SMOOTH EXTENSIONS OF LIPSCHITZIAN REAL FUNCTIONS

BIAGIO RICCERI
(Communicated by Dennis Burke)
Dedicated to Professor F. Guglielmino, with my deepest admiration, on his sixtieth birthday

Abstract

In this short note we point out that any Lipschitzian real function f defined in a subset K of a Banach space E, with $\overline{\operatorname{span}}(K) \neq E$, can be extended to a surjective, open and Lipschitzian real function g on E in such a way that, for every $r \in \mathbf{R}$, the set $g^{-1}(r)$ is arcwise connected. In fact, a more refined result is proved.

The aim of this short note is to point out Theorem 1 below. Before giving its statement, we recall that a topological space Y is said to be an absolute extensor for paracompact spaces (see [3]) if, for every paracompact topological space T, every closed set $A \subseteq T$ and every continuous function $\psi: A \rightarrow Y$, there exists a continuous function $\varphi: T \rightarrow Y$ such that $\left.\varphi\right|_{A}=\psi$. We also recall that if U, V are two nonempty sets in a normed space $(E,\|\cdot\|)$, their Hausdorff distance, $d_{H}(U, V)$, is defined by putting

$$
d_{H}(U, V)=\max \left\{\sup _{u \in U} \inf _{v \in V}\|u-v\|, \sup _{v \in V} \inf _{u \in U}\|u-v\|\right\} .
$$

Finally, if E is as above, any set $S \subseteq E$ will be regarded as a topological space endowed with the relative norm topology.

THEOREM 1. Let $(E,\|\cdot\|)$ be a real Banach space, W a closed linear subspace of E, with $W \neq E, K$ a nonempty subset of W and f a Lipschitzian real function on K, with Lipschitz constant L. Then, for every $M>2 L$, there exists a real function g on E with the following properties:
(a) $g(x)=f(x)$ for all $x \in K$;
(b) g is Lipschitzian, with Lipschitz constant $(M+2 L) / 2$;
(c) for every $r \in \mathbf{R}$, the set $g^{-1}(r)$ is a nonempty absolute extensor for paracompact spaces;
(d) for every $s, t \in \mathbf{R}$, one has

$$
d_{H}\left(g^{-1}(s), g^{-1}(t)\right) \leq(2 /(M-2 L))|s-t| .
$$

Proof. By Theorem I of [1], we can extend f to a Lipschitzian real function Ψ on E, with Lipschitz constant L. Moreover, by a corollary of the Hahn-Banach theorem, there exists a non-null continuous linear functional Λ on E such that $\Lambda(x)=0$ for all $x \in W$. Now, for every $x \in E$, put $\Phi(x)=\left(M / 2\|\Lambda\|_{E^{*}}\right) \Lambda(x)$ as

[^0]well as $g(x)=\Phi(x)+\Psi(x)$. The real function g, of course, satisfies (a) and (b). Let us show that g satisfies also (c) and (d). To this end, observe that, for every $u, v \in \mathbf{R}$, one has
\[

$$
\begin{equation*}
d_{H}\left(\Phi^{-1}(u), \Phi^{-1}(v)\right)=(2 / M)|u-v| \tag{1}
\end{equation*}
$$

\]

Indeed, (1) follows easily from a classical result by G. Ascoli (see Lemma 1.2 of $[5]$), taking into account that $\|\Phi\|_{E^{*}}=M / 2$. For every $r \in \mathbf{R}$ and $x \in E$, put $F_{r}(x)=\Phi^{-1}(r-\Psi(x))$ as well as $\operatorname{Fix}\left(F_{r}\right)=\left\{y \in E: y \in F_{r}(y)\right\}$. Fix $r \in \mathbf{R}$. Plainly, we have

$$
\begin{equation*}
g^{-1}(r)=\operatorname{Fix}\left(F_{r}\right) . \tag{2}
\end{equation*}
$$

By (1), for every $x, y \in E$, we obtain

$$
\begin{equation*}
d_{H}\left(F_{r}(x), F_{r}(y)\right)=(2 / M)|\Psi(x)-\Psi(y)| \leq(2 L / M)\|x-y\| . \tag{3}
\end{equation*}
$$

Thus, since $2 L / M<1$, we infer that $x \rightarrow F_{r}(x)$ is a multivalued contraction from E into E, with closed convex values. Now, (c) is a direct consequence of (2) and of Theorem 1 of [4]. Finally, fix $s, t \in \mathbf{R}$. Taking into account (1), (2), (3) and Lemma 1 of [2], we then obtain

$$
\begin{aligned}
d_{H}\left(g^{-1}(s), g^{-1}(t)\right) & =d_{H}\left(\operatorname{Fix}\left(F_{s}\right), \operatorname{Fix}\left(F_{t}\right)\right) \\
& \leq \frac{M}{M-2 L} \sup _{x \in E} d_{H}\left(F_{s}(x), F_{t}(x)\right)=\frac{2}{M-2 L}|s-t|
\end{aligned}
$$

This completes the proof.
Remark. It is worth noting that, in Theorem 1, (d) implies that the real function g is open. Furthermore, (c) implies that each set $g^{-1}(r)$ is arcwise connected. Lemma 3.4 of $[\mathbf{6}]$ then ensures that the set $g^{-1}(A)$ is connected for every interval A of \mathbf{R}.

References

1. J. Czipszer and L. Gehér, Extensions of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213-220.
2. T.-C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441.
3. E. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789806.
4. B. Ricceri, Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes, Rend. Accad. Naz. Lincei 81 (1987), 283-286.
5. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, SpringerVerlag, Berlin and New York, 1970.
6. R. E. Smithson, Multifunctions, Nieuw Arch. Wisk. 20 (1972), 32-53.

Dipartimento di Matematica, Città Universitaria, Viale A. Doria 6, 95125 Catania, Italy

[^0]: Received by the editors March 5, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 54C20, 54C30; Secondary 54C55.

 Work supported by M.P.I.

