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Abstract

Given a bounded domain Ω ⊂ Rn, we prove that if f : Rn+1 → R is a C1 function whose gradient is
Lipschitzian in Rn+1 and non-zero at 0, then, for each r > 0 small enough, the restriction of the integral
functional u → ∫

Ω f (u(x),∇u(x)) dx to the sphere {u ∈ H 1(Ω):
∫
Ω(|∇u(x)|2 + |u(x)|2) dx = r} has a

unique global minimum and a unique global maximum.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Here and in the sequel, Ω ⊂ Rn is a bounded domain, with smooth boundary, and
f :Ω × Rn+1 → R is a function such that, for each y ∈ Rn+1, the function f (·, y) is measurable
in Ω , while, for each x ∈ Ω , f (x, ·) is a C1 function in Rn+1 whose gradient is non-constant
and Lipschitzian (with respect to the Euclidean metric), with Lipschitz constant L (independent
of x). We also assume that

sup
x∈Ω

(∣∣f (x,0)
∣∣ + ∣∣∇f (x,0)

∣∣) < +∞. (1)
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We will consider the Sobolev space H 1(Ω) endowed with the norm

‖u‖ =
(∫

Ω

(∣∣∇u(x)
∣∣2 + ∣∣u(x)

∣∣2)
dx

) 1
2

which is induced by the scalar product

〈u,v〉 =
∫
Ω

(∇u(x)∇v(x) + u(x)v(x)
)
dx.

The linear growth of ∇f (x, ·) (coming from its Lipschitzianity) and (1) imply that the func-
tional

u → J (u) :=
∫
Ω

f
(
x,u(x),∇u(x)

)
dx

is (well defined and) C1 on H 1(Ω), with derivative given by

〈
J ′(u), v

〉 =
∫
Ω

(
fξ

(
x,u(x),∇u(x)

)
v(x) + ∇ηf

(
x,u(x),∇u(x)

)∇v(x)
)
dx

for all u,v ∈ H 1(Ω) [3, p. 248].
Let r > 0. We are interested in minima and maxima of the restriction of the functional J to

the sphere Sr := {u ∈ H 1(Ω): ‖u‖ = r}.
In the present setting, there is no evidence of their existence and uniqueness. In fact, with

regard to the existence aspect, not only Sr is not weakly compact but also, if f (x, ξ, ·) is neither
convex nor concave in Rn, the functional J is neither lower nor upper weakly semicontinuous.
But, even when J is sequentially weakly continuous, it may happen that J has no minima and/or
maxima on Sr .

In this connection, consider the following simple and enlightening situation. Assume that
J (u) = ∫

Ω
f (u(x)) dx, where f : R → R has a unique global maximum in R, say ξ0. Then, it is

clear that the constant function x → ξ0 is the unique maximum of the functional J . In this case,
J turns out to be sequentially weakly continuous, thanks to the Rellich–Kondrachov theorem
[3, p. 239]. Then, by [2, Lemma 2.1], the function ρ → supSρ

J is non-decreasing in ]0,+∞[.
Consequently, if r > |ξ0|(meas(Ω))1/2, J |Sr has no maxima.

Nevertheless, we will show that if
∫
Ω

∇f (x,0) dx �= 0 then J |Sr possesses exactly one mini-
mum and exactly one maximum for each r > 0 small enough.

2. The result

To shorten the statement of our result, let us introduce some further notations. In the se-
quel, g :Ω × Rn+1 → R is another non-negative function, with g(x,0) = 0, such that, for each
y ∈ Rn+1, the function g(·, y) is measurable in Ω , while, for each x ∈ Ω , g(x, ·) is a C1 function
in Rn+1 whose gradient is Lipschitzian, with Lipschitz constant ν < 2 (independent of x). We
also assume

sup
(∣∣g(x,0)

∣∣ + ∣∣∇g(x,0)
∣∣) < +∞.
x∈Ω
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We set

I (u) =
∫
Ω

g
(
x,u(x),∇u(x)

)
dx

for all u ∈ H 1(Ω).
Moreover, V is a closed linear subspace of H 1(Ω) with the following property: there exists

v0 ∈ V such that∫
Ω

(
fξ (x,0)v0(x) + ∇ηf (x,0)∇v0(x)

)
dx �= 0. (2)

Further, we denote by S the set (possibly empty) of all global minima of the restriction to V

of the functional

u → ‖u‖2 + I (u) + 2 − ν

L
J (u).

Finally, given a set C ⊆ V , we say that the problem of minimizing (respectively maximizing)
J over C is weakly (respectively strongly) well posed if the following two properties hold:

– the restriction of J to C has a unique global minimum (respectively maximum), say u∗;
– if {un} is any sequence in C such that limn→∞ J (un) = infC J (respectively limn→∞ J (un) =

supC J ) then {un} converges weakly (respectively strongly) to u∗.

Then, with the convention inf∅ = +∞, our result reads as follows:

Theorem 1. Under the above assumptions, one has

δ := inf
u∈S

(‖u‖2 + I (u)
)
> 0

and, for each r ∈ ]0, δ[ , the problem of minimizing the functional J over the set

Cr := {
u ∈ V : ‖u‖2 + I (u) = r

}
is weakly well posed.

Proof. Let μ � 0 and let u,v,w ∈ H 1(Ω), with ‖w‖ = 1. Using Cauchy–Schwartz and Hölder
inequalities, we have∣∣〈I ′(u) + μJ ′(u) − I ′(v) − μJ ′(v),w

〉∣∣
�

∫
Ω

∣∣(gξ (x,u,∇u) − gξ (x, v,∇v)
)
w + (∇ηg(x,u,∇u) − ∇ηg(x, v,∇v)

)∇w
∣∣dx

+ μ

∫
Ω

∣∣(fξ (x,u,∇u) − fξ (x, v,∇v)
)
w

+ (∇ηf (x,u,∇u) − ∇ηf (x, v,∇v)
)∇w

∣∣dx

�
∫
Ω

(∣∣gξ (x,u,∇u) − gξ (x, v,∇v)
∣∣2 + ∣∣∇ηg(x,u,∇u) − ∇ηg(x, v,∇v)

∣∣2) 1
2

× (|w|2 + |∇w|2) 1
2 dx
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+ μ

∫
Ω

(∣∣fξ (x,u,∇u) − fξ (x, v,∇v)
∣∣2∣∣∇ηf (x,u,∇u) − ∇ηf (x, v,∇v)

∣∣2) 1
2

× (|w|2 + |∇w|2) 1
2 dx

�
(∫

Ω

(∣∣gξ (x,u,∇u) − gξ (x, v,∇v)
∣∣2 + ∣∣∇ηg(x,u,∇u) − ∇ηg(x, v,∇v)

∣∣2)
dx

) 1
2

+ μ

(∫
Ω

(∣∣fξ (x,u,∇u) − fξ (x, v,∇v)
∣∣2

+ ∣∣∇ηf (x,u,∇u) − ∇ηf (x, v,∇v)
∣∣2)

dx

) 1
2

� (ν + μL)‖u − v‖.
Hence, the derivative of the functional I +μJ is Lipschitzian, with constant ν +μL. As a conse-
quence, if 0 � μ < 2−ν

L
, the functional u → ‖u‖2 +I (u)+μJ(u) is strictly convex and coercive.

To see this, it is enough to show that its derivative is strongly monotone [4, pp. 247–248]. Indeed,
if Φ(·) := ‖ · ‖2, we have for all u,v ∈ H 1(Ω)

〈
Φ ′(u) + I ′(u) + μJ ′(u) − Φ ′(v) − I ′(v) − μJ ′(v), u − v

〉
� 2‖u − v‖2 − ∥∥I ′(u) − I ′(v) + μ

(
J ′(u) − J ′(v)

)∥∥‖u − v‖
� (2 − ν − μL)‖u − v‖2.

Clearly, this shows also the convexity of the functional Φ + I + 2−ν
L

J . Assume S �= ∅. Then,
S is closed and convex, and so there exists a unique û ∈ S such that

‖û‖2 + I (û) = δ.

Observe that ‖u‖2 + I (u) > 0 for all u ∈ V \ {0}. So, δ � 0. Arguing by contradiction, assume
δ = 0. Then, it would follow û = 0. Hence, since 0 ∈ S, we would have〈

Φ ′(0) + I ′(0) + 2 − ν

L
J ′(0), v

〉
= 0

for all v ∈ V and so, since Φ ′(0) + I ′(0) = 0 (being 0 the global minimum of Φ + I ), it would
follow∫

Ω

(
fξ (x,0)v(x) + ∇ηf (x,0)∇v(x)

)
dx = 0

for all v ∈ V , against condition (2). Hence, we have proven that δ > 0. Now, fix r ∈ ]0, δ[ and
consider the function Ψ :V × [ L

2−ν
,+∞[ → R defined by

Ψ (u,λ) = J (u) + λ
(‖u‖2 + I (u) − r

)
for all (u,λ) ∈ V × [ L

2−ν
,+∞[. As we have seen above, Ψ (·, λ) is continuous and convex for

all λ � L
2−ν

and coercive for all λ > L
2−ν

, while Ψ (u, ·) is continuous and concave for all u ∈
V , with limλ→+∞ Ψ (0, λ) = −∞. So, we can apply to Ψ a classical saddle-point theorem [4,
Theorem 49.A] which ensures the existence of (u∗, λ∗) ∈ V × [ L ,+∞[ such that
2−ν
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J (u∗) + λ∗(‖u∗‖2 + I (u∗) − r
) = inf

u∈V

(
J (u) + λ∗(‖u‖2 + I (u) − r

))

= J (u∗) + sup
λ� L

2−ν

λ
(‖u∗‖2 + I (u∗) − r

)
.

Of course, we have ‖u∗‖2 + I (u∗) � r , since the sup is finite. But, if it were ‖u∗‖2 + I (u∗) < r ,
we would have λ∗ = L

2−ν
. This, in turn, would imply that u∗ ∈ S, against the fact that r < δ.

Hence, we have ‖u∗‖2 + I (u∗) = r . Consequently

J (u∗) + λ∗r = inf
u∈V

(
J (u) + λ∗(‖u‖2 + I (u)

))
.

From this, we infer that λ∗ > L
2−ν

(since r < δ), that u∗ is a global minimum of J |Cr and that each

global minimum of J |Cr is a global minimum in V of the functional u → ‖u‖2 + I (u)+ 1
λ∗ J (u).

Since λ∗ > L
2−ν

, this functional is strictly convex and coercive, and so u∗ is its unique global
minimum in V towards which every minimizing sequences weakly converges [1, p. 3]. The
proof is complete. �
Remark 1. It is almost superfluous to remark that the conclusion of Theorem 1 may fail if
condition (2) is not satisfied. In this connection, consider, for instance, the case f (σ ) = −|σ |2,
with g = 0. Condition (2), however, serves only to ensure that δ > 0. So, it becomes superfluous,
in particular, when S = ∅. In other words, we have the following corollary:

Theorem 2. Under the assumptions of Theorem 1, but condition (2), if the set S is empty, then,
for each r > 0, the problem of minimizing the functional J over the set{

u ∈ V : ‖u‖2 + I (u) = r
}

is weakly well posed.

Now, denote by S1 the set (possibly empty) of all global minima of the restriction to V of the
functional

u → ‖u‖2 + I (u) − 2 − ν

L
J (u).

Clearly, applying Theorem 1 also to −f , we get

Theorem 3. Under the assumptions of Theorem 1, one has

δ1 := min
{

inf
u∈S

(‖u‖2 + I (u)
)
, inf

u∈S1

(‖u‖2 + I (u)
)}

> 0

and, for each r ∈ ]0, δ1[ , the problems of minimizing and maximizing the functional J over the
set {

u ∈ V : ‖u‖2 + I (u) = r
}

are both weakly well posed.

So, taking Remark 1 into account, we also get
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Theorem 4. Under the assumptions of Theorem 1, but condition (2), if the sets S and S1 are
empty, then, for each r > 0, the problems of minimizing and maximizing the functional J over
the set{

u ∈ V : ‖u‖2 + I (u) = r
}

are both weakly well posed.

Remark 2. It is easy to realize that, when the functional I is sequentially weakly lower semicon-
tinuous (so, in particular, when I = 0), the weak well-posedness of the optimization problems
considered in the previous results implies the strong well-posedness of them.
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