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Abstract

The purpose of our study was to evaluate the anti-staphylococcal biofilm activity

of tigecycline, compared with a group of recently developed or commonly used

antimicrobials such as linezolid, daptomycin, levofloxacin, tobramycin and

rifampin, all possessing putative antibiofilm properties, on a sample of multi-

drug-resistant methicillin-resistant Staphylococcus aureus grown as a planktonic

and mature biofilm. We determined conventional minimum inhibitory concentra-

tions (MICs) and minimum bactericidal concentrations (MBCs) for the plank-

tonic forms, MICs of adherent cells and finally, minimum biofilm eradication

concentrations (MBECs). No drug was able to inhibit adherent bacteria at the

same concentration necessary for eradicating a mature biofilm; the latter concen-

trations varied from three to seven times higher than the ones inhibiting adhesion.

The concentrations eradicating biofilm were reached by rifampin and daptomycin

at lower concentrations with respect to the other antibiotics tested; tigecycline was

able to inhibit mature biofilms at higher concentrations, while all the other

antibiotics were only able to inhibit adhering cells.

Introduction

Biofilms are known for their complexity (Costerton et al.,

1999) and ability to resist just about everything in our

current antimicrobial armory. Inside these well-organized

and highly regulated structures, bacterial cells acquire dif-

ferent properties with respect to free-floating bacteria –

among which metabolic and phenotypic specializations are

acquired – diverse morphologies and a heterogeneous

physiology. All these features may be responsible for the

coexistence of aerobically growing, fermenting, dormant

and dead cells.

It is well known that biofilms play a role in the pathogen-

esis of Staphylococcus aureus infections, causing many diffi-

culties in the eradication of biofilm-associated infections

(BAIs) and leading to a persistent and chronic state of many

S. aureus diseases (Ceri et al., 1999; Donlan & Costerton,

2002; Hall-Stoodley et al., 2004).

Mechanisms of biofilm resistance, still not totally clear,

are usually multifactorial and vary from one organism to

another. It has been suggested that these resistance mechan-

isms can be attributed to many factors: a delayed penetra-

tion of antimicrobials through the biofilm matrix; the

presence of slow or nongrowing cells within the biofilm;

the heterogeneity of the biofilm bacterial population in

terms of the presence of subpopulations with different

phenotypic levels of resistance; and the presence of persisters

(Mah & O’Toole, 2001; Harrison et al., 2005).In Pseudomo-

nas aeruginosa, for example, the involvement of a cluster of

genes, namely the ndvB locus, has been correlated with high-

level biofilm-specific resistance (Mah et al., 2003). Further-

more, antimicrobial biofilm resistance can be considered as

a sort of ‘population resistance’ in which the sequestration

of drugs can expose bacteria to antimicrobial concentrations

below therapeutic doses, within infection sites, and also

below the mutant prevention concentration (Dong et al.,

1999; Zhao & Drlica, 2001).

The activity of antimicrobials on biofilms depends on

their molecular size, positive charges, permeability coeffi-

cient and bactericidal activity, and from this point of view, it

is mandatory to test the antibiofilm activity of new drugs,

potentially useful in BAIs.

Current standard assays and parameters such as mini-

mum inhibitory concentrations (MICs) and minimum

bactericidal concentrations (MBCs), performed normally

on suspended cultures, are inadequate to evaluate the
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antimicrobial activity of slow nongrowing sessile cells, and

the use of several variables (MBEC, MBIC, MIBADH,

MBCADH) and methods (Calgary device method, MBIC

determination, quantification of viable cells by XTT assay)

complicates the interpretation of in vitro results and the

understanding of antimicrobial antibacterial activity (Ceri

et al., 1999; Labthavikul et al., 2003; Sandoe et al., 2006;

Smith et al., 2009).

The purpose of our study was to evaluate the anti-

staphylococcal biofilm activity of tigecycline, compared with

a group of recently developed or commonly used antimicro-

bials such as linezolid, daptomycin, levofloxacin, tobramycin

and rifampin, all possessing putative antibiofilm properties,

on a sample of multi-drug-resistant methicillin-resistant S.

aureus (MRSA) grown as a planktonic and mature biofilm.

We determined conventional MICs and MBCs for the

planktonic forms, MICS of adherent cells and finally, mini-

mum biofilm eradication concentrations (MBECs).

Materials and methods

Bacterial strains

Our sample included 30 previously identified biofilm-pro-

ducing MRSA strains collected in our laboratory from

central venous catheters or sputum of cystic fibrosis pa-

tients. Isolates were grown on mannitol–salt–agar (MSA)

plates (Oxoid, Basingstoke, UK) identified by the coagulase

test and the Api-Staph System (Bio-Merieux), and main-

tained at � 80 1C until use.

Biofilm production

The biofilm-forming ability of S. aureus was tested in a static

system using a spectrophotometrical quantitative assay.

Each strain was grown in tryptone soy broth (Oxoid), with

the addition of 0.25% glucose (TSBG). These assays were

performed in microtitre plates as described previously

(Christensen et al., 1985; Ziebuhr et al., 1999; Cafiso et al.,

2007). Each reported value is the average of 12 measure-

ments at 490 nm.

MICs and MBCs

Conventional MICs and MBCs of tigecycline, levofloxacin,

linezolid, daptomycin, tobramycin and rifampin were deter-

mined in duplicate using Clinical and Laboratory Standard

Institute (CLSI) (2009) guidelines.

Biofilm susceptibility tests

Each MICadh and MBEC experiment, conducted in parallel

with MIC and MBC, was carried out in the presence of

tigecycline, levofloxacin, linezolid, daptomycin, tobramycin

and rifampin.

The MICadh was the lowest antimicrobial concentration at

which there was no observable bacterial growth in the wells

containing adherent microcolonies. Briefly, the MICadh test

was performed and evaluated as published previously

(Labthavikul et al., 2003), with the following modifications:

the bacterial suspensions used were at a density of

108 CFU mL�1; this suspension was prepared in phosphate-

buffered saline (PBS) and diluted 1 : 30 in TSBG.

The MBEC, read as the lowest antimicrobial concentra-

tion at which bacteria fail to regrow after exposure to the

antibiotic, was performed using a modified version of the

Calgary biofilm device method (Ceri et al., 1999).

Isolates grown overnight in TSBG were adjusted to a

turbidity of 1.0 McFarland standard, validated by viable

counts on tryptone soy agar plates and diluted 1 : 30 in fresh

TSBG. An 200-ml aliquot was then placed in each row of a

96-well flat-bottom microtitre plate (Nuclon Delta, Nunc,

Denmark), covered with a 96-peg lid (Nunc-TSP; Nunc)

and statically incubated overnight for biofilm formation on

the pegs.

To remove planktonic cells, the peg lid was rinsed three

times in 1� sterile PBS, placed on a new plate filled with

200 mL of fresh broth containing serial dilutions of antibio-

tics as described by CLSI guidelines and incubated overnight

at 37 1C. The peg lid was then placed onto a plate containing

a fresh medium and the sessile cells were removed by bath

sonication for 5 min at 40 kHZ (Bransonic 2510, Branson

Ultrasonics Corporation, Danbury). Finally, the peg lid was

discarded and replaced with a new lid. The plates were

incubated for 24 h at 37 1C, and after this incubation, the

MBEC was recorded. All assays were conducted in triplicate.

Results

The MICs and MBCs of the planktonic cells, and biofilm

inhibition and eradication as determined by MICadh and

MBEC measurements, respectively, are summarized in Table 1.

The results obtained on planktonic forms showed that all

antibiotics tested were variably bactericidal, with MBCs90

ranging from one dilution higher than the MIC90 value to

Z3 dilutions higher for bacteriostatic agents.

The results on biofilm cells showed that MIC50
adh of

tigecycline, linezolid, daptomycin and rifampin were 0.5, 4

and 1 mg L�1, respectively, similar to the inhibition values

obtained in planktonic growth and remaining within the

susceptibility breakpoints. Only the MIC50
adh of levofloxacin

(8 mg L�1) and tobramycin (128 mg L�1) were resistant

values for the two antibiotics.

MIC90
adh of tigecycline and rifampin had the same values as

their MIC50
adh (0.5 and 1 mg L�1), whereas a value of one

dilution higher than MIC50
adh was registered in the MIC90

adh

both for daptomycin (2 mg L�1) and for levofloxacin

(16 mg L�1). A MIC90
adh value more than one dilution higher
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than MIC50
adh was found for linezolid and tobramycin, which

showed 64 and 4 128 mg L�1 MIC90
adh, respectively.

The MIC90
adh of tigecycline (0.5 mg L�1) and rifampin

(1 mg L�1) remained within the susceptibility breakpoints.

Comparing MIC90
adh with MIC90, it is necessary to empha-

size that tigecycline and rifampin MIC90
adh presented only a

one- to twofold increase with respect to their MIC90,

whereas for linezolid, daptomycin and tobramycin, a two-

to fourfold increase was found. The levofloxacin MIC90 and

MIC90
adh were 16 mg L�1.

MBEC50 and MBEC90 of rifampin and daptomycin were

16 mg L�1, whereas for tigecycline, the MBEC90 was

64 mg L�1 and the MBEC50 was 16 mg L�1.

Moreover, evaluating MBEC90 and MBC90, it was found

that the MBEC90 values were at least three dilutions higher

than the MBC90 values for all tested antimicrobials, with

values of 64 and 2 mg L�1 for tigecycline, 16 and 1 mg L�1 for

daptomycin, 16 and 2 mg L�1 for rifampin, 4 128 and

4 16 mg L�1 for linezolid, 4 128 and 32 mg L�1 for levo-

floxacin and 4 128 and 128 mg L�1 for tobramycin.

Discussion

Biofilm formation, as described in numerous papers, repre-

sents a major obstacle for the clinical efficacy of antimicro-

bial agents. The results of conventional antimicrobial

susceptibility testing are difficult to apply to bacteria in

biofilms because traditional antimicrobial treatments fail to

eradicate surface-attached bacteria (Patel, 2005). It seems

logical that biofilm-eradicating concentrations of drugs are

necessary for a positive therapeutic outcome in BAIs such as

endocarditis, and foreign body and prosthetic infection

(Ceri et al., 1999; Zimmerli & Ochsner, 2003). Different

research groups have investigated the activity of new

anti-Gram-positive drugs such as tigecycline, alone or in

combination with linezolid and daptomycin against

biofilm-producing staphylococci, but not all studies are

comparable in terms of methodologies and, ultimately, in

terms of the concordance of the results obtained (Petersen

et al., 2002; Labthavikul et al., 2003; Raad et al., 2007; Hajdu

et al., 2009; Presterl et al., 2009; Rose & Poppens, 2009;

Smith et al., 2009).

In the present study, all antibiotics tested acted diversely

in inhibiting or eradicating structured and mature biofilms.

No drug was able to inhibit adherent bacteria at the same

concentration necessary for eradicating mature biofilm; the

latter concentrations varied from three to seven times higher

than those inhibiting adhesion. The concentrations eradi-

cating biofilm were reached by rifampin and daptomycin at

lower concentrations compared with the other antibiotics

tested; tigecycline inhibited mature biofilms at higher con-

centrations, while all the other antibiotics were only able to

inhibit adhered cells.

In conclusion, we used different in vitro susceptibility

testing methods to examine how antimicrobial agents affect

mature biofilms produced by clinical isolates of S. aureus.

Our results suggest that tigecycline, daptomycin and rifam-

pin are promising as useful agents for eradicating S. aureus

biofilm infections, while the other drugs tested were only

able to inhibit adherent cells. The concentrations required

for biofilm eradication are three to five times higher than the

concentrations required for inhibiting adherent cells. These

effects may be an important factor in the selection of

antimicrobial therapy for this virulent organism.
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