On the existence and uniqueness of minima and maxima on spheres of the integral functional of the calculus of variations

Biagio Ricceri
Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
Received 25 November 2005
Available online 15 February 2006
Submitted by B.S. Mordukhovich
Dedicated, with esteem, to Professor R.T. Rockafellar on his seventieth birthday

Abstract

Given a bounded domain $\Omega \subset \mathbf{R}^{n}$, we prove that if $f: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ is a C^{1} function whose gradient is Lipschitzian in \mathbf{R}^{n+1} and non-zero at 0 , then, for each $r>0$ small enough, the restriction of the integral functional $u \rightarrow \int_{\Omega} f(u(x), \nabla u(x)) d x$ to the sphere $\left\{u \in H^{1}(\Omega): \int_{\Omega}\left(|\nabla u(x)|^{2}+|u(x)|^{2}\right) d x=r\right\}$ has a unique global minimum and a unique global maximum. © 2006 Elsevier Inc. All rights reserved.

Keywords: Sobolev space; Integral functional; Minimum; Maximum; Sphere; Existence; Uniqueness

1. Introduction

Here and in the sequel, $\Omega \subset \mathbf{R}^{n}$ is a bounded domain, with smooth boundary, and $f: \Omega \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ is a function such that, for each $y \in \mathbf{R}^{n+1}$, the function $f(\cdot, y)$ is measurable in Ω, while, for each $x \in \Omega, f(x, \cdot)$ is a C^{1} function in \mathbf{R}^{n+1} whose gradient is non-constant and Lipschitzian (with respect to the Euclidean metric), with Lipschitz constant L (independent of x). We also assume that

$$
\begin{equation*}
\sup _{x \in \Omega}(|f(x, 0)|+|\nabla f(x, 0)|)<+\infty \tag{1}
\end{equation*}
$$

[^0]We will consider the Sobolev space $H^{1}(\Omega)$ endowed with the norm

$$
\|u\|=\left(\int_{\Omega}\left(|\nabla u(x)|^{2}+|u(x)|^{2}\right) d x\right)^{\frac{1}{2}}
$$

which is induced by the scalar product

$$
\langle u, v\rangle=\int_{\Omega}(\nabla u(x) \nabla v(x)+u(x) v(x)) d x
$$

The linear growth of $\nabla f(x, \cdot)$ (coming from its Lipschitzianity) and (1) imply that the functional

$$
u \rightarrow J(u):=\int_{\Omega} f(x, u(x), \nabla u(x)) d x
$$

is (well defined and) C^{1} on $H^{1}(\Omega)$, with derivative given by

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega}\left(f_{\xi}(x, u(x), \nabla u(x)) v(x)+\nabla_{\eta} f(x, u(x), \nabla u(x)) \nabla v(x)\right) d x
$$

for all $u, v \in H^{1}(\Omega)$ [3, p. 248].
Let $r>0$. We are interested in minima and maxima of the restriction of the functional J to the sphere $S_{r}:=\left\{u \in H^{1}(\Omega):\|u\|=r\right\}$.

In the present setting, there is no evidence of their existence and uniqueness. In fact, with regard to the existence aspect, not only S_{r} is not weakly compact but also, if $f(x, \xi, \cdot)$ is neither convex nor concave in \mathbf{R}^{n}, the functional J is neither lower nor upper weakly semicontinuous. But, even when J is sequentially weakly continuous, it may happen that J has no minima and/or maxima on S_{r}.

In this connection, consider the following simple and enlightening situation. Assume that $J(u)=\int_{\Omega} f(u(x)) d x$, where $f: \mathbf{R} \rightarrow \mathbf{R}$ has a unique global maximum in \mathbf{R}, say ξ_{0}. Then, it is clear that the constant function $x \rightarrow \xi_{0}$ is the unique maximum of the functional J. In this case, J turns out to be sequentially weakly continuous, thanks to the Rellich-Kondrachov theorem [3, p. 239]. Then, by [2, Lemma 2.1], the function $\rho \rightarrow \sup _{S_{\rho}} J$ is non-decreasing in $] 0,+\infty[$. Consequently, if $r>\left|\xi_{0}\right|(\operatorname{meas}(\Omega))^{1 / 2},\left.J\right|_{S_{r}}$ has no maxima.

Nevertheless, we will show that if $\int_{\Omega} \nabla f(x, 0) d x \neq 0$ then $\left.J\right|_{S_{r}}$ possesses exactly one minimum and exactly one maximum for each $r>0$ small enough.

2. The result

To shorten the statement of our result, let us introduce some further notations. In the sequel, $g: \Omega \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ is another non-negative function, with $g(x, 0)=0$, such that, for each $y \in \mathbf{R}^{n+1}$, the function $g(\cdot, y)$ is measurable in Ω, while, for each $x \in \Omega, g(x, \cdot)$ is a C^{1} function in \mathbf{R}^{n+1} whose gradient is Lipschitzian, with Lipschitz constant $v<2$ (independent of x). We also assume

$$
\sup _{x \in \Omega}(|g(x, 0)|+|\nabla g(x, 0)|)<+\infty .
$$

We set

$$
I(u)=\int_{\Omega} g(x, u(x), \nabla u(x)) d x
$$

for all $u \in H^{1}(\Omega)$.
Moreover, V is a closed linear subspace of $H^{1}(\Omega)$ with the following property: there exists $v_{0} \in V$ such that

$$
\begin{equation*}
\int_{\Omega}\left(f_{\xi}(x, 0) v_{0}(x)+\nabla_{\eta} f(x, 0) \nabla v_{0}(x)\right) d x \neq 0 \tag{2}
\end{equation*}
$$

Further, we denote by S the set (possibly empty) of all global minima of the restriction to V of the functional

$$
u \rightarrow\|u\|^{2}+I(u)+\frac{2-v}{L} J(u) .
$$

Finally, given a set $C \subseteq V$, we say that the problem of minimizing (respectively maximizing) J over C is weakly (respectively strongly) well posed if the following two properties hold:

- the restriction of J to C has a unique global minimum (respectively maximum), say u^{*};
- if $\left\{u_{n}\right\}$ is any sequence in C such that $\lim _{n \rightarrow \infty} J\left(u_{n}\right)=\inf _{C} J$ (respectively $\lim _{n \rightarrow \infty} J\left(u_{n}\right)=$ $\sup _{C} J$) then $\left\{u_{n}\right\}$ converges weakly (respectively strongly) to u^{*}.

Then, with the convention $\inf \emptyset=+\infty$, our result reads as follows:
Theorem 1. Under the above assumptions, one has

$$
\delta:=\inf _{u \in S}\left(\|u\|^{2}+I(u)\right)>0
$$

and, for each $r \in] 0, \delta[$, the problem of minimizing the functional J over the set

$$
C_{r}:=\left\{u \in V:\|u\|^{2}+I(u)=r\right\}
$$

is weakly well posed.
Proof. Let $\mu \geqslant 0$ and let $u, v, w \in H^{1}(\Omega)$, with $\|w\|=1$. Using Cauchy-Schwartz and Hölder inequalities, we have

$$
\begin{aligned}
& \left|\left\langle I^{\prime}(u)+\mu J^{\prime}(u)-I^{\prime}(v)-\mu J^{\prime}(v), w\right)\right| \\
& \leqslant \\
& \quad \int_{\Omega}\left|\left(g_{\xi}(x, u, \nabla u)-g_{\xi}(x, v, \nabla v)\right) w+\left(\nabla_{\eta} g(x, u, \nabla u)-\nabla_{\eta} g(x, v, \nabla v)\right) \nabla w\right| d x \\
& \quad+\mu \int_{\Omega} \mid\left(f_{\xi}(x, u, \nabla u)-f_{\xi}(x, v, \nabla v)\right) w \\
& \quad+\left(\nabla_{\eta} f(x, u, \nabla u)-\nabla_{\eta} f(x, v, \nabla v)\right) \nabla w \mid d x \\
& \leqslant \\
& \quad \int_{\Omega}\left(\left|g_{\xi}(x, u, \nabla u)-g_{\xi}(x, v, \nabla v)\right|^{2}+\left|\nabla_{\eta} g(x, u, \nabla u)-\nabla_{\eta} g(x, v, \nabla v)\right|^{2}\right)^{\frac{1}{2}} \\
& \quad \times\left(|w|^{2}+|\nabla w|^{2}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& +\mu \int_{\Omega}\left(\left|f_{\xi}(x, u, \nabla u)-f_{\xi}(x, v, \nabla v)\right|^{2}\left|\nabla_{\eta} f(x, u, \nabla u)-\nabla_{\eta} f(x, v, \nabla v)\right|^{2}\right)^{\frac{1}{2}} \\
& \times\left(|w|^{2}+|\nabla w|^{2}\right)^{\frac{1}{2}} d x \\
\leqslant & \left(\int_{\Omega}\left(\left|g_{\xi}(x, u, \nabla u)-g_{\xi}(x, v, \nabla v)\right|^{2}+\left|\nabla_{\eta} g(x, u, \nabla u)-\nabla_{\eta} g(x, v, \nabla v)\right|^{2}\right) d x\right)^{\frac{1}{2}} \\
& +\mu\left(\int _ { \Omega } \left(\left|f_{\xi}(x, u, \nabla u)-f_{\xi}(x, v, \nabla v)\right|^{2}\right.\right. \\
& \left.\left.+\left|\nabla_{\eta} f(x, u, \nabla u)-\nabla_{\eta} f(x, v, \nabla v)\right|^{2}\right) d x\right)^{\frac{1}{2}} \\
\leqslant & (v+\mu L)\|u-v\| .
\end{aligned}
$$

Hence, the derivative of the functional $I+\mu J$ is Lipschitzian, with constant $v+\mu L$. As a consequence, if $0 \leqslant \mu<\frac{2-v}{L}$, the functional $u \rightarrow\|u\|^{2}+I(u)+\mu J(u)$ is strictly convex and coercive. To see this, it is enough to show that its derivative is strongly monotone [4, pp. 247-248]. Indeed, if $\Phi(\cdot):=\|\cdot\|^{2}$, we have for all $u, v \in H^{1}(\Omega)$

$$
\begin{aligned}
& \left\langle\Phi^{\prime}(u)+I^{\prime}(u)+\mu J^{\prime}(u)-\Phi^{\prime}(v)-I^{\prime}(v)-\mu J^{\prime}(v), u-v\right\rangle \\
& \quad \geqslant 2\|u-v\|^{2}-\left\|I^{\prime}(u)-I^{\prime}(v)+\mu\left(J^{\prime}(u)-J^{\prime}(v)\right)\right\|\|u-v\| \\
& \quad \geqslant(2-v-\mu L)\|u-v\|^{2} .
\end{aligned}
$$

Clearly, this shows also the convexity of the functional $\Phi+I+\frac{2-v}{L} J$. Assume $S \neq \emptyset$. Then, S is closed and convex, and so there exists a unique $\hat{u} \in S$ such that

$$
\|\hat{u}\|^{2}+I(\hat{u})=\delta .
$$

Observe that $\|u\|^{2}+I(u)>0$ for all $u \in V \backslash\{0\}$. So, $\delta \geqslant 0$. Arguing by contradiction, assume $\delta=0$. Then, it would follow $\hat{u}=0$. Hence, since $0 \in S$, we would have

$$
\left\langle\Phi^{\prime}(0)+I^{\prime}(0)+\frac{2-v}{L} J^{\prime}(0), v\right\rangle=0
$$

for all $v \in V$ and so, since $\Phi^{\prime}(0)+I^{\prime}(0)=0$ (being 0 the global minimum of $\Phi+I$), it would follow

$$
\int_{\Omega}\left(f_{\xi}(x, 0) v(x)+\nabla_{\eta} f(x, 0) \nabla v(x)\right) d x=0
$$

for all $v \in V$, against condition (2). Hence, we have proven that $\delta>0$. Now, fix $r \in] 0, \delta[$ and consider the function $\Psi: V \times\left[\frac{L}{2-v},+\infty[\rightarrow \mathbf{R}\right.$ defined by

$$
\Psi(u, \lambda)=J(u)+\lambda\left(\|u\|^{2}+I(u)-r\right)
$$

for all $(u, \lambda) \in V \times\left[\frac{L}{2-v},+\infty[\right.$. As we have seen above, $\Psi(\cdot, \lambda)$ is continuous and convex for all $\lambda \geqslant \frac{L}{2-v}$ and coercive for all $\lambda>\frac{L}{2-v}$, while $\Psi(u, \cdot)$ is continuous and concave for all $u \in$ V, with $\lim _{\lambda \rightarrow+\infty} \Psi(0, \lambda)=-\infty$. So, we can apply to Ψ a classical saddle-point theorem [4, Theorem 49.A] which ensures the existence of $\left(u^{*}, \lambda^{*}\right) \in V \times\left[\frac{L}{2-v},+\infty[\right.$ such that

$$
\begin{aligned}
J\left(u^{*}\right)+\lambda^{*}\left(\left\|u^{*}\right\|^{2}+I\left(u^{*}\right)-r\right) & =\inf _{u \in V}\left(J(u)+\lambda^{*}\left(\|u\|^{2}+I(u)-r\right)\right) \\
& =J\left(u^{*}\right)+\sup _{\lambda \geqslant \frac{L}{2-v}} \lambda\left(\left\|u^{*}\right\|^{2}+I\left(u^{*}\right)-r\right) .
\end{aligned}
$$

Of course, we have $\left\|u^{*}\right\|^{2}+I\left(u^{*}\right) \leqslant r$, since the sup is finite. But, if it were $\left\|u^{*}\right\|^{2}+I\left(u^{*}\right)<r$, we would have $\lambda^{*}=\frac{L}{2-v}$. This, in turn, would imply that $u^{*} \in S$, against the fact that $r<\delta$. Hence, we have $\left\|u^{*}\right\|^{2}+I\left(u^{*}\right)=r$. Consequently

$$
J\left(u^{*}\right)+\lambda^{*} r=\inf _{u \in V}\left(J(u)+\lambda^{*}\left(\|u\|^{2}+I(u)\right)\right) .
$$

From this, we infer that $\lambda^{*}>\frac{L}{2-v}$ (since $r<\delta$), that u^{*} is a global minimum of $\left.J\right|_{C_{r}}$ and that each global minimum of $\left.J\right|_{C_{r}}$ is a global minimum in V of the functional $u \rightarrow\|u\|^{2}+I(u)+\frac{1}{\lambda^{*}} J(u)$. Since $\lambda^{*}>\frac{L}{2-\nu}$, this functional is strictly convex and coercive, and so u^{*} is its unique global minimum in V towards which every minimizing sequences weakly converges [1, p. 3]. The proof is complete.

Remark 1. It is almost superfluous to remark that the conclusion of Theorem 1 may fail if condition (2) is not satisfied. In this connection, consider, for instance, the case $f(\sigma)=-|\sigma|^{2}$, with $g=0$. Condition (2), however, serves only to ensure that $\delta>0$. So, it becomes superfluous, in particular, when $S=\emptyset$. In other words, we have the following corollary:

Theorem 2. Under the assumptions of Theorem 1, but condition (2), if the set S is empty, then, for each $r>0$, the problem of minimizing the functional J over the set

$$
\left\{u \in V:\|u\|^{2}+I(u)=r\right\}
$$

is weakly well posed.

Now, denote by S_{1} the set (possibly empty) of all global minima of the restriction to V of the functional

$$
u \rightarrow\|u\|^{2}+I(u)-\frac{2-v}{L} J(u) .
$$

Clearly, applying Theorem 1 also to $-f$, we get
Theorem 3. Under the assumptions of Theorem 1, one has

$$
\delta_{1}:=\min \left\{\inf _{u \in S}\left(\|u\|^{2}+I(u)\right), \inf _{u \in S_{1}}\left(\|u\|^{2}+I(u)\right)\right\}>0
$$

and, for each $r \in] 0, \delta_{1}[$, the problems of minimizing and maximizing the functional J over the set

$$
\left\{u \in V:\|u\|^{2}+I(u)=r\right\}
$$

are both weakly well posed.

So, taking Remark 1 into account, we also get

Theorem 4. Under the assumptions of Theorem 1, but condition (2), if the sets S and S_{1} are empty, then, for each $r>0$, the problems of minimizing and maximizing the functional J over the set

$$
\left\{u \in V:\|u\|^{2}+I(u)=r\right\}
$$

are both weakly well posed.
Remark 2. It is easy to realize that, when the functional I is sequentially weakly lower semicontinuous (so, in particular, when $I=0$), the weak well-posedness of the optimization problems considered in the previous results implies the strong well-posedness of them.

Acknowledgment

The author thanks the referee for appropriate and useful remarks.

References

[1] A.L. Dontchev, T. Zolezzi, Well-Posed Optimization Problems, Lecture Notes in Math., vol. 1543, Springer-Verlag, 1993.
[2] M. Schechter, K. Tintarev, Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential Integral Equations 3 (1990) 889-899.
[3] M. Struwe, Variational Methods, Springer-Verlag, 1996.
[4] E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol. III, Springer-Verlag, 1985.

[^0]: E-mail address: ricceri@dmi.unict.it.

