channel, it was pointed out that
it can be enhanced by using entangled input staipqd], and coding theorems have been
recently proved for classes of memory quantum chanBel). Concerning quantum capacity,

a lower bound has been found for some classes of channels with mehipanfl subsequently
specific model environments (structured in two parts, one responsible for memory effects and
the other acting as a memoryless environment) have been stadjefll{]. In particular, coding
theorems for quantum capacity have been proved. 4 for the so-calledorgetful channels

for which memory effects decay exponentially with time.

The problem is formalized by considering tiN-uses Hilbert spacé{y = H®\ and
defining the systens, described by the reduced density matrix (RDMYor N uses. The
input state isp = Z;K=1 pipi, hamely states chosen from the ensemfglg ..., ok}, with
a priori probabilities{py, ..., pk}, are sent down the channel. Due to the coupling to further
uncontrollable degrees of freedom, the transmissia® iy be noisy. The output is therefore
described by a linear, completely positive, trace preserving (CPT)&xnéap), corresponding
to N-uses (the single use is defined#ihand described by). The mapEn(p) can always be
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represented starting from an enlarged vector space including a suitably chosen envilenment
initially in a pure statewy = |0)g(0]

En(p) = Tre[U (p ® wo) UT], (1)

whereU is a suitable unitary evolution & + E referring toN uses. The conditional (depending
on p) evolution of the environment can also be considered. It is described by the environment
RDM and allows to define the conjugate CPT map= Trs[U (p ® wo) U] =: En(p).

The quantum capacity Qefers to the coherent transmission of quantum information
(measured in number of qubits), and it is related to the dimension of the largest subspace of
reliably transmitted down the channel, in the limit of lalgeThe value ofQ can be computed,
for memoryless channels, as5—[19]

Qn

Q= lim ==, Qn = mpaxIC(SN, 0), (2)
l(Ens p) = FEn(P)] — S (0). 3)

Here, S(p) = —Tr[plog, p] is the von Neumann entrop\g (p) = Sén(p)] is the entropy
exchange[20]. The quantity I.(En, p) is called coherent information[21] and must be
maximized oveall input statesp.

The limit N — oo in (2) makes the evaluation o) difficult. On the other hand this
regularization is necessary, since in genegabk not subadditive. Indeed for entangled input
statesp [16], we may havel.(Ex, p) > Y p; 1c(&, p®), where p® = Trs_g (o) refers to
the individual transmission of thkth unit of information, therefore in general it cannot be
excluded thatQy/N > Q;. The regularization is not necessary if the final statef E can
be reconstructed from the final statéof the system. In this case, referred todegradable
channels[22]-[25], there exists a CPT map such that =7 o &. It turns out P2] that
for degradable channels the coherent informatigify, o) reduces to a suitable conditional
entropy [L], which is subadditive and concave in the input stet@nd therefore the quantum
capacity is given by the ‘single-letter’ formul@ = Q.

In this work, we focus on dephasing channels with memory. Dephasing channels are
characterized by the property that whisinqubits are sent through the channel, the states of
a preferential orthonormal badig) = |j1, ..., Jn)s J1, .-, Jn = 0, 1} are transmitted without
errors, implying a conservation law to holdg. Therefore, dephasing channels are noiseless
from the viewpoint of the transmission of classical information, since the states of the
preferential basis can be used for encoding classical information. Of ceupseposition®f
basis states may decohere, thus corrupting the transmission of quantum information. Dephasing
channels are relevant for systems in which relaxation is much slower than dephasag [
When memory effects are taken into account, we lave: £V, i.e. the channel does not act
on each carrieindependently

We show that the coherent information is maximized by input states separable and diagonal
in the reference basi$j)}. In particular, we calculate the coherent information for two models
of dephasing channels. For a Markov chain, we show that the coherent information is maximized
by maximally mixed input states and compu@e For an environment modeled by a bosonic
bath, we propose a coding strategy based on the existence of a decoherence-protected subspace
generated by memory effects and use numerical results to suggest a lower boQndt forns
out that in both cases memory effects increase the coherent information.
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2. The dephasing channel and quantum capacity

The unitary representation of the generalized dephasing ch&#jeépds

UIiI0e) =1j)1e)), 4)

where |¢;) are environment states, in general nonmutually orthogonal, describing the
conditional evolution. The magy can be written in the Kraus representatiang] as

pr=En()=) AipAl (5)

where the system operato(®\,); = («e|¢;) §; are diagonal in the reference basis (here
{lag)} is an orthonormal basis for the environment). It is easily shown that this channel is
degradabled?]. Indeed, for a generic input = Z“ pjil 1) (I, equation 4) yields

w=En(p) =) pjjle;)(gj- (6)
j

Since w only depends on the populations; which are conserved, we can write as well
En = En o En, thus proving degradability.

We now show that for a generalized dephasing channel, the coherent informégiono)
is maximized by input states diagonal in the reference basis. To this end, we introduce

'Ok = % (pk—1+ Egk)pk—lzék)) ’ (k == 19 ceey N)’ (7)

wherepo = p and the local operat@&® =17 ® ... 1* Vol @ 1*P @ ... @ 1V acts
nontrivially only on thekth qubit, by the Pauli operatet® which has eigenvectorg). We can
easily see thaby is the diagonal part g, by using the standard representation of fheubit
density matrix:

IO = Z Cil...iNO'ig_l) ® tee ®Ui(NN)a Ik == O’ Xy ya Z’ (8)
{i}

whereoo = 1. We now study the action of the operatat§. First of all Ey(ZPpE®) =
TREN(0)ZP for any k and p, since = commutes with the Kraus operators #).(Also
SE=REN(p)=M] = FEn(p)], since the von Neumann entropy is invariant under unitary local
transformations. Moreovefy (o2 ®) = Ex(p), since the populations 0EX p= are

the same as fop. We can therefore conclude thai(En, 2 p=®) = I.(En, p). This latter
relation, together with the concavity of the coherent information for degradable channels (a
direct consequence of the concavity of the conditional von Neumann entropy) implies that

[c(Ens pn) 2 Le(Ens pn=1) = - = [e(Ens po)- 9)

Hence, diagonal input states maximize the coherent information. These states are separable,
since they can be written in the form

JERS IV

with o = 1ji) (jl, (k=1,..., N),0< qj,.j, <L1andy, . Gj.jy =1.

Jk T HIRAAIREATE T e ey 2R S LN S T T T L,
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3. The memory dephasing channel

3.1. Forgetful channels

Interesting results on the quantum capacity of dephasing channels with memory can be obtained
for forgetful channels, for which the memory dies out exponentially with time. Forgetfulness

is defined in 4], according to a model in which the environment is structured in two parts:

a memoryless one and one responsible for memory effects (seel@]3oA key feature of
forgetfulness is that it permits, with a negligible error, the mapping of the memory channel itself
into a memoryless one. This may be clarified by referring to the double-blocking strat@gy [

we consider blocks oN + L uses of the channel and do the actual coding and decoding for
the first N uses, ignoring the remaining idle uses. The resulting CPT majy._ acts on
density matricep on H ®N If we considerM uses of such blocks, the corresponding CPT map
Emn+L) can be approximated by the memoryless settifig..,)®M. This is possible because
correlations among different blocks decay during the idle uses. This property can be expressed
as follows [L4]:

€+ (0) — En+)®M ()2 <h (M =D, (11)

for any input statep in H®MN wherec > 1, | - |1 is the trace distancel], and h is some
constant depending on the memory model (notedfzatdh are independent of the input state).
This equation states that, even though the error committed by replacing the memory channel
itself with the corresponding memoryless channel grows with the nuivbef blocks, it goes

to zero exponentially fast with the numbeof idle uses in a single block. Equatiohl) permits

the proof of coding theorems for forgetful quantum memory channels, by mapping them into
the corresponding memoryless channels, for which quantum coding theoremslLijolth|
particular, the quantum capacitQ is limy_. Qn/N. Equation {1) by itself is a sufficient
condition to prove coding theorems. Therefore, in the following we will use the wording
forgetful channel for any system satisfying inequality)( independently of the model from
which memory arises. Now we focus on two specific, physically significant models.

3.2. Markovian model

The first model is a quantum channel that maps an arbitdagubit input statep onto
p'=En(p) = Z AiveAl . k=02 (12)

.....

where the Kraus operatoﬁslmiN are defined in terms of the Pauli operategs= 1L ando:

1 IN \/ pll INBI1 IN7 Bil...iN —G(l)® ®OV|(NN)7 (13)

with 3., Piy..iy = 1 ando ¥ acting on thekth qubif.
The quantity p;, ;j, can be interpreted as the probability that the ordered sequence
o, ..., o\ of Pauli operators is applied to tié-qubits crossing the channel. We define the

[

single- qublt marginal probabilityp;, = Z{,kvk?éq pi,.iy and similarly the two-qubit marginal

5 The Kraus operators 8) define a generalized dephasing channel in the sense of equétionith

U= Z VP @ @0 @ ir...in)e(0...0].

.....
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probability Piyig and assume thatp,,} ={1— p;, p;} for all g=1,..., N. Under these
conditions the maximum of coherent information in mod&)(is obtained for the totally
unpolarized input statg,,,= (1/2Y)1%N. To prove this statement, we construct the same
iterative transformation as if{butwithz®¥ = 1Y @ ... 1* Vo0 @1V g ... 1V
instead of£{®, and notice thapy = punp is Obtained starting from an input statgdiagonal in

the reference basis. Moreover, it can be proven that in this case

SEN(ZX poZ ] = S(EF poBH) = S(po).

Sincepg is diagonal andy only changes off-diagonal matrix elements, tl&&iioo) = oo and
SIEN(ZR poZ )] = FEn(po)]- We can also prove that

SIEN(ZER poB{N] = TR EN(00) ] = Fén(00)]-

Here %, is defined as¥, but acts on the environment. Thereforig(En, ZX po= M) =
I.(En, po). Taking again advantage of the concavity of coherent information for degradable
channels, we finally obtain

lc(En, Punp) = lc(En, po). (14)

We can explicitly compute the quantum capacity when the joint probabilities in
equation {3) are described by a Markov chai, [L1]:

pil ..... in — pi1 pi2|i1 L piNliN—l9 (15)
where

P = (1 — 1) Pi + 1 Sy _y- (16)
Herepu € [0, 1] measures the partial memory of the channel: it is the probability that the same
operator (eithedl or o,) is applied for two consecutive uses of the channel, whereag 1s
the probability that the two operators are uncorrelated. The limiting gase® andu =1
correspond to memoryless channels and channels with perfect memory, respectively. In this
noise modelx might depend on the time interval between two consecutive channel uses. If
the two qubits are sent at a time intervak t., wherer, denotes the characteristic memory
timescale for the environment, then the same operator is applied to both qubit$)( while
the opposite limit corresponds to the memoryless case ().

The Markov chain model is forgetful, since conditidri) is fulfilled. We first consider a

sequence of two blocks & + L channel uses, for which

p' = Exnsl)(p) = Z pi B pB/, (17)
|
where the indeX stands foliq, ..., in, IN+L+1,-- -, lon+L @Nd the operatorB, are defined in
equation 13). The output state’ can be approximated by
P = (Ene)®(p) = Z P B 0B/, (18)
|

where the factorized probability distributign = p;,
strong convexity of trace distancé][we obtain

o' =0l < D(pr, Pr), (19)

Taking advantage of the

,,,,, in PineLs, iyl -

New Journal of Physics 9 (2007) 310 (http://www.njp.org/)
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where the Kolmogorov distance between the probability distribufipnisand{p, } is defined as

D(p. p)=3)_Ipi—Pil. (20)
|
Using the properties of stationary Markov chains and equatfiénvwe obtain
D(pi, pr) <2ut™ (21)
This implies
1Exn+) () — Ensr) 2 () ll1 < 2, (22)

from which equation1) readily follows. The forgetfulness of the Markov chain model allows
us to compute the quantum capacity from the regularized coherent informatid.

In order to compute the quantum capacity, we consider the input gtgteand evaluate
the coherent informatiotc(En, punp)- IN this caseSEn (ounp)] = S(punp) = N. We now take
advantage of the formulaS)n = S(w), where the density operatap has components
Wi inisiy = TH(Aiy o AL ) [20]. Herew s diagonal and

S(W) = — Z Piiv 109, Priy = H (X1, ..., Xn), (23)
{ik}
where H(X4, ..., Xy) is by definition the Shannon entropy of the collection of random
variablesXy, ..., Xy (characterized by the joint probabilitigs, ;). For a stationary Markov

chain, we have48]

1
Jim SHX o X = H (Xl X1) = poH (do) + p.H (@),
where o, = (1— ) po.+ 1 are the conditional probabilities that the channel acts on two
subsequent qubits via the same Pauli operatorHitgd), H (g,) are binary Shannon entropies,
defined by H(q) = —qlog,q—(1—q)log, (1—q). Therefore, the quantum capacity is
given by

Q=1— poH (o) — p.H (). (24)

It is interesting to point out thaf) increases for increasing degree of memory of the
channel. In particular, foru =0, we recover the capacitf) = Q;=1— H(pg) of the
memoryless dephasing channel, while for perfect memane () Q = 1, that is, the channel
is asymptotically noiseles4.?]. We also note that the right-hand side @#) is known [L1] to
be a lower bound for the quantum capacity of the Markov chain dephasing channel. Our results
prove that this bound is tight.

In order to illustrate the convergence @f /N to its limiting value Q, we first compute
the entropy exchange for thié-qubit input statep,n. It is easy to check that

()N = PoH (Qo) + p.H (Q) + (S)In-1- (25)
Using this recurrence relation we obtain
(S)n = (N = D)[poH (o) + pH (A)] + (S)1, (26)

6 Itis interesting to remind the reader that the Markov chain model can also be formulated in terms of a structured
environment 12, 14).
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Figure 1. Plot of Qn/N as a function ofu, for the Markov chain modellf),

with pp=0.85. From bottom to top:N =2,4,6,8, 10 (black curves),

N = 100, oo (grey curves). The dotted black line gives the memoryless quantum
capacity.

where(S): = H(po). Therefore

Qn=N—(N—=D[poH (o) + p.H (0)] — H(po). (27)

A plot of Qn/N for variousN as a function of the memory factaris shown in figurel.
It is clear that the convergence &fy/N is faster when the memory factor is smaller.
Indeed, it is easy to prove that

GNEQ—% (28)

is a growing function ofu, with en(u =0) =0 anden(nw =1) = H(po)/N. Moreover, for
u < 1 we obtain

(29)

3.3. Spin-boson model

The second model of dephasing channel is defined by the system (qubits)-environment
Hamiltonian

H(t) = He — $XcF(t) + He. (30)

HereHe =), a)abgba is a bosonic bath anXg = Za(bg +b,) is the environment operator
coupled to the qubits. Thieh qubit has a switchable coupling to the environment via its Pauli
operatoro

N
Fty=2)_ o f(®), (31)

k=1

New Journal of Physics 9 (2007) 310 (http://www.njp.org/)
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where fc(t) = 1 when the qubit is inside the channel, afydt) = O otherwise. Finally,
22
He=)_ ™ > ol (32)
o * k=1

is a counterterm9]. We call 7, the time each carrier takes to cross the channelzwattte
time interval that separates two consecutive qubits entering the channel. The Hamil8@)ian (
is expressed in the interaction picture with respect to the qubits. If initially the system and the
environment are not entangled, the state of the system at tisngiven by the mapl) where

U(t) = Te /M pdsH®, (33)

In particular, we are interested in the final state= p(t = ry), wherety =1, + (N - 1)t is
the transit time across the channel for thequbit train. To treat this problem we choose the
factorized basis statd$j ag)}, where—as above{H) = |j1, ..., jn)} are the eigenvectors of

o9 The dynamics preserves the qubit configuratigrand therefore the evolution operator
(33) is diagonal in the system indices:

(i aelU®lleg) = i (U t]])]og), (34)

whereU (t|j) = (j|U(t)|]) expresses the conditional evolution operator of the environment
alone. Therefore

()i =)y Y (el U(t]]) woUT(tll) fore). (35)
In this basis representation, the environment only changes the off-diagonal elemegnighdé
populations are preserved. If the environment is initially in the pure stgate |0) (0|, then the
equations4) and §6) are recovered. At any rate, it is sufficient to consider a purificationgof
in an enlarged Hilbert space to write our model as a generalized dephasing cHannel (
For a multimode environment of oscillators initially at thermal equilibrium, =
exp(—BHg), we obtain

Ooda) 1— coqwrty) N . 2
3 el Ut ) woU Tt loce) = exp —AZ/—S(w)—Z"\ 3 G — ook
J v 1) —

(36)

whereS(w) is the power spectrum of the coupling operaxgy.

A central question is if and under which conditions a spin-boson environment gives a
forgetful channel. Even though we cannot give a rigorous proof, we conjecture on physical
grounds that an exponential time decay of the bath symmetrized autocorrelation function
C(t) = 1/2 (Xe(t) Xe(0) + Xg(0) Xg(1)) is a sufficient condition for forgetfulness. To support
this conjecture, we prove inequalitgl) in the particular case in which two single channel
uses N = 1) are separated by idle timés . We consider two qubits\| = 2 in equation {1)),
prepared in a generic input stateThen we compute the output statefrom equation 85), i.e.
taking into account memory effects, and the oufput the memoryless limit. We obtain, for a
generic monotonic decaying autocorrelation function,

I =5l < 4r*g*ri C(L), (37)

New Journal of Physics 9 (2007) 310 (http://www.njp.org/)
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Figure 2. Plot of I;/N as a function of¢, for the bosonic bath modeBQ):
Lorentzian power spectrum,= 1, t. = 1, 7, = 1, maximally mixed input state.
From bottom to topN = 2, 4, 6, 8 and 10. The dotted line gives the memoryless
guantum capacity.

where the dephasing factgris such that(o")o1 = g(p)o1 and is readily derived from3g) by
letting N = 1. In particular, we consider a Lorentzian power spect&m) = 2t./[1 + (w1c)?].
In this case, the autocorrelation functiordgr) = e */*c and equation37) is replaced by

I =5l < ANPQPTE (A — e ™) eI, (38)

Inequality @8) is (11) in the particular casé& =1 andM = 2 (we can seh = 4A?gz2 by
noting that(1 — e *»/*¢)2 < 1). We conjecture thatl(l) also holds for anyN andM, since the
correlations between blocks dF-qubits decay exponentially with the delay tirbe.

A remarkable feature of modeBQ) is that in the limit of perfect memoryr, — oo) there
exists for any numbeN of qubits a decoherence-free subspmﬁ{a?, corresponding to a qubit
train with an equal number ¢0) and|1) states. Since the dimensidrof this subspace is such
thatlog,d ~ N — 1/2log,N at largeN, then the channel is asymptotically noiselessQe= 1.

A coding strategy naturally appears when blocksla$> 1 qubits can be sent within the memory
timescaler: if the quantum information is encoded in the decoherence-protected subﬁfééce

in such a way that the input stageis maximally mixed within this subspace, then a lower
bound for the coherent information can be estimatet.&%;, p)/N ~ Iogz[dim(’Hg))]/N ~

1—log, N/(2N). The memoryless dephasing channel instead is recovered in thedimit0
and in this case, the coherent information is maximized by the totally unpolarized input states
punp @nd the channel capaciy = Q; =1 — H (o), wherep, = (1+9)/2.

Even though we could not compute the channel capacity for generic values pfand
7. We show in figure2 numerical results of the coherent informatilyrfor a Lorentzian power
spectrumS(w) and for the input statg,np as a function of the degree of memory of the channel,
measured by the parametge= 7./(t + o). We fix 7, T, and varyr, so that the memoryless
and perfect memory limits correspond §0— O(t — oo) andé — 1(r — 0). The curves in
figure 2 show that memory effects enhance the coherent informagjdv and thatl./N grows
monotonously withN. Furthermore, these numerical data strongly suggestghidtconverges,
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for N — oo, to a limiting value larger than the memoryless capa€)y This value would
provide, assuming the above conjectured forgetfulness for the model, a lower bound for the
guantum capacity. Therefore, using the previously mentioned double blocking strategy, it is
possible to increase the transmission rate if the quantum information is encoded in arbitrarily
long blocks, separated by time intervals larger tlan

4. Conclusion

In summary, we have shown that the coherent information in a dephasing channel with memory
is maximized by separable input states, computed the quantum caQaftitya Markov chain

noise model and suggested a numerical lower bound(¥an the case of a bosonic bath
where memory effects decay exponentially with time. These results also rely on the concept
of forgetfulness, which we prove for the first model and strongly support on physical grounds
for the second one. It would be relevant to further clarify the connection between the decay
of environment autocorrelation functions and forgetfulness. It is important to point out that
differently from previous works on quantum memory channéls e have carried out the

limit in which the number of channel usés— oo. It would be interesting to investigate to what
extent the results presented in this work could be applied to other physically relevant degradable
noise models such as the amplitude damping chadgglAnother physically relevant question

is whether our results could be generalized to environments with algebraically decaying memory
effects, which may model typical low-frequency noise in the solid state.

Note addedAfter completion of our work we became aware of a related pagBy in which,
in particular, the quantum capacity of a Markov chain dephasing channel is provided. Their
derivation, not reported in that paper, is based on a method different from3ars [
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