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ABSTRACT. In this short note we point out that any Lipschitzian real function

/ defined in a subset K of a Banach space E, with span (if) / E, can be

extended to a surjective, open and Lipschitzian real function g on E in such a

way that, for every r6R, the set g~l(r) is arcwise connected. In fact, a more

refined result is proved.

The aim of this short note is to point out Theorem 1 below. Before giving its

statement, we recall that a topological space Y is said to be an absolute extensor

for paracompact spaces (see [3]) if, for every paracompact topological space T,

every closed set A Ç T and every continuous function ib: A —► Y, there exists a

continuous function <p: T —► Y such that <p\a — ib. We also recall that if U, V are

two nonempty sets in a normed space (E, || • ||), their Hausdorff distance, c¡//((7, V),

is defined by putting

dfi(U,V) = max < sup inf ||u — v\\, sup inf ||iz — v\\ >.
luet/^ev u€vu€t/ J

Finally, if E is as above, any set 5 Ç F will be regarded as a topological space

endowed with the relative norm topology.

THEOREM 1. Let (E, || ■ ||) be a real Banach space, W a closed linear subspace of

E, with W ^ E, K a nonempty subset of W and f a Lipschitzian real function on

K, with Lipschitz constant L. Then, for every M > 2L, there exists a real function

g on E with the following properties:

(a) g(x) — f(x) for all x G K;
(b) g is Lipschitzian, with Lipschitz constant (M + 2L)/2;

(c) for every r G R, the set g_1(r) is a nonempty absolute extensor for paracom-

pact spaces;

(d) for every s, t G R, one has

dH(g-1(s),g-1(t)) <(2/(M -2L))\s-t\.

PROOF. By Theorem I of [1], we can extend / to a Lipschitzian real function

\Iz on E, with Lipschitz constant L. Moreover, by a corollary of the Hahn-Banach

theorem, there exists a non-null continuous linear functional A on F such that

A(z) = 0 for all x G W.  Now, for every x G E, put <I>(x) = (M/2||A||B..)A(z) as
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well as g(x) = §(x) + ty(x). The real function g, of course, satisfies (a) and (b).

Let us show that g satisfies also (c) and (d). To this end, observe that, for every

u, v G R, one has

(1) dfff*-^«),*-») = (2/M)\u - v\.

Indeed, (1) follows easily from a classical result by G. Ascoli (see Lemma 1.2 of

[5]), taking into account that ||$||e* = M/2. For every r G R and x G F, put

FT(x) = $_1(r - *(z)) as well as Fix(Fr) = {y G F: y G Fr(y)}. Fix r G R.

Plainly, we have

(2) g-1(r) = Fix(Fr).

By (1), for every x,y G F, we obtain

(3) dH(Fr(x),Fr(y)) = (2/M)Mx) - *(z/)| < (2L/M)\\x - y\\.

Thus, since 2L/M < 1, we infer that x —► Fr(x) is a multivalued contraction

from F into F, with closed convex values. Now, (c) is a direct consequence of (2)

and of Theorem 1 of [4]. Finally, fix s,t G R. Taking into account (1), (2), (3) and

Lemma 1 of [2], we then obtain

dH(g-1(s),g-1(t)) = dH(Fix(Fs),Fix(Ft))

M 2
^M^tTEdHmXhFt{X))=M^2L^-^

This completes the proof.

REMARK. It is worth noting that, in Theorem 1, (d) implies that the real func-

tion g is open. Furthermore, (c) implies that each set g_1(r) is arcwise connected.

Lemma 3.4 of [6] then ensures that the set g~l(A) is connected for every interval

AofR.
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