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0. Introduction

In this paper, in which we work over the field of complex numbers, we touch, as
the title suggests, two different themes, i.e. secant varieties and linear systems, and
we try to indicate some new, rich, and to us unexpected, set of relations between
them.
Let X ⊆ Pr be a reduced, irreducible, projective variety. Basic geometric objects

related toX are its secant varietiesSk(X), i.e. the varieties described by all projective
subspacesPk of Pr which are(k + 1)-secant toX (see Section1.3 for a formal defi-
nition: in Section1 we collected all the notation and a bunch of useful preliminaries
which we use in the paper). The presence of secant varieties in the study of projective
varieties is ubiquitous, since a great deal of projective geometric properties of a variety
is encoded in the behaviour of its secant varieties. However, the importance of secant
varieties is not restricted to algebraic geometry only. Indeed, different important prob-
lems which arise in various fields of mathematics can be usefully translated in terms of
secant varieties. Among these it is perhaps the case to mention polynomial interpolation
problems, rank tensor computations and canonical forms, expressions of polynomials as
sums of powers and Waring-type problems, algebraic statistics, etc. (see, for instance,
[13,17,29,35]).
Going back to projective algebraic geometry, let us mention the first basic example

of a property of a variety which is reflected in properties of a secant variety: it is well
known, indeed, that a smooth varietyX ⊆ Pr can be projected isomorphically toPr−m,
with m > 0, if and only if its first secant varietyS(X) := S1(X) has codimension at
leastm in Pr . Furthermore, one can askhow singulara general projection ofX to
Pr−m−1 from a generalPm is, if m is exactly the codimension ofS(X) in Pr . One
moment of reflection shows that a basic step in answering this question is to know in
how many pointsS(X) intersects a generalPm in Pr , i.e. one has to know what is
degreeof S(X). A related, more difficult problem, is to understand what is the structure
of the cone of secant lines toX passing through a general point inS(X), a classical
question considered by various authors even in very recent times (see, for instance,
[42]). Of course similar problems arise in relation with higher secant varietiesSk(X)

as well and lead to the important questions of understanding what is thedimension
and thedegreeof Sk(X) for any k�1.
As well known, ifX has dimensionn, there is a basic upper bound for the dimension

of Sk(X) which is provided by a naive count of parameters (see (1.2) below). As
often happens in many similar situations in algebraic geometry, one expects thatmost
varieties achieve this upper bound, and that it should be possible to classify all the
others, the so-calledk-defective varieties, namely the ones for which the dimension of
Sk(X) is smaller than the expected. Unfortunately this viewpoint, which is in principle
correct, is in practice quite hard to be successfully pursued. Indeed, while there are no
defective curves and the classification of defective surfaces, though not at all trivial, is
however classical (see[14,54,57]for a modern reference), the classification of defective
threefolds is quite intricate and has only recently been completed (see[16]) after the
classical work of Scorza[53] on 1-defective threefolds (see also[15]). As for higher-
dimensional defective varieties, no complete classification result is available, though a
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number of beautiful theorems concerning some special classes of defective varieties is
available (see[58]).
One of the objectives of the present paper is to address the other question we

indicated above, i.e. the one concerning the determination of the degree of secant
varieties. This question, though important, has never been systematically investigated
in general, neither in the past, nor in more recent times, exceptions being, for instance,
the paper[12] for the case of curves (see also[59]), and the computation of the degree
of secant varieties to varieties of some particular classes, like one does in[50] (see
also Section5 below).
Of course, given any varietyX ⊆ Pr , one has a famous, classical lower bound for

the degree ofX (see (4.1) below), which says that the degree in question is bounded
below by the codimension ofX plus one. This bound is sharp, and the varieties achiev-
ing it, the so-calledvarieties of minimal degree, are completely classified, in par-
ticular they turn out to be rational (see[22]). The aforementioned bound of course
applies to the secant varieties ofX too, but, according to the classification of vari-
eties of minimal degree, one immediately sees that it is never sharp in this case. Thus
the question arises to give asharp lower bound for the degree ofSk(X). This is
the problem that we solve in Section4, where our main result, i.e. Theorem4.2, is
the bound (4.2) for the degree ofSk(X). Moreover, we prove a similar bound (4.3)
for the multiplicity of Sk(X) at a general point ofX. One of the main steps in the
proof of Theorem4.2 is the result in Section3, namely Theorem3.1, in which we
give relevant informations about the tangent cone toSk(X) at the general point of
Sl(X), where l < k. This can be seen as a wide generalization of the famous Ter-
racini’s Lemma (see Theorem1.1 below), which describes the general tangent space
to Sk(X).
The lower bound (4.2) for the degree ofSk(X) is a generalization of the classical

lower bound (4.1) for the degree of any variety, and, as well as the latter, it is sharp.
Actually, in Theorem4.2 we also show that varietiesX such thatSk(X) has the min-
imum possible degree, called varieties withminimal k-secant degreeor Mk-varieties
(see Definition4.4), enjoy important properties like: generalm-internal projectionsXm

of X, i.e. projections ofX from m general points on it, are also ofminimal k-secant
degree, generalm-tangential projectionsXm of X, i.e. projections ofX from m�k

general tangent spaces, are ofminimal (k −m)-secant degree, in particular, fork = m,
projectionsXk of X from k general tangent spaces are ofminimal degree, hence they
are rational. Since we know very well varieties of minimal degree, and a generalk-
tangential projectionXk of X is one of them, a natural question, at this point, arises:
what is the structure of the projectionX − − → Xk? The interesting answer is that,
if X is not k-defective then the map in question is generically finite and its degree is
bounded above by�k(X) which, by definition, is the number of(k + 1)-secantPk to
X passing through the general point ofSk(X). In particular, if X is not k-defective,
if Sk(X) has minimal degree and�k(X) = 1, thenX, as well asXk, is rational. The
main ingredient for the proof of the bound on the degree of thek-tangential projec-
tion X − − → Xk is proved in Section2 (see Theorem2.7), where we exploit and
generalize the technique, introduced in[18], of degeneration of projections, based on
a beautiful idea of Franchetta (see[26,27]).
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Notice that the condition�k(X) = 1 is rather mild, i.e. one expects thatmostnon
k-defective varietiesX ⊂ Pr enjoy this property ifSk(X)�Pr (see Section1.5, in
particular Proposition1.5 for a sufficient condition for this to happen). The varieties
X, not k-defective, such thatSk(X) has minimal degree and�k(X) = 1 are called
MAk+1

k−1-variety orOAk+1
k−1-variety according to whetherSk(X) is strictly contained in

Pr or not (see Definition4.4), e.g.X is anOAk+1
k−1-variety if and only ifSk(X) = Pr ,

r = (k + 1)n + k and there is only one(k + 1)-secantPk to X passing through
the general point ofPr , i.e. the general projectionX′ of X to Pr−1 acquires a new
(k+1)-secantPk−1 thatX did not use to have. This was classically called anapparent
(k+1)-secantPk−1 of X. It should be mentioned, at this point, the pioneering work of
Bronowski on this subject: in his inspiring, but unfortunately very obscure, paper[6]
he essentially states that the mapX − − → Xk is birational if and only ifX is either
anMAk+1

k−1-variety orOAk+1
k−1-variety. As we said, one implication has been proved by

us, the other is open in general, and we call it thekth Bronowski’s conjecture (see
Remark4.6). The results of the present paper imply that Bronowski’s conjecture holds
for smooth surfaces (see Corollary9.3), whereas the main theorem of[18] implies that
the Bronowski’s conjecture holds for smooth threefolds inP7 if k = 1. It would be
extremely nice to shed some light on the validity of this conjecture in general, since,
according to Bronowski, this would make the study and the classification ofMAk+1

k−1
andOAk+1

k−1-varieties easier.
The existence ofMk, MOk+1

k−1, andMAk+1
k−1-varieties, and therefore the sharpness

of the bound proved in Theorem4.2, is showed in Section5, where several important
classes of examples are exhibited. Among these one has: rational normal scrolls, some
Veronese fibrations, some Veronese embeddings of the plane, defective surfaces, del
Pezzo surfaces, etc.
With all the above apparatus at hand, the natural question is to look for classifi-

cation theorems forMk, MAk+1
k−1, andOAk+1

k−1-varieties. This turns out to be a very
intriguing but considerably difficult question to answer. Indeed the problem is non-
trivial even in the case of curves, considered in Section6: the classification theorem
here, which follows by results of Catalano–Johnson, is that a curve is anMAk+1

k−1 or
an OAk+1

k−1-variety if and only if it is a rational normal curve (see Theorem6.1). Our
proof is a slight variation of Catalano–Johnson’s argument. The classification ofOA2

0-
varieties, also calledOADP-varieties, which meansvarieties with one apparent double
point, is a classical problem. The case ofOADP-surfaces goes back to Severi[54],
whereas examples and general considerations concerning the higher dimensional case
can be found in papers by Edge[21] and Bronowski[6]. This latter author came to
the consideration of this problem studying extended forms of the Waring problem for
polynomials. Severi’s incomplete argument has been recently fixed by the second author
[51], and a different proof can be found in[18], where one provides the full classifica-
tion of OADP-threefolds inP7. Finally, an attempt of classification ofOAk+1

k−1-surfaces
is again due to Bronowski[7], whose approach, based on his aforementioned unproved
conjecture, was certainly not rigorous and led him, by the way, to an incomplete list.
The problem we started from, and which actually was the original motivation for this

paper, was to verify and justify Bronowski’s classification theorem ofOAk+1
k−1-surfaces,
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without, unfortunately, having the possibility of fully relying on his still unproven
conjecture. It was in considering this question that we understood we had to slightly
change our viewpoint and first look at a different kind of problem. This leads us to
the second theme of the present paper, i.e. linear system on surfaces, which occupies
Section7. We discovered in fact that the classification ofMAk+1

k−1 andOAk+1
k−1-surfaces

is closely related to a beautiful classical theorem of Castelnuovo[8] and Enriques[24]
(see Theorem7.3) which gives an upper bound for the dimension of a linear systemL
of curves of given geometric genus on a surfaceX, and classifies those pairs(X,L) for
which the bound is attained. Of course, Castelnuovo–Enriques’ theorem has to do with
the intrinsic birational geometry of surfaces. However, if one looks at the hyperplane
sections linear systems, it becomes a theorem in projective geometry and our remark
was that Castelnuovo–Enriques’ list of extremal cases consisted of somek-defective
surfaces and ofMAk+1

k−1 andOAk+1
k−1-surfaces for somek. It became then apparent to

us that there should have been a relationship between minimality properties of secant
varieties encoded in theMk, MAk+1

k−1, andOAk+1
k−1-properties and the Castelnuovo–

Enriques’ maximality conditions on the dimension of the hyperplane sections linear
system. The relation between the two items was underlined, in our view, by the fact
that Castelnuovo and Enriques’ beautiful original approach was based on iterated appli-
cations of tangential projections, a technique that, as we indicated above, enters all the
time in the study of secant varieties. In fact, we do not reproduce here Castelnuovo–
Enriques’ original argument, which, based on the technical Proposition1.6, is however
hidden, as we will explain in a moment, in the proof of our classification theorems of
Mk, MAk+1

k−1, andOAk+1
k−1-surfaces given in Sections8 and9. We preferred instead to

give an intrinsic, birational geometric, proof of Castelnuovo–Enriques’ theorem, which
enables us to prove a slightly more general statement than the original one and is
also useful for extensions, like our Theorem7.9, in which we classify those smooth
surfaces in projective space such that their hyperplane linear system has dimension
close to Casteluovo–Enriques’ upper bound. The Castelnuovo-Enriques’ upper bound
(7.3) for smooth irreducible curves is essentially the main result of Hartshorne[33,
Corollary 2.4, Theorems 3.5 and 4.1], where the classification of the extremal cases is
not considered. Our simple and short proof, which we hope has some independent in-
terest, relies on an application of Mori’s Cone Theorem, namely Proposition7.1, which
has an independent interest and says that given a pair(X,D), whereX is a smooth,
irreducible, projective surface, andD is a nef divisor on it, one has thatK + D is
also nef, unless one of the following facts occurs: either(X,D) is not minimal, i.e.
there is an exceptional curve of the first kindE on X such thatD · E = 0, or (X,D)

is a h-scroll, with h�1, i.e. there is a rational curveF on X such thatF 2 = 0 and
D ·F = h, or (X,D) is a d-Veronese, with d�2, i.e.X = P2 andD is a curve of de-
greed�2. A slightly more general version of this last result, in the caseD irreducible
(smooth) curve, was obtained by Iitaka, see[36], and revised from the above point of
view of the Cone Theorem by Dicks, see[20] Theorem 3.1. For weaker results of the
same type, concerning the caseD ample, see for example[38]. It should be stressed
that, as indicated in Castelnuovo’s paper[9], one can push these ideas further, thus
giving suitable upper bounds for the dimension of certain linear systems on scrolls, or
equivalently on the degree of curves on scrolls as in[33, Theorem 2.4 and Corollary
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2.5]. This has been done already, in an independent way also in[49], but we hope
to return on these matters in the future since we believe that some of the results in
[9], see also[33] Sections 2 and 3, and in[49] can be slightly improved and perhaps
related to projective geometry in the spirit of the present paper.
As we said, in Sections8 and9 we come back to the classification ofMAk+1

k−1 and
OAk+1

k−1-surfaces. Using the machinery of tangential projections and degeneration of
projections we discover that the surfaces in question are either extremal with respect to
Castelnuovo–Enriques’ bound or they are close to be extremal, so that their classification
can be at this point accomplished using the results of Section7. Finally in Section
10 we prove, using the same ideas, a result, namely Theorem10.1, which is a wide
generalization of the famous theorem of Severi’s saying that the Veronese surface in
P5 is the only defective surface which is not a cone.
In conclusion we would like to mention that, though the above classification re-

sults forMk, MAk+1
k−1, andOAk+1

k−1-varieties are quite satisfactory and conclusive in
low dimensions, i.e. for curves and surfaces, quite a lot of room is left open for the
higher-dimensional case, where, except for the aforementioned result of[18], nothing,
to the best of our knowledge, is known. We hope the ideas presented in this paper
will be useful in this more general context too. Another interesting direction of re-
search is to try to extend to higher-dimensional varieties Castelnuovo–Enriques’ results
in Section7. This question is also widely open. The adjunction theoretical approach
that we use in the surface case can in principle be extended, but it is not clear whether
it leads to anything really useful. On the other hand Castelnuovo–Enriques tangential
projection approach, in order to work, has to be modified, since one needs to make
projections from osculating, rather than tangent, spaces. An interesting suggestion in
this direction comes from the beautiful comments of Castelnuovo’s to[8] in the volume
of collected papers[10, pp. 186–188]. However, osculating projections present serious
technical problems which make Castelnuovo’s suggestion rather hard to be pursued.
On the other hand, the specific problem which Castelnuovo was considering in his
comments in[10, pp. 186–188], i.e. the classification of linear systems of rational sur-
faces inP3, has been recently successfully addressed by various authors, in particular
by Mella [43], by using Mori’s program. The interplay between intrinsic birational
geometry, i.e. Mori’s program, and extrinsic projective geometry, i.e. osculating pro-
jections and relations with secant varieties, is a very promising, uncharted territory to
be explored.

1. Notation and preliminary results

1.1. Let X ⊆ Pr be a projective scheme overC. We will denote by deg(X) thedegree
of X, by dim(X) the dimensionof X, by codim(X) = r − dim(X) its codimensionand
by (X)red the reduced subscheme supported byX. We will mainly consider the case in
which X is a reduced, irreducible variety.
If Y ⊂ Pr is a subset, we denote by〈Y 〉 the span ofY. We will say thatY is

non-degenerateif 〈Y 〉 = Pr .
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1.2. Let X ⊆ Pr be a reduced, irreducible variety of dimensionn. If x ∈ X we will
denote byCX,x the tangent coneto x at X, which is ann-dimensional cone with vertex
at x. Note thatCX,x has a natural structure of a subscheme ofPr . We will denote by
multx(X) the multiplicity of X at x. One has multx(X) = deg(CX,x) and X is a cone
if and only if X has some pointx such that multx(X) = deg(X). In this casex is a
vertexof X and we will denote by Vert(X) the set of vertices ofX, which is a linear
subspace contained inX. It is well known that

Vert(X) =
⋂
x∈X

TX,x. (1.1)

If x is a smooth point ofX, thenCX,x is an n-dimensional linear subspace ofPr ,
i.e. the tangent spaceto X at x, which we will denote byTX,x .

1.3. Let k be a non-negative integer and letSk(X) be thek-secant varietyof X, i.e.
the Zariski closure inPr of the set:

{x ∈ Pr : x lies in the span ofk + 1 independent points ofX}.

Of courseS0(X) = X, Sr(X) = Pr and Sk(X) is empty if k�r + 1. We will write
S(X) instead ofS1(X) and we will assumek�r from now on.
Let Symh(X) be thehth symmetric product ofX. One can consider theabstract

kth secant varietySkX of X, i.e. SkX ⊆ Symk(X) × Pr is the Zariski closure of the set
of all pairs ([p0, . . . , pk], x) such thatp0, . . . , pk ∈ X are linearly independent points
and x ∈ 〈p0, . . . , pk〉. One has the surjective mappk

X : SkX → Sk(X) ⊆ Pr , i.e. the
projection to the second factor. Hence

s(k)(X) := dim(Sk(X))� min{r,dim(SkX)} = min{r, n(k + 1) + k}. (1.2)

We will denote byh(k)(X) the codimension ofSk(X) in Pr , i.e. h(k)(X) := r −
s(k)(X).
The right-hand side of (1.2) is called theexpected dimensionof Sk(X) and will be

denoted by�(k)(X). One says thatX has ak-defect, or is k-defective, or is defective of
index kwhen strict inequality holds in (1.2). One says that

�k(X) := �(k)(X) − s(k)(X)

is the k-defectof X.
Notice that the general fibre ofpk

X is pure of dimension(k + 1)n + k − s(k)(X),
which equals�k(X) when r�n(k + 1) + k. We will denote by�k(X) the number of
irreducible components of this fibre. In particular, ifs(k)(X) = (k+1)n+k, thenpk

X is
generically finite and�k(X) is the degree ofpk

X, i.e. it is the number of(k+1)-secant
Pk ’s to X passing through the general point ofSk(X).
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If s(k)(X) = (k + 1)n + k, we will denote by�k(X) the number of(k + 1)-secant

Pk ’s to X meeting the generalPh(k)(X) in Pr . Of course one has

�k(X) = �k(X) · deg(Sk(X)) (1.3)

and therefore

�k(X) = �k(X) if r = s(k)(X) = (k + 1)n + k. (1.4)

1.4. Let X ⊂ Pr be an irreducible, projective variety. Letk be a positive integer and
let p1, . . . , pk be general points ofX. We denote byTX,p1,...,pk the span ofTX,pi , i =
1, . . . , k.
If X ⊂ Pr is a projective variety, Terracini’s lemma describes the tangent space to

Sk(X) at a general point of it (see[56] or, for modern versions,[1,14,19,58])

Theorem 1.1 (Terracini’s lemma). Let X ⊂ Pr be an irreducible, projective variety. If
p0, . . . , pk ∈ X are general points andx ∈ 〈p0, . . . , pk〉 is a general point, then

TSk(X),x = TX,p0,...,pk .

If X is k-defective, then the general hyperplane H containingTX,p0,...,pk is tangent to
X along a variety�p0,...,pk of pure, positive dimensionnk(X) containingp0, . . . , pk.
Moreover one has

k� dim(〈�p0,...,pk 〉)�knk(X) + k + nk(X) − �k(X).

Consider the projection ofX with centre TX,p1,...,pk . We call this ageneral k-
tangential projectionof X, and we will denote it by�X,p1,...,pk or simply by �X,k.
We will denote byXk its image. By Terracini’s lemma, the map�X,k is generically
finite to its image if and only ifs(k)(X) = (k + 1)n + k. In this case we will denote
by dX,k its degree.
In the same situation, the projection ofX with centre the space〈p1, . . . , pk〉 is called

a general k-internal projectionof X, and we will denote it bytX,p1,...,pk or simply by
tX,k. We denote byXk its image. We setX0 = X0 = X. Notice that the mapstX,k are
birational to their images as soon ask < r − n = codim(X).
Sometimes we will use the symbolsXk [resp.,Xk] for k-tangential projections [resp.,

k-internal projections] relative tospecific, rather thangeneral, points. In this case we
will explicitly specify this, thus we hope no confusion will arise for this reason.

1.5. We recall from[14] the definition of ak-weakly defectivevariety, i.e. a variety
X ⊂ Pr such that ifp0, . . . , pk ∈ X are general points, then the general hyperplane
H containing TX,p0,...,pk is tangent toX along a variety�p0,...,pk of pure, positive
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dimensionnk(X) containingp0, . . . , pk. By Terracini’s lemma, ak-defective variety is
also k-weakly defective, but the converse does not hold in general (see[14]).

Remark 1.2. A curve is neverk-weakly defective for anyk. A variety is 0-weakly
defective if and only if its dual variety is not a hypersurface. In the surface case this
happens if and only if the surface isdevelopable, i.e. if and only if the surface is either
a cone or the tangent developable to a curve.

The two next results are consequences of Theorem 1.4 of[14] that we partially recall
here.

Theorem 1.3. Let X ⊂ Pr be an irreducible, projective, non-degenerate variety of
dimension n. Assume X is not k-weakly defective for a given k such thatr�(n+1)(k+1).
Then, given p0, . . . , pk general points on X, the general hyperplane H containing
TX,p0,...,pk is tangent to X only atp0, . . . , pk. Moreover such a hyperplane H cuts on
X a divisor with ordinary double points atp0, . . . , pk.

The first consequence we are interested in is the following:

Lemma 1.4. Let X ⊂ Pr be an irreducible, projective, non-degenerate variety of di-
mension n, which is not k-weakly defective for a fixedk�1 such thatr�(k+1)(n+1).
Then a general k-tangential projection of X is birational to its image, i.e. dX,k = 1.
In particular, if r�2n + 2, the general tangential projection of X is birational to its
image.

Proof. SinceX is notk-weakly defective, it is notl-defective for alll�k. Thus we have
s(l)(X) = (l+1)n+ l for all l�k, so that by Terracini’s lemma�X,p1,...,pl is generically
finite ontoXl for every l�k and p1, . . . , pl general points onX. In particular this is
true for l = k.
Suppose now thatdX,k > 1. Then, given a general pointp0 ∈ X there is a point

q ∈ X \ (TX,p1,...,pk ∩X), q �= p0, such that�X,p1,...,pk (p0) = �X,p1,...,pk (q) := x ∈ Xk.
This would imply thatTX,p0,p1,...,pk andTX,q,p1,...,pk coincide, since both these spaces
project via�X,p1,...,pk onto TXk,x . In particular, the general hyperplane tangent toX at
p0, p1, . . . , pk is also tangent atq. This contradicts Theorem1.3. �

We also note that Terracini’s lemma and Theorem1.3 imply that

Proposition 1.5. LetX ⊂ Pr be an irreducible, projective variety which is not k-weakly
defective. Ifr�(n + 1)(k + 1), then �k(X) = 1.

In the sequel we will also need the following technical:

Proposition 1.6. Let X ⊂ Pr be a smooth, irreducible, projective, non-degenerate
surface, which is not(k−1)-weakly defective for a fixedk�1 such thatr�3k+2. Let
p1, . . . , pk ∈ X be general points and assume that the linear systemL of hyperplane
sections of X tangent atp1, . . . , pk has a not empty fixed partF = ∑h

i=1 ni�i , with
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�i distinct, irreducible curves andni > 0, for all i = 1, . . . , h. Let M be the movable
part of L and let M be its general curve. Then F is reduced, i.e. ni = 1 for all
i = 1, . . . , h and

(i) either h = 1, F is a smooth, rational curve containingp1, . . . , pk, whereasM
has simple base points atp1, . . . , pk andM ·F = k, henceM ∈ M general meets
F transversally atp1, . . . , pk and nowhere else;

(ii) or h = k, �i is a smooth, rational curve containingpi for i = 1, . . . , k, �i ∩�j =
∅ if 1� i < j�k, M has simple base points atp1, . . . , pk and M · �i = 1,
henceM ∈ M general meets�i transversally atpi and nowhere else, for all
i = 1, . . . , k.

Moreover, if r�3k + 3 and if the general k-tangential projectionXk of X, has
rational hyperplane sections, then the general curveM ∈ M is rational.

Proof. Let C be a general curve inL, so thatC = F +M. By Theorem1.3, we know
that C has nodes atp1, . . . , pk and is otherwise smooth. This implies that

• F is reduced;
• all the curves�i , i = 1, . . . , h, are smooth offp1, . . . , pk, where they can have at
most nodes;

• �i and�j , for 1� i < j�h, may intersect only at some of the pointsp1, . . . , pk,
where only two of them may meet transversally;

• M is smooth offp1, . . . , pk where it can have at most nodes, and may intersect the
curves�i only at p1, . . . , pk, where it may meet only one of them transversally;

• if the point pi , i = 1, . . . , k, is a node for a curve�j , i = 1, . . . , h, then it does
not belong neither toM, nor to�j , j �= i;

• if the point pi , i = 1, . . . , k, is a node forM, then it does not belong toF;
• if the point pi , i = 1, . . . , k, is a smooth point for a curve�j , i = 1, . . . , h, then it
belongs either toM, or to a curve�j , j �= i, but not to both.

We prove the assertion in various steps.

Claim 1.7. Every irreducible component�i of F contains some of the points
p1, . . . , pk.

Otherwise we would have�i ∩ C − �i = ∅, andC would be disconnected, a con-
tradiction since it is very ample onX.

Claim 1.8. F contains all the pointsp1, . . . , pk.

In fact, if p1 /∈ F , then, by changing the role of the pointsp1, . . . , pk, none of the
pointsp1, . . . , pk is in F, contradicting Claim1.7.

Claim 1.9. F is smooth.

We knowF can be singular only at some of the pointsp1, . . . , pk. Suppose this is
the case. Then by symmetry, it is singular at any one of the points in question. But
then we would haveM ∩ F = ∅, which leads to a contradiction as above.
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Claim 1.10. Let �1 be the irreducible component of F throughp1. Then either also
p2, . . . , pk ∈ �1, or none of the pointsp2, . . . , pk lies on �1. In the former case
�1 = F . In the latter each of the pointspi, i = 1, . . . , k, belongs to one and only one
component�i of F.

Suppose�1 containsp1, . . . , pi , with 1< i < k. By changing the role of the points
p1, . . . , pk, any i among the pointsp1, . . . , pk lie on some irreducible component of
F. ThenF would be singular, contradicting Claim1.9. This proves the first part of the
Claim.
Assumep1, . . . , pk ∈ �1. Then Claims1.7 and 1.9 imply that F = �. Suppose

instead onlyp1 lies on �. Then by changing the role of the pointsp1, . . . , pk, each
of the other pointspi, i = 2, . . . , k, also lies on one and only one component ofF.

Claim 1.11. Every irreducible component�i of F is rational.

By projectingX from TX,p1,...,pk−1, we get an irreducible surfaceXk−1 ⊂ Pr−3k+3,
with r −3k+3�5, which is birational toX by Lemma1.4 and which is not 0-weakly
defective. Letq be the image onXk−1 of a general pointpk of X. Notice that the
general tangent hyperplane section toXk−1 at q, which is the image ofC, is reducible
containingM ′, the image ofM, and �′, the image of�k, both passing throughq.
Notice thatM ′ is the movable part of the linear system of hyperplane sections ofXk−1
tangent atq, whereas�′ is the fixed part. ThenXk−1 is either the Veronese surface
in P5 or a non-developable scroll over a curve (see for instance[46]). Hence�′ is
rational. Since�X,p1,...,pk−1 is birational by Lemma1.4, then�k is birational to�′, and
is therefore rational. If�k = F there is nothing else to prove. Otherwise, by changing
the role of the pointspi , we see that�i is rational for anyi = 1, . . . , k.
The above claims imply (i) and (ii). As for the last assertion, it follows from

Lemma1.4. �

1.6. If X, Y ⊂ Pr are closed subvarieties we denote byJ (X, Y ) the join of X andY,
i.e. the Zariski closure of the union of all lines〈x, y〉, with x ∈ X, y ∈ Y, x �= y. If X
is a linear subspace, thenJ (X, Y ) is the cone overY with vertexX. With this notation,
for every k�1 one has

Sk(X) = J (Sl(X), Sh(X)) (1.5)

if l + h = k − 1, l�0, h�0.
We record the following:

Lemma 1.12. LetX, Y ⊂ Pr be closed, irreducible, subvarieties and let� be a linear
subspace of dimension n which does not contain either X or Y. Let� : Pr − − →
Pr−n−1 be the projection from� and letX′, Y ′ be the images ofX, Y via �. Then:

�(J (X, Y )) = J (X′, Y ′).
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In particular, if � does not contain X, then for any non-negative integer k one has

�(Sk(X)) = Sk(X′).

Proof. It is clear that�(J (X, Y )) ⊆ J (X′, Y ′). Let x′ ∈ X′, y′ ∈ Y ′ be general points.
Then there arex ∈ X, y ∈ Y such that�(x) = x′,�(y) = y′. Thus�(〈x, y〉) = 〈x′, y′〉,
proving thatJ (X′, Y ′) ⊆ �(J (X, Y )), i.e. the first assertion. The rest of the statement
follows by (1.5) with l = 0, by making induction onk. �

The following lemma is an application of Terracini’s lemma:

Lemma 1.13. Let X ⊂ Pr be an irreducible, projective variety. For alli = 1, . . . , k
one has

h(k−i)(Xi) = h(k)(X),

whereas for alli�1 one has

h(k)(Xi) = max{0, h(k)(X) − i}.

Proof. Let p0, . . . , pk ∈ X be general points. Terracini’s lemma says thatTX,p0,...,pk
is a general tangent space toSk(X) and that its projection fromTX,pk−i+1,...,pk is the
general tangent space toSk−i (Xi). This implies the first assertion.
To prove the second assertion, note that it suffices to prove it fori < h(k)(X). Indeed,

if i�h(k)(X) then, by Lemma1.12 one hash(k)(Xi) = 0 since alreadyh(k)(Xh(k) ) =
0. Thus, supposei < h(k)(X). Let p0, . . . , pk ∈ X be general points and takei
general pointsq1, . . . , qi in X \ (X ∩ TX,p0,...,pk ). Then the projection ofTX,p0,...,pk
from 〈q0, . . . , qi〉 is the tangent space toSk(Xi). Furthermorei < h(k)(X) yields
〈q0, . . . , qi〉 ∩ TX,p0,...,pk = ∅. This implies the second assertion.�

1.7. Let 0�a1�a1� · · · �an be integers and setP(a1, . . . , an) := P(OP1(a1) ⊕
· · · ⊕ OP1(an)). We will denote byH a divisor in |OP(a1,...,an)(1)| and byF a fibre of
the structure morphism� : P(a1, . . . , an) → P1. Notice that the corresponding divisor
classes, which we still denote byH andF, freely generate Pic(P(a1, . . . , an)).
Set r = a1 + · · · + an + n − 1 and consider the morphism

� := �|H | : P(a1, . . . , an) → Pr

whose image we denote byS(a1, . . . , an). As soon asan > 0, the morphism� is
birational to its image. Then the dimension ofS(a1, . . . , an) is n and its degree is
a1+· · ·+an = r−n+1, thusS(a1, . . . , an) is a rational normal scroll, which is smooth
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if and only if a1 > 0. Otherwise, if 0= a1 = · · · = ai < ai+1, then S(a1, . . . , an)
is the cone overS(ai+1, . . . , an) with vertex aPi−1. One uses the simplified notation
S(a

h1
1 , . . . , a

hm
m ) if ai is repeatedhi times, i = 1, . . . , m.

We will sometimes use the notationH andF to denote the Weil divisors inS(a1, . . . ,
an) corresponding to the ones onP(a1, . . . , an). Of course this is harmless ifa1 > 0,
since thenP(a1, . . . , an) � S(a1, . . . , an).
Recall that rational normal scrolls, the Veronese surface inP5 and the cones on it,

and the quadrics, can be characterized as those non-degenerate, irreducible varieties
X ⊂ Pr in a projective space having minimal degree deg(X) = codim(X) + 1 (see
[22]).
Let X = S(a1, . . . , an) ⊂ Pr be as above. We leave to the reader to see that:

X1 = S(b1, . . . , bn), where {b1, . . . , bn} = {a1, . . . , an − 1}. (1.6)

One can also consider the projectionX′ of X from a generalPn−1 of the ruling of
X. This is not birational to its image ifa1 = 0 and one sees that ifa1 = · · · = ai =
0< ai+1, then:

X′ = S(c1, . . . , cn−i ), where {c1, . . . , cn−i} = {ai+1 − 1, . . . , an − 1}. (1.7)

A general tangential projection ofX = S(a1, . . . , an) is the composition of the
projection of X from a generalPn−1 of the ruling of X and of a general internal
projection ofX′. Therefore, by putting (1.6) and (1.7) together, one deduces that if
a1 = · · · = ai = 0< ai+1, then:

X1 = S(d1, . . . , dn−i ), where {d1, . . . , dn−i} = {ai+1 − 1, . . . , an − 2}. (1.8)

As a consequence we have

Proposition 1.14. Let X = S(a1, . . . , an) ⊂ Pr be a rational normal scroll as above.
Then:

dim(Sk(X)) = min


r, r + k + 1−

∑
1� j �n; k�aj

(aj − k)


 .

In particular, if r�(k+1)n+ k, then s(k)(X) = (k+1)n+ k if and only if a1�k.

Proof. It follows by induction using (1.8) and Terracini’s lemma. We leave the details
to the reader. �

A different proof of the same result can be obtained by writing the equations of
Sk(X) (see[11,50] for this point of view).
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1.8. Given positive integers 0< m1� · · · �mh we will denote by Seg(P
m1, . . . ,Pmh),

or simply by Seg(m1, . . . , mh) the Segre varietyof type (m1, . . . , mh), i.e. the image
of Pm1 × · · · × Pmh in Pr , r = (m1 + 1) · · · (mh + 1)− 1, under theSegre embedding.
Notice that, ifPmi = P(Vi), whereVi is a complex vector space of dimensionmi +1,
i = 1, . . . , h, thenPr = P(V1⊗· · ·⊗Vh) and Seg(m1, . . . , mh) is the set of equivalence
classes of indecomposable tensors inPr . We use the shorter notation Seg(m

k1
1 , . . . , m

ks
s )

if mi is repeatedki times, i = 1, . . . , s.
Recall that Pic(Pm1 × · · · × Pmh) � Pic(Seg(m1, . . . , mh)) � Zh, is freely generated

by the line bundles�i = pr∗
i (OPmi (1)), i = 1, . . . , h, wherepri : Pm1 × · · · × Pmh →

Pmi is the projection to theith factor. A divisorD on Seg(m1, . . . , mh) is said to be of
type ('1, . . . , 'h) if OSeg(m1,...,mh)(D) � �'11 ⊗· · ·⊗�'hh . The line bundle�

'1
1 ⊗· · ·⊗�'hh

on Pm1 × · · · × Pmh is also denoted byOPm1×···×Pmh ('1, . . . , 'h). The hyperplane
divisor of Seg(m1, . . . , mh) is of type (1, . . . ,1).
It is useful to recall what are the defects of the Segre varieties Seg(m1,m2) with

m1�m2. As above, letVi be complex vector spaces of dimensionmi + 1, i =
1,2. We can interpret the points ofP(V1 ⊗ V2) as the equivalence classes of all
(m1 + 1) × (m2 + 1) complex matrices and Seg(m1,m2) = Seg(P(V1),P(V2)) as the
subscheme ofP(V1⊗V2) formed by the equivalence classes of all matrices of rank 1.
Similarly Sk(Seg(m1,m2)) can be interpreted as the subscheme ofP(V1⊗V2) formed
by the equivalence classes of all matrices of rank less than or equal tok+1. Therefore
Sk(Seg(m1,m2)) = P(V1 ⊗ V2) if and only if k�m1. In the casek < m1 one has
instead:

codim(Sk(Seg(m1,m2))) = (m1 − k)(m2 − k)

(see[2, p. 67]). As a consequence one has

�k(Seg(m1,m2)) = k(k + 1)

if k < m1�m2.
The degree ofSk(Seg(m1,m2)), with k < m1�m2, are computed by a well known

formula by Giambelli [30], apparently already known to Segre (see[50, p. 42],
[28, 14.4.9], for a modern reference). The casek = m1 − 1, which is the only one we
will use later, is not difficult to compute (see[32, p. 243]) and reads

deg(Sm1−1(Seg(m1,m2))) =
(
m2 + 1
m1

)
.

1.9. We will recall now some definition and result due to Kempf[39], which we are
going to use later.
Let V1, V2, V3 finite-dimensional complex vector spaces. A pairing

� : V1 ⊗ V2 → V3
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is said to be 1-generic if 0 �= v ∈ V1 and 0 �= u ∈ V2 implies �(v ⊗ u) �= 0. From a
projective geometric point of view,� determines a projection	 : P(V1 ⊗ V2)− − →
P(V3) and the 1-genericity condition translates into the fact that the centre of the
projection	 does not intersect Seg(P(V1),P(V2)).
If � is surjective, then we may regard� as specifying a linear space of linear

transformations:

V ∗
3 ⊆ Hom(V1, V

∗
2 ) � V ∗

1 ⊗ V ∗
2 .

One says thatV ∗
3 is 1-generic if � is.

Let mi + 1 = dim(Vi) and supposem1�m2. For eachk such that 0�k�m1, let
(V ∗

3 )k be the subscheme ofV ∗
3 of all matrices inV ∗

3 with rank less than or equal to
k + 1, i.e. the scheme-theoretic intersection ofV ∗

3 with the scheme Hom(V1, V ∗
2 )k of

all matrices with rank less than or equal tok + 1 in Hom(V1, V ∗
2 ). Of course(V

∗
3 )k

is a cone, hence it gives rise to a closed subschemeP((V ∗
3 )k) of P(V ∗

3 ) which is the
scheme theoretic intersection ofP(V ∗

3 ) with Sk(Seg(P(V ∗
1 ),P(V ∗

2 )). Notice that the
expected codimension ofP((V ∗

3 )k) in P(V ∗
3 ) is:

m1m2 − k(m1 + m2) + k2 = dim(P(V ∗
1 ⊗ V ∗

2 )) − s(k)(Seg(P(V ∗
1 ),P(V ∗

2 ))).

This is also the expected codimension of(V ∗
3 )k in V ∗

3 . We can now state Kempf’s
theorem:

Theorem 1.15. If V ∗
3 ⊆ V ∗

1 ⊗ V ∗
2 is 1-generic, then (V ∗

3 )m1−1 is reduced, irreducible
and of the expected codimensionm2−m1+1 in V ∗

3 . The same is true forP((V ∗
3 )m1−1),

whose degree is
(
m2+1
m1

)
.

1.10. Given positive integersn, d, we will denote byVn,d the image ofPn under the

d-Veronese embeddingof Pn in P(n+d
d )−1.

1.11. If X is a variety of dimensionn andY a subvariety ofX, we will denote by
BlY (X) the blow-up ofX along Y. If Y is a finite set{x1, . . . , , xn} we denote the
blow-up by Blx1,...,xn(X).
With the symbol≡ we will denote the linear equivalence of divisors onX. The symbol

∼ will instead denote numerical equivalence. IfL is a linear system of divisors onX,
of dimensionr, we will denote by�L : X− − → Pr the rational map defined byL.
If D is a divisor on the varietyX, we denote by|D| the complete linear series of

D. If X ⊂ Pr is an irreducible, projective variety, andD is a hyperplane section ofX,
one says thatX is linearly normal if the linear series cut out onX by the hyperplanes
of Pr is complete, i.e. if the natural map

H 0(Pr ,OPr (1)) → H 0(X,OX(D))

is surjective.
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If D [resp., D] is a divisor [resp., a line bundle] onX, we will say that D
[resp.,D] is effective if h0(X,OX(D)) > 0 [resp.,h0(X,L) > 0]. We will say that
D [resp.,D] is nef if for every curveC on X, one hasD · C�0 [resp.,D · C�0]. A
nef divisorD [resp., a nef line bundleD] is big if Dn > 0 [resp.,Dn > 0].

1.12. Let X be a smooth, irreducible, projective surface. As customary, we will use
the following notationq := q(X) := h1(X,OX) for the irregularity, 
 := 
(X) for the
Kodaira dimensionof X. We will denote byK := KX a canonical divisoron X and,
as usual,pg := pg(X) := h0(X,OX(K)) is the geometric genus.
If C is a curve onX, it will be called a(−n)-curve, if C � P1 andC2 = −n. Recall

that a famous theorem of Castelnuovo’s identifies the(−1)-curves as the exceptional
divisors of blow-ups.
Let D be a Cartier divisor on an irreducible, projective surfaceX. We denote by

pa(D) the arithmetic genus ofD. We will say thatD is a curveon X if it is effective.
If D is reduced curve onX, we will considerpg(D) the geometric genusof D, i.e. the
arithmetic genus of the normalization ofD.
A curveD on X will be calledm-connected if for every decompositionD = A+B,

with A,B non-zero curves onX, one hasA · B�m. If D is 1-connected one has
h0(D,OD) = 1 andh1(D,OD) = pa(D)�0 (see[4]). If D is a big and nef curve on
X, thenD is 1-connected (see[44, Lemma (2.6)]).
If X is smooth, we will say that the pair(X,D) is:

• effective[resp.,nef, big, ample, very ample] if D is such;
• minimal if there is no(−1)-curveC on X such thatD · C = 0;
• a h-scroll, with h�0 an integer, if there is a smooth rational curveF on X such that
F 2 = 0 andD · F = h;

• a del Pezzo pairif K ∼ −D and (X,D) is big and nef.

A 1-scroll will be simply called ascroll.
Notice that if (X,D) is a del Pezzo pair, thenX is rational andK ≡ −D. Indeed

−K is nef and big, thus
(X) = −∞ and q = h1(X,OX) = h1(X,OX(K − K)) = 0
by Ramanujam’s vanishing theorem (see[48]).
If L is a linear system onX andD ∈ L is its general divisor, we will say that(X,L)

is nef, big, ample, minimal, a h-scroll, etc. if (X,D) is such. One says that(X,L) is
very ampleif �L is an isomorphism ofX to its image.
Suppose the linear systemL has no fixed curve and the general curve inL is

irreducible. Then, by blowing up the base points ofL, we see that there is a unique
pair (X′,L′), whereX′ is a surface with a birational morphismf : X′ → X and aL′
is linear system onX′ such that:

• L′ is the strict transform ofL on X′;
• L′ is base point free, and therefore its general curveD′ is smooth and irreducible;
• L′ is f-relatively minimal, i.e. if E is a (−1)-curve onX′ such thatD′ ·E = 0 then
E is not contracted byf.

We will call the pair (X′,L′) the resolutionof the pair (X,D).
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If X ⊆ Pr is an irreducible, projective surface, one considersf : X′ → X ⊆ Pr a
minimal desingularization ofX andL the linear system onX′ such thatf = �L. The
pair (X′,L) is big, nef and minimal. One says thatX is a scroll if the pair (X′,L) is
a scroll.
If X � P2 andR is a line, the pair(X,D) with D ≡ dR will be called ad-Veronese

pair. If X = Fa := P(0, a) is the Hirzebruch surface witha�0, we letE be a (−a)-
curve onFa and F a fibre of the ruling onP1, so thatF 2 = 0 andE · F = 1. Then
a pair (X,D) with X = Fa andD ≡ �E + �F will be called a (a, �,�)-pair or an
(�,�)-pair on Fa .
Consider a pair(X,D) as above. Letx1, . . . , xn be distinct points onX. Consider

the blow-up p : Blx1,...,xn(X) → X at the given points. On Blx1,...,xn(X) we have
the exceptional divisorsE1, . . . , En corresponding tox1, . . . , xn. Consider the divisor
Dx1,...,xn := p∗(D) − E1 − · · · − En. The pair (Blx1,...,xn(X),Dx1,...,xn) will be called
the internal projectionof (X,D) from x1, . . . , xn.
In the same setting, the pair(Blx1,...,xn(X), p∗(D)) will be called a blow-up of

(X,D).
Similarly, consider the divisorD2x1,...,2xn := p∗(D) − 2E1 − · · · − 2En. The pair

(Blx1,...,xn(X),D2x1,...,2xn) will be called the tangential projectionof (X,D) from
x1, . . . , xn.

2. Degeneration of projections

In this section we generalize some of the ideas presented in Sections 3 and 4 of
[18], to which we will constantly refer. This will enable us to prove an extension of
Theorem 4.1 of[18], which will be useful later.
Let X ⊂ Pr be an irreducible, non-degenerate projective variety of dimensionn. We

fix k�1, we assume thatX is not k-defective and thats(k)(X) = (k + 1)n + k.
Let us fix an integers such thatr−s(k)(X)�s�r−s(k−1)(X)−2, so thats(k−1)(X)+

1�r − s − 1�s(k)(X)− 1. Let L ⊂ Pr be a general projective subspace of dimension
s and let us consider the projection morphism�L : Sk−1(X) → Pr−s−1 of X from L.
Notice that, under our assumptions ons, one has

�L(Sk(X)) = Pr−s−1, �L(Sk−1(X)) ⊂ Pr−s−1.

Let p1, . . . , pk ∈ X be general points and letx ∈ 〈p1, . . . , pk〉 be a general point,
so that x ∈ Sk−1(X) is a general point andTSk−1(X),x = TX,p1,...,pk . We will now

study how the projection�L : Sk−1(X) → Pr−s−1 degenerateswhen its centreL tends
to a generals-dimensional subspaceL0 containingx, i.e. such thatL0 ∩ Sk−1(X) =
L0 ∩ TX,p1,...,pk = {x}. To be more precise we want to describe thelimit of a certain
double point schemerelated to�L in such a degeneration.
Let us describe in detail the set up in which we will work. We letT be a general

Ps(k−1)(X)+s+1 which is tangent toSk−1(X) at x, i.e. T is a generalPs(k−1)(X)+s+1
containingTX,p1,...,pk . Then we choose a general line' insideT containingx, and we
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also choose� a generalPs−1 inside T. For everyt ∈ ', we let Lt be the span oft
and �. For t ∈ ' a general point,Lt is a generalPs in Pr . For a generalt ∈ ', we
denote by�t : Sk−1(X) → Pr−s−1 the projection morphism ofSk−1(X) from Lt . We
want to study the limit of�t when t tends tox. We will suppose from now on that
k�2, since the casek = 1 has been considered in[18].
In order to perform our analysis, consider a neighborhoodU of x in ' such that�t

is a morphism for allt ∈ U \ {x}. We will fix a local coordinate on' so thatx has
the coordinate 0, thus we may identifyU with a disk aroundx = 0 in C. Consider
the products:

X1 = X × U, X2 = Sk−1(X) × U, Pr−s−1
U = Pr−s−1 × U.

The projections�t , for t ∈ U , fit together to give a morphism�1 : X1 → Pr−s−1
U

and a rational map�2 : X2 − − → Pr−s−1
U , which is defined everywhere except at

the pair (x, x) = (x,0). In order to extend it, we have to blow upX2 at (x,0). Let

p : X̃2 → X be this blow-up and letZ � Ps(k−1)(X) be the exceptional divisor. Looking
at the obvious morphism� : X̃2 → U , we see that this is a flat family of varieties
overU. The fibre over a pointt ∈ U \ {0} is isomorphic toSk−1(X), whereas the fibre
over t = 0 is of the form S̃ ∪ Z, where S̃ → Sk−1(X) is the blow up ofSk−1(X) at
x, and S̃ ∩ Z = E is the exceptional divisor of this blow up, the intersection being
transverse.
On X̃2 the projections�t , for t ∈ U , fit together now to give amorphism�̃ : X̃2 →

Pr−s−1
U .
By abusing notation, we will denote by�0 the restriction of�̃ to the central fibre

S̃ ∪ Z. The restriction of�0 to S̃ is determined by the projection ofSk−1(X) from
the subspaceL0: notice in fact that, sinceL0 ∩ Sk−1(X) = L0 ∩ TX,p1,...,pk = {x}, this
projection is not defined onSk−1(X) but it is well defined onS̃.
As for the action of�0 on the exceptional divisorZ, this is explained by the following

lemma, whose proof is analogous to the proof of[18, Lemma 3.1], and therefore we
omit it:

Lemma 2.1. In the above setting, �0 maps isomorphically Z to thes(k−1)(X)-
dimensional linear space� which is the projection of T fromL0.

Now we considerX1×U X̃2, which has a natural projection map : X1×U X̃2 → U .
One has a commutative diagram:

X1 ×U X̃2
�→ Pr−s−1

U

 ↓ ↓
U

idU→ U,

where� = �× �̃. For the generalt ∈ U , the fibre of over t is X×Sk−1(X), and the
restriction�t : X × Sk−1(X) → Pr−s−1 of � to it is nothing but�t |X × �t |Sk−1(X). We
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denote by�(s,k)
t the double point scheme of�t . Notice that dim(�

(s,k)
t )�s(k)(X)+s−r

and, by the generality assumptions, we may assume that equality holds for allt �= 0.

Finally consider the flat limit�̃
(s,k)

0 of �(s,k)
t inside �(s,k)

0 . We will call it the limit
double point schemeof the map�t , t �= 0. We want to give some information about
it. Notice the following lemma, whose proof is similar to the one of[18, Lemma 3.2],
and therefore we omit it:

Lemma 2.2. In the above setting, every irreducible component of�(s,k)
0 of dimension

s(k)(X) + s − r sits in the limit double point schemẽ�
(s,k)

0 .

Let us now denote by

• XT the scheme cut out byT on X. XT is cut out onX by r−s(k−1)(X)−s−1 general
hyperplanes tangent toX at p1, . . . , pk. We call XT a general (r − s(k−1)(X) − s

− 1)-tangent sectionto X at p1, . . . , pk. Remark that each component ofXT has
dimension at leastn − (r − s(k−1)(X) − s − 1) = s(k)(X) + s − r;

• YT the image ofXT via the restriction of�0 to X. By Lemma 2.1, YT sits in
� = �0(Z), which is naturally isomorphic toZ. Hence we may considerYT as a
subscheme ofZ;

• ZT ⊂ X × Z the set of pairs(x, y) with x ∈ XT and y = �0(x) ∈ YT . Notice that
ZT � XT ;

• �′(s,k)
0 the double point scheme of the restriction of�0 to S̃ × X.

With this notation, the following lemma is clear (see[18, Lemma 3.3]):

Lemma 2.3. In the above setting, �(s,k)
0 contains as irreducible components�′(s,k)

0 on
X × S̃ and ZT on X × Z.

As an immediate consequence of Lemmas2.2 and2.3, we have the following propo-
sition (see[18, Proposition 3.4]):

Proposition 2.4. In the above setting, every irreducible component ofXT , off
TX,p1,...,pk , of dimensions

(k)(X) + s − r gives rise to an irreducible component of

ZT which is contained in the limit double point scheme�̃
(s,k)

0 .

Remark 2.5. We notice that the implicit hypothesis “offTX,x” has to be added also
in the statement of[18, Proposition 3.4]. Actually in the applications in[18] this
hypothesis is always fulfilled.

So far we have essentially extended word by word the contents of Section 3 of[18].
This is not sufficient for our later applications. Indeed we need a deeper understanding
of the relation between the double points scheme�(s,k)

t and (k + 1)-secantPk ’s to X
meeting the centre of projectionLt and related degenerations whent goes to 0. We
will do this in the following remark.
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Remark 2.6. (i) It is interesting to give a different geometric interpretation for the
general double point scheme�(s,k)

t , for t �= 0. Notice that, by the generality assump-
tion, Lt ∩ Sk(X) is a variety of dimensions(k)(X) + s − r, which we can assume
to be irreducible as soon ass(k)(X) + s − r > 0. Take the general pointw of it if
s(k)(X) + s − r > 0, or any point of it if s(k)(X) + s − r = 0. Then this is a gen-
eral point ofSk(X). This means thatw ∈ 〈q0, . . . , qk〉, with q0, . . . , qk general points
on X. Now, for eachi = 0, . . . , k, there is a pointri ∈ 〈q0, . . . , q̂i , . . . , qk〉 which
is collinear withw and qi . Each pair(qi, ri), i = 0, . . . , k, is a general point of a
component of�(s,k)

t . Conversely the general point of any component of�(s,k)
t arises in

this way.
(ii) Now we specialize to the caset = 0. More precisely, considerZT ⊂ X×Z and

a general point(p, q) on an irreducible component of it of dimensions(k)(X)+ s − r,

which therefore sits in the limit double point scheme�̃
(s,k)

0 . Hence, there is a 1-
dimensional family{(pt , qt )}t∈U of pairs of points such that(pt , qt ) ∈ �(s,k)

t and
p0 = p, q0 = q.
By (i) of the present remark, we can look at each pair(pt , qt ), t �= 0, as belonging

to a (k + 1)-secantPk to X, denoted by�t , forming a flat family {�t }t∈U\{0} and
such that�t ∩ Lt �= ∅. Consider then the flat limit�0, for t = 0, of the family
{�t }t∈U\{0}. Since q ∈ Z, clearly �0 containsx. Moreover it also containsp. This
implies that�0 is the span ofp with one of thek-secantPk−1’s to X containing
x ∈ Sk−1(X).

As an application of the previous remark, we can prove the following crucial theorem,
which extends[18, Theorem 4.1]:

Theorem 2.7. Let X ⊂ Pr be an irreducible, non-degenerate, projective variety such
that s(k)(X) = (k + 1)n + k. Then

dX,k · deg(Xk)��k(X).

In particular

(i) if r�(k + 1)(n + 1) and X is not k-weakly defective, then:

deg(Xk)��k(X);

(ii) if r = (k + 1)n + k then:

dX,k��k(X).

Proof. We let s = h(k)(X) = r − s(k)(X) and we apply Remark2.6 to this situation.
ThenXT hasdX,k · deg(Xk) isolated points, which give rise to as many flat limits of
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(k + 1)-secantPk ’s to X meeting a generalPs . By the definition of�k(X) the first
assertion follows. Then (i) follows from Lemma1.4 and (ii) follows by (1.3). �

3. Tangent cones to higher secant varieties

In this section we describe the tangent cone to the varietySk(X), at a general
point of Sl(X), where 0� l < k, andX ⊂ Pr is an irreducible, projective variety of
dimensionn. Our result is the following theorem, which can be seen as a generalization
of Terracini’s lemma:

Theorem 3.1. Let X ⊂ Pr be an irreducible, non-degenerate, projective variety and
let l, m ∈ N be such thatl+m = k−1. If z ∈ Sl(X) is a general point, then the cone
J (TSl(X),z, S

m(X)) is an irreducible component of(CSk(X),z)red. Furthermore one has

multz(S
k(X))� deg(J (TSl(X),z, S

m(X)))� deg(Sm(Xl+1)).

Proof. We assume thatSl(X) �= Pr , otherwise the assertion is trivially true.
The schemeCSk(X),z is of pure dimensions

(k)(X). Let noww ∈ Sm(X) be a general
point. By Terracini’s lemma and by the generality ofz ∈ Sl(X), we get

dim(J (TSl(X),z, S
m(X))) = dim(J (TSl(X),z, TSm(X),w))

= dim(J (Sl(X), Sm(X))) = dim(Sk(X)) = s(k)(X).

Thus, sinceJ (TSl(X),z, S
m(X)) is irreducible and reduced, it suffices to prove the in-

clusion J (TSl(X),z, S
m(X)) ⊆ (CSk(X),z)red.

Let againw ∈ Sm(X) be a general point. We claim thatw /∈ TSl(X),z. Indeed
Sl(X) �= Pr and by (1.1)

Vert(Sl(X)) :=
⋂

y∈Sl(X)

TSl(X),y

is a proper linear subspace ofPr . If the general point ofSm(X) would be contained
in Vert(Sl(X)), thenX ⊆ Sm(X) ⊆ Vert(Sl(X)) andX would be degenerate, contrary
to our assumption.
Sincew /∈ TSl(X),z, then z is a smooth point of the coneJ (w, Sl(X)). We deduce

that:

〈w, TSl(X),z〉 = TJ(w,Sl(X)),z = CJ(w,Sl(X)),z ⊆ CJ(Sm(X),Sl(X)),z = CSk(X),z.

By the generality ofw ∈ Sm(X) we finally haveJ (TSl(X),z, S
m(X)) ⊆ CSk(X),z. This

proves the first part of the theorem.
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To prove the second part, we remark that

multz(S
k(X)) = deg(CSk(X),z)� deg(J (TSl(X),z, S

m(X))).

Now, if p0, . . . , pl ∈ X are general points, thenJ (TSl(X),z, S
m(X)) is the cone with

vertexTSl(X),z over �X,p0,...,pl (S
m(X)), and, by Lemma1.12we have that�X,p0,...,pl (S

m

(X)) = Sm(Xl+1). Thus deg(J (TSl(X),z, S
m(X)))� deg(Sm(Xl+1)), proving the asser-

tion. �

4. A lower bound on the degree of secant varieties

As we recalled in Section1, the degreed of an irreducible non-degenerate variety
X ⊂ Pr verifies the lower bound

d�codim(X) + 1. (4.1)

Varieties whose degree is equal to this lower bound are called varieties ofminimal
degree. As well known, they have nice geometric properties, e.g. they are rational (see
[22]). In the present section we will prove a lower bound on the degree of thek-secant
variety to a varietyX. This bound generalizes (4.1) and we will see that varietiesX
attaining it have interesting features which resemble the properties of minimal degree
varieties.
Before proving the main result of this section, we need a useful lemma. For an

irreducible varietyZ ⊆ PN we definedtZ,p as the projection from the general point
p ∈ Z restricted toZ, i.e. tZ,p : Z − − → tZ,p(Z) = Z1, see Section1.4. In this
section, we shall sometimes abuse notation by considering an arbitraryp ∈ Z and also
in this case we shall indicate byZ1 the projection fromp.

Lemma 4.1. Let X ⊂ Pr be an irreducible, non-degenerate, projective variety, let
k�0 be an integer such thatSk(X) �= Pr and let p ∈ X be an arbitrary point. Then
one has

(i) tSk(X),p(S
k(X)) = Sk(X1);

(ii) the general point in X does not belong toVert(Sk(X));
(iii) if p ∈ X\(X∩Vert(Sk(X)), in particular if p ∈ X is a general point, then tSk(X),p

is generically finite to its imageSk(X1) and s(k)(X) = s(k)(X1);
(iv) if X is not k-defective andp ∈ X\(X∩Vert(Sk(X)), thenX1 is also not k-defective;
(v) if p ∈ X \ (X ∩ Vert(Sk(X)) and if �k(X) denotes the degree oftSk(X),p, then

deg(Sk(X)) = �k(X) · deg(Sk(X1)) +multp(S
k(X))

� deg(Sk(X1)) +multp(S
k(X))
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and

�k(X
1) = �k(X) · �k(X).

In particular

(vi) if p ∈ X \ (X ∩ Vert(Sk(X)) and if

deg(Sk(X)) = deg(Sk(X1)) +multp(S
k(X))

then �k(X) = 1, i.e. tSk(X),p : Sk(X) − − → Sk(X1) is birational and then
�k(X

1) = �k(X);
(vii) if, in addition, �k(X

1) = 1 then also�k(X) = 1 and �k(X) = 1.

Proof. (i) follows by Lemma1.12.
SinceSk(X) is a proper subvariety inPr , then Vert(Sk(X)) is a proper linear sub-

space ofPr . This implies (ii). (iii) is immediate.
SinceSk(X) �= Pr , if X is not k-defective, we haves(k)(X) = (k + 1)n+ k < r. By

(iii) we have alsos(k)(X1) = (k + 1)n+ k�r − 1, i.e.X1 is also notk-defective. This
proves (iv).
The first assertion of (v) is immediate. Furthermore, we have a commutative diagram

of rational maps:

SkX

t− − → Sk
X1

pk
X ↓ ↓ pk

X1

Sk(X)
t
Sk(X),p− − → Sk(X1),

where t is determined, in an obvious way, bytSk(X),p. By the hypothesis,tSk(X) has
degree�k(X), whereast is easily seen to be birational. Hence the conclusion follows.
(vi) and (vii) are now obvious. �

Now we come to the main result of this section:

Theorem 4.2. Let X ⊂ Pr be an irreducible, non-degenerate, projective variety and
let h := codim(Sk(X)) > 0. Then

deg(Sk(X))�
(
h + k + 1
k + 1

)
(4.2)

and, if l = 0, . . . , k and x ∈ Sl(X) is any point, then

multx(S
k(X))�

(
h + k − l

k − l

)
. (4.3)
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Suppose equality holds in(4.2) and h�1. Then

(i) if x ∈ X is a general point, one has

CSk(X),x = J (Tx(X), Sk−1(X)), multx(S
k(X)) =

(
k + h

k

)
;

(ii) for every m such that1�m�h, one has

deg(Sk(Xm)) =
(
h − m + k + 1

k + 1

)
;

(iii) for every m such that1�m�h, the projection from a general pointx ∈ Xm−1

tSk(Xm−1),x : Sk(Xm−1) − − → Sk(Xm)

is birational;
(iv) for every m such that1�m�k one has

deg(Sk−m(Xm)) =
(
h + k − m + 1
k − m + 1

)
;

in particular Xk is a variety of minimal degree;
(v) if X is not k-defective, then, for every m such that1�m�h, also Xm is not

k-defective and�k(X) = �k(X
m);

(vi) if X is not k-defective then

dX,k��k(X).

Proof. We make induction on bothk andh. For k = 0 we have the bound4.1 for the
minimal degree of an algebraic variety, while forh = 0 the assertion is obvious for
every k. Let us projectX andSk(X) from a general pointx ∈ X. By Lemmas4.1 and
1.13, Theorem3.1, and by induction we get

deg(Sk(X)) � deg(Sk(X1)) +multx(S
k(X))

� deg(Sk(X1)) + deg(Sk−1(X1))

�
(
k + h

k + 1

)
+

(
k + h

k

)
=

(
k + h + 1
k + 1

)
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whence (4.2) follows. Let now x ∈ Sl(X) be a general point, then by Theorem3.1,
Lemma1.13 and by (4.2) one has

multx(S
k(X))� deg(Sk−l−1(Xl+1))�

(
k + h − l

k − l

)

proving (4.3) in this case. Of course (4.3) also holds ifx ∈ Sl(X) is any point.
If equality holds in (4.2), one immediately obtains assertions (i)–(iv) form = 1. By

an easy induction one sees that (i)–(iv) hold in general.
Assertion (v) follows by Lemma4.1. As for (vi), consider the following commutative

diagram:

X
�X,k− − → Xk

tX,h ↓ ↓ tXk,h

Xh
�
Xh,k− − → Pn.

Notice that the vertical mapstX,h, tXk,h are birational being projections fromh general
points on a variety of codimension bigger thanh. Thus one has

dX,k = dXh,k.

On the other hand, by Theorem2.7 and Lemma4.1 one has

dXh,k��k(X
h) = �k(X)

which proves the assertion.�

Remark 4.3. It is possible to improve the previous result. For example, using Lemma
4.1, one sees that (i) holds not only ifx ∈ X is general, but also ifx is any smooth
point of X not lying on Vert(Sk(X)). Similar improvements can be found for (ii)–(v).
We leave this to the reader, since we are not going to use it later.

Definition 4.4. Let X ⊂ Pr be an irreducible, non-degenerate, projective variety of
dimensionn. Let k be a positive integer.
Let k�2 be an integer. One says thatX is k-regular if it is smooth and if there

is no subspace� ⊂ Pr of dimensionk − 1 such that the scheme cut out by� on
X contains a finite subscheme of length'�k + 1. By definition 1-regularity coincides
with smoothness.
We say thatX has minimal k-secant degree, briefly X is an Mk-variety, if r =

s(k)(X) + h, h := codim(Sk(X)) > 0, and deg(Sk(X)) =
(
h+k+1
k+1

)
(compare with

Theorem4.2).
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We say thatX is a varietywith the minimal number of apparent(k + 1)-secant
Pk−1’s, briefly X is anMAk+1

k−1-variety, if s(k)(X) = (k + 1)n + k, r = s(k)(X) + h,

h := codim(Sk(X)) > 0, and if �k(X) =
(
h+k+1
k+1

)
(compare with Theorems4.2 and

1.3). In other wordsX is an MAk+1
k−1-variety if and only if it is not k-defective, is

an Mk-variety and�k(X) = 1. For example, anMk-variety which is notk-weakly
defective is anMAk+1

k−1-variety (see Proposition1.5).

We say thatX is a varietywith one apparent(k + 1)-secantPk−1, briefly X is an
OAk+1

k−1-variety, if r = s(k)(X) = (k + 1)n + k and �k(X) = 1.

The terminology introduced in the previous definition is motivated by the fact that,
for example,OAk+1

k−1-varieties are an extension ofvarieties with one apparent double
point or OADP-varieties, classically studied by Severi[54] (for a modern reference see
[18]).
With this definitions in mind, we have:

Corollary 4.5. Let k be a positive integer. LetX ⊂ Pr be an irreducible, non-
degenerate, projective variety of dimension n and leth := codim(Sk(X))�0. One
has

(i) if X is aMk-variety then for every m such that1�m�h, the varietyXm is again
a Mk-variety;

(ii) if X is a MAk+1
k−1-variety then for every m such that1�m�h − 1, the variety

Xm is again aMAk+1
k−1-variety andXh is a OAk+1

k−1-variety;
(iii) if X is either anMAk+1

k−1-variety or anOAk+1
k−1-variety then�X,k : X− − → Xk ⊆

Pn+h is birational andXk is a variety of dimension n of minimal degreeh + 1.
In particular, X is a rational variety and the general member of the movable part
of the linear system of k-tangent hyperplane sections is a rational variety.

Proof. (i) follows by Theorem4.2, (ii). (ii) follows by Theorem4.2, (ii) and (v). In
(iii), the birationality of �X,k follows by Theorem2.7, (ii). The rest of the assertion
follows by Theorem4.2, (iv). �

Remark 4.6. In the papers[6,7], Bronowski considers the casek = 1, h = 0 and the
casek�2, n = 2, h = 0. He claims there, without giving a proof, that the converse
of Corollary 4.5 holds for h = 0. We will call this thekth Bronowski’s conjecture, a
generalized version of which, for anyh�0, can be stated as follows:LetX ⊂ Pr be an
irreducible, non-degenerate, projective variety of dimension n. Seth := codim(Sk(X)).
If �X,k : X − − → Xk ⊆ Pn+h is birational andXk is a variety of dimension n and
of minimal degreeh + 1, then X is either anMAk+1

k−1-variety or anOAk+1
k−1-variety,

according to whether h is positive or zero. We call this thekth generalized Bronowski’s
conjecture.
Even the curve casen = 1 of this conjecture is still open in general. The results in

[18,51,54], imply that the above conjecture is true forX smooth if k = 1, h = 0 and
1�n�3. The general smooth surface casen = 2, k�1, h�0 follows by the results
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in Sections8 and 9 (see Corollary9.3). This interesting conjecture is quite open in
general.

Bronowski’s conjecture would, for example, imply that the converse of (ii) of Corol-
lary 4.5 holds. The following result gives partial evidence for this:

Proposition 4.7. Let k be a positive integer. LetX ⊂ Pr+1, with r = (k + 1)n+ k, be
an irreducible, non-degenerate, not k-defective, projective variety of dimension n. If the
general internal projectionX1 of X is aOAk+1

k−1-variety, then X is aMAk+1
k−1-variety.

Proof. By (vii) of Lemma 4.1, we have that�k(X) = 1 and �k(X) = 1. Let d =
deg(Sk(X)) and let p ∈ X be a general point. ThentSk(X),p : Sk(X) − − → Pr

is a birational map and therefore multx(S
k(X)) = d − 1. Let p0, . . . , pk+1 be general

points ofX. SinceSk+1(X) = Pr+1, thenSk(X) does not contain� := 〈p0, . . . , pk+1〉.
ThereforeSk(X) intersects� in a hypersurface of degreed with multiplicity d − 1 at
p0, . . . , pk+1. This implies thatd�k + 2. On the other handd�k + 2 by Theorem
4.2. This proves the assertion.�

It is interesting to remark that theMk, OAk+1
k−1 andMAk+1

k−1-properties are essentially
preserved under flat limits:

Proposition 4.8. Let X,X′ ⊂ Pr be reduced, irreducible, non-degenerate, projective
varieties of dimension n, such thats(k)(X) = s(k)(X′). Suppose thatX′ is a flat limit of
X and that X is aMk-variety [resp., a OAk+1

k−1-variety, aMAk+1
k−1-variety]. ThenX′ is

also aMk-variety [resp., a OAk+1
k−1-variety, a MAk+1

k−1-variety] and if codim(Sk(X)) =
codim(Sk(X′)) > 0, then Sk(X′) is the flat limit ofSk(X).

Proof. SupposeX is a Mk-variety, so that codim(Sk(X)) = codim(Sk(X′)) > 0. Let
� be the flat limit ofSk(X) whenX tends toX′. Of courseSk(X′) is an irreducible
component of�, thus by Theorem4.2 we have

(
k + h + 1
k + 1

)
� deg(Sk(X′))� deg(�) = deg(Sk(X)) =

(
k + h + 1
k + 1

)

and therefore the equality has to hold, proving the assertion.
Suppose thenX is aMAk+1

k−1-variety. The above argument proves thatSk(X′) is the
flat limit of Sk(X). Hence�k(X

′)��k(X) = 1, proving that also�k(X
′) = 1, namely

the assertion.
The case in whichX is aOAk+1

k−1-variety is similar and can be left to the reader.
�

Finally we point out the following:

Proposition 4.9. Let X ⊂ Pr be a variety with�k(X) = 1, which is k-regular and not
k-defective. Then X is linearly normal.
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Proof. SupposeX is not linearly normal. Then there is a varietyX′ ⊂ Pr+1 and a point
p /∈ X′ such that the projection� from p determines an isomorphism� : X′ → X. Now
we remark thatp /∈ Sk(X′) because of thek-regularity assumption onX. Furthermore,
the assumption�k(X) = 1 implies that� : Sk(X′) → Sk(X) is also birational.
Set, as usual,h = codim(Sk(X)). Then, by Theorem4.2 we deduce

(
k + h + 1

h + 1

)
= deg(Sk(X)) = deg(Sk(X′))�

(
k + h + 2

h + 1

)

a contradiction. �

5. Examples

In this section we give several examples ofMAk+1
k−1 andOAk+1

k−1-varieties.

Example 5.1. Rational normal scrolls. Let X = S(a1, . . . , an) be an n-dimensional
rational normal scroll inPr . We keep the notation introduced in Section1.7.
We will assume

∑
1� j �n; k�aj

(aj−k)−k−1�0, otherwise, according to Proposition

1.14, one hasSk(X) = Pr , a case which is trivial for us.

Claim 5.2. If
∑

1� j �n; k�aj
(aj − k)− k − 1�0, thenX = S(a1, . . . , an) is an Mk-

variety.

Proof of Claim 5.2. In order to see this, one may generalize Room’s specialization
argument (see[50, p. 257]). Indeed, one has a description ofSk(X) ⊂ Pr as a deter-
minantal variety as follows (see[11]): the homogeneous ideal ofSk(X) is generated by
the minors of orderk+2 of a suitable matrix of type(k+2)×∑

1� j �n; k�aj
(aj −k) of

linear forms, i.e. a suitableHankelmatrix of linear forms. Since by Proposition1.14one
hash := codim(Sk(X)) = ∑

1� j �n; k�aj
(aj − k)− k − 1, thenSk(X) has, as a deter-

minantal variety, the expected dimension. Therefore it is a specialization of the variety
defined by thek+2 minors of a general matrix of type(k+2)×∑

1� j �n; k�aj
(aj −k)

of linear forms, which, as well known (see[2, Chapter II, Section 5]), has degree equal

to
(∑

1� j � n; k� aj
(aj−k)

k+1
)
. As a consequence we have

deg(Sk(X)) =
( ∑

1� j �n; k�aj
(aj − k)

k + 1

)
=

(
h + k + 1
k + 1

)

which proves Claim5.2. �

Next we assume thatX is not k-defective, i.e., according to Proposition1.14, that
a1�k. First we will consider the case in whichr = (k + 1)n + k, i.e. a1 + · · · +
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an = kn + k + 1, h := codim(Sk(X)) = 0, namely Sk(X) = Pr . Then we make
the following:

Claim 5.3. If a1�k and a1 + · · · + an = kn + k + 1, then X = S(a1, . . . , an) is a
OAk+1

k−1-variety.

Proof of Claim 5.3. What we have to prove is that�k(X) = 1, i.e. that there is a
unique (k + 1)-secantPk to X passing through a general point ofPr .
Sincea1�k, then|H−kF | is generated by global sections andh0(X,OX(H−kF )) =∑n
i=1(ai + 1− k) = k(n + 1) + 1− n(k − 1) = k + n + 1. Let

�1 = �|kF | : X → Pk = P(V1)

and

�2 = �|H−kF | : X → Pk+n = P(V2).

whereV1 = H 0(X,OX(kF ))
∗, V2 = H 0(X,OX(H − kF ))∗. Clearly �2(X) = S(a1 −

k, . . . , an − k), hence deg(�2(X)) = k + 1. Let � = �1 × �2. We get a commutative
diagram

X
�→ Pk × Pk+n

↓ ↓
Pr ↪→ P(k+1)(k+n+1)−1 := Pn,n+k.

where the right vertical map is the Segre embedding.
Recall thatPn,n+k = P(V1 ⊗ V2) = P(Hom(V ∗

1 , V2)). Thus one has a rational
map  : Pn,n+k − − → G(k, n + k) which associates to the class of a rankk + 1
homomorphism� : V ∗

1 → V2 the subspaceP(Im(�)) of Pn+k = P(V2).
One has a natural GL(V1) = GL(k + 1,C)-action onV1 ⊗ V2, which descends to

a linear PGL(k + 1,C)-action onPn,n+k. From the above description of the map,
it is clear that the general fibre of is a linear space of dimensionk2 + 2k, which
is also the closure of a general orbit of this PGL(k + 1,C)-action. More precisely, if
x ∈ Pk,n+k is a general point, thenx is the class of a homomorphism� : V ∗

1 → V2,
i.e. of a linear embedding�� : Pk = P(V ∗

1 ) → Pn+k = P(V2). If we denote byPk
x

the image of��, then the closure�x � Pk2+2k of the fibre of through x can be
interpreted as the linear span of Seg(k, k) = Pk × Pk

x ⊂ Seg(k, n+ k). One moment of
reflection shows that this Seg(k, k) = Pk × Pk

x is an entry locusin the sense of[58],
i.e. it is the closure of the locus of points of Seg(k, n+ k) described by its intersection
with the (k + 1)-secantPk ’s to Seg(k, n + k) passing throughx.
Remark now that is well defined alongPr ⊂ Pk,n+k. Indeed, up to projective

transformations, we may assume that�(X) containsk + 1 given general points of
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Pk × Pk+n. Hence, we can assume thatPr contains an arbitrarily given point of
Sk(Seg(k, n + k)) = Pn,n+k, e.g. a point where is defined. A different proof can be
obtained as an application of Kempf’s Theorem1.15 (see Example5.5 below, we leave
the details to the reader). Let us denote bỹ : Pr − − → G(k, n + k) the restriction
of  to Pr .
We claim that̃ is dominant. In fact, take� a generalk-dimensional subspace of

Pn+k = P(V2). Then� cuts�2(X) at k+1 pointsp0, . . . , pk, which, by the way, can
be interpreted ask + 1 general points ofX. Consider the pointsqi := �2(pi) ∈ Pk =
P(V1), i = 0, . . . , k. Then one has the embeddingPk = P(V ∗

1 ) → � ⊂ Pn+k = P(V2),
which, for everyi = 0, . . . , k, maps the hyperplane〈q0, . . . , qi−1, qi+1, . . . , qk〉 to the
point pi . As we saw above, the spanPk × � is the fibre of over the point of
G(k, n + k) corresponding to�. We thus see that it intersectsX ⊂ Pk,n+k at the
pointsp0, . . . , pk.
By the theorem of the dimension of the fibres, the general fibre of̃ has dimension

k. Actually its closure is the intersection of the linear spacePr with the general fibre
of , which is also a linear space of dimensionk2 + 2k. Hence we see that this
intersection is transversal, i.e. the closure of the general fibre of̃ is a Pk. By the
previous analysis we see that it is in fact a(k+1)-secantPk to X and that the general
suchPk arises in this way.
In conclusion, since the general(k + 1)-secantPk to X is the fibre of the rational

map ̃ : Pr − − → G(k, n+ k), we see that there is a unique(k + 1)-secantPk to X
passing through the general point ofPr , i.e. �k(X) = 1. �

Finally, we consider the casea1�k andr > (k+1)n+k, i.e. a1+· · ·+an > kn+k+1,
h := h(k)(X) > 0, thusSk(X) �= Pr . In this case we make the

Claim 5.4. If a1�k and a1 + · · · + an > kn + k + 1, then X = S(a1, . . . , an) is a
MAk+1

k−1-variety.

Proof of Claim 5.4. SinceX is not defective, by Claim5.2 all what we have to prove
is that�k(X) = 1. This easily follows by Lemma4.1 (vii), and Claim5.3, by making
a sequence of general internal projections.�

Example 5.5. 2-Veronese fibrations of dimension n and their internal projections from
h points, 1�h�n+1. ConsiderP(a1, . . . , an), with 0�a1� · · · �an and

∑n
i=1 ai �2.

Set k + 1= ∑n
i=1 ai + n and consider the map:

�1 := �|H | : P(a1, . . . , an) → S(a1, . . . , an) ⊂ Pk.

Notice that, sincen�k−1, one hasS(a1, . . . , an) �= Pk. Furthermore|H +F | is very
ample onP(a1, . . . , an) and we can consider the embedding:

�2 := �|H+F | : P(a1, . . . , an) → S(a1 + 1, . . . , an + 1) ⊂ Pk+n
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Finally let

�3 := �|2H+F | : P(a1, . . . , an) → Pr ,

where

r = h0(P(a1, . . . , an),Sym
2(OP1(a1) ⊕ · · · ⊕ OP1(an)) ⊗ OP1(1)) − 1

= (n + 1)
n∑

i=1
ai + n(n + 1) = (n + 1)(k + 1) − 1= (k + 1)n + k.

We set�3(P(a1, . . . , an)) = X(a1,...,an).

Claim 5.6. X := X(a1,...,an) is a OAk+1
k−1-variety.

Proof of Claim 5.6. The verification is conceptually similar to the case of rational
normal scrolls we worked out in the previous example. Indeed we have a diagram:

P(a1, . . . , an)
�=�1×�2→ Pk × Pk+n

↓ ↓
Pnk+n+k ↪→ P(k+1)(k+n+1)−1 := Pk,k+n.

Consider the restrictioñ to Pnk+n+k of the rational map : Pk,k+n − − →
G(k, k + n).
Let us apply Kempf’s Theorem1.15to the vector spacesV1 = H 0(X,OX(H)), V2 =

H 0(X,OX(H+F)) andV3 = H 0(X,OX(2H+F)), where the pairingV1⊗V2 → V3 is
the obvious multiplication map. By interpreting the elements ofV1, V2, V3 as sections of
vector bundles onP1, one immediately sees that the pairing is 1-generic and surjective:
we leave the details to the reader. Then the linear span of�(X) under the Segre
embedding isP(V ∗

3 ). Moreover, the intersection scheme ofSk−1(Seg(k, k + n)) =
Sk−1(Seg(Pk,Pk+n)) andPk(n+1)+k = P(V ∗

3 ) is irreducible, reduced, of codimension

n + 1 and of degree
(
k+n+1

k

)
in Pkn+n+k.

In particular the restriction of is well defined onPkn+n+k. Then one sees that
Sk(X) = Pnk+n+k and�k(X) = 1 because the general fibre of̃ is a general(k + 1)-
secantPk of X. �

Actually we can prove more:

Claim 5.7. One has

(i) X := X(a1,...,an) is an MAk
k−2-variety;

(ii) the internal projectionXh of X from h points, 1�h�n, is an MAk
k−2-variety;

(iii) the internal projectionXn+1 of X from n + 1 points is anOAk
k−2-variety.
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Proof of Claim 5.7. By Corollary 4.5, we need to prove only (i). For this it suffices
to observe that, as a consequence of the proof of Claim5.6, one has thatSk−1(X) is a
subscheme of the intersection scheme ofSk−1(Pk,Pk+n) and ofPkn+n+k. Since these
two schemes are reduced, irreducible and of the same dimension, they coincide. This
yields the desired result

deg(Sk−1(X)) =
(
k + n + 1

k

)
=

(
k − 1+ codim(Sk−1(X)) + 1

k − 1+ 1

)
. �

We notice that, forn = 2, we have conic bundles. ActuallyP(a1, a2) � Fa , where
a = a2 − a1, andH = E + a2F . Then 2H + F ≡ 2E + (2a2 + 1)F = 2E + (a + k)F ,
whereE is a (−a)-curve andF is a ruling, so thata + k ≡ 1 (mod2).

Example 5.8. 5-Veronese embedding ofP2 and its tangential projections. In this ex-
ample we show that the 5-Veronese embeddingX := V2,5 ⊂ P20 of P2 and its general
i-tangential projectionsXi ⊂ P20−3i , are smoothOAk+1

k−1-surfaces, withk = 6 − i,
for 0� i�3. Notice thatX3 is nothing else than the general 3-internal projection of
V2,4 ⊂ P14, the 4-Veronese embedding ofP2.

We will proceed as in the previous examples and we will slightly modify and adapt
to our needs a construction of Shepherd-Barron[55]. Let us first consider the case of
X = V2,5. Let us consider the incidence correspondence

F = {(x, l) ∈ P2 × P2∗ : x ∈ l}.

Then F, as a divisor inP2 × P2∗ sits in |O
P2×P2∗(1,1)|. Let p1 and p2 denote the

projections ofP2 × P2∗ to the two factors. We will use the same symbols to denote
the restrictions ofp1 and p2 to F. Let � = �|OF (1,2)| : F ↪→ P14. Since every fibre

of p2 : F → P2∗ is embedded as a line inP14, we get a morphismP2∗ → G(1,14),
which is PGL(3,C)-equivariant by the obvious action of PGL(3,C) on P2 × P2∗

, on
F, etc. (see[55]), and therefore it is an isomorphism to the image. By embedding
G(1,14) into P104 via the Plücker embedding, one has a map : P2∗ → P104, which
is an isomorphism to its imageX.

Claim 5.9. The image of lands in aP20 and is the5-Veronese embedding ofP2∗
to P20.

Proof of Claim 5.9. First of all we notice that is given by a complete linear system,
because it is clearly PGL(3,C)-equivariant. Thus, to prove the claim, it suffices to show
that deg(X) = 25. This can be proved by a direct computation, which we leave to the
reader, proving that is defined by polynomials of degree 5. However, we indicate
here a more conceptual argument (see[55, p. 74]).
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Let us introduce the following Schubert cycles inG = G(1, r):

A = {l ∈ G : l lies in a given hyperplane},

B = {l ∈ G : l meets a given linear space of codimension 3},

C = {l ∈ G : l meets a given linear space of codimension 2}.

ThenC is a hyperplane section ofG in its Plücker embedding andC2 ∼ A+B. Note
that, in our caser = 14, we have deg(X) = X · C2 = X · A + X · B.
Notice that:

X · B = deg(F ) = (p∗
1OP2(1) + p∗

2OP2∗(2))3 = 18.

Let H ⊂ P14 be a general hyperplane and letS = F ∩ H . ThenS is the complete
intersection of two divisors of type(1,1) and (1,2) on P2×P2∗. By adjunctionKS is
the restriction toS of a divisor of type(−1,0), henceK2

S = 2. Now,X ·A is equal to
the number of fibres ofp2 lying in H, i.e. the number of exceptional curves contracted
by the birational morphismp2 : S → P2∗. ThenX · A = 9− K2

S = 7.
In conclusion deg(X) = 18+ 7= 25 proving Claim5.9. �

Let us recall now that given a vector spaceW of odd dimension 2k + 1, there is a
natural rational map : P(�2W) − − → P(W ∗), associating to a general alternating
2-form onW ∗ its kernel. Then the general fibre of is a linear space and the map is
defined by forms of degreek vanishing to the order al leastk − 1 alongG(1,2k) ⊂
P(�2W).
Now we are ready to prove the:

Claim 5.10. X := V2,5 ⊂ P20 is a OA7
5-surface.

Proof of Claim 5.10. Apply the above remark toW = H 0(OF (1,2)), in order to
get a rational map : P104− − → P14. In [55, Lemma 12], it is shown that the
locus of indetermination of does not containS6(X) = 〈X〉 (as for the last equality
see[14, Theorem 1.3]or Example5.14 below). Thus one has a well-defined rational
map ̃ : 〈X〉 = P20 − − → P14, and [55, Lemma 13]ensures that̃ is dominant.
Notice that this perfectly fits with the geometry of the situation. Indeed the closure
of a general fibre of is a P90, cutting 〈X〉 = P20 in a linear space of dimension
90+ 20− 104= 6, which is the general fibre of̃. On the other hand, sincẽ is
defined by forms of degree 7 vanishing to the order at least 6 alongX, theñ contracts
every 7-secantP6 to X. Thus a general 7-secantP6 to X is a general fibre of̃, which
implies �6(X) = 1. �
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We can slightly modify the above construction to show that the general tangential
projectionXi is aOA7−i

5−i-surface, fori = 1,2,3. We will sketch the casei = 1 only,
since the others follow by iterating the same argument.
Let p ∈ P2∗ be a general point. We consider the linel := p−1

2 (p) of F. Notice that
p1(l) is the line ofP

2 corresponding top. Consider the projection�l : P14− − → P12

from l and setF ′ := �l (F ). This is again a scroll in lines, and the family of lines of
F ′ is parametrized by a surfaceX′ ⊂ G(1,12) ⊂ P77.

Claim 5.11. In the above situation, one has thatX′ is the tangential projection of
X = V2,5, the 5-Veronese embedding ofP2∗, from the point corresponding to p.

Proof of Claim 5.11. SetP2×Blp(P
2∗) ⊃ F̃ = Bl l (F ) → Blp(P

2∗) and let� : F̃ →
P12 be the map given by the linear system|p∗

1(OP2(1)) + p∗
2(OP2∗(2)) − Ẽ|, where

p1 and p2 are the projections ofP2 × Blp(P
2∗) and Ẽ is the exceptional divisor of

F̃ . ThenF ′ � �(F̃ ) from which it follows thatX′ � Blp(P
2∗).

Now, the map�l : P14− − → P12 gives rise to a map̃�l : G(1,14)− − → G(1,12)
which is nothing but the tangential projection ofG(1,14) from the point corresponding
to l. This implies that the inclusionX′ ⊂ G(1,12) ⊂ P77 is given by the pull-back on
X′ of a linear system of quintics ofP2∗ which are singular atp. To prove the claim
it suffices to remark that the embeddingX′ ⊂ G(1,12) ⊂ P77 is given, as usual, by a
complete linear system. Moreover one has deg(X′) = 21. To see this we have to make
exactly the same calculation as for the computation of deg(X). In the present case one
has thatX′ · B = deg(F ′) = 15 andX′ · A = 6 so that deg(X′) = 21.
Now we notice that〈X1〉 = P17 = S5(X1) (use Terracini’s lemma or[14, Theorem

1.3] or Example5.14below). Arguing as forX, we have now a map : P77− − → P12

which is defined by forms of degree 6 vanishing to the order 5 alongG(1,12). One
proves that〈X1〉 does not lie in the indeterminacy locus of so that one has a well
defined rational map̃ : 〈X1〉 = P17 − − → P12 and one shows that this map is
dominant. The fibres of̃ are the 6-secantP5’s to X1, and therefore�5(X1) = 1. �

Example 5.12.4-Veronese embedding ofP2 and its internal projections. In this exam-
ple we note thatV2,4 is aMA4

2-surface. This can be proved by using the formulas in
[23,41] to prove that deg(S3(V2,4)) = 35. By Theorem4.2 (ii), we see that also that a
generali-internal projection ofV2,4, i = 1,2, has the same property.
Another interesting property ofV2,4 is that it is 4-defective andS4(V2,4) is a hypersur-

face inP14 (see[14, Theorem 1.3]or Example5.14below). One has deg(S4(V2,4)) = 6,
henceV2,4 is a M4-surface. This can be proved as follows. Look atV2,4 as that 2-
Veronese embedding ofV2,2 ⊂ P5. ThusS4(V2,4) ⊆ 〈V2,4〉 ∩ S4(V5,2), whereS4(V5,2)
is a hypersurface of degree 6. Notice that〈V2,4〉 is not contained inS4(V5,2). In fact,
sinceV2,2 is non-degenerate inP

5, then given 6 general points ofV5,2 we can suppose
that V2,4 contains them. Thus, we may assume that〈V2,4〉 contains a general point
of S5(V5,2) = P20 which can be chosen to be offS4(V5,2). Finally we know, by
Theorem4.2, that deg(S4(V2,4))�6. This implies thatS4(V2,4) is the scheme-theoretic
intersection of〈V2,4〉 and S4(V5,2) and that deg(S4(V2,4)) = 6.
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Using this same line of argument, one can give a direct, more geometric proof that
deg(S3(V2,4)) = 35. We leave the details to the reader.

Example 5.13.The 3-Veronese embedding of the quadric surface inP3. Let X ⊂ P15

be the 3-Veronese embedding of a smooth quadric surfaceQ ⊂ P3. Then X is a
MA5

3-surface, i.e.S
4(X) ⊂ P15 is a hypersurface of degree 6. Indeed, the projection

of X from a point on it is isomorphic to the 2-tangential projection of the 5-Veronese
embedding ofP2, which is aOA5

3-surface, see Example5.8. The conclusion follows
from Proposition4.7.
By applying Proposition4.8, one sees that also the 3-Veronese embedding of a

quadric cone inP3 is aMA5
3-surface.

Example 5.14.Defective surfaces. The fact thatV2,4 is a M4-surface is a particular
case of a more general family of examples of surfaces with minimal secant degree.
According to [14, Theorem 1.3], this is the list ofk-defective surfacesX ⊂ Pr :

(i) r = 3k + 2 andX is the 2-Veronese embedding of a surface of degreek in Pk+1,
and �k(X) = 1;

(ii) X sits in a (k + 1)-dimensional cone over a curve.

We claim that the surfaces of type (i) areMk-surfaces. In fact such aX is contained
in Vk+1,2 and thereforeSk(X) ⊆ 〈X〉 ∩ Sk(Vk+1,2). Here again we have that:

• 〈X〉 is not contained inSk(Vk+1,2);
• Sk(Vk+1,2) is a hypersurface of degreek + 2, i.e. it is the set of singular quadrics
in Pk+1;

• deg(Sk(X))�k + 2, by Theorem4.2.

These three facts together imply that the hypersurfaceSk(X) is the scheme-theoretic
intersection of〈X〉 and Sk(Vk+1,2) and that deg(Sk(X)) = k + 2.
The first instance of this family of examples, obtained fork = 1, is the Veronese

surfaceV2,2 in P5, whose secant variety is a hypersurface of degree 3.

Example 5.15.Weakly defective surfaces. The previous example can be further ex-
tended.
According to[14, Theorem 1.3], this is the list ofk-weakly defective, notk-defective,

surfacesX ⊂ Pr :

(i) r = 9, k = 2 andX is the 2-Veronese embedding of a surface of degreed�3
in P3;

(ii) r = 3k + 3, and X is the cone over ak-defective surface of type (i) in
Example5.14;

(iii) r = 3k + 3, andX is the 2-Veronese embedding of a surface of degreek + 1
in Pk+1;

(iv) X sits in a (k + 2)-dimensional cone over a curveC, with a vertex of
dimensionk.

We claim that the surfaces of types (i), (ii) and (iii) areMk-surfaces.
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If X is a surface of type (i), one immediately sees thatS2(X) = S2(V3,2), hence
deg(S2(X)) = 4 andX is therefore aM2-surface.
If X is a surface of type (ii), thenSk(X) is the cone over thek-secant variety of a

k-defective surface of type (i) in Example5.14. Hence we have deg(Sk(X)) = k + 2
andX is aMk-surface.
If X is a surface of type (iii), the same argument we made in Example5.14 proves

our claim. We leave the details to the reader.

Example 5.16.Del Pezzo surfaces. In this example we remark that smooth del Pezzo
surfaces of degreer in Pr , r = 5, . . . ,9, areMA2

0-surfaces. This can be easily seen
by applying the double point formula. Proposition4.8 implies that also singular del
Pezzo surfaces areMA2

0-surfaces.
The Veronese surfaceX := V2,3 is also anMA3

1-surface, as can be seen by apply-
ing Le Barz’s formula[40]. However this is a classical result. IndeedS2(V2,3) is the
hypersurface ofP9 consisting of all cubics which are sums of three cubes of linear
forms. These are the so-calledequihanarmoniccubics, i.e. those characterized by the
vanishing of theJ-invariant. It is classically well known that there are four equihan-
armonic cubics in a general pencil (see[25, p. 194]), i.e. deg(S2(V2,3)) = 4, which
means thatV2,3 is aMA3

1-surface.
We can also give a more geometric proof of this fact by applying the ideas we have

developed so far. Indeed, the general internal projectionX1 of X is the embedding
of F1 in P8 via the linear system|2E + 3F |. This, according to Example5.5, is a
OA3

1-surface. ThusX is aMA3
1-surface by Proposition4.7.

Example 5.17.Cones.Let X ⊂ Pr ⊂ Pr+l+1, l�0, be an irreducible variety of
dimensionn which is non-degenerate inPr . Let L = Pl ⊂ Pr+l+1 be such that
L ∩ Pr = ∅. Let Y = J (L,X) be the cone overX with vertex L. Then dim(Y ) =
n+l+1. More generally for everyk�1 we haveSk(Y ) = S(L, Sk(X)) so thats(k)(Y ) =
s(k)(X)+l+1. Thereforeh(k)(Y ) = r+l+1−s(k)(Y ) = r−s(k)(X) = h(k)(X). Moreover
deg(Sk(Y )) = deg(Sk(X)) for every k�1. In particularX has minimalk-secant degree
if and only if Y has also minimalk-secant degree.
For instance, a rational normal scrollX = S(a1, . . . , an) is a variety of mini-

mal k-secant degree if the least positive integerai is greater or equal thank (see
Example5.1).

The next example is a slight modification of the previous one. It shows that some
of the hypotheses we will make in our classification theorems in Sections8 and 9
are well motivated. The first instance of this example, i.e. the casek = 1, is due to
A. Verra, who kindly communicated it to us. It could be easily generalized to higher
dimensions and codimensions: we leave the details to the reader.

Example 5.18.Let C ⊂ P2k+1+h ⊂ P3k+2+h, k�1, h�0, be an irreducible curve,
non-degenerate inP2k+1+h. Take� = Pk ⊂ P3k+2+h such that� ∩ P2k+1+h = ∅
and a morphism� : C → C′ ⊂ Pk and takeX = ∪p∈C〈p,�(p)〉 ⊂ P3k+2+h. Then
�k(X) = �k(C). This is an exercise in projective geometry which we leave to the reader.
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In particular, from Example5.1and from Theorem6.1below, we deduce that�k(X) = 1
if and only if C is a rational normal curve. As soon ask�3, one can take as� a
general projection ofC and obtain examples of smooth surfacesX ⊂ P3k+2+h, which
are not linearly normal. Let us remark that such a surfaceX is k-weakly defective,
being contained in a cone of vertex aPk over the curveC, see[14, Theorem 1.3 and
Example 5.15].

6. Classification of curves with minimal secant degree

In this section we take care of the classification of curves with minimalk-secant
degree.
Let C ⊂ Pr be an irreducible non-degenerate curve. ThenC is never defective, so

that s(k)(C) = min{2k + 1, r}. This is classically well known and, by the way, follows
also from the fact thatC is not weakly defective (see[14]). The classification of curves
with minimal k-secant degree is given by the following:

Theorem 6.1. Let C ⊂ Pr be an irreducible non-degenerate curve. Letk�1 be an
integer such that2k + 1�r. Then C is anMAk+1

k−1 or an OAk+1
k−1-variety if and only

if C is a rational normal curve.

Proof. As we saw in Example5.1, a rational normal curve is anMAk+1
k−1 or an

OAk+1
k−1-variety.

Suppose, conversely, thatC is anMAk+1
k−1 or anOAk+1

k−1-variety. In the latter case,
i.e. if r = 2k + 1, then the assertion is Theorem 3.4 of Catalano-Johnson[12]. In the
former case, i.e. ifh = r − 2k − 1 > 0, then (ii) of Corollary4.5 tells us thatCh is
anOAk+1

k−1-variety. Since, as we saw,Ch is a rational normal curve, thenC itself is a
rational normal curve, proving the assertion.�

Remark 6.2. Notice that, in the hypotheses of Theorem6.1, the rationality ofC follows
by Corollary 4.5. If one adds the hypothesis thatC is k-regular, then the assertion
follows right away from Proposition4.9.

7. On a theorem of Castelnuovo–Enriques

The next sections will be devoted to the classification ofOAk+1
k−1-surfaces andMk-

surfaces. For this we will need some preliminaries, which we believe to be of inde-
pendent interest, concerning linear systems of curves on a surface. Indeed the present
section is devoted to review, and improve on, a classical theorem of Enriques, which
in turn generalizes to arbitrary surfaces an earlier result proved by Castelnuovo for
rational surfaces, see[8,24]. The expert reader will find relations between the results
of this section and the ones in[33,49]. We will freely use here the notation introduced
in Sections1.11 and 1.12.
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The basic tool in this section is Proposition7.1 below. This result essentially goes
back to Iitaka[36] and Dicks[20, Theorem 3.1], though under the stronger assumption
that D is an irreducible smooth curve. The caseD ample is also well known in the
literature, e.g. see[38]. The short proof below, based on Mori’s theory, is essentially
the same as in[20], and we included it here for the reader’s convenience.

Proposition 7.1. Let X be a smooth, irreducible, projective surface. Let D be a nef
divisor on X. Setd := D2, g := pa(D). Assume the pair(X,D) is minimal, not a
h-scroll with h�1 and it is not a m-Veronese pair withm�2. ThenK +D is nef and
therefore:

(i) d�4(g − 1) + K2;
(ii) g�1 and equality holds if and only if K and D are numerically dependent and

either d = 0 or (X,D) is a del Pezzo pair.

Proof. Let C be a curve onX such thatC · (K + D) < 0. SinceD is nef, one has
K · C < 0. By Mori’s cone Theorem (see[45, Theorem 1.4]), the curveC is a linear
combination of extremal rays. More precisely, there are extremal raysE1, . . . , Eh such
thatC ∼ ∑h

i=1 miEi , with m1, . . . , mh positive real numbers. Thus there is one of the
extremal raysE1, . . . , Eh, e.g.E := E1 such thatE · (K+D) < 0. Now one concludes
by separately discussing the various possibilities forE (cf. [45, Theorem 2.1]):

• if E is a (−1)-curve, one hasK · E = −1 and thereforeD · E = 0, against the
minimality of (X,D);

• if E � P1 and E2 = 0, one hasK · E = −2 and thereforeD · E�1, against the
fact that (X,D) is not ah-scroll for h�1;

• if E � P1 e E2 = 1, one hasK · E = −3 and therefore 1�D · E�2, against the
fact that (X,D) is not am-Veronese withm�2.

Now notice that:

(K + D)2 = K2 + 4(g − 1) − d (7.1)

SinceK + D is nef, one has(K + D)2�0, so that

d�4(g − 1) + K2, (7.2)

proving (i).
Similarly, sinceK + D is nef, one has 2g − 2 = (K + D) · D�0, proving the first

assertion of (ii). Ifg = 1, one has(K + D) · D = 0. Then the Hodge index theorem
implies thatK +D andD are numerically dependent, thusK ∼ lD, for some rational
number l. If d > 0 then 0= (K + D) · D = (l + 1)d implies l = −1 and (X,D) is
a del Pezzo pair. Conversely if(X,D) is a del Pezzo pair theng = 1. Similarly, if
d = 0 andK andD are numerically dependent, one hasg = 1. �
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Corollary 7.2. Let X be a smooth, irreducible, projective surface. Let D be a nef
divisor on X. Assume the pair(X,D) is not a h-scroll withh�1. Set g := pa(D).
Theng�0 and g = 0 if and only if (X,D) is obtained by a m-Veronese withm�2
with a sequence of blowing-ups.

Proof. By iterated contractions of(−1)-curvesE such thatE · D = 0, we arrive
to a minimal pair (X′,D′) such that(X,D) is obtained from(X′,D′) with a se-
quence of blowing-ups. Moreoverg′ := pa(D

′) = g. Notice that(X′,D′), as well as
(X,D), is not ah-scroll with h�1. Then the assertion follows by the second part of
Proposition7.1. �

As a consequence we have the following result, essentially due to Castelnuovo[8]
and Enriques[24]. The bound (7.3) was also obtained by Hartshorne,[33, Corollary
2.4 and Theorem 3.5], under the assumptionD smooth irreducible curve. Hartshorne
does not consider the classification of the extremal cases, as in[8], but he remarks
that the bound is sharp looking at the cases (i) and (iv) witha = 0, Example in
[33, p. 121]. All the results of Hartshorne are now straightforward consequences of
Proposition7.1.

Theorem 7.3. Let X be a smooth, irreducible, projective surface. Let D be an irre-
ducible curve on X. Setd := D2, g := pa(D), r := dim(|D|). Assumed�0 and the
pair (X,D) is not a h-scroll withh�1. Then:

d�4g + 4+ �, (7.3)

where � = 1 if g = 1 and � = 0 if g �= 1. Consequently one has

r�3g + 5+ � (7.4)

and the equality holds in(7.3) if and only if it holds in(7.4).
If, in addition, the pair (X,D) is minimal, then the equality holds in(7.3), or

equivalently in(7.4), if and only if one of the following happens:

(i) g = 0, r = 5, and (X,D) is a 2-Veronese pair;
(ii) g = 1, r = 9, and (X,D) is a 3-Veronese pair;
(iii) g = 3, r = 14, and (X,D) is a 4-Veronese pair;
(iv) (X,D) is a (2, a + g + 1)-pair on X � Fa , a�0.

Proof. By arguing as in the proof of Corollary7.2 we may, and will, assume that
the pair(X,D) is minimal. Then note that if(X,D) is am-Veronese withm�2, both
(7.3) and (7.4) hold. So we may assume(X,D) is not am-Veronese withm�2.
Let us now prove (7.3). The divisorD is nef so that bound (7.2) holds.
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Assume thatd > 4g+4+ �. ThenK ·D = 2g−2− d� −2g−6− � < 0. Therefore

(X) = −∞. Moreover:

4g + 4+ � < d�4g − 4+ K2

yields K2�9+ �. Therefore� = 0, i.e. g �= 1, K2
X = 9 andX � P2. HenceD ∈

|OP2(m)|, with m�4, since(X,D) is not a Veronese pair withm�2 andg �= 1. For
such aD one hasm2 = d�4g + 4= 2m2 − 6m + 8. This contradiction proves (7.3).
Next we remark that (7.3) implies (7.4). Indeed, since the general curveD ∈ |D| is

irreducible, by Riemann–Roch theorem we haver� max{d − g + 1, g}, which implies
(7.4).
Let us prove now that equality holds in (7.3) if and only if equality holds in (7.4). The

above argument shows that if equality holds in (7.3) then it holds in (7.4). Conversely,
if equality holds in (7.4) then Riemann–Roch theorem implies thatd − g + 1�r and
equality holds in (7.3).
Finally, suppose equality holds in (7.3). Then reasoning as above we deduce
(X) =

−∞ andK2�8+ �. Therefore ifg = 1 one hasK2 = 9, (X,D) is a del Pezzo pair
and we are in case (ii). We can thus suppose� = 0 in (7.3) and henceK2�8.
If K2 = 9, thenX � P2, D ∈ |OP2(m)|, with m�1. The equalityd = 4g + 4 is

translated intom2 = 2m2− 6m+ 8, so thatm = 2 or 4 and we get cases (i) and (iii).
Assume thatK2 = 8. ThusX � Fa , a�0. Furthermore (7.1) shows that(K+D)2 = 0

holds. One has:

D ∼ �E + �F,

whereE is a (−a)-curve andF a fibre of the ruling ofFa , with ��a� becauseD·E�0,
and ��2 since the pair(X,D) is not a scroll. On the other hand:

K ∼ −2E − (a + 2)F

and therefore

K + D ∼ (� − 2)E + (� − a − 2)F.

If � = 2 then adjunction formula implies

� = a + g + 1

i.e. the assertion. Now

(K + D)2 = (� − 2)(2� − a� − 4).
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If a = 0, (K+D)2 = 0 implies either� = 2 or � = 2, and we are done. Ifa = 1, the
minimality condition yields��� + 1. Therefore(K +D)2 = 0 implies � = 2, and we
are done again. Ifa�2, one has 2�− a�−4�a�−4= 2(�−2). Then (K +D)2 = 0
implies � = 2, and we conclude as above.�

Remark 7.4. Proposition7.1 can be improved. Indeed, we can prove that if one adds
the hypothesis thatD is effective and big, thenK + D is also effective. This can be
seen as a wide extension of the results in[3, pp. 196–200]. Following the ideas in[9]
one can even give suitable, interesting lower bounds for(K + D)2.
It is also possible to partly extend Proposition7.1 to higher dimensional varieties.
The hypothesisD effective and irreducible in Theorem7.3 is essentially used to

prove that (7.3) implies (7.4) and it is too strong. Indeed, we can prove that it suffices
to assume that eitherg �= 1 or d > 0. However the proof, based on the aforementioned
extensions of Proposition7.1 as indicated in[9], is rather long and we decided not to
put it here. We plan to come back to this and to other extensions of Proposition7.1
and Theorem7.3 in the future.

Definition 7.5. If the pair (X,D) is as in (iv) of Theorem7.3, we will say that it is
a (a, g)-Castelnuovo pairand the corresponding surface�|D|(X) ⊂ P3g+5 of degree
d = 4g+4, with hyperelliptic hyperplane sections, will be called an(a, g)-Castelnuovo
surfaceand denoted byXa,g. The motivation for this definition resides in the fact that
Castelnuovo first considered these pairs in his paper[8]. In general, a pair like in
(i)–(iii) or (iv) of Theorem7.3, will be called aCastelnuovo extremal pair.
We notice that pairs(X,D) as in (ii), (iii) or (iv) can be characterized as those with

D effective, irreducible and nef for which the hypotheses of Proposition7.1 are met,
so thatK + D is nef, butK + D is not big.

Remark 7.6. An (a, k)-Castelnuovo surfaceXa,k is (k + 1)-defective as soon asa +
1+ k ≡ 0 (mod2) (see case (i) of Theorem 1.3 of[14] and Example5.14). In this case
the Castelnuovo surface will be said to beeven. InsteadXa,k is anOAk+2

k surface if
a+1+ k ≡ 1 (mod2), and then the Castelnuovo surface will be said to beodd. In fact
in this caseXa,k is one of the surfaces described in Example5.5.
Note that an(a, k)-Castelnuovo surfaceXa,k is smooth unlessk = a − 1, in which

case the Castelnuovo surface is even and it is the 2-Veronese embedding of a cone
over a rational normal curve of degreea.

It is useful to point out the following immediate corollaries, whose easy proofs can
be left to the reader:

Corollary 7.7. Let X be a smooth, irreducible, projective surface. LetL be a linear
system of dimensionr > 0 whose general divisor D is irreducible with geometric genus
g. Let (X′,L′) be the resolution on(X,L). Suppose(X′,L′) is not a scroll. Then(7.4)
of Theorem7.3 holds. If, in addition, (X′,L′) is minimal and equality holds in(7.4),
then (X,L) = (X′,L′) and L is base point free, complete and the pair(X,D) is as
in (i)–(iii) or (iv) of Theorem7.3.
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Corollary 7.8. LetX ⊂ Pr , r�3g+5, g�2, be an irreducible, non-degenerate surface
which is not a scroll and having general hyperplane section D of geometric genus g.
Then r = 3g + 5, the surface X is linearly normal, of degree4g + 4 and it is one of
the following:

(i) g = 3, r = 14 and X = V2,4 is the 4-Veronese embedding ofP2 in P14;
(ii) X = Xa,g is a smooth(a, g)-Castelnuovo surface, with 0�a�g;
(iii) X has only one singular point and it is the2-Veronese embedding of a cone over

a rational normal curve of degree a, a�3 and g = a − 1, i.e. X = Xg+1,g is a
(g + 1, g)-Castelnuovo surface.

We finish this section by proving a slight extension of the above results, which will
be essential in our subsequent classification theorems. Further generalizations, in the
spirit of [8] or [49], can be obtained, but we will not consider them here, since we
will not use them now. Similarly, we refrain from formulating the next result in its
maximal generality, i.e. for big and nef, but not necessarily ample, pairs, since we will
not need such a generality here.

Theorem 7.9. Let X be a smooth, irreducible, projective surface. Let D be an effective
ample divisor on X. Setd := D2, g := pa(D), r := dim(|D|). Assume thatg�2 and
that the pair (X,D) is minimal, not a scroll and suppose thatr = 3g + 5− s, with
1�s�3. Then X is rational, D is very ample, and one of the following cases occurs:

(i) (X,D) is a projection of a4-Veronese pair fromi = 1,2,3 points. One hasg = 3,
d = 16− s and s = i;

(ii) (X,D) is a projection of an(a, g)-Castelnuovo pair, with 0�a�g, from i =
1,2,3 points. One hasd = 4g + 4− s, s = i;

(iii) X � P1 × P1 and D is of type(3,3) on X. One hasg = 4, d = 18 and s = 2;
(iv) (X,D) is the tangential projection of a5-Veronese pair fromi = 0,1,2 points.

One hasg = 6− i, d = 25− 4i, s = 3.

Proof. By the theorem of Riemann–Roch we haved − g + 1�r�3g + 5− s, hence
d�4g + 4− s. Moreover, by (7.2), d�4g − 4+ K2, so thatK2�8− s�5 andX is
rational sinceK · D = 2g − 2− d� − 2g − 1< 0. By (7.1), we have

(K + D)2 = K2 − 8+ s. (7.5)

Notice thatD2 = d�4g + 1�9 implies, by Reider’s theorem (see[5]) and the
hypothesesD ample and(X,D) not a scroll, that|K +D| is base point free. So either
(K+D)2 = 0 and|K+D| is composite with a base point free pencil|M|, or the general
curveC ∈ |K + D| is smooth and irreducible. Note also that dim(|K + D|) = g − 1.
Hence ifg = 2, then|K +D| is a base point free pencil and therefore(K +D)2 = 0.
Assume thatK2 = 9, i.e. X � P2. Then (7.5) implies that(K + D)2 = 1+ s. So

the only possibility iss = 3 and (X,D) is a 5-Veronese pair.
From now on we will assumeK2�8 and therefore 0�(K + D)2�s�3 by (7.5).

We examine separately the various cases.
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If (K + D)2 = 0 and |K + D| is composite with a base point free pencil|M|, the
general curve in|D| is hyperelliptic and thereforeD ·M = 2. SinceM · (K +D) = 0,
we haveK · M = −D · M = −2, andM2 = 0 yields that the general curve in|M|
is rational. By (7.5) we haveK2 = 8 − s, so we haves reducible curves in|M|,
which are formed by pairs of(−1)-curves meeting transversally at one point and both
meetingD at one point. By contractings disjoint of these(−1)-curves, we have a
morphismp : X → Fa , for some a�0. Let D′ = p∗(D). Then pa(D

′) = g and
D′2 = d + s = 4g + 4. Then, by Theorem7.3 and Corollary7.8, we conclude we are
in case (ii).
If (K + D)2 = 1, then�|K+D| is a birational morphism ofX to P2, henceX is

the blow-up ofP2 at 9− K2 = s points x1, . . . , xs . If E is a (−1)-curve contracted
by |K + D|, then one hasE · (K + D) = 0, henceE · D = −E · K = 1, which
means that the image of|D| in P2 has simple base points atx1, . . . , xs . Furthermore
g − 1= dim(|K + D|) = 2, henceg = 3. We are thus in case (i).
If (K + D)2 = 2, then the series cut out by|K + D| on its general curveC is a

completegg−2
2 , which impliesg�4.

If g = 4, thenC is rational and�|K+D| is a birational morphism ofX to a quadric

in P3. ThusX is the blow-up ofFa , a = 0,2, at 8−K2 = s − 2 points. Note that the
ampleness hypothesis onD rules out the casea = 2. Thens − 2�0, namely 2�s�3.
If s = 2, then we clearly are in case (iii), whereas, ifs = 3, we are in case (iv),i = 2.
Supposeg = 3. LetC be the general curve in|K+D|. One computes(K+C)·C = 0

and (K + C)2 = (2K + D)2 = 8− s > 0. This contradicts the Hodge index theorem.
If (K + D)2 = 3, then the series cut out by|K + D| on its general curveC is

a completegg−2
3 , which implies g�5. On the other hand (7.5) implies that s = 3,

K2 = 8, i.e. X is a surfaceFa , for somea�0.
If g = 5, thenC is rational and�|K+D| is then an isomorphism ofX to F1 embedded

in P4 as a rational normal cubic scroll. It is then clear that we are in case (iv),i = 1.
If g�4, one computes(K + C) · C = 8− 2g and (K + C)2 = 21− 4g, which

contradicts the Hodge index theorem.
The proof is thus completed.�

The pairs listed in (i)–(iv) of Theorem7.9 above will be calledalmost extremal
Castelnuovo pairs. The corresponding surfaces�|D|(X) will be calledalmost extremal
Castelnuovo surfaces.

8. The classification ofOAk+1
k−1-surfaces

In this section we give the classification of surfacesX ⊂ P3k+2, k�2 with
�k(X) = 1. Recall that the casek = 1 was classically considered by Severi[54]
and proved by Russo[51] (see also[18]). We notice that this classification was in
part divined by Bronowski in[7], where however the argument he gives relies on the
unproved conjecture stated in Remark4.6.
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Theorem 8.1. Let X ⊂ P3k+2, k�2, be a smooth, projective, surface which is linearly
normal, and such that�k(X) = 1.We let d be the degree and g be the sectional genus
of X. Then X is one of the following:

(i) a rational normal scrollS(a1, a2) with k�a1�a2, d = a1 + a2 = 3k + 1 and
sectional genusg = 0 (see Example5.1);

(ii) an odd Castelnuovo surfaceXa,k−1, with 0�a�k−1 and a+ k ≡ 1 (mod2) (see
Example5.5 and Remark7.6). In this cased = 4k, g = k−1 and the hyperplane
sections of X are hyperelliptic curves;

(iii) the internal projection from three distinct points of a Castelnuovo surfaceXa,k ⊂
P3k+5 with 0�a�k. In this cased = 4k + 1 and g = k and the hyperplane
sections are hyperelliptic curves(see Example5.5);

(iv) the tangential projection of a5-Veronese surfaceV2,5 from i = 0,1,2,3 points
(see Example5.8). Here d = 25− 4i, g = k = 6− i.

Proof. From the classification of weakly defective surfaces (see[14, Theorem 1.3 and
Example 5.15]above), we see thatX, being notk-defective and spanning aP3k+2,
is also notk-weakly defective. We can, and will, therefore apply Proposition1.6. Let
p1, . . . , pk ∈ X be general points and letL be the linear system of hyperplane sections
of X tangent atp1, . . . , pk. SinceX is not (k − 1)-defective, we have dim(L) = 2.
MoreoverL = F +M, whereF is the fixed part andM the movable part, as described
in Proposition1.6. The relevant information is that, by Theorem2.7, �X,k : X − − →
P2 is birational, henceX is rational and the general curveM ∈ M is rational and
M determines a birational map ofX to P2. In particular,M is base point free off
p1, . . . , pk (see[18, Proposition 6.3]).
We will separately discuss the various cases according to Proposition1.6:

(1) F is empty;
(2) F is not empty and irreducible;
(3) F consists ofk irreducible curves�i with pi ∈ �i .

In case (1) the curveM is rational withk nodes atp1, . . . , pk and no other singularity.
Theng = k andd = 4k+1 and thereforeX is an almost extremal Castelnuovo surface
with � = 3. By Theorem7.9, we are either in case (iii) or in case (iv).
In case (2), the curveF is smooth and rational. Look at the linear system|F | on X.

SinceX is linearly normal and there is a unique curveF containing the general points
p1, . . . , pk, then we have dim(|F |) = k, henceF 2 = k−1. MoreoverM is also rational
and smooth. Look at the system|M|. Since there is a 2-dimensional linear system of
curves in |M| containingp1, . . . , pk, we have dim(|M|) = k + 2, thusM2 = k + 1.
MoreoverM · F = k by Proposition1.6. This implies that:

d = M2 + 2M · F + F 2 = 4k, g = pa(M) + pa(F ) + M · F − 1= k − 1

henceX is an extremal Castelnuovo surface. By Corollary7.8, we are in case (ii),
because the Veronese surfaceV2,4 is 4-defective (see Remark7.6).
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In case (3), the curves�i are rational and linearly equivalent, and�2
i = 0, for

i = 1, . . . , k. This implies that we are in case (i).�

Remark 8.2. The assumption thatX be linearly normal is essential to have afinite
classification in Theorem8.1 above, as shown in Example5.18. We do not know
whether there are more examples of non-linearly normalOAk+1

k−1-surfaces other than
the ones exhibited in Example5.18.
According to Proposition4.9, k-regularity implies linear normality. So one could be

tempted to replace the linear normality hypothesis in Theorem8.1 by the k-regularity
assumption, which seems to be, in this context, a right generalization of the concept
of smoothness. However, thek-regularity hypothesis is almost never verified by the
surfaces in the list (i)–(iv) of Theorem8.1. This suggests thatk-regularity is too rigid.
It would be interesting to find a weaker concept which, in this context, could play the
right role.

9. The classification ofMk-surfaces

In this section we consider the classification ofMk-surfaces (see also[7]). The case
of k-defective andk-weakly defective surfaces has been already considered in Examples
5.14, 5.15 and 5.18, see also[37]. We summarize the result in the following:

Theorem 9.1. Let X ⊂ Pr be an irreducible, non-degenerate, surface. If X is k-
defective, then it is anMk-surface if and only if one if the following happens:

(i) r = 3k + 2 and X is the2-Veronese embedding of a surface of degree k inPk+1;
(ii) X sits in a (k + 1)-dimensional cone, with a vertex of dimensionk − 1, over a

rational normal curve C of degreed�2k + 3.

If X is k-weakly defective, but not k-defective, then it is anMk-surface if and only
if one if the following happens:

(iii) r = 9, k = 2 and X is the2-Veronese embedding of a surface of degreed�3 in
P3;

(iv) r = 3k + 3 and X is the cone over a k-defective surface of type(i);
(v) r = 3k + 3 and X is the2-Veronese embedding of a surface of degreek + 1 in

Pk+1;
(vi) X sits in a(k+2)-dimensional cone, with a vertex of dimension k, over a rational

normal curve C of degreed�2k + 2.

The main result of this section is the classification theorem forMAk+1
k−1-surfaces,

which concludes the classification ofMk-surfaces:

Theorem 9.2. Let X ⊂ P3k+2+h, with k, h�1, be a smooth, irreducible, non-
degenerate, Mk-surface which is linearly normal and not k-weakly defective. Let d
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be the degree and g the sectional genus of X. Then X is one of the following:

(i) a rational normal scrollS(a1, a2) of degreed = 3k+1+h and type(a1, a2) with
k�a1�a2 (see Example5.1);

(ii) a del Pezzo surface of degreed = 5+h and g = 1, with 1�h�4 and k = 1 (see
Example5.16);

(iii) the internal projection from3−h, with 1�h�3, distinct points of an odd Castel-
nuovo surfaceXa,k ⊂ P3k+5 with 0�a�k and a + k ≡ 0 (mod2). In this case
d = 4k + 1+ h, g = k and the hyperplane sections are hyperelliptic curves(see
Example5.5);

(iv) the internal projection from3− h points, with 1�h�2, of the Veronese surface
V2,4. In this cased = 13+ h, g = 3, k = 3 (see Example5.12);

(v) the 3-Veronese embedding inP15 of a smooth quadric inP3. Here d = 18, g =
4, k = 4, h = 1 (see Example5.13);

(vi) the 3-Veronese embeddingV2,3 of P2. In this cased = 9, g = 1, k = 2, h = 1
(see Example5.16).

Proof. SinceX is not k-weakly defective, we can apply again Proposition1.6. Let
p1, . . . , pk ∈ X be general points and, as in the proof of Theorem8.1, we let L be
the linear system of hyperplane sections ofX tangent atp1, . . . , pk. SinceX is not
(k − 1)-defective, we have dim(L) = 2+ h. MoreoverL = F + M, whereF is the
fixed part andM the movable part, as described in Proposition1.6. By Corollary 4.5,
�X,k : X− − → Xk ⊂ Ph+2 is birational andXk is a surface of minimal degreeh+1,
henceX is rational and the general curveM ∈ M is also rational.
Again, as in the proof of Theorem8.1, one has to separately discuss the various

cases according to Proposition1.6.
If F is empty, theng = k and d = 4k + h + 1. If k = 1 we are in case (ii). If

k > 1, by applying Corollary7.8 and Theorem7.9, we see that we have cases (iii), (iv)
and (v).
If F is not empty and irreducible, theng = k − 1 andd = 4k + h. By Theorem7.3,

the only possible case ish = 1, g = 1, which impliesk = 2 and we are in case (vi).
If F consists ofk irreducible curves we are in case (i).�

We can now state our result concerning the generalized Bronowski’s conjecture for
surfaces (see Remark4.6):

Corollary 9.3. The generalized Bronowsi’s conjecture holds for smooth surfaces.

Proof. Let X ⊂ P3k+2+h, h := codim(Sk(X)), be a smooth, irreducible, projective, not
k-defective surface and assume that the generalk-tangential projection�X,k : X− − →
Xk ⊂ Ph+2 birationally mapsX to a surface of minimal degreeh + 1 in Ph+2. The
same argument we made in the proofs of Theorems8.1 and9.1 proves thatX is either
or minimal degree or Castelnuovo extremal or Castelnuovo almost extremal. As we
saw in Section5, these areMAk+1

k−1 or OAk+1
k−1-surfaces, according to whetherh > 0

or h = 0. �
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10. A generalization of a theorem of Severi

Terracini’s Lemma1.1 implies that a defective variety is swept out by very degenerate
subvarieties. As a consequence, one has a famous theorem of Severi[54] (see also[52]),
which says that the Veronese surfaceV2,2 in P5 is the only irreducible non-degenerate,
projective surface inPr , r�5, not a cone, such that dim(S(X)) = 4. This result can
be restated as follows:the Veronese surface inP5 is the only 1-defective, not 0-weakly
defective, irreducible non-degenerate, projective surface inPr , r�5 (cf. Remark1.2).
This section is devoted to point out an extension of Severi’s theorem, namely Theorem

10.1 below. This result yields a projective characterization of extremal Castelnuovo
surfaces, in particular it stresses a distinction between odd and even(a, k)-Castelnuovo
surfaces, as suggested by Bronowski in[7].
Theorem10.1could also be deduced by the classification of weakly defective surfaces

(see[14, Examples 5.14 and 5.15]). However, the proof in[14] requires a subtle analysis
involving involutions on irreducible varieties and a generalization of the Castelnuovo–
Humbert theorem to higher dimensional varieties. It seems interesting to us to present
here an easy argument based on the ideas developed in this paper.

Theorem 10.1.Let X ⊂ Pr , r�3k + 2 and k�1, be a smooth, irreducible, non-
degenerate surface. Suppose that X is k-defective but not(k−1)-weakly defective. Then
r = 3k + 2 and X is the2-Veronese embedding of a smooth surface of degree k in
Pk+1, i.e. it is one of the following:

(i) X = V2,2 is the Veronese surface inP5, then k = 1 and deg(S(X)) = 3;
(ii) X = V2,4 is the4-Veronese embedding ofP2 in P14, thenk = 4 anddeg(S4(X)) =

6;
(iii) X is a smooth even Castelnuovo surfaceXa,k−1, with 0�a�k − 1, which is the

2-Veronese embedding of a smooth rational normal scroll of degree k inPk.

In particular a k-defective, not (k − 1)-weakly defective, surface inPr , r�3k + 2,
is an Mk-surface inP3k+2.

Proof. Let p0, . . . , pk ∈ X be general points. SinceX is not (k−1)-defective, one has
dim(TX,p1,...,pk ) = 3k − 1. SinceX is not degenerate inPr , r�3k + 2, the projection
of X from TX,p1,...,pk cannot be a point. Hences(k)(X) = dim(TX,p0,...,pk ) = 3k + 1.
We can supposek�2 by Severi’ theorem[54]. Also we may assume thatX ⊂ Pr

is linearly normal. SinceX is not (k − 1)-weakly defective we may apply Lemma
1.4 to deduce that�X,k−1 : X − − → Xk−1 ⊂ Pr−3k+3 is birational to its image.
Then r − 3k + 3�5 andXk−1 ⊂ Pr−3k+3 is an irreducible non-degenerate surface. By
Terracini’s Lemma dim(S(Xk−1)) = 4 and moreoverXk−1 is not 0-weakly defective
becauseX ⊂ Pr is not (k − 1)-weakly defective. Thus Severi’s theorem applies and
yields thatXk−1 is the Veronese surface inP5 and thatr = 3k+2. Note thatX cannot
be a scroll, sinceXk−1 = V2,2 does not contain lines.
The rest of the proof is analogous to the one in Theorem8.1. SinceX is not (k−2)-

weakly defective we can apply Proposition1.6. Let p1, . . . , pk−1 ∈ X be general points
and, as in the proof of Theorem8.1, we letL be the linear system of hyperplane sections
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of X tangent atp1, . . . , pk−1. The general curveM ∈ M is rational being birational
to a hyperplane section of the Veronese surfaceXk−1 ⊂ P5 and we have dim(L) = 5.
MoreoverL = F +M, whereF is the fixed part andM the movable part, as described
in Proposition1.6.
Again, one has to separately discuss the various cases according to Proposition1.6.
If F is empty, theng = k − 1 andd = 4k. In the casek = 2, thenX is a del Pezzo

surface of degree 8 and we are in case (iii) (see Example5.16). If k�3, by applying
Corollary 7.8, we have cases (ii) and (iii).
If F is not empty and irreducible, theng = k − 2 andd = 4k − 1. We can suppose

that k�3 sinceX is not a scroll. Note also that 3(k − 2)+ 5= 3k − 1. SinceX is not
a scroll, then Corollary7.8 implies that this case does not exist.
If F consists ofk − 1 irreducible curves, then they belong to a pencil of lines, a

contradiction, sinceX is not a scroll. �
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[1] B. Ådlansvik, Joins and Higher secant varieties, Math. Scand. 61 (1987) 213–222.
[2] A. Arbarello, M. Cornalba, Ph. Griffiths, J. Harris, Geometry of Algebraic Curves, Springer,

Grundlheren der Math., Wissenschaften, 1984, p. 267.
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