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0. Introduction

In this paper, in which we work over the field of complex numbers, we touch, as
the title suggests, two different themes, i.e. secant varieties and linear systems, and
we try to indicate some new, rich, and to us unexpected, set of relations between
them.

Let X € P" be a reduced, irreducible, projective variety. Basic geometric objects
related toX are its secant varieties*(X), i.e. the varieties described by all projective
subspace$* of P" which are(k + 1)-secant toX (see Sectioril.3 for a formal defi-
nition: in Section1 we collected all the notation and a bunch of useful preliminaries
which we use in the paper). The presence of secant varieties in the study of projective
varieties is ubiquitous, since a great deal of projective geometric properties of a variety
is encoded in the behaviour of its secant varieties. However, the importance of secant
varieties is not restricted to algebraic geometry only. Indeed, different important prob-
lems which arise in various fields of mathematics can be usefully translated in terms of
secant varieties. Among these it is perhaps the case to mention polynomial interpolation
problems, rank tensor computations and canonical forms, expressions of polynomials as
sums of powers and Waring-type problems, algebraic statistics, etc. (see, for instance,
[13,17,29,35).

Going back to projective algebraic geometry, let us mention the first basic example
of a property of a variety which is reflected in properties of a secant variety: it is well
known, indeed, that a smooth varieXyC P can be projected isomorphically & ",
with m > 0, if and only if its first secant variet§(X) := S1(X) has codimension at
leastm in P". Furthermore, one can adlow singulara general projection oK to
P~ from a generalP™ is, if mis exactly the codimension of(X) in P’". One
moment of reflection shows that a basic step in answering this question is to know in
how many pointsS(X) intersects a generd®” in P, i.e. one has to know what is
degreeof S(X). A related, more difficult problem, is to understand what is the structure
of the cone of secant lines t§ passing through a general point §(X), a classical
question considered by various authors even in very recent times (see, for instance,
[42]). Of course similar problems arise in relation with higher secant varietiex)
as well and lead to the important questions of understanding what islithension
and thedegreeof S¥(X) for any k>1.

As well known, if X has dimensiom, there is a basic upper bound for the dimension
of S¥(X) which is provided by a naive count of parameters (ské€)(below). As
often happens in many similar situations in algebraic geometry, one expectsnabat
varieties achieve this upper bound, and that it should be possible to classify all the
others, the so-callek-defective varietiesnamely the ones for which the dimension of
Sk(X) is smaller than the expected. Unfortunately this viewpoint, which is in principle
correct, is in practice quite hard to be successfully pursued. Indeed, while there are no
defective curves and the classification of defective surfaces, though not at all trivial, is
however classical (sg&4,54,57]for a modern reference), the classification of defective
threefolds is quite intricate and has only recently been completed[18§eafter the
classical work of Scorzgb3] on 1-defective threefolds (see alflb]). As for higher-
dimensional defective varieties, no complete classification result is available, though a
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number of beautiful theorems concerning some special classes of defective varieties is
available (sed58]).

One of the objectives of the present paper is to address the other question we
indicated above, i.e. the one concerning the determination of the degree of secant
varieties. This question, though important, has never been systematically investigated
in general, neither in the past, nor in more recent times, exceptions being, for instance,
the papef12] for the case of curves (see alfg9]), and the computation of the degree
of secant varieties to varieties of some particular classes, like one ddég]irfsee
also Sectiorb below).

Of course, given any varietX € P", one has a famous, classical lower bound for
the degree oiX (see 4.1) below), which says that the degree in question is bounded
below by the codimension of plus one. This bound is sharp, and the varieties achiev-
ing it, the so-calledvarieties of minimal degreeare completely classified, in par-
ticular they turn out to be rational (s422]). The aforementioned bound of course
applies to the secant varieties &f too, but, according to the classification of vari-
eties of minimal degree, one immediately sees that it is never sharp in this case. Thus
the question arises to give sharp lower bound for the degree a$*(X). This is
the problem that we solve in Sectigh where our main result, i.e. Theorem?2, is
the bound 4.2 for the degree ofS*(X). Moreover, we prove a similar bound.p)
for the multiplicity of $¥(X) at a general point oK. One of the main steps in the
proof of Theorem4.2 is the result in Sectior8, namely Theoren8.1, in which we
give relevant informations about the tangent coneSteX) at the general point of
S!(X), wherel < k. This can be seen as a wide generalization of the famous Ter-
racini's Lemma (see Theorerh.1 below), which describes the general tangent space
to SK(X).

The lower bound 4.2) for the degree ofs*(X) is a generalization of the classical
lower bound 4.1) for the degree of any variety, and, as well as the latter, it is sharp.
Actually, in Theorem4.2 we also show that varietieX such thats*(X) has the min-
imum possible degree, called varieties wittinimal k-secant degreer M*-varieties
(see Definition4.4), enjoy important properties like: genenatinternal projectionsx”
of X, i.e. projections ofX from m general points on it, are also ofinimal k-secant
degree generalmtangential projectionsX,, of X, i.e. projections ofX from m <k
general tangent spaces, arenofhimal (k — m)-secant degreein particular, fork = m,
projectionsX; of X from k general tangent spaces arerinimal degreg hence they
are rational. Since we know very well varieties of minimal degree, and a gekeral
tangential projectionX; of X is one of them, a natural question, at this point, arises:
what is the structure of the projectioi — — — X;? The interesting answer is that,
if X is not k-defective then the map in question is generically finite and its degree is
bounded above by, (X) which, by definition, is the number ak + 1)-secantP* to
X passing through the general point §f(X). In particular, if X is not k-defective,
if $¥(X) has minimal degree angd,(X) = 1, thenX, as well asXy, is rational. The
main ingredient for the proof of the bound on the degree of kliangential projec-
tion X — — — X is proved in Sectior2 (see Theoren®.7), where we exploit and
generalize the technique, introduced][i8], of degeneration of projections, based on
a beautiful idea of Franchetta (s§6,27).
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Notice that the conditiony (X) = 1 is rather mild, i.e. one expects thaiostnon
k-defective varietiesX c P” enjoy this property ifSK(X)CP" (see Sectionl.5, in
particular Propositiori.5 for a sufficient condition for this to happen). The varieties
X, not k-defective, such thas*(X) has minimal degree angl,(X) = 1 are called
MA L variety or O Al 1-variety according to whethes®(X) is strictly contained in
P" or not (see Definitior4.4), e.g.X is an O.A{ 1-variety if and only if S¥(X) = P,

r = (k+ 1n + k and there is only ongk + 1)-secantP* to X passing through
the general point of?”, i.e. the general projectio&’ of X to P"~1 acquires a new
(k+1)-secantP*~1 that X did not use to have. This was classically calledagparent
(k+1)-secantP*~1 of X. It should be mentioned, at this point, the pioneering work of
Bronowski on this subject: in his inspiring, but unfortunately very obscure, p@der

he essentially states that the m&p- — — X is birational if and only ifX is either

an MAt1variety or O.A M -variety. As we said, one implication has been proved by
us, the other is open in general, and we call it #lle Bronowski's conjecture (see
Remark4.6). The results of the present paper imply that Bronowski's conjecture holds
for smooth surfaces (see Corolla®y3d), whereas the main theorem [@f8] implies that

the Bronowski's conjecture holds for smooth threefoldsFif if k = 1. It would be
extremely nice to shed some light on the validity of this conjecture in general, since,
according to Bronowski, this would make the study and the classificatiofof{ "1

and OA M -varieties easier.

The existence ofM*, Moﬁﬂ, and MA’,zf}-varieties, and therefore the sharpness
of the bound proved in Theored?2, is showed in Sectio®, where several important
classes of examples are exhibited. Among these one has: rational normal scrolls, some
Veronese fibrations, some Veronese embeddings of the plane, defective surfaces, del
Pezzo surfaces, etc.

With all the above apparatus at hand, the natural question is to look for classifi-
cation theorems fortX, MAFT1, and O.Af*1-varieties. This turns out to be a very
intriguing but considerably difficult question to answer. Indeed the problem is non-
trivial even in the case of curves, considered in SecBoithe classification theorem
here, which follows by results of Catalano-Johnson, is that a curve istatf*] or

an OA’,if%—variety if and only if it is a rational normal curve (see Theorérm). Our

proof is a slight variation of Catalano—Johnson’s argument. The classificatiéhéléf

varieties, also calle®ADP-varieties, which meansarieties with one apparent double

point, is a classical problem. The case OADP-surfaces goes back to Sevgb4],

whereas examples and general considerations concerning the higher dimensional case

can be found in papers by Eddel] and Bronowski[6]. This latter author came to

the consideration of this problem studying extended forms of the Waring problem for

polynomials. Severi’'s incomplete argument has been recently fixed by the second author

[51], and a different proof can be found ji8], where one provides the full classifica-

tion of OADP-threefolds inP’. Finally, an attempt of classification @.4;*]-surfaces

is again due to BronowsKir], whose approach, based on his aforementioned unproved

conjecture, was certainly not rigorous and led him, by the way, to an incomplete list.
The problem we started from, and which actually was the original motivation for this

paper, was to verify and justify Bronowski's classification theoren@o(ﬁﬂ-surfaces,
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without, unfortunately, having the possibility of fully relying on his still unproven
conjecture. It was in considering this question that we understood we had to slightly
change our viewpoint and first look at a different kind of problem. This leads us to
the second theme of the present paper, i.e. linear system on surfaces, which occupies
Section7. We discovered in fact that the classificationMAij and OAiﬂ—surfaces

is closely related to a beautiful classical theorem of Casteln{®yvand Enriqueg24]

(see TheorenT.3) which gives an upper bound for the dimension of a linear sysfem

of curves of given geometric genus on a surfXcend classifies those pai¢X, £) for

which the bound is attained. Of course, Castelnuovo—Enriques’ theorem has to do with
the intrinsic birational geometry of surfaces. However, if one looks at the hyperplane
sections linear systems, it becomes a theorem in projective geometry and our remark
was that Castelnuovo—Enriques’ list of extremal cases consisted of katafective
surfaces and of\A{ 1 and OA; t1-surfaces for somé. It became then apparent to

us that there should have been a relationship between minimality properties of secant
varieties encoded in thet*, MA’,if}, and OAif}-properties and the Castelnuovo-
Enrigues’ maximality conditions on the dimension of the hyperplane sections linear
system. The relation between the two items was underlined, in our view, by the fact
that Castelnuovo and Enriques’ beautiful original approach was based on iterated appli-
cations of tangential projections, a technique that, as we indicated above, enters all the
time in the study of secant varieties. In fact, we do not reproduce here Castelnuovo—
Enriques’ original argument, which, based on the technical Propositigris however
hidden, as we will explain in a moment, in the proof of our classification theorems of
MK, MAKTL and O Af T 1-surfaces given in Sectiorand 9. We preferred instead to

give an intrinsic, birational geometric, proof of Castelnuovo—Enriques’ theorem, which
enables us to prove a slightly more general statement than the original one and is
also useful for extensions, like our Theorefr9, in which we classify those smooth
surfaces in projective space such that their hyperplane linear system has dimension
close to Casteluovo—Enriques’ upper bound. The Castelnuovo-Enriques’ upper bound
(7.3 for smooth irreducible curves is essentially the main result of Hartsh{88e
Corollary 2.4, Theorems 3.5 and 4.1}here the classification of the extremal cases is
not considered. Our simple and short proof, which we hope has some independent in-
terest, relies on an application of Mori's Cone Theorem, namely Propositibrwhich

has an independent interest and says that given a(iaiD), where X is a smooth,
irreducible, projective surface, arid is a nef divisor on it, one has th& + D is

also nef, unless one of the following facts occurs: eittEr D) is not minimal i.e.

there is an exceptional curve of the first kifdon X such thatD - E = 0, or (X, D)

is a h-scroll, with #<1, i.e. there is a rational curvE on X such thatF2 = 0 and

D-F =h, or (X, D) is ad-Veronesewith d<2, i.e. X = P? andD is a curve of de-
greed < 2. A slightly more general version of this last result, in the cBsiereducible
(smooth) curve, was obtained by litaka, §86], and revised from the above point of
view of the Cone Theorem by Dicks, sg0] Theorem 3.1. For weaker results of the
same type, concerning the caBeample, see for examplg88]. It should be stressed

that, as indicated in Castelnuovo’s pag@f, one can push these ideas further, thus
giving suitable upper bounds for the dimension of certain linear systems on scrolls, or
equivalently on the degree of curves on scrolls a$3i®, Theorem 2.4 and Corollary
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2.5]. This has been done already, in an independent way al§d9j but we hope
to return on these matters in the future since we believe that some of the results in
[9], see alsd33] Sections 2 and 3, and 9] can be slightly improved and perhaps
related to projective geometry in the spirit of the present paper.

As we said, in Section8 and 9 we come back to the classification MAﬁfi and

(’)Aﬁﬂ—surfaces. Using the machinery of tangential projections and degeneration of
projections we discover that the surfaces in question are either extremal with respect to
Castelnuovo—Enriques’ bound or they are close to be extremal, so that their classification
can be at this point accomplished using the results of SedtioRinally in Section

10 we prove, using the same ideas, a result, namely Thed@ which is a wide
generalization of the famous theorem of Severi's saying that the Veronese surface in
P® is the only defective surface which is not a cone.

In conclusion we would like to mention that, though the above classification re-
sults for M¥, MAFTT, and O.A T -varieties are quite satisfactory and conclusive in
low dimensions, i.e. for curves and surfaces, quite a lot of room is left open for the
higher-dimensional case, where, except for the aforementioned resdl8jpfnothing,
to the best of our knowledge, is known. We hope the ideas presented in this paper
will be useful in this more general context too. Another interesting direction of re-
search is to try to extend to higher-dimensional varieties Castelnuovo—Enriques’ results
in Section7. This question is also widely open. The adjunction theoretical approach
that we use in the surface case can in principle be extended, but it is not clear whether
it leads to anything really useful. On the other hand Castelnuovo—Enriques tangential
projection approach, in order to work, has to be modified, since one needs to make
projections from osculating, rather than tangent, spaces. An interesting suggestion in
this direction comes from the beautiful comments of Castelnuovd8]tm the volume
of collected paper$10, pp. 186—188]However, osculating projections present serious
technical problems which make Castelnuovo’s suggestion rather hard to be pursued.
On the other hand, the specific problem which Castelnuovo was considering in his
comments in10, pp. 186-188]i.e. the classification of linear systems of rational sur-
faces inP3, has been recently successfully addressed by various authors, in particular
by Mella [43], by using Mori's program. The interplay between intrinsic birational
geometry, i.e. Mori’s program, and extrinsic projective geometry, i.e. osculating pro-
jections and relations with secant varieties, is a very promising, uncharted territory to
be explored.

1. Notation and preliminary results

1.1. Let X C P be a projective scheme ov&. We will denote by degX) the degree
of X, by dim(X) the dimensionof X, by codim X) = r — dim(X) its codimensiorand
by (X)req the reduced subscheme supportedbyVe will mainly consider the case in
which X is a reduced, irreducible variety.

If Y c P is a subset, we denote byy) the span ofY. We will say thatY is
non-degeneraté (Y) = P".
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1.2. Let X € P" be a reduced, irreducible variety of dimensionlf x € X we will
denote byCx , thetangent condo x at X, which is ann-dimensional cone with vertex
at x. Note thatCx . has a natural structure of a subscheméP6f We will denote by
mult, (X) the multiplicity of X at x. One has mult(X) = degCx ) and X is a cone
if and only if X has some poink such that mult(X) = deg X). In this casex is a
vertexof X and we will denote by Ve(X) the set of vertices oK, which is a linear
subspace contained X. It is well known that

vert(X) = () Tx.. (1.1)
xeX

If x is a smooth point ofX, then Cx , is ann-dimensional linear subspace &f,
i.e. thetangent spacéo X at x, which we will denote byT .

1.3. Let k be a non-negative integer and I8t(X) be thek-secant varietyof X, i.e.
the Zariski closure if?" of the set:

{x € P" : x lies in the span ok + 1 independent points aX}.

Of courseS%(X) = X, §"(X) = P’ and S¥(X) is empty if k>r + 1. We will write
S(X) instead ofs1(X) and we will assume <r from now on.

Let SynT(X) be thehth symmetric product ofX. One can consider thabstract
kth secant varietys%, of X, i.e. $% € Symf(X) x P" is the Zariski closure of the set
of all pairs ([po, ..., pkl, x) such thatpo, ..., pr € X are linearly independent points
andx € (po, ..., pr). One has the surjective mag : S% — Sk(X) € P’, i.e. the
projection to the second factor. Hence

sW(X) := dim(s* (X)) < min{r, dim(s%)} = min{r, n(k + 1) + k}. (1.2)

We will denote bys® (X) the codimension ofs*(X) in P’, i.e. KO (X) := r —
s©Xx).

The right-hand side of1(2) is called theexpected dimensioaf S¥(X) and will be
denoted bys® (X). One says thaX has ak-defect or is k-defective or is defective of
index kwhen strict inequality holds in1(2). One says that

Sk(X) = a®(X) — sP(X)

is the k-defectof X.

Notice that the general fibre b is pure of dimensionk + Dn + k — s® (X),
which equalsé,(X) whenr>n(k + 1) + k. We will denote by, (X) the number of
irreducible components of this fibre. In particularsif (X) = (k +1)n +, then p% is
generically finite andy, (X) is the degree op%, i.e. it is the number ofk + 1)-secant
P*'s to X passing through the general point §f(X).
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If s©(X) = (k+ 1)n + k, we will denote byv,(X) the number of(k + 1)-secant
Pk's to X meeting the generdP"”X) in P, Of course one has

Vie(X) = 1 (X) - degS* (X)) (1.3)
and therefore
w(X) = (X) it r=s®X)=k+Dn+k. (1.4)

1.4. Let X c P" be an irreducible, projective variety. Lktbe a positive integer and
let p1, ..., px be general points oK. We denote byl ,,... , the span ofTy ,,,i =
1,... k.
If X c P" is a projective variety, Terracini’s lemma describes the tangent space to
Sk(X) at a general point of it (sef56] or, for modern versiong1,14,19,58]

Theorem 1.1 (Terracini’'s lemma. Let X C P” be an irreducible projective variety. If
po, - .-, pr € X are general points and € (po, ..., px) is a general point, then

Tk x)x = TX.po..oc.pi-

If X is k-defectivethen the general hyperplane H containifdg . ... ,, is tangent to
X along a varietyX,, ., of purg positive dimensiom(X) containing po, ..., pk.
Moreover one has

k< dim((Z g, ) <kni(X) + k + ni (X) — 8(X).

,,,,,

Consider the projection oX with centre Tx ,, .., . We call this ageneral k-
tangential projectionof X, and we will denote it byty ;.. , Or simply by tx k.
We will denote byX; its image. By Terracini's lemma, the mag x is generically
finite to its image if and only ifs® (X) = (k + 1)n + k. In this case we will denote
by dx i its degree.

In the same situation, the projection Xfwith centre the spacép, ..., pi) is called
a general k-internal projectiorof X, and we will denote it byrx ;.. or simply by
tx.x. We denote byx* its image. We seXo = X° = X. Notice that the mapsy ; are
birational to their images as soon &As< r —n = codim(X).

Sometimes we will use the symba¥g, [resp., X¥] for k-tangential projections [resp.,
k-internal projections] relative tepecifi¢ rather thangeneral points. In this case we
will explicitly specify this, thus we hope no confusion will arise for this reason.

1.5. We recall from[14] the definition of ak-weakly defectivevariety, i.e. a variety
X c P" such that ifpg, ..., px € X are general points, then the general hyperplane
H containing Tx ..., iS tangent toX along a varietyX,, , of pure, positive

,,,,,,,,,,
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dimensionn, (X) containingpo, ..., px. By Terracini’'s lemma, &-defective variety is
also k-weakly defective, but the converse does not hold in general [(Hg

Remark 1.2. A curve is neverk-weakly defective for anyk. A variety is O-weakly
defective if and only if its dual variety is not a hypersurface. In the surface case this
happens if and only if the surface developablei.e. if and only if the surface is either

a cone or the tangent developable to a curve.

The two next results are consequences of Theorem 1[#4pfthat we partially recall
here.

Theorem 1.3.Let X c P" be an irreducible projective non-degenerate variety of
dimension n. Assume X is not k-weakly defective for a given k suchthat+1)(k+1).
Then given po, ..., pr general points on Xthe general hyperplane H containing
Tx, po....p. IS tangent to X only afpo, ..., pr. Moreover such a hyperplane H cuts on
X a divisor with ordinary double points gto, ..., pk.

The first consequence we are interested in is the following:

Lemma 1.4. Let X ¢ P" be an irreducible projective non-degenerate variety of di-
mension pwhich is not k-weakly defective for a fixéd 1 such that- > (k+1)(n +1).
Then a general k-tangential projection of X is birational to its image. dx = 1.
In particular, if r>2n + 2, the general tangential projection of X is birational to its
image

Proof. SinceX is notk-weakly defective, it is not-defective for alll <k. Thus we have
s (X) = (1+1n+1 for all 1<k, so that by Terracini’s lemmay, .. .. , is generically
finite onto X; for everyl<k and p1, ..., p; general points orX. In particular this is
true forl = k.

Suppose now thaflx x > 1. Then, given a general poinip € X there is a point
q € X\ (Tx,py,...px N X), q # po, such thatry p, .. p (P0) = Tx,py,...pe (@) = x € Xk.
This would imply thatTx, ;o p;....p. @Nd Tx g py,...p COINCide, since both these spaces
project viaty p,,.. p. ONnto Tx, . In particular, the general hyperplane tangenitat
po, P1, - - -, Pk 1S also tangent at]. This contradicts Theorerh.3. [

We also note that Terracini's lemma and Theor&i® imply that

Proposition 1.5. Let X c P be an irreducible projective variety which is not k-weakly
defective. Ifr > (n + D) (k + 1), then i, (X) = 1.

In the sequel we will also need the following technical:

Proposition 1.6. Let X c P" be a smoothirreducible projective non-degenerate
surface which is not(k — 1)-weakly defective for a fixedd>1 such thatr >3k + 2. Let
p1,---, pr € X be general points and assume that the linear systewf hyperplane
sections of X tangent gb1, ..., px has a not empty fixed palf = Z?:l n; I;, with
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I'; distinct irreducible curves andi; > 0, forall i = 1,..., h. Let M be the movable
part of £ and let M be its general curve. Then F is reducée. n; = 1 for all
i=1...,hand

(i) either h = 1, F is a smooth rational curve containingps, ..., px, whereasM
has simple base points at;, ..., pr and M - F = k, henceM € M general meets
F transversally atpq, ..., pr and nowhere else

(i) or h =k, I'; is a smoothrational curve containingp; fori =1,...,k, I;NI; =
¢ if 1<i < j<k, M has simple base points g1, ..., pr and M - T'; = 1,
henceM € M general meetd’; transversally atp; and nowhere elsefor all
i=1... k.

Moreover, if r>3k + 3 and if the general k-tangential projectioX; of X, has
rational hyperplane sectionghen the general curvé/ € M is rational.

Proof. Let C be a general curve id, so thatC = F + M. By Theorem1.3 we know

that C has nodes ap1, ..., pr and is otherwise smooth. This implies that

e F is reduced;

e all the curvesl’;, i =1,...,h, are smooth offp1, ..., pr, where they can have at
most nodes;

o I'; andI';, for 1<i < j<h, may intersect only at some of the poings, ..., px,
where only two of them may meet transversally;

e M is smooth offp1, ..., pr where it can have at most nodes, and may intersect the
curvesI’; only at p1, ..., px, where it may meet only one of them transversally;

e if the point p;, i = 1,...,k, is a node for a curvd’;, i = 1,..., A, then it does

not belong neither toM, nor toI';, j # i,

e if the point p;, i =1,...,k, is a node forM, then it does not belong tb;

o if the point p;, i = 1,...,k, is a smooth point for a curvk;, i =1,...,h, then it
belongs either tdM, or to a curvel’;, j # i, but not to both.

We prove the assertion in various steps.

Claim 1.7. Every irreducible componentl’; of F contains some of the points
P1, - Dk

Otherwise we would havé’; N C —I'; = ¢, and C would be disconnected, a con-
tradiction since it is very ample oK.

Claim 1.8. F contains all the pointys, ..., pk.

In fact, if p1 ¢ F, then, by changing the role of the points, ..., px, none of the
points p1, ..., pr is in F, contradicting Claiml.7.

Claim 1.9. F is smooth

We know F can be singular only at some of the poinis, ..., px. Suppose this is
the case. Then by symmetry, it is singular at any one of the points in question. But
then we would haveV N F = @, which leads to a contradiction as above.
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Claim 1.10. Let I'1 be the irreducible component of F through. Then either also

p2, ..., pr € I'1, or none of the pointspy, ..., p; lies on I'1. In the former case

I'1 = F. In the latter each of the pointg;,i = 1, ..., k, belongs to one and only one
componentl’; of F.

Supposel’; containsps, ..., p;, with 1 < i < k. By changing the role of the points
pPi, ..., Pk, @anyi among the pointys, ..., pr lie on some irreducible component of
F. ThenF would be singular, contradicting Claih9. This proves the first part of the
Claim.

Assume p1, ..., pr € I'1. Then Claims1.7 and 1.9 imply that F = I'. Suppose
instead onlyp; lies onT'. Then by changing the role of the points, ..., px, each
of the other pointsp;,i =2, ...,k, also lies on one and only one componentrof

Claim 1.11. Every irreducible componert; of F is rational

By projecting X from Tx_,,. . »_,, We get an irreducible surfack;_; c Pr—3+3,
with r — 3k +3>5, which is birational toX by Lemmal.4 and which is not 0-weakly
defective. Letq be the image onX;_; of a general pointp, of X. Notice that the
general tangent hyperplane sectionXp_1 at g, which is the image ot, is reducible
containing M’, the image ofM, and I/, the image ofl;, both passing througl.
Notice thatM’ is the movable part of the linear system of hyperplane section, of
tangent atg, whereasI” is the fixed part. ThenX,_; is either the Veronese surface
in P° or a non-developable scroll over a curve (see for instg#6d). HencelI” is
rational. Sincery ,,,...._, is birational by Lemmal.4, thenI’ is birational toI”, and
is therefore rational. 1"y = F there is nothing else to prove. Otherwise, by changing
the role of the pointg;, we see thafl; is rational for anyi =1, ..., k.

The above claims imply (i) and (ii). As for the last assertion, it follows from
Lemmald O

1.6. If X,Y c P" are closed subvarieties we denote .bgX, Y) the join of X andY,
i.e. the Zariski closure of the union of all linds, y), with x e X,y e Y, x #y. If X
is a linear subspace, thel( X, Y) is the cone ovel with vertex X. With this notation,
for everyk>1 one has

sk(x) = J(SLX), SM(X)) (1.5)

ifl+h=%k—-1,1>0,h>0.
We record the following:

Lemma 1.12. Let X, Y C P" be closedirreducible, subvarieties and lefl be a linear

subspace of dimension n which does not contain either X or YxLeP” — — —
P"~"~1 be the projection froniI and let X', Y’ be the images ok, Y via n. Then

n(J(X,Y)) =J(X, Y.
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In particular, if IT does not contain Xthen for any non-negative integer k one has

n(S* (X)) = skx).

Proof. It is clear thatn(J(X,Y)) € J(X',Y’). Letx’ € X', y' € Y’ be general points.
Then there arer € X, y € Y such thatr(x) = x/, n(y) = y'. Thuszn({x, y)) = (x, '),
proving thatJ (X', Y") C n(J(X,Y)), i.e. the first assertion. The rest of the statement
follows by (1.5 with [ = 0, by making induction ork. [

The following lemma is an application of Terracini’s lemma:

Lemma 1.13.Let X C P" be an irreducible projective variety. For alli = 1,...,k
one has

hED (X3 = n® (X),
whereas for alli >1 one has

% (x"y = max0, h'® (X) — i}.

Proof. Let po,..., pr € X be general points. Terracini's lemma says tligt,,.....
is a general tangent space $6(X) and that its projection fronTx ;1. p IS the
general tangent space ®8~(X;). This implies the first assertion.

To prove the second assertion, note that it suffices to prove it for:®) (X). Indeed,
if i>h®(X) then, by Lemmal.12 one hash® (X?) = 0 since already:® (x"") =
0. Thus, supposé < A (X). Let po,..., pr € X be general points and take
general pointsgy, ..., g; in X \ (X N Tx p,,.. p)- Then the projection offx p,
from (qo, ..., q;) is the tangent space t§X(X’). Furthermorei < h(")(X) ylelds
(qo, - -, qi) N Tx po,..., = ¢. This implies the second assertior]

.....

1.7. Let 0<ai<a1<--- <a, be integers and seP(ay,...,a,) = P(Opi(a1) ®
-+ @ Op1(ay)). We will denote byH a divisor in [Op(,....q,) (1| and byF a fibre of
the structure morphism : P(ay, ..., a,) — P!. Notice that the corresponding divisor
classes, which we still denote by and F, freely generate Pi®(ay, ..., a,)).
Setr =a1+---+a, +n —1 and consider the morphism

¢ = ¢\H| :Payg, ..., a,) — P’
whose image we denote by(ai,...,a,). As soon asq, > 0, the morphism¢ is

birational to its image. Then the dimension 8§fas, ..., a,) is n and its degree is
ar+---+a, =r—n+1, thusS(ay, ..., a,) is arational normal scrol) which is smooth
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if and only if a1 > 0. Otherwise, if 0O=a; = --- = a; < a;11, then S(ay, ..., a,)
is the cone ovetS(aji1, ..., a,) With vertex aP’~1. One uses the simplified notation
S(afl,...,afﬁ,’") if a; is repeateds; times,i =1,...,m.

We will sometimes use the notatidthandF to denote the Weil divisors i§(ay, . . .,
a,) corresponding to the ones d&(ay, ..., a,). Of course this is harmless if; > 0,
since thenP(ax, ..., a,) >~ S(ax, ..., a,).

Recall that rational normal scrolls, the Veronese surfac®inand the cones on it,
and the quadrics, can be characterized as those non-degenerate, irreducible varieties
X c P" in a projective space having minimal degree @g= codim(X) + 1 (see
[22]).

Let X = S(ax,...,a,) C P" be as above. We leave to the reader to see that:

X' =S@01,...,b,), where {b1,...,by}=1{a1,...,ay —1}. (1.6)

One can also consider the projectiar of X from a generalP" ! of the ruling of
X. This is not birational to its image i#; = 0 and one sees that ify = --- = a; =
0 < a;41, then:

X =S(c1,....cu i), Wwhere {c1,....coi}={aiz1—1,...,a, —1}. .7

A general tangential projection ok = S(as,...,a,) is the composition of the
projection of X from a generalP"~! of the ruling of X and of a general internal
projection of X’. Therefore, by putting1(.6) and (L.7) together, one deduces that if
a;=---=a; =0 < a;jy1, then:

X1=S8(d,...,d,—;), where {di,...,d,—i}={aiv1—1,...,a, —2}. (1.8)

As a consequence we have

Proposition 1.14.Let X = S(a1,...,a,) C P" be a rational normal scroll as above.
Then

dim(s*(X) =min{rr+k+1— > (aj—k)
1<j<n; k<a;
In particular, if r > (k+ 1)n +k, thens® (X) = (k+ Ln +k if and only ifa; >k.

Proof. It follows by induction using 1.8) and Terracini’s lemma. We leave the details
to the reader. OJ

A different proof of the same result can be obtained by writing the equations of
Sk(X) (see[11,50] for this point of view).
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1.8. Given positive integers & m1 < --- <my we will denote by Se@®"1, ..., P"),
or simply by Segni, ...,m;) the Segre varietyof type (m1, ..., my), i.e. the image
of P" x ... x P"™ in P", r = (m1+1)---(my +1) — 1, under theSegre embedding
Notice that, if " = [P(V;), whereV; is a complex vector space of dimensian+ 1,
i=1,...,h thenP" = P(V1®---®V};) and Se@na, ..., m;) is the set of equivalence
classes of indecomposable tensor$*in We use the shorter notation $eé1, R ml\f)
if m; is repeatedk; times,i =1,...,s.

Recall that PigP"t x - - - x P™") ~ Pic(Segmy, ..., my)) ~ Z", is freely generated
by the line bundles; = pr/(Opmi (1)), i =1,..., h, wherepr; : P x ... x P"" —

P™ is the projection to théth factor. A divisorD on Seg@m, ..., m;) is said to be of
type (€1, ..., £y) if Osegmy....mp)(D) = EL®@---@&". The line bundlefl! @ - - @ &}
on P x ... x P is also denoted byOpmi...pmi (L1, ...,¢;). The hyperplane

divisor of Sedms1, ..., my) is of type(1,...,1).

It is useful to recall what are the defects of the Segre varietiegngegi2) with
mi1<mp. As above, letV; be complex vector spaces of dimension + 1, i =
1,2. We can interpret the points dP(V1 ® V2) as the equivalence classes of all
(m1+ 1) x (m2 + 1) complex matrices and Segi, m2) = SedP(V1), P(V»)) as the
subscheme oP (V1 ® V) formed by the equivalence classes of all matrices of rank 1.
Similarly S*(Segm1, m»)) can be interpreted as the subschemé®o¥, ® V») formed
by the equivalence classes of all matrices of rank less than or eqia} 1o Therefore
S"(Seg[ml, my)) = P(V1 ® Vo) if and only if k>m1. In the casek < mj; one has
instead:

codim(s* (Segm1, m2))) = (m1 — k)(mz — k)
(see[2, p. 67). As a consequence one has
ox(Sedma, mp)) = k(k + 1)

if Kk <mqi<mo.

The degree ofSk(Segml, my)), With k < m1<my, are computed by a well known
formula by Giambelli[30], apparently already known to Segre (sg, p. 42]
[28, 14.4.9] for a modern reference). The cake- m1 — 1, which is the only one we
will use later, is not difficult to compute (s€82, p. 243) and reads

deg S~ (Segmy, m))) = (’"2 + 1) .

mi

1.9. We will recall now some definition and result due to Kenfip®], which we are
going to use later.
Let V1, Vo, V3 finite-dimensional complex vector spaces. A pairing

¢: Vi Vo— V3
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is said to be dgenericif 0 # v € V1 and 0# u € V, implies ¢(v ® u) # 0. From a
projective geometric point of viewp determines a projectiop : P(V1 ® Vo) — — —
P(V3) and the 1-genericity condition translates into the fact that the centre of the
projection ¢ does not intersect SEg(V1), P(V2)).

If ¢ is surjective, then we may regar@l as specifying a linear space of linear
transformations:

V3 € Hom(Vy, V3) ~ Vi@ V.

One says thavy is 1-genericif ¢ is.

Let m; + 1 = dim(V;) and supposen; <m3y. For eachk such that @k <m1, let
(V3)« be the subscheme dfy of all matrices inV3 with rank less than or equal to
k + 1, i.e. the scheme-theoretic intersectiongf with the scheme Hoiiva, V), of
all matrices with rank less than or equal kot 1 in Hom(Va, V). Of course(V3)«
is a cone, hence it gives rise to a closed subschiii&;),) of P(V3) which is the
scheme theoretic intersection &f(V3) with S"(Segl]ﬂ’(vl*), P(V5)). Notice that the
expected codimension dP((V3)x) in P(V3) is:

mimy — k(my + ma) + k? = dim(P(V; ® V5)) — s©(SegP(Vi), P(V5))).

This is also the expected codimension @fy); in V5. We can now state Kempf's
theorem:

Theorem 1.15.1f V3 C Vi ® V5 is 1-generic then (V3),, -1 is reduced irreducible
and of the expected codimensi@aa —m3+1 in V3. The same is true foP((V3)m,-1),

whose degree i{’”g{l).

1.10. Given positive integers, d, we will denote byV, ; the image of" under the
d-Veronese embeddinaf P” in p("iH-1,

1.11. If X is a variety of dimensiom andY a subvariety ofX, we will denote by
Bly(X) the blow-up of X alongY. If Y is a finite set{xs,...,,x,} we denote the
blow-up by Bl;,....x, (X).

With the symbol= we will denote the linear equivalence of divisors ¥nThe symbol
~ will instead denote numerical equivalence.dfis a linear system of divisors oX,
of dimensionr, we will denote by¢, : X — — — [P" the rational map defined by.

If D is a divisor on the varietyX, we denote byiD| the complete linear series of
D. If X c P" is an irreducible, projective variety, arid is a hyperplane section of,
one says thakK is linearly normalif the linear series cut out oX by the hyperplanes
of P is complete, i.e. if the natural map

HO(P", Opr (1)) — HO(X, Ox(D))

is surjective.
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If D [resp., D] is a divisor [resp., a line bundle] oX, we will say thatD
[resp., D] is effectiveif h%(X, Ox(D)) > 0 [resp.,h%(X, £) > 0]. We will say that
D [resp.,D] is nefif for every curveC on X, one hasD - C >0 [resp.,D - C>0]. A
nef divisor D [resp., a nef line bundl®] is big if D" > 0 [resp.,D" > O].

1.12. Let X be a smooth, irreducible, projective surface. As customary, we will use
the following notationg := ¢(X) := hl(X, Oy) for the irregularity, x := x(X) for the
Kodaira dimensionof X. We will denote byK := Ky a canonical divisoron X and,
as usualpg 1= pe(X) := ho(X, Ox(K)) is the geometric genus

If Cis a curve onX, it will be called a(—n)-curve if C ~ P! andC? = —n. Recall
that a famous theorem of Castelnuovo’s identifies thd)-curves as the exceptional
divisors of blow-ups.

Let D be a Cartier divisor on an irreducible, projective surfateWe denote by
pa(D) the arithmetic genus dD. We will say thatD is acurveon X if it is effective.
If D is reduced curve ok, we will considerp, (D) the geometric genusf D, i.e. the
arithmetic genus of the normalization DX

A curve D on X will be called m-connected if for every decompositian = A + B,
with A, B non-zero curves orX, one hasA - B>m. If D is 1-connected one has
hO(D, Op) =1 andh(D, Op) = p.(D)>0 (see[4]). If D is a big and nef curve on
X, thenD is 1-connected (segl4, Lemma (2.6))

If X is smooth, we will say that the pa{X, D) is:

o effective[resp.,nef big, ample very amplé if D is such;

e minimal if there is no(—1)-curve C on X such thatD - C = 0;

e ah-scroll, with >0 an integer, if there is a smooth rational cufven X such that
F?=0andD - F =k;

e adel Pezzo paiif K ~ —D and (X, D) is big and nef.

A 1-scroll will be simply called ascroll.

Notice that if (X, D) is a del Pezzo pair, theK is rational andK = —D. Indeed
—K is nef and big, thus«(X) = —oco and ¢ = h1(X, Ox) = KX (X, Ox(K — K)) =0
by Ramanujam’s vanishing theorem (4d8]).

If £is a linear system oX and D € L is its general divisor, we will say thai, £)
is nef big, ample minimal a h-scroll etc. if (X, D) is such. One says th&¥, £) is
very ampleif ¢, is an isomorphism oK to its image.

Suppose the linear systefi has no fixed curve and the general curve fnis
irreducible. Then, by blowing up the base points &fwe see that there is a unique
pair (X', £"), where X’ is a surface with a birational morphisgh: X’ — X and aZ’
is linear system orX’ such that:

e [’ is the strict transform ofZ on X’;

e L' is base point free, and therefore its general cubves smooth and irreducible;

e L' is f-relatively minima] i.e. if E is a (—1)-curve onX’ such thatD’ - E = 0 then
E is not contracted by.

We will call the pair (X', £') the resolutionof the pair (X, D).
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If X € P is an irreducible, projective surface, one considgrsX’ — X C P" a
minimal desingularization oK and £ the linear system oX’ such thatf = ¢ .. The
pair (X', £) is big, nef and minimal. One says th¥tis a scroll if the pair (X', £) is
a scroll.

If X ~ P?andRis a line, the pairX, D) with D = dR will be called ad-Veronese
pair. If X = F, := P(0, a) is the Hirzebruch surface with>0, we letE be a(—a)-
curve onfF, andF a fibre of the ruling onPl, so thatF2 =0 andE - F = 1. Then
a pair (X, D) with X = F, and D = «F + fF will be called a(a, «, f)-pair or an
(o, p)-pair on [F,.

Consider a painX, D) as above. Letxs, ..., x, be distinct points onX. Consider
the blow-up p : Bly,,. x,(X) — X at the given points. On B| . (X) we have
the exceptional divisor€, ..., E, corresponding toy, ..., x,. Consider the divisor
Dy,...x, = p"(D) — E1—---— E,. The pair (Bly, . x,(X), Dy, ..x,) Will be called
the internal projectionof (X, D) from x1, ..., x,.

In the same setting, the paiBly, . . x,(X), p*(D)) will be called ablow-up of
(X, D).

Similarly, consider the divisoDy,,, . 2., := p*(D) — 2E1 — --- — 2E,. The pair
(Blyy,...x, (X), D2y, ... 2x,) Will be called thetangential projectionof (X, D) from

X1y o vny Xy

2. Degeneration of projections

In this section we generalize some of the ideas presented in Sections 3 and 4 of
[18], to which we will constantly refer. This will enable us to prove an extension of
Theorem 4.1 of18], which will be useful later.

Let X c P" be an irreducible, non-degenerate projective variety of dimensidffe
fix k>1, we assume thaX is not k-defective and that® (X) = (k + )n + .

Let us fix an integes such thatr —s® (X) <s <r—s* D (X)—2, so thats® D (x)+
1<r —s —1<s®(X) — 1. Let L ¢ P" be a general projective subspace of dimension
s and let us consider the projection morphism : $¥~1(X) — P" ! of X from L.

Notice that, under our assumptions gnone has

(KX =P st x)) c Pl

Let p1,..., pr € X be general points and let € (p1, ..., px) be a general point,
so thatx € $¥=1(X) is a general point and’gi-1(xy, = Tx.py....p- We Will now
study how the projection; : S¥~1(X) — P"~*~1 degeneratesvhen its centre_ tends
to a generals-dimensional subspacgg containingx, i.e. such thatLo N S¥~1(Xx) =
» = {x}. To be more precise we want to describe timeit of a certain
double point schemeelated ton; in such a degeneration.

Let us describe in detail the set up in which we will work. We Tebe a general
ps“PO+s+1 which is tangent tos—1(X) at x, i.e. T is a generalPs* " (0+s+1
containingTx, ..., p,- Then we choose a general ligeinside T containingx, and we

.....
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also chooseZ a general ! inside T. For everyr € ¢, we let L, be the span of
and X. Fort € ¢ a general pointL, is a generalP® in P". For a general € ¢, we
denote byr, : S¥~1(X) — P"~*~! the projection morphism of*~1(X) from L,. We
want to study the limit ofr, whent tends tox. We will suppose from now on that
k>2, since the casg = 1 has been considered [t8].

In order to perform our analysis, consider a neighborhbodf x in ¢ such thatr,
is a morphism for allr € U \ {x}. We will fix a local coordinate orf so thatx has
the coordinate 0, thus we may identify with a disk aroundx = 0 in C. Consider
the products:

X=XxU X=$txX)xvu, P t=pP " txu.

The projectionsrn;, for ¢t € U, fit together to give a morphismj : X1 — P@f“l
and a rational mapt; : Ao — — — P;;“l, which is defined everywhere except at
the pair (x, x) = (x, 0). In order to extend it, we have to blow uf, at (x, 0). Let

p: X — X be this blow-up and leZ ~ P*“”X) pe the exceptional divisor. Looking
at the obvious morphisng : X» — U, we see that this is a flat family of varieties
over U. The fibre over a point € U \ {0} is isomorphic tos*~1(X), whereas the fibre
overt = 0 is of the formS U Z, where S — $¥~1(X) is the blow up ofs*~1(X) at
x, and SN Z = E is the exceptional divisor of this blow up, the intersection being
transverse.

On f?z the projectionsr,, for ¢+ € U, fit together now to give anorphism7 : X> —
P

UBy abusing notation, we will denote byp the restriction ofz to the central fibre
S U Z. The restriction ofrg to § is determined by the projection a*~1(X) from
the subspacé.o: notice in fact that, sincd.oN S*1(X) = LoN Tx p,....p, = 1x}, this
projection is not defined os*~1(X) but it is well defined onS.

As for the action ofrg on the exceptional divisdL, this is explained by the following
lemma, whose proof is analogous to the proof{t, Lemma 3.1] and therefore we
omit it:

.....

Lemma 2.1. In the above settingmg maps isomorphically Z to the®—D(Xx)-
dimensional linear spac® which is the projection of T fronig.

Now we considerY; x ;y X, which has a natural projection map: X1 xyXo — U.
One has a commutative diagram:

X1 Xy ./'%2 —ﬁ> PE]_S_]'
vl \

idy

U — U,

where? = 7 x 7. For the general € U, the fibre ofy overt is X x S¥~1(X), and the
restriction7, : X x $¥"1(X) — P"=*~! of 7 to it is nothing butm, x x Ty st-1(x)- We
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denote byAt(s’k) the double point scheme af. Notice that dirTQAfS’k))>s(k)(X)+s—r
and, by the generality assumptions, we may assume that equality holds fogdll

Finally consider the flat limitAg " of ACY inside AS™. We will call it the limit
double point schemef the map7;, ¢+ # 0. We want to give some information about
it. Notice the following lemma, whose proof is similar to the one[18, Lemma 3.2]
and therefore we omit it:

Lemma 2.2. In the above settingevery irreducible component cﬁg’k) of dimension
L o . = (5.k
s®(X)+s —r sits in the limit double point schen‘tk\(()s ).

Let us now denote by

e X7 the scheme cut out by on X. X7 is cut out onX by r —s*~D(x)—s—1 general
hyperplanes tangent t§ at p1, ..., pr. We call X7 a general (r —s* D (X) — s
— 1)-tangent sectiorto X at ps, ..., pr. Remark that each component &f has
dimension at least — (r — s* D (X) —s = 1) = s®(X) + 5 — r;

e Yy the image of Xy via the restriction ofrg to X. By Lemma2.1l, Yy sits in
® = np(Z), which is naturally isomorphic t&. Hence we may considel; as a
subscheme of;

e Z1 C X x Z the set of pairgx, y) with x € X7 andy = ng(x) € Yr. Notice that
Zr >~ X,

° A/g’k) the double point scheme of the restriction maf to S x X.

With this notation, the following lemma is clear (sgE8, Lemma 3.3]

(s,k)
0

Lemma 2.3. In the above settingA contains as irreducible componem‘ég’k) on

X xSandZr on X x Z.

As an immediate consequence of Lemn2agdand 2.3, we have the following propo-
sition (see[18, Proposition 3.4}

Proposition 2.4. In the above setting every irreducible component o7, off
Tx py.....per OF dimensions®)(X) + s — r gives rise to an irreducible component of

. . . - . < (s.k
Z7 which is contained in the limit double point schem§ ).

Remark 2.5. We notice that the implicit hypothesis “offy " has to be added also
in the statement o{18, Proposition 3.4] Actually in the applications in18] this
hypothesis is always fulfilled.

So far we have essentially extended word by word the contents of Sectiofil8]of
This is not sufficient for our later applications. Indeed we need a deeper understanding
of the relation between the double points schaﬁﬁsek) and (k + 1)-secantP*’s to X
meeting the centre of projectioh; and related degenerations whemoes to 0. We
will do this in the following remark.
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Remark 2.6. (i) It is interesting to give a different geometric interpretation for the
general double point schemﬂeﬁs’k), for r # 0. Notice that, by the generality assump-
tion, L, N S¥(X) is a variety of dimensiors® (X) + s — r, which we can assume
to be irreducible as soon a$® (X) +s —r > 0. Take the general poinw of it if
s®©(X)+s—r >0, or any point of it ifs®(X)+s —r = 0. Then this is a gen-

eral point of S¥(X). This means thatv € (qo, ..., gx), With qo, ..., gx general points
on X. Now, for eachi = O,...,k, there is a pointr; € {(g0,...,4i,...,qr) Which
is collinear withw and ¢;. Each pair(g;,r;), i = 0,...,k, is a general point of a

component ofAl(S’k). Conversely the general point of any component&b‘fk) arises in
this way.

(i) Now we specialize to the cage= 0. More precisely, consideZ; C X x Z and
a general pointp, ¢) on an irreducible component of it of dimensioff) (X) +s —r,
which therefore sits in the limit double point scherﬂés’k). Hence, there is a 1-
dimensional family{(p;, ¢;)};cy Of pairs of points such thatp,,q;) € A,(‘“k) and
Po=P,q0 =4

By (i) of the present remark, we can look at each fair, ¢;), t # 0, as belonging
to a (k + 1)-secantP¥ to X, denoted byll;, forming a flat family {Il;};cz\j0y and
such thatIl, N L, # @. Consider then the flat limiflp, for + = 0, of the family
{I1;};ev\j0)- Sinceq € Z, clearly Ilg containsx. Moreover it also containg. This
implies thatIlg is the span ofp with one of thek-secantP*~''s to X containing
x e Sk1(x).

As an application of the previous remark, we can prove the following crucial theorem,
which extendq18, Theorem 4.1]

Theorem 2.7. Let X ¢ P" be an irreducible non-degenerateprojective variety such
that s (X) = (k + 1)n + k. Then

dx i - deg Xy) <vi(X).

In particular

@) if r=k+21Dn+1) and X is not k-weakly defectiveéhen
deg Xx) <vi(X);
(i) if r = (k+n +k then
dx k < g (X).

Proof. We lets = h®(X) = r — s®(X) and we apply RemarR.6 to this situation.
Then X1 hasdx , - deg Xy) isolated points, which give rise to as many flat limits of
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(k + 1)-secantP*'s to X meeting a generalP*. By the definition ofv;(X) the first
assertion follows. Then (i) follows from Lemmh4 and (ii) follows by (.3. O

3. Tangent cones to higher secant varieties

In this section we describe the tangent cone to the var#tyX), at a general
point of S'(X), where 0<I < k, and X c P" is an irreducible, projective variety of
dimensionn. Our result is the following theorem, which can be seen as a generalization
of Terracini’'s lemma:

Theorem 3.1.Let X ¢ P" be an irreducible non-degenerateprojective variety and
let /,m € N be such thai +m = k—1. If z € S/(X) is a general pointthen the cone
J(Tg x> S™(X)) is an irreducible component diCg x) .)red. FUrthermore one has

mult, (S¥ (X)) > deg(J (T, -, S™ (X)) = deg(S™ (Xi+1)).

Proof. We assume thaf’(X) # P", otherwise the assertion is trivially true.
The scheme gy, . is of pure dimension® (X). Let noww € §™(X) be a general
point. By Terracini’s lemma and by the generality o€ S'(X), we get

dim(J(Tsl(X)’Z, Sm(X))) = dim(J(Tsl(X)’Z, TSm(X)’w))

= dim(J(S4(X), $™(X))) = dim(S¥(X)) = s© (X).

Thus, sinceJ (T x, ., S™(X)) is irreducible and reduced, it suffices to prove the in-
C|USIOI’1 J(TSI(X),Z’ Sm(X)) g (CSk(X),Z)red'

Let againw € $™(X) be a general point. We claim that ¢ Ty, .. Indeed
SI(X) # P and by (.1)

Vert(Sl(X)) = m TSI(X),y
yesi(X)

is a proper linear subspace Bf. If the general point ofS”*(X) would be contained
in Vert(s!(X)), then X € §™(X) C Vert(s! (X)) and X would be degenerate, contrary
to our assumption.

Sincew ¢ Tg (x) ., thenzis a smooth point of the cong(w, S(X)). We deduce
that:

(w, Tsl(X),z> = TJ(w,S’(X)),z = CJ(w,Sl(X)),z c CJ(S’"(X),S’(X)),Z = CS"’(X),Z'

By the generality ofw € $™(X) we finally haveJ (T y) .. $"(X)) € Cg(x) .- This
proves the first part of the theorem.
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To prove the second part, we remark that
mult, (S* (X)) = dedCr(x)..) = dedJ (Tsi(x) .- S" (X))).

Now, if po,..., p € X are general points, thei(Tg y, ., S"(X)) is the cone with
vertexTgi ) . OVErTx po...p (™ (X)), and, by Lemmad.12we have thatx, p,.....p, (5™
(X)) = $"™(X;+1). Thus deg@J (Tg (x, ., S"(X))) > dedS™ (X;+1)), proving the asser-
tion. O

4. A lower bound on the degree of secant varieties

As we recalled in Sectiord, the degreed of an irreducible non-degenerate variety
X c P’ verifies the lower bound

d>codim(X) + 1. (4.1)

Varieties whose degree is equal to this lower bound are called varietiggnirhal
degree As well known, they have nice geometric properties, e.g. they are rational (see
[22]). In the present section we will prove a lower bound on the degree df-feeant
variety to a varietyX. This bound generalizest(l) and we will see that varietieX
attaining it have interesting features which resemble the properties of minimal degree
varieties.

Before proving the main result of this section, we need a useful lemma. For an
irreducible varietyZ < PV we definedrz , as the projection from the general point
p € Z restricted toZ, ie.tz, : Z— — — tz7,(Z) = 71, see Sectiorl.4 In this
section, we shall sometimes abuse notation by considering an arbjtrary¥ and also
in this case we shall indicate hy® the projection fromp.

Lemma 4.1. Let X c P" be an irreducible non-degenerateprojective variety let
k>0 be an integer such thas*(X) # P" and let p € X be an arbitrary point. Then
one has

() 25k (x), p (S (X)) = Sk(xh);
(i) the general point in X does not belong Wert(s(X));
(i) if p e X\ (XNVert(s¥(X)), in particular if p € X is a general pointthenzg x, ,
is generically finite to its image*(x1) and s® (X) = s® (x1);
(iv) if X is not k-defective ang € X\ (X NVert(5*(X)), then X! is also not k-defective
(v) if pe X\ (XnNVert(S¥(X)) and if 0x(X) denotes the degree mjk(x),p, then

degS¥(X)) = 0x(X) - deg ¥ (x1)) + mult, (S* (X))

> degs¥(x1)) + mult, (¥ (X))
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and

(X = 06(X) - 1 (X).

In particular
(vi) if p e X\ (X NVert(S*(X)) and if

deg s¥(X)) = deg s¥(x1)) 4+ mult, (S* (X))

then 0;(X) = 1, i.e. tgy), : S*(X) — — — SK(Xh) is birational and then

(XY = e (X);
(vii) if, in addition, uk(Xl) =1 then alsou, (X) = 1 and 0x(X) = 1.

Proof. (i) follows by Lemmal.12

Since S¥(X) is a proper subvariety if?", then VertS*(X)) is a proper linear sub-
space ofP". This implies (ii). (iii) is immediate.

Since S¥(X) # P’ if X is not k-defective, we have® (X) = (k+ 1)n +k < r. By
(i) we have alsos® (X1) = (k+Dn+k<r —1, i.e. X! is also notk-defective. This
proves (iv).

The first assertion of (v) is immediate. Furthermore, we have a commutative diagram
of rational maps:

t
Sg‘( - = S§1
Pyl b ks
Tskx),
skx)y ==L skxD,

wheret is determined, in an obvious way, by y, ,. By the hypothesisig ) has
degreef; (X), whereas is easily seen to be birational. Hence the conclusion follows.
(vi) and (vii) are now obvious. [J

Now we come to the main result of this section:

Theorem 4.2.Let X ¢ P" be an irreducible non-degenerateprojective variety and
let i := codim(S¥(X)) > 0. Then

h+k+1
mq¢a»>( T ) (4.2)
and if /=0,...,k and x € S/(X) is any poinf then
mult, (5% (X)) > (h;:fl_l) 4.3)
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Suppose equality holds i.2) and 2> 1. Then

() if x € X is a general pointone has

Cyiixyx = J(T(X), SHX)),  multy (S5 (X)) = (k;h);

(iiy for every m such that<m <h, one has

’

deg 55 (X)) = (h T 1)

(iii) for every m such that <m <h, the projection from a general point € X1
tgkxm-y, 0 SEX™TH — — — $F(x™)

is birational,
(iv) for every m such that<m <k one has

’

deg(S*" (X)) = (h Themr 1)

k—m+1

in particular Xy is a variety of minimal degree

(v) if X is not k-defectivethen for every m such thal<m<h, also X" is not
k-defective andy, (X) = p (X™);

(vi) if X is not k-defective then

dx x < e (X).

Proof. We make induction on botk andh. For k = 0 we have the bound.1 for the
minimal degree of an algebraic variety, while fbr= 0 the assertion is obvious for
everyk. Let us projectX and S¥(X) from a general poink € X. By Lemmas4.1 and
1.13 Theorem3.1, and by induction we get

degs¥(X)) > degsk(x1) + mult, (S¥(X))
> degS¥(XY) + deg S (X1))

k+ h k+ h k+h+1
><k+1)+< k )‘( k+1 )
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whence 4.2) follows. Let nowx € S'(X) be a general point, then by Theoresuil,
Lemmal.13and by é.2) one has

mult, (5* (X)) > degs“ " "1(X141) > <k ZZ_ l >

proving @.3) in this case. Of course4(3) also holds ifx € S'(X) is any point.

If equality holds in 4.2), one immediately obtains assertions (i)—(iv) far= 1. By
an easy induction one sees that (i)—(iv) hold in general.

Assertion (v) follows by Lemmd.1 As for (vi), consider the following commutative
diagram:

TX k
X —— = X
Ix.h 4 txen
Txh k
Xh N

Notice that the vertical maps ;, tx,,, are birational being projections froimgeneral
points on a variety of codimension bigger thAnThus one has

dx x = dyn .
On the other hand, by Theoreth7 and Lemma4.1 one has
dyn g < (X") = 1y (X)

which proves the assertion]

Remark 4.3. It is possible to improve the previous result. For example, using Lemma
4.1, one sees that (i) holds not only if € X is general, but also ik is any smooth
point of X not lying on Ver(s¥(X)). Similar improvements can be found for (ii)—(v).
We leave this to the reader, since we are not going to use it later.

Definition 4.4. Let X c P" be an irreducible, non-degenerate, projective variety of
dimensionn. Let k be a positive integer.

Let k>2 be an integer. One says thdtis k-regular if it is smooth and if there
is no subspacdl c P of dimensionk — 1 such that the scheme cut out by on
X contains a finite subscheme of lengtk:k + 1. By definition lregularity coincides
with smoothness.

We say thatX has minimal k-secant degrebriefly X is an M*-variety, if r =

s©OX) + h, h := codim(S¥(X)) > 0, and degs*(X)) = (h;'flrl> (compare with
Theorem4.2).
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We say thatX is a variety with the minimal number of apparen + 1)-secant
Pk=Ls, briefly X is an MA{ 1-variety, if s©(X) = (k + Dn +k, r = s©(X) + h,

h := codim(S*(X)) > 0, and if vi(X) = (hz_ﬁl) (compare with Theorem4.2 and

1.3. In other wordsX is an M.A\1-variety if and only if it is notk-defective, is
an MK-variety andy, (X) = 1. For example, anM*-variety which is notk-weakly
defective is arv\/lA"”-varlety (see Propositiod.5).

We say thatX is a varietywith one apparentk + 1)-secantP*~1, briefly X is an
OAH -variety, if r = s®(X) = (k + Dn + k and g (X) = 1.

The terminology introduced in the previous definition is motivated by the fact that,
for example,OAﬁf%-varieties are an extension ohrieties with one apparent double
point or OADP-varieties, classically studied by Sevigid] (for a modern reference see
[18)).

With this definitions in mind, we have:

Corollary 4.5. Let k be a positive integer. LeK c P" be an irreducible non-
degeneratg projective variety of dimension n and lét := codim(s*(X))>0. One
has

(i) if X is a M*-variety then for every m such that<m <h, the varietyX” is again
a M*-variety;
(i) if X is a MA"*l-varlety then for every m such that<m <h — 1, the variety
X™ is again aMA; -variety andX” is a O.A} T1-variety;
(iii) if X is either anM AT -variety or anOAf T 1-variety thenty ; : X — — — X; C

P"*+h is birational and X is a variety of dimension n of minimal degréet+ 1.
In particular, X is a rational variety and the general member of the movable part
of the linear system of k-tangent hyperplane sections is a rational variety.

Proof. (i) follows by Theorem4.2, (ii). (ii) follows by Theorem4.2 (ii) and (v). In
(iii), the birationality of tx ; follows by Theorem2.7, (ii). The rest of the assertion
follows by Theorenmd.2, (iv). O

Remark 4.6. In the paperd6,7], Bronowski considers the cage= 1, » = 0 and the
casek>2,n = 2,h = 0. He claims there, without giving a proof, that the converse
of Corollary 4.5 holds forh = 0. We will call this thekth BronowsKs conjecture a
generalized version of which, for amy>0, can be stated as followset X c P be an
irreducible, non-degenerateprojective variety of dimension n. Sket= codim(s¥(X)).
Iftxx:X— — = Xx C P"*" is birational and X; is a variety of dimension n and
of minimal degreeh + 1, then X is either anM.Af " T-variety or an O.AffT-variety,
according to whether h is positive or zei/e call this thekth generalized Bronowski
conjecture

Even the curve case = 1 of this conjecture is still open in general. The results in
[18,51,54] imply that the above conjecture is true f&rsmooth ifk = 1,2 = 0 and
1<n<3. The general smooth surface case- 2, k>1, h >0 follows by the results
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in Sections8 and 9 (see Corollary9.3). This interesting conjecture is quite open in
general.

Bronowski’s conjecture would, for example, imply that the converse of (ii) of Corol-
lary 4.5 holds. The following result gives partial evidence for this:

Proposition 4.7. Let k be a positive integer. Let ¢ P21, with r = (k + 1)n + k, be
an irreducible non-degeneratenot k-defectiveprojective variety of dimension n. If the
general internal projectionX® of X is a O.A{"1-variety, then X is aM AL 1-variety.
Proof. By (vii) of Lemma 4.1, we have thatu,(X) = 1 and 0,(X) = 1. Letd =
degs¥(X)) and letp € X be a general point. Thergk(x),p cSk(xX) — — > P
is a birational map and therefore muls*(X)) =d — 1. Let po, ..., pr+1 be general
points ofX. Sinces**1(x) = P"+1, thenS¥(X) does not contaidl := (po, ..., pis1).
ThereforeS*(X) intersectslT in a hypersurface of degregwith multiplicity 4 — 1 at
PO, - - -, Pk+1. This implies thatd <k + 2. On the other hand >k + 2 by Theorem
4.2 This proves the assertion[]

It is interesting to remark that tha1*, OAffi andMA’;f%—properties are essentially
preserved under flat limits:

Proposition 4.8. Let X, X’ ¢ P" be reducedirreducible non-degenerateprojective
varieties of dimension,rsuch thats® (X) = s® (X’). Suppose thak’ is a flat limit of
X and that X is aM*-variety [resp, a O.Af T T-variety, a MA}t1-variety]. ThenX' is
also aM*-variety [resp, a O.Af T T-variety, a MA} 1-variety] and if codim(s (X)) =
codim(S¥(X’)) > 0, then SK(X’) is the flat limit of S¥(X).

Proof. SupposeX is a M*-variety, so that codirts* (X)) = codim(S¥(X’)) > 0. Let
¥ be the flat limit of S¥(X) when X tends toX’. Of courseS¥(X’) is an irreducible
component ofY, thus by Theoren#.2 we have

kbl o 3 . _(k+h+1
( i )gdegS (X)) < degX) = deg(s <X>>—< k+1 )

and therefore the equality has to hold, proving the assertion.

Suppose theiX is aMA’,jﬂ—variety. The above argument proves tiS&(X’) is the
flat limit of S*(X). Hencep, (X') <, (X) = 1, proving that alsqy (X’) = 1, namely
the assertion.

The case in whictX is a O.A;"1-variety is similar and can be left to the reader.

O

Finally we point out the following:

Proposition 4.9. Let X C P be a variety withy, (X) = 1, which is k-regular and not
k-defective. Then X is linearly normal
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Proof. SupposeX is not linearly normal. Then there is a variety c P" ™ and a point
p ¢ X’ such that the projection from p determines an isomorphism: X’ — X. Now
we remark thatp ¢ S*(X’) because of thé-regularity assumption oiX. Furthermore,
the assumptiony (X) = 1 implies thatr : S¥(X’) — S¥(X) is also birational.

Set, as usuals = codim(S¥(X)). Then, by Theoren#.2 we deduce

h+1

k+h+1
h+1

) — deg 5*(X)) = deg st (X)) > (k ThE 2)

a contradiction. O

5. Examples

In this section we give several examplesMAk+l and OAk+1-varieties.

Example 5.1. Rational normal scrollsLet X = S(ay,...,a,) be ann-dimensional
rational normal scroll inP". We keep the notation introduced in SectibrT.
We will assumed ;. ; . k<a;(aj—k)—k=1>0, otherwise, according to Proposition

1.14 one hasS¥(X) = P, a case which is trivial for us.

Claim 5.2 If 31 ;< <, (@j —k) =k —1>0, then X = S(ay, ..., a,) is an M*-
variety.

Proof of Claim 5.2 In order to see this, one may generalize Room’s specialization
argument (se¢50, p. 257). Indeed, one has a description §f(X) c P" as a deter-
minantal variety as follows (sgé1]): the homogeneous ideal 6f (X) is generated by

the minors of ordek+2 of a suitable matrix of typék+2) XZK/@; kga,-(aj—k) of

linear forms, i.e. a suitableankelmatrix of linear forms. Since by Propositidn14one

hash := codim(S*(X)) = Y1 < j <. k<a (@ = k) —k=1, thenS*(X) has, as a deter-
minantal variety, the expected dimension. Therefore it is a specialization of the variety
defined by thec+2 minors of a general matrix of typé+2) x 31 j <. k<a, (@j —K)

of linear forms, which, as well known (sg¢2, Chapter Il, Section 9] has degree equal

Cem k< (@i—k
to (ZKK"}CE“/ (@ )). As a consequence we have

k _ Zlgjgn,kga(aj_k) _ h+k+1
degs (X))_< k41 =\ k41
which proves Clainb.2 [

Next we assume thaX is not k-defective, i.e., according to Propositidnl4, that
a1 >k. First we will consider the case in which= (k + 1L)n +k, i.e.a1 +---+
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ap, = kn +k + 1, h := codim(S¥(X)) = 0, namely S¥(X) = P". Then we make
the following:

Clam53. If ay>k anday+ ---+a, =kn+k+1,thenX = S(a1,...,a,) IS a
OAf*T-variety.

Proof of Claim 5.3 What we have to prove is that,(X) = 1, i.e. that there is a
unique (k + 1)-secantP* to X passing through a general point Bf.

Sincea; >k, then|H—kF | is generated by global sections atiX, Ox(H—kF)) =
i@ +1—-k)y=k(n+1) +1-nk—-1) =k+n+1. Let

¢1=bur : X > PE =PV
and
b= P _kp : X — P = P(Vy).

where Vi = HO(X, Ox (kF))*, Vo2 = HO(X, Ox(H — kF))*. Clearly ¢,(X) = S(ay —
k,...,a, — k), hence de@p,(X)) =k + 1. Let ¢ = ¢ x ¢,. We get a commutative
diagram

X i)) Pk x pktn
!

P’ < U:D(k+1)(k+rl+l)—l — lpn,n+k‘

where the right vertical map is the Segre embedding.

Recall thatP, 1« = P(V1 ® Vo) = P(Hom(V{, V2)). Thus one has a rational
mapy : P,k — — — G(k,n + k) which associates to the class of a rahk- 1
homomorphism¢ : V;* — V, the subspacé(Im(&)) of P = P(Vy).

One has a natural GIV1) = GL(k + 1, C)-action onV; ® Vo, which descends to
a linear PGlk + 1, C)-action onP, ,4+«. From the above description of the map
it is clear that the general fibre af is a linear space of dimensiat? + 2k, which
is also the closure of a general orbit of this R&kE- 1, C)-action. More precisely, if
x € Py 1k is a general point, thew is the class of a homomorphist: Vi — Vo,
i.e. of a linear embedding: : P¥ = P(V}) — P""* = P(V,). If we denote byP*
the image ofi;, then the closurel, ~ Pk+2 of the fibre of y throughx can be
interpreted as the linear span of $eg) = P* x IP§ C Segk, n+k). One moment of
reflection shows that this Ség k) = P* x IP§ is an entry locusin the sense 0f58],
i.e. it is the closure of the locus of points of $kgn + k) described by its intersection
with the (k 4+ 1)-secantP*’s to Sedk, n + k) passing throughx.

Remark now that)y is well defined alongP” C Py .+«. Indeed, up to projective
transformations, we may assume th@tX) containsk + 1 given general points of
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P* x P, Hence, we can assume th& contains an arbitrarily given point of
Sk(Segk,n +k)) = Pn.ntk, €.9. @ point where) is defined. A different proof can be
obtained as an application of Kempf's Theordm5 (see Examplé.5 below, we leave
the details to the reader). Let us denoteypy P" — — — G(k, n + k) the restriction
of y to P'.

We claim thatlp is dominant. In fact, takdI a generalk-dimensional subspace of
Pk = P(V,). ThenIl cuts ¢o(X) atk+1 pointspo, ..., pk, which, by the way, can
be interpreted ag + 1 general points oK. Consider the pointg; := ¢,(p;) € Pk =
P(V1),i =0, ..., k. Then one has the embeddift§ = P(V;) — I ¢ P"™* = P(Vy),
which, for everyi =0, ..., k, maps the hyperplangyo, ..., gi-1,qi+1, - - -, qx) to the
point p;. As we saw above, the spaR’ x II is the fibre ofy over the point of
G(k,n + k) corresponding toll. We thus see that it intersect§ C Px 4« at the
points po, ..., pk.

By the theorem of the dimension of the fibres, the general flbl’¢' bhs dimension
k. Actually its closure is the intersection of the linear sp&ewith the general fibre
of W, which is also a linear space of dimensi&R + 2k. Hence we see that this
intersection is transversal, i.e. the closure of the general flbl”$ & a P*. By the
previous analysis we see that it is in factiat 1)- -secantP* to X and that the general
such P¥ arises in this way.

In conclusion, since the generdt + 1)- -secantP* to X is the fibre of the rational
mapz// P" — — — G(k,n+k), we see that there is a unique+ 1)-secantP* to X
passing through the general point Bf, i.e. y,(X) =1. O

Finally, we consider the casg >k andr > (k+1)n+k, i.e.a1+---+a, > kn+k+1,
h:=h®(X) > 0, thusS*(X) # P’. In this case we make the

Clam54. If ay>k anday+ ---+a, > kn+k+1,thenX = S(ag,...,a,) IS a
MA variety.

Proof of Claim 5.4. SinceX is not defective, by Clainb.2 all what we have to prove

is that y; (X) = 1. This easily follows by Lemma.1 (vii), and Claim5.3, by making
a sequence of general internal projections]

Example 5.5. 2-Veronese fibrations of dimension n and their internal projections from
h points 1<h<n+1 ConsiderP(ay, . .., ay), with 0<a1 < -+~ <a, and )"} ; a; >2.
Setk+1=) ", a; +n and consider the map:

¢q1:= ¢|H‘ cP(as, ..., ay) = S(ax, ..., ay) C P

Notice that, since:<k —1, one hasS(as, ..., a,) # Pk, FurthermorelH + F| is very
ample onP(as, ..., a,) and we can consider the embedding:

by = yyp  Plar,....an) > S(ar+1,....a, +1) C PE



C. Ciliberto, F. Russo/Advances in Mathematias (11ar) 1i—nu 31
Finally let
b3 = Popip  Plar, ..., an) — P,
where

r = ho(P(ay, ..., an), SyMP(Opi(a) ® - - ® Op1(an)) ® Opa(1)) — 1

= (n+1)Za,~+n(n+1)=(n+1)(k+l)—1=(k+1)n+k.
i=1

We setgz(P(ay, ..., an) = Xa,....a,)-

Claim 5.6. X := X(y.. 4, is & OA T Lvariety.

Proof of Claim 5.6 The verification is conceptually similar to the case of rational
normal scrolls we worked out in the previous example. Indeed we have a diagram:

P=¢1x¢;

P(a1,....a,) = Pk x Pk
2
Pnk+n+k s P(k+1)(k+n+l)—l — ”:Dk k-
Consider the restrictiony to P+ of the rational mapy : Priin — — —

Gk, k +n).

Let us apply Kempf's Theorerh.15to the vector space®; = HO(X, Ox(H)), Vo =
HO(X, Ox(H+F)) andVs = HO(X, Ox(2H + F)), where the pairing/,®@ V> — V3 is
the obvious multiplication map. By interpreting the elementd/nfV,, V3 as sections of
vector bundles or*!, one immediately sees that the pairing is 1-generic and surjective:
we leave the details to the reader. Then the linear spaw(6f) under the Segre
embedding isP(V3). Moreover, the intersection scheme 8t~1(Segk,k +n)) =
Sk=1(SegP¥, PXt)) and PF DR — p(vy) is irreducible, reduced, of codimension

n+1 and of degree("+"+1> in pkntn+k

In particular the restriction ofy is well defined oan""*”“L" Then one sees that
SK(X) = Pr*+n+k and 4, (X) = 1 because the general fibre fis a generakk + 1)-
secantP* of X. O

Actually we can prove more:

Claim 5.7. One has

() X := X(a,..ap IS an MAL_-variety,
(ii) the internal projectionX” of X from h points 1<A<n, is an MA’,E_Z-variety
(iii) the internal projectionX”*! of X fromn + 1 points is anOAi_z-variety.
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Proof of Claim 5.7. By Corollary 4.5, we need to prove only (i). For this it suffices

to observe that, as a consequence of the proof of ClaBnone has thas*~1(X) is a
subscheme of the intersection schemesbfl (P, Py and of PX*+"** Since these

two schemes are reduced, irreducible and of the same dimension, they coincide. This
yields the desired result

i1 _(k+n+1\ _ [(k—1+codimS*1(X))+1
deg s (X))_( P )_( f—141 ) O

We notice that, fom = 2, we have conic bundles. Actually(ay, a2) ~ F,, where
a=ax—ai, andH = E +axF. Then 2H + F =2E + 2a + )F =2E + (a + k) F,
whereE is a (—a)-curve andF is a ruling, so that: + k = 1 (mod 2).

Example 5.8.5-Veronese embedding &f and its tangential projectionsin this ex-
ample we show that the 5-Veronese embedding= V> 5 c P?° of P? and its general
i-tangential projectionsx; ¢ P?°~¥ are smoothO A} *1-surfaces, withk = 6 — i,

for 0<i <3. Notice thatX3 is nothing else than the general 3-internal projection of

Vo4 C P the 4-Veronese embedding &F.

We will proceed as in the previous examples and we will slightly modify and adapt
to our needs a construction of Shepherd-Barf®®]. Let us first consider the case of
X = V,5. Let us consider the incidence correspondence

F={x)eP’xP?® : xell.

ThenF, as a divisor inP? x P? sits in |Op., 52+ (1, 1)|. Let p1 and p2 denote the
projections of P? x P?* to the two factors. We will use the same symbols to denote
the restrictions ofpy and p2 to F. Let ¢ = ¢\, 1.2, : F = P Since every fibre

of po: F — P% is embedded as a line %, we get a morphisnP? — G(1, 14),
which is PGL(3, C)-equivariant by the obvious action of P@, C) on P2 x P%*, on

F, etc. (see[55]), and therefore it is an isomorphism to the image. By embedding
G(1, 14) into P19 via the Pliicker embedding, one has a mfapP? — P94 which

is an isomorphism to its imagg.

Claim 5.9. The image of) lands in aP?® and y is the 5-\Veronese embedding &°*
to P,

Proof of Claim 5.9, First of all we notice that) is given by a complete linear system,
because it is clearly PGB, C)-equivariant. Thus, to prove the claim, it suffices to show
that degX) = 25. This can be proved by a direct computation, which we leave to the
reader, proving thaty is defined by polynomials of degree 5. However, we indicate
here a more conceptual argument (§&&, p. 74).
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Let us introduce the following Schubert cycles = G(1, r):
A={leG : [ lies in a given hyperplaje
B={leG : 1 meets a given linear space of codimensioh 3
C={leG : 1l meets a given linear space of codimensioh 2

ThenC is a hyperplane section @b in its Pliicker embedding an€2 ~ A + B. Note
that, in our case = 14, we have deg) = X -C>=X-A+ X - B.
Notice that:

X - B =degF) = (p{Op2(1) + p30p2(2)° = 18

Let H c P'* be a general hyperplane and Igt= F N H. ThenSis the complete
intersection of two divisors of typél, 1) and (1, 2) on P? x P?*. By adjunctionK is
the restriction toS of a divisor of type(—1, 0), henceK§ = 2. Now, X - A is equal to
the number of fibres op, lying in H, i.e. the number of exceptional curves contracted
by the birational morphisnp; : § — P?. ThenX -A=9—- K2 =7.

In conclusion degX) = 18+ 7 = 25 proving Claim5.9. [

Let us recall now that given a vector spagkof odd dimension 2+ 1, there is a
natural rational mapy : P(A%?W) — — — P(W*), associating to a general alternating
2-form on W* its kernel. Then the general fibre ¢f is a linear space and the map is
defined by forms of degrek vanishing to the order al leagt— 1 along G(1, 2k) C
P(A’W).

Now we are ready to prove the:

Claim 5.10. X := Vo5 c P?° is a O AL-surface

Proof of Claim 5.10 Apply the above remark t&v = H%(OF(1, 2)), in order to
get a rational mapy : P1%— — — P |n [55, Lemma 12] it is shown that the
locus of indetermination ofy does not contair§®(X) = (X) (as for the last equality
see[14 Theorem 1.3Jor Example5.14 below). Thus one has a well-defined rational
map  : = P?°_ — — P and[55, Lemma 13]ensures that) is dominant.
Notice that this perfectly fits with the geometry of the situation. Indeed the closure
of a general fibre ofy is a P, cutting (X) = P?° in a linear space of dimension
90+ 20 — 104 = 6, which is the general fibre af. On the other hand, sincg is
defined by forms of degree 7 vanishing to the order at least 6 atoldgemp contracts
every 7-secanP® to X. Thus a general 7-secaff to X is a general fibre 0(71, which
impliesvg(X) =1. O
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We can slightly modify the above construction to show that the general tangential
projectionX; is a (’)Ag:;—surface, fori = 1, 2, 3. We will sketch the case= 1 only,
since the others follow by iterating the same argument.

Let p € P?* be a general point. We consider the lihne= pz_l(p) of F. Notice that
p1(l) is the line of P? corresponding t@. Consider the projection; : P¥4— — — P12
from | and setF’ := m;(F). This is again a scroll in lines, and the family of lines of
F’ is parametrized by a surface’ c G(1,12) c P’

Claim 5.11. In the above situationone has thatX’ is the tangential projection of
X = Va5, the 5-Veronese embedding &%, from the point corresponding to. p

Proof of Claim 5.11 SetP?x Bl,(P*) > F = Bl;(F) — Bl,(P*) and let¢ : F —
P12 be the map given by the linear systemi (Op2(1) + p3(Op2-(2) — E|, where
p1 and p, are the projections oP? x BI,,([P’Z*) and E is the exceptional divisor of

F. Then F' ~ ¢(F) from which it follows thatX’ ~ Bl ,(P?).

Now, the mapr; : P**— — — P2 gives rise to a mag; : G(1, 14— — — G(1, 12)
which is nothing but the tangential projection @Gi(1, 14) from the point corresponding
to |. This implies that the inclusiox’ ¢ G(1,12) c P’’ is given by the pull-back on
X' of a linear system of quintics dP?* which are singular ap. To prove the claim
it suffices to remark that the embedding c G(1,12) c P’’ is given, as usual, by a
complete linear system. Moreover one has(@8y= 21. To see this we have to make
exactly the same calculation as for the computation of(Eg¢gln the present case one
has thatX’ - B = deqg F’) = 15 andX’ - A = 6 so that de¢X’) = 21.

Now we notice that(X;) = P’ = $5(X1) (use Terracini's lemma ofl4, Theorem
1.3] or Example5.14below). Arguing as foiX, we have now a map : P’'— — — P12
which is defined by forms of degree 6 vanishing to the order 5 alGiig, 12). One
proves that(X1) does not lie in the indeterminacy locus ¥fso that one has a well
defined rational map) : (X1) = P — — — P2 and one shows that this map is
dominant. The fibres oﬂy are the 6-secarf®®s to X1, and therefores(X1) = 1. O

Example 5.12.4-Veronese embedding Bf and its internal projectionsin this exam-
ple we note that/z 4 is a/\/lA‘z‘-surface. This can be proved by using the formulas in
[23,41] to prove that de@3(V>.4)) = 35. By Theoremd.2 (i), we see that also that a
generali-internal projection ofV» 4, i = 1,2, has the same property.

Another interesting property df, 4 is that it is 4-defective and*(V>.4) is a hypersur-
face inP14 (see[14, Theorem 1.3pr Example5.14below). One has deé§*(V2.4)) = 6,
henceVy 4 is a M*-surface. This can be proved as follows. LookVats as that 2-
Veronese embedding dfy» C P°. Thus §4(Va4) € (Va.4) N $*(Vs.2), where S4(Vs,2)
is a hypersurface of degree 6. Notice th# 4) is not contained in94(V5,2). In fact,
since V» » is non-degenerate i®®, then given 6 general points &% > we can suppose
that Vo4 contains them. Thus, we may assume th&is) contains a general point
of $5(Vs2) = P?° which can be chosen to be off*(Vs2). Finally we know, by
Theorem4.2, that de@S*(V2.4)) > 6. This implies thatS*(V5 4) is the scheme-theoretic
intersection of(V,4) and $%(Vs2) and that degs*(V2.4)) = 6.
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Using this same line of argument, one can give a direct, more geometric proof that
deg$3(V2.4)) = 35. We leave the details to the reader.

Example 5.13.The 3-Veronese embedding of the quadric surfacBinLet X c P*®
be the 3-Veronese embedding of a smooth quadric surface P°. Then X is a
MAS-surface, i.e.s*(X) c P is a hypersurface of degree 6. Indeed, the projection
of X from a point on it is isomorphic to the 2-tangential projection of the 5-Veronese
embedding ofP?, which is aO.43-surface, see Exampk&.8 The conclusion follows
from Proposition4.7.

By applying Proposition4.8, one sees that also the 3-Veronese embedding of a
quadric cone inP® is a MA3-surface.

Example 5.14. Defective surfacesThe fact thatV, 4 is a M?*-surface is a particular
case of a more general family of examples of surfaces with minimal secant degree.
According to[14, Theorem 1.3]this is the list ofk-defective surfacex c P’:

(i) r =3k +2 andX is the 2-Veronese embedding of a surface of degrée P2,
and 6, (X) = 1;
(i) X sits in a(k + 1)-dimensional cone over a curve.

We claim that the surfaces of type (i) ane*-surfaces. In fact such X is contained
in Viy12 and therefores¥(X) C (X) N S¥(Vi11.2). Here again we have that:

e (X) is not contained inS*(Vj,1.2);
o SK(Viy12) is a hypersurface of degrée+ 2, i.e. it is the set of singular quadrics
in Pk+1;
e degS¥(X))>k + 2, by Theorem4.2
These three facts together imply that the hypersurféc&) is the scheme-theoretic
intersection of(X) and S¥(Vi, 1) and that degs*(X)) = k + 2.
The first instance of this family of examples, obtained foe= 1, is the Veronese
surfaceVs» in %, whose secant variety is a hypersurface of degree 3.

Example 5.15.Weakly defective surfacehe previous example can be further ex-
tended.

According to[14, Theorem 1.3]this is the list ofk-weakly defective, nok-defective,
surfacesX c P":

(i) r =9, k =2 and X is the 2-Veronese embedding of a surface of degies3
in P3;

(i) r = 3k + 3, and X is the cone over ak-defective surface of type (i) in
Example5.14

(i) r = 3k + 3, and X is the 2-Veronese embedding of a surface of dedreel
in |]:Dk+1;

(iv) X sits in a (k + 2)-dimensional cone over a curv€, with a vertex of
dimensionk.

We claim that the surfaces of types (i), (i) and (iii) ate*-surfaces.
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If X is a surface of type (i), one immediately sees t&tX) = S?(Va>), hence
deg $2(X)) = 4 andX is therefore aM?2-surface.

If X is a surface of type (ii), thes*(X) is the cone over th&secant variety of a
k-defective surface of type (i) in ExampB14 Hence we have deé§f(X)) =k + 2
and X is a M*-surface.

If X is a surface of type (iii), the same argument we made in Exaraflé proves
our claim. We leave the details to the reader.

Example 5.16. Del Pezzo surfacesn this example we remark that smooth del Pezzo
surfaces of degree in P, r =5,...,9, are/\/lA%-surfaces. This can be easily seen
by applying the double point formula. Propositidn8 implies that also singular del
Pezzo surfaces ar#1A3-surfaces.

The Veronese surfac¥ := V, 3 is also anMA?-surface, as can be seen by apply-
ing Le Barz’s formula[40]. However this is a classical result. Indesé(Vz3) is the
hypersurface ofP® consisting of all cubics which are sums of three cubes of linear
forms. These are the so-calledjuihanarmoniccubics, i.e. those characterized by the
vanishing of theJ-invariant. It is classically well known that there are four equihan-
armonic cubics in a general pencil (Sg5, p. 194), i.e. dedS?(V23)) = 4, which
means that/, 3 is a M A3-surface.

We can also give a more geometric proof of this fact by applying the ideas we have
developed so far. Indeed, the general internal projecfidnof X is the embedding
of F1 in P® via the linear system2E + 3F|. This, according to Examplé.5, is a
OA3-surface. ThusX is a MA3-surface by Propositiod. 7.

Example 5.17.Cones.Let X c P" c P"**! />0, be an irreducible variety of
dimensionn which is non-degenerate i®". Let L = P/ c P"*'*! be such that
LNP" =¢. LetY = J(L,X) be the cone oveX with vertex L. Then dim(Y) =
n+I1+1. More generally for every >1 we haves*(Y) = S(L, S¥(X)) so thats® (y) =
s©O(X)+141. Thereforeh® (Y) = r+1+1—s®(¥) = r—s®(X) = h® (X). Moreover
deg S¥(Y)) = deg S¥(X)) for everyk>1. In particularX has minimalk-secant degree
if and only if Y has also minimak-secant degree.

For instance, a rational normal scraf = S(a1,...,a,) IS a variety of mini-
mal k-secant degree if the least positive integeris greater or equal thak (see
Example5.1).

The next example is a slight modification of the previous one. It shows that some
of the hypotheses we will make in our classification theorems in SecBoaad 9
are well motivated. The first instance of this example, i.e. the ¢asel, is due to
A. Verra, who kindly communicated it to us. It could be easily generalized to higher
dimensions and codimensions: we leave the details to the reader.

Example 5.18.Let C ¢ P#*Hh — pk+2+h ;>1 1 >0, be an irreducible curve,
non-degenerate iP%*1" Take I = P¥ ¢ P3*+2th gych thatll N P&+ — g

and a morphismp : C — €’ c P* and takeX = U,cc(p, p(p)) C P¥*+2h Then
vi(X) = v (C). This is an exercise in projective geometry which we leave to the reader.
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In particular, from Exampl®&.1 and from Theoren®.1 below, we deduce that (X) = 1
if and only if C is a rational normal curve. As soon &$>3, one can take a® a
general projection ofS and obtain examples of smooth surfaces P+ which
are not linearly normal. Let us remark that such a surficis k-weakly defective,
being contained in a cone of vertex over the curveC, see[14, Theorem 1.3 and
Example 5.15]

6. Classification of curves with minimal secant degree

In this section we take care of the classification of curves with minikasécant
degree.

Let C ¢ P" be an irreducible non-degenerate curve. Tlaeis never defective, so
that s (C) = min{2k + 1, r}. This is classically well known and, by the way, follows
also from the fact tha€ is not weakly defective (se|g4]). The classification of curves
with minimal k-secant degree is given by the following:

Theorem 6.1. Let C c P" be an irreducible non-degenerate curve. liet1 be an
integer such thalk + 1<r. Then C is anMA',jﬂ or an (’)A’,jﬂ-variety if and only
if C is a rational normal curve

Proof. As we saw in Examples.1, a rational normal curve is amMAL*Y or an
OA’,ifi-variety.

Suppose, conversely, thé is an MA; '] or an OA;*1-variety. In the latter case,
i.e. if r = 2k + 1, then the assertion is Theorem 3.4 of Catalano-Johf2in In the
former case, i.e. ifi = r — 2k — 1 > 0, then (i) of Corollary4.5 tells us thatC" is
an OA 1 -variety. Since, as we saw” is a rational normal curve, the@ itself is a
rational normal curve, proving the assertiorn.]

Remark 6.2. Notice that, in the hypotheses of Theorém, the rationality ofC follows
by Corollary 4.5 If one adds the hypothesis that is k-regular, then the assertion
follows right away from Propositiod.9.

7. On a theorem of Castelnuovo—Enriques

The next sections will be devoted to the classificatiorﬂml,ﬁfi-surfaces and\tX-
surfaces. For this we will need some preliminaries, which we believe to be of inde-
pendent interest, concerning linear systems of curves on a surface. Indeed the present
section is devoted to review, and improve on, a classical theorem of Enriques, which
in turn generalizes to arbitrary surfaces an earlier result proved by Castelnuovo for
rational surfaces, se,24]. The expert reader will find relations between the results
of this section and the ones [83,49] We will freely use here the notation introduced
in Sectionsl.11and1.12



38 C. Ciliberto, F. Russo/Advances in Mathematias (11ar) 1ni—aui

The basic tool in this section is Propositignl below. This result essentially goes
back to litaka[36] and Dicks[20, Theorem 3.1]though under the stronger assumption
that D is an irreducible smooth curve. The caBeample is also well known in the
literature, e.g. seg38]. The short proof below, based on Mori's theory, is essentially
the same as ifi20], and we included it here for the reader’'s convenience.

Proposition 7.1. Let X be a smoothirreducible, projective surface. Let D be a nef
divisor on X. Setd := D?, g := p,(D). Assume the pai(X, D) is minimal not a
h-scroll with # <1 and it is not a m-Veronese pair withh <2. ThenK + D is nef and
therefore

() d<&g—-1+K?
(i) g=1 and equality holds if and only if K and D are numerically dependent and
eitherd = 0 or (X, D) is a del Pezzo pair

Proof. Let C be a curve onX such thatC - (K + D) < 0. SinceD is nef, one has
K - C < 0. By Mori’'s cone Theorem (segl5, Theorem 1.4] the curveC is a linear
combination of extremal rays. More precisely, there are extremal Eays. ., E;, such
that C ~ Zflzl m; E;, with m1, ..., my, positive real numbers. Thus there is one of the
extremal raysEy, ..., Ep, €.0. E := E1 such thatE - (K + D) < 0. Now one concludes
by separately discussing the various possibilitiesEofcf. [45, Theorem 2.1}

e if E is a (—1)-curve, one hask - E = —1 and thereforeD - E = 0, against the
minimality of (X, D);

o if E~ P! andE2 =0, one hask - E = —2 and thereforeD - E <1, against the
fact that (X, D) is not ah-scroll for <1,

o if E~PleE2=1, one hask - E = —3 and therefore £ D - E<2, against the
fact that (X, D) is not am-Veronese within <2.

Now notice that:
(K+D)?=K?>+4g—-1—d (7.1)
Since K + D is nef, one hagk + D)2>0, so that
d<4(g—1)+ K2, (7.2)

proving (i).

Similarly, sinceK + D is nef, one has 2— 2 = (K + D) - D >0, proving the first
assertion of (ii). Ifg = 1, one has(K + D) - D = 0. Then the Hodge index theorem
implies thatK + D and D are numerically dependent, thi& ~ /D, for some rational
numberl. If d > 0 then 0= (K + D) - D = (I + 1)d implies/ = —1 and (X, D) is
a del Pezzo pair. Conversely {, D) is a del Pezzo pair thep = 1. Similarly, if
d =0 andK and D are numerically dependent, one has-1. [
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Corollary 7.2. Let X be a smoothirreducible projective surface. Let D be a nef
divisor on X. Assume the paitX, D) is not a h-scroll withh<1. Setg := p,(D).
Theng>0 and g = 0 if and only if (X, D) is obtained by a m-Veronese with<2
with a sequence of blowing-ups

Proof. By iterated contractions of—1)-curvesE such thatt - D = 0, we arrive

to a minimal pair(X’, D) such that(X, D) is obtained from(X’, D) with a se-
guence of blowing-ups. Moreover := p,(D’) = g. Notice that(X’, D’), as well as
(X, D), is not ah-scroll with h<1. Then the assertion follows by the second part of
Proposition7.1. [

As a consequence we have the following result, essentially due to Castelf@]ovo
and Enriqueq24]. The bound 7.3) was also obtained by Hartshorn@3, Corollary
2.4 and Theorem 3.5lunder the assumptio® smooth irreducible curve. Hartshorne
does not consider the classification of the extremal cases, §,ibut he remarks
that the bound is sharp looking at the cases (i) and (iv) wite= 0, Example in
[33, p. 121] All the results of Hartshorne are now straightforward consequences of
Proposition7.1

Theorem 7.3. Let X be a smoothirreducible projective surface. Let D be an irre-
ducible curve on X. Sef := D?, g := p,(D), r := dim(|D|). Assumed >0 and the
pair (X, D) is not a h-scroll withz<1. Then

d<A4g+4+e, (7.3)

wheree=1if g=1ande =0 if g ## 1. Consequently one has

r<3g+5+¢ (7.4)

and the equality holds ir§7.3) if and only if it holds in(7.4).
If, in addition, the pair (X, D) is minimal then the equality holds in7.3), or
equivalently in(7.4), if and only if one of the following happens

(i) ¢g=0,r=>5,and (X, D) is a 2-Veronese pair
(i) g=1,r=9,and (X, D) is a 3-Veronese pair
(i) ¢ =3, r =14, and (X, D) is a 4-Veronese pajr
(iv) (X,D)isa(2,a+ g+ D-pair on X ~F,, a>0.

Proof. By arguing as in the proof of Corollary.2 we may, and will, assume that
the pair(X, D) is minimal. Then note that itX, D) is a m-Veronese withm <2, both
(7.9 and (7.4) hold. So we may assumgX, D) is not am-Veronese within <2.

Let us now prove 1.3). The divisorD is nef so that bound7(2) holds.
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Assume thatl > 4g+4+¢. ThenK -D =2¢g—2—d< —2g—6—¢ < 0. Therefore
K(X) = —o0. Moreover:

Ag + 4+ ¢ <d<4g— 4+ K?

yields K2>9 + ¢ Thereforee = 0, i.e. g # 1, K2 = 9 and X ~ P2, HenceD ¢
|Op2(m)|, with m >4, since(X, D) is not a Veronese pair witht <2 andg # 1. For
such aD one hasm? = d <4g + 4 = 2m? — 6m + 8. This contradiction proves7(3).

Next we remark thatq.3) implies (7.4). Indeed, since the general curike |D| is
irreducible, by Riemann—Roch theorem we hawe max{d — g + 1, g}, which implies
(7.9).

Let us prove now that equality holds if.8) if and only if equality holds in7.4). The
above argument shows that if equality holds T3[ then it holds in 7.4). Conversely,
if equality holds in 7.4) then Riemann—Roch theorem implies tlhlat ¢ + 1> and
equality holds in 7.3).

Finally, suppose equality holds i7.3). Then reasoning as above we deduc&) =
—oo and K2>8+ ¢. Therefore ifg = 1 one hask? =9, (X, D) is a del Pezzo pair
and we are in case (ii). We can thus suppese0 in (7.3) and hencek?>8.

If K2 =9, thenX =~ P2, D € |Op2(m)|, with m >1. The equalityd = 4g + 4 is
translated inton? = 2m? — 6m + 8, so thatm = 2 or 4 and we get cases (i) and (iii).
Assume thak? = 8. ThusX ~ [F,, a >0. Furthermoreq.1) shows that K +D)? = 0

holds. One has:

D ~ oE + fF,

whereE is a(—a)-curve andr a fibre of the ruling ofF,, with f>aa becauseD-E >0,
and ¢ >2 since the pairX, D) is not a scroll. On the other hand:

K ~—2E —(a+2F
and therefore
K+D~@—2E+(f—a—2F.
If o =2 then adjunction formula implies
p=a+g+1
i.e. the assertion. Now

(K + D)? = (0 — 2)(2f — au — 4).
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If a=0,(K+D)2=0 implies eitherr = 2 or f = 2, and we are done. if = 1, the
minimality condition yieldsp >« + 1. Therefore(K + D)? = 0 implieso = 2, and we
are done again. I >2, one has B—ao—4>a0—4=2(0—2). Then(K + D)2 =0
implies « = 2, and we conclude as abovell

Remark 7.4. Proposition7.1 can be improved. Indeed, we can prove that if one adds
the hypothesis thab is effective and big, therk + D is also effective. This can be
seen as a wide extension of the result§3anpp. 196-20Q] Following the ideas irf9]
one can even give suitable, interesting lower bounds(for- D)2.
It is also possible to partly extend Propositi@rl to higher dimensional varieties.
The hypothesisD effective and irreducible in Theorem.3 is essentially used to
prove that 7.3 implies (7.4) and it is too strong. Indeed, we can prove that it suffices
to assume that either £ 1 or d > 0. However the proof, based on the aforementioned
extensions of Propositiofi.1 as indicated in9], is rather long and we decided not to
put it here. We plan to come back to this and to other extensions of Propogition
and Theoreni.3 in the future.

Definition 7.5. If the pair (X, D) is as in (iv) of Theoreni’.3, we will say that it is
a (a, g)-Castelnuovo pairand the corresponding surfage,, (X) C P3+5 of degree
d = 4g+4, with hyperelliptic hyperplane sections, will be called @n g)-Castelnuovo
surfaceand denoted by, ,. The motivation for this definition resides in the fact that
Castelnuovo first considered these pairs in his pdBgr In general, a pair like in
()—(iii) or (iv) of Theorem 7.3, will be called aCastelnuovo extremal pair

We notice that pairgX, D) as in (ii), (iii) or (iv) can be characterized as those with
D effective, irreducible and nef for which the hypotheses of Proposifidnare met,
so thatK + D is nef, butkK + D is not big.

Remark 7.6. An (a, k)-Castelnuovo surfac&, x is (k + 1)-defective as soon as +
1+k =0(mod2) (see case (i) of Theorem 1.3[d#] and Example5.14). In this case
the Castelnuovo surface will be said to been InsteadX, ; is an OA’,?rz surface if
a+1+k=1(mod2), and then the Castelnuovo surface will be said todzk In fact
in this caseX, « is one of the surfaces described in Examplé.
Note that an(a, k)-Castelnuovo surfac&, x is smooth unles& = a — 1, in which
case the Castelnuovo surface is even and it is the 2-Veronese embedding of a cone
over a rational normal curve of degree

It is useful to point out the following immediate corollaries, whose easy proofs can
be left to the reader:

Corollary 7.7. Let X be a smoothirreducible, projective surface. Lel’ be a linear
system of dimension> 0 whose general divisor D is irreducible with geometric genus
g. Let(X’, £) be the resolution or{X, £). SupposgX’, £') is not a scroll. Ther(7.4)

of Theorem7.3 holds. If in addition, (X', £) is minimal and equality holds it{7.4),
then (X, £) = (X’, £') and L is base point freecomplete and the paitX, D) is as

in (i)—(iii) or (iv) of Theorem7.3.
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Corollary 7.8. LetX c P", r >3¢+5, g =2, be an irreducible non-degenerate surface
which is not a scroll and having general hyperplane section D of geometric genus g.
Thenr = 3¢ + 5, the surface X is linearly normabf degreedg + 4 and it is one of

the following

(i) g=3.r=14and X = Va4 is the 4Veronese embedding & in P4
(i) X = X, , is a smooth(a, g)-Castelnuovo surfagevith 0<a <g;
(i) X has only one singular point and it is ti&Veronese embedding of a cone over
a rational normal curve of degree,a>3 andg=a—1,i.e. X = X,41,is a
(g + 1, g)-Castelnuovo surface

We finish this section by proving a slight extension of the above results, which will
be essential in our subsequent classification theorems. Further generalizations, in the
spirit of [8] or [49], can be obtained, but we will not consider them here, since we
will not use them now. Similarly, we refrain from formulating the next result in its
maximal generality, i.e. for big and nef, but not necessarily ample, pairs, since we will
not need such a generality here.

Theorem 7.9. Let X be a smoothrreducible, projective surface. Let D be an effective
ample divisor on X. Sef := D?, g := p,(D), r := dim(|D|). Assume thag>2 and
that the pair (X, D) is minimal not a scroll and suppose that= 3g + 5 — s, with
1<s<3. Then X is rational D is very ampleand one of the following cases occurs

(i) (X, D) is a projection of a4-Veronese pair fromi = 1, 2, 3 points. One hag = 3,
d=16—s ands =i;
(i) (X, D) is a projection of an(a, g)-Castelnuovo pairwith 0<a<g, fromi =
1,2, 3 points. One hasl =4g+4—s,s =1,
(i) X ~ P x P! and D is of type(3,3) on X. One hag =4, d =18 and s = 2;
(iv) (X, D) is the tangential projection of &-Veronese pair from = 0, 1, 2 points.
One hasg =6—i,d =25—4i, s = 3.

Proof. By the theorem of Riemann—Roch we have- g +1>r>3¢ +5— s, hence
d>4g +4 —s. Moreover, by 7.2), d<4g — 4+ K2, so thatK?>8—s>5 andX is
rational sinceK - D =2¢g—2—-d< —2g—1<0. By (7.2), we have

(K + D)*> = K> —8+s. (7.5)

Notice that D? = d>4g + 1>9 implies, by Reider's theorem (sg6]) and the
hypotheseD ample and(X, D) not a scroll, thai K + D| is base point free. So either
(K+D)? = 0 and|K + D| is composite with a base point free pendi|, or the general
curve C € |K + D] is smooth and irreducible. Note also that di& + D|) = g — 1.
Hence ifg = 2, then|K + D| is a base point free pencil and therefag# + D)2 = 0.

Assume thatk2 = 9, i.e. X ~ P2, Then (.5 implies that(K + D)2 = 1+ 5. So
the only possibility iss = 3 and (X, D) is a 5-Veronese pair.

From now on we will assum&2<8 and therefore & (K + D)2<s<3 by (7.5).
We examine separately the various cases.
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If (K + D)2 =0 and|K + D| is composite with a base point free pengi|, the
general curve in D] is hyperelliptic and therefor® - M = 2. SinceM - (K + D) =0,
we havek - M = —D - M = —2, and M? = 0 yields that the general curve |
is rational. By .5 we havek? = 8 — s, so we haves reducible curves inM|,
which are formed by pairs of—1)-curves meeting transversally at one point and both
meetingD at one point. By contracting disjoint of these(—1)-curves, we have a
morphismp : X — F,, for somea>0. Let D' = p,(D). Then p,(D") = g and
D'? =d+s =4g + 4. Then, by Theoren7.3 and Corollary7.8, we conclude we are
in case (ii).

If (K + D)?> =1, then ¢ k+p) is a birational morphism oKX to P2, henceX is

the blow-up of P2 at 9— K2 = points x1, ..., xs. If E is a (—1)-curve contracted
by |K + D|, then one hast - (K + D) = 0, henceE - D = —E - K = 1, which
means that the image ¢D| in P2 has simple base points af, ..., x;. Furthermore

g —1=dim(|K + D|) = 2, henceg = 3. We are thus in case (i).

If (K 4+ D)2 = 2, then the series cut out by + D| on its general curveC is a
completegﬁ_z, which implies g <4.

If ¢ =4, thenC is rational and¢ g, p, is a birational morphism oK to a quadric
in P3. ThusX is the blow-up ofF,, a = 0,2, at 8— K2 = s — 2 points. Note that the
ampleness hypothesis @ rules out the case = 2. Thens —2>0, namely X s<3.
If s =2, then we clearly are in case (iii), whereass i 3, we are in case (iv), = 2.

Suppose; = 3. Let C be the general curve ifK + D|. One computegsK +C)-C =0
and (K + €)% = (2K + D)? =8—s > 0. This contradicts the Hodge index theorem.

If (K + D)% = 3, then the series cut out byk + D| on its general curveC is
a completegg_z, which implies g<5. On the other hand7(5 implies thats = 3,
K2 =8, i.e. X is a surfaceF,, for somea >0.

If ¢ =5, thenC is rational andp k. p, is then an isomorphism of to F1 embedded
in P* as a rational normal cubic scroll. It is then clear that we are in casei (iv)].

If g<4, one computesK + C) - C = 8 — 2g and (K + C)? = 21 — 4g, which
contradicts the Hodge index theorem.

The proof is thus completed.C]

The pairs listed in (i))—(iv) of Theoren7.9 above will be calledalmost extremal
Castelnuovo pairsThe corresponding surfaceés, (X) will be called aimost extremal
Castelnuovo surfaces

8. The classification of(’)AtJ_’i—surfaces

In this section we give the classification of surfack¥s c P¥**2 k>2 with
w(X) = 1. Recall that the casé = 1 was classically considered by Sevébi]
and proved by Russ§bl] (see also[18]). We notice that this classification was in
part divined by Bronowski irf7], where however the argument he gives relies on the
unproved conjecture stated in Rematl6.
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Theorem 8.1. Let X ¢ P¥*2 k>2, be a smoothprojective surface which is linearly
normal and such that,(X) = 1. We let d be the degree and g be the sectional genus
of X. Then X is one of the following

() a rational normal scroll S(a1, a2) with k<ai1<az, d = a1 +a> = 3k + 1 and
sectional genug = 0 (see Examplé.l);

(i) an odd Castelnuovo surfac€, x_1, with 0<a<k—1 anda+k = 1(mod 2) 6ee
Example5.5 and Remark7.6). In this cased = 4k, g = k — 1 and the hyperplane
sections of X are hyperelliptic curves

(i) the internal projection from three distinct points of a Castelnuovo surfége C
P3*+5 with 0<a <k. In this cased = 4k + 1 and g = k and the hyperplane
sections are hyperelliptic curvgsee Examplé.5);

(iv) the tangential projection of &-Veronese surfacé’> s from i = 0, 1, 2, 3 points
(see Examplé.8). Hered =25—4i, g =k =6—1.

Proof. From the classification of weakly defective surfaces (4 Theorem 1.3 and
Example 5.15]above), we see thaX, being notk-defective and spanning B3+,
is also notk-weakly defective. We can, and will, therefore apply Propositlod Let
p1, ..., Pk € X be general points and l¢t be the linear system of hyperplane sections
of X tangent atps, ..., pr. Since X is not (k — 1)-defective, we have digf) = 2.
MoreoverL = F + M, whereF is the fixed part andU the movable part, as described
in Proposition1.6. The relevant information is that, by Theor&, tx; : X — — —
P? is birational, henceX is rational and the general curid € M is rational and
M determines a birational map of to P2. In particular, M is base point free off
pi, ..., pr (see[18, Proposition 6.3]

We will separately discuss the various cases according to Proposition

(1) F is empty;
(2) F is not empty and irreducible;
(3) F consists ofk irreducible curved”; with p; € T';.

In case (1) the curv¥l is rational withk nodes atps, ..., pr and no other singularity.
Theng = k andd = 4k + 1 and thereforeX is an almost extremal Castelnuovo surface
with ¢ = 3. By Theorem7.9, we are either in case (iii) or in case (iv).

In case (2), the curvé is smooth and rational. Look at the linear systefit on X.
Since X is linearly normal and there is a unique cuiivecontaining the general points
p1, ..., Pk, then we have diiF|) = k, henceF? = k—1. MoreoverM is also rational
and smooth. Look at the system|. Since there is a 2-dimensional linear system of
curves in|M| containing p1, ..., px, we have dinM|) = k + 2, thus M? = k + 1.
Moreover M - F = k by Proposition1.6. This implies that:

d=M?>+2M -F+F>=4, g=psM)+pa(F)+M-F—-1=k—1

henceX is an extremal Castelnuovo surface. By Corollay, we are in case (ii),
because the Veronese surfakég, is 4-defective (see Remark6).



C. Ciliberto, F. Russo/Advances in Mathematias (11ar) 1i—nu 45

In case (3), the curve¥; are rational and linearly equivalent, ar]ff = 0, for
i =1,...,k. This implies that we are in case (i)[]

Remark 8.2. The assumption thaX be linearly normal is essential to havefiaite
classification in Theoren8.1 above, as shown in Examplg.18 We do not know
whether there are more examples of non-linearly nordal™1-surfaces other than
the ones exhibited in Example 18

According to Propositiort.9, k-regularity implies linear normality. So one could be
tempted to replace the linear normality hypothesis in TheoBelby the k-regularity
assumption, which seems to be, in this context, a right generalization of the concept
of smoothness. However, theregularity hypothesis is almost never verified by the
surfaces in the list (i)—(iv) of Theore®.1 This suggests that-regularity is too rigid.
It would be interesting to find a weaker concept which, in this context, could play the
right role.

9. The classification of MX-surfaces

In this section we consider the classification./of-surfaces (see alg@]). The case
of k-defective andk-weakly defective surfaces has been already considered in Examples
5.14 5.15and5.18 see alsd37]. We summarize the result in the following:

Theorem 9.1.Let X ¢ P" be an irreducible non-degeneratesurface. If X is k-
defective then it is an M¥-surface if and only if one if the following happens

() r =3k+2 and X is the2-Veronese embedding of a surface of degree Rin?;
(i) X sits in a (k + 1)-dimensional conewith a vertex of dimensioi — 1, over a
rational normal curve C of degreé > 2k + 3.

If X is k-weakly defectivebut not k-defectivethen it is anMX-surface if and only
if one if the following happens

(i) r =9, k =2 and X is the2-Veronese embedding of a surface of degfee3 in
P3:

(iv) r =3k + 3 and X is the cone over a k-defective surface of tipe

(v) r = 3k + 3 and X is the2-Veronese embedding of a surface of degree 1 in
U:Dk+1;

(vi) X sits in a(k+ 2)-dimensional conewith a vertex of dimension, kover a rational
normal curve C of degred > 2k + 2.

The main result of this section is the classification theorem f6}*1-surfaces,
which concludes the classification df*-surfaces:

Theorem 9.2. Let X c P2t with k,h>1, be a smooth irreducible non-
degenerate M¥-surface which is linearly normal and not k-weakly defective. Let d
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be the degree and g the sectional genus of X. Then X is one of the following

(i) a rational normal scrollS(a1, ap) of degreed = 3k + 1+ h and type(as1, az) with
k<ai1<ay (see Examplé.1);

(ii) a del Pezzo surface of degrde=5+h andg =1, with 1<h<4 andk =1 (see
Example5.16);

(iii) the internal projection fron8 — A, with 1< <3, distinct points of an odd Castel-
nuovo surfaceX, ; C P35 with 0<a<k and a + k = 0(mod2).In this case
d =4k + 1+ h, g = k and the hyperplane sections are hyperelliptic cur{ese
Example5.5);

(iv) the internal projection fron3 — 4 points with 1<h <2, of the Veronese surface
V2.4. In this cased = 13+ h, g = 3,k = 3 (see Examplé.12);

(v) the 3-Veronese embedding iR*® of a smooth quadric ifP3. Here d = 18, g =
4 k=4h=1 (see Examplé.13);

(vi) the 3-Veronese embeddingy 3 of P2 Inthiscased =9, g =1, k=2h=1
(see Examplé.16).

Proof. Since X is not k-weakly defective, we can apply again Propositib®. Let
pi, ..., pr € X be general points and, as in the proof of Theoréh we let £ be
the linear system of hyperplane sections)oftangent atps, ..., px. Since X is not
(k — 1)-defective, we have digf) = 2 + h. MoreoverL = F + M, whereF is the
fixed part andM the movable part, as described in Propositiof By Corollary 4.5,
xk:X—— —> X C P"+2 is birational andXy is a surface of minimal degrde+ 1,
henceX is rational and the general cur# € M is also rational.

Again, as in the proof of TheorerB.1, one has to separately discuss the various
cases according to Propositidné.

If Fis empty, theng =k andd = 4k +h + 1. If Kk =1 we are in case (ii). If
k > 1, by applying Corollary7.8 and Theorenv.9, we see that we have cases (iii), (iv)
and (v).

If F is not empty and irreducible, thep=k — 1 andd = 4k + h. By Theorem?7.3,
the only possible case is=1, ¢ = 1, which impliesk = 2 and we are in case (vi).

If F consists ofk irreducible curves we are in case (i)

We can now state our result concerning the generalized Bronowski’'s conjecture for
surfaces (see Remark6):

Corollary 9.3. The generalized Bronowsiconjecture holds for smooth surfaces

Proof. Let X c P3*+2+h .= codim(S*(X)), be a smooth, irreducible, projective, not
k-defective surface and assume that the gerietahgential projectiorntx ; : X — — —

X, C P2 pirationally mapsX to a surface of minimal degrek+ 1 in P"+2. The
same argument we made in the proofs of Theor8msand 9.1 proves thaiX is either

or minimal degree or Castelnuovo extremal or Castelnuovo almost extremal. As we
saw in Sectiorb, these areMA{™1 or O.A " 1-surfaces, according to whethér> 0
orh=0. O



C. Ciliberto, F. Russo/Advances in Mathematias (11ar) 1i—nu 47
10. A generalization of a theorem of Severi

Terracini's Lemmal.1limplies that a defective variety is swept out by very degenerate
subvarieties. As a consequence, one has a famous theorem of [Sé{é¢siee alsd52]),
which says that the Veronese surfaiég, in P® is the only irreducible non-degenerate,
projective surface irP", r >5, not a cone, such that di$i(X)) = 4. This result can
be restated as followshe Veronese surface iR® is the only 1-defectivenot 0-weakly
defective irreducible non-degeneraterojective surface ", r >5 (cf. Remarkl.2).

This section is devoted to point out an extension of Severi's theorem, namely Theorem
10.1 below. This result yields a projective characterization of extremal Castelnuovo
surfaces, in particular it stresses a distinction between odd and(eygpCastelnuovo
surfaces, as suggested by Bronowski7h.

Theorem10.1could also be deduced by the classification of weakly defective surfaces
(see[14, Examples 5.14 and 5.)5However, the proof iffi14] requires a subtle analysis
involving involutions on irreducible varieties and a generalization of the Castelnuovo—
Humbert theorem to higher dimensional varieties. It seems interesting to us to present
here an easy argument based on the ideas developed in this paper.

Theorem 10.1.Let X c P", r>3k + 2 and k>1, be a smoothirreducible non-
degenerate surface. Suppose that X is k-defective butkrefl)-weakly defective. Then

r = 3k + 2 and X is the2-\Veronese embedding of a smooth surface of degree k in
P+ ie. it is one of the following

(i) X = Vo2 is the Veronese surface iR°, thenk = 1 and degS(X)) =3;
(i) X = Va4 is the4-Veronese embedding Bf in P14, thenk = 4 anddeg $*(X)) =
6;
(i) X is a smooth even Castelnuovo surfag_1, with 0<a <k — 1, which is the
2-Veronese embedding of a smooth rational normal scroll of degree R in

In particular a k-defectivenot (k — 1)-weakly defectivesurface inP", r >3k + 2,
is an MK-surface inP3¢+2,

Proof. Let po, ..., pr € X be general points. Sincé is not (k — 1)-defective, one has
dim(Tx, p,,....p,) = 3k — 1. SinceX is not degenerate if®", r >3k + 2, the projection
of X from Tx ..., cannot be a point. Hence€® (X) = dim(Tx, p.... p,) = 3k + 1.

We can supposé >2 by Severi’ theoren{54]. Also we may assume that c P’
is linearly normal. SinceX is not (k — 1)-weakly defective we may apply Lemma
1.4 to deduce thatry i 1 : X — — — X;_1 C P"~3*+3 is birational to its image.
Thenr — 3k +3>5 and X;_1 c P"~3*+3 is an irreducible non-degenerate surface. By
Terracini's Lemma dindS(Xy—1)) = 4 and moreoverX;_1 is not O-weakly defective
becausex c P" is not (k — 1)-weakly defective. Thus Severi's theorem applies and
yields thatX;_1 is the Veronese surface iA® and thatr = 3k + 2. Note thatX cannot
be a scroll, sinceX;_1 = V22 does not contain lines.

The rest of the proof is analogous to the one in Theo8&SinceX is not (k — 2)-
weakly defective we can apply Propositiaré. Let p1, ..., px—1 € X be general points
and, as in the proof of Theoregl, we let£ be the linear system of hyperplane sections
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of X tangent atps, ..., px—1. The general curvéd € M is rational being birational
to a hyperplane section of the Veronese surfige; c P° and we have dirC) = 5.
MoreoverL = F+ M, whereF is the fixed part andU the movable part, as described
in Proposition1.6.

Again, one has to separately discuss the various cases according to Prophs$ition

If Fis empty, theng =k —1 andd = 4k. In the caset = 2, thenX is a del Pezzo
surface of degree 8 and we are in case (iii) (see Exarbd§. If k>3, by applying
Corollary 7.8, we have cases (ii) and (iii).

If Fis not empty and irreducible, thep=k — 2 andd = 4k — 1. We can suppose
that k>3 sinceX is not a scroll. Note also that(8— 2) +5 = 3k — 1. SinceX is not
a scroll, then Corollary7.8 implies that this case does not exist.

If F consists ofk — 1 irreducible curves, then they belong to a pencil of lines, a
contradiction, sinceX is not a scroll. O
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