THE PROBLEM OF MINIMIZING LOCALLY A C^{2} FUNCTIONAL AROUND NON-CRITICAL POINTS IS WELL-POSED

BIAGIO RICCERI

(Communicated by Jonathan M. Borwein)

Abstract

In this paper, we prove the following general result: Let X be a real Hilbert space and $J: X \rightarrow \mathbf{R}$ a C^{1} functional, with locally Lipschitzian derivative.

Then, for each $x_{0} \in X$ with $J^{\prime}\left(x_{0}\right) \neq 0$, there exists $\delta>0$ such that, for every $r \in] 0, \delta\left[\right.$, the restriction of J to the sphere $\left\{x \in X:\left\|x-x_{0}\right\|=r\right\}$ has a unique global minimum toward which every minimizing sequence strongly converges.

In the sequel, $(X,\langle\cdot, \cdot\rangle)$ is a real Hilbert space. For each $x \in X, r>0$, we set

$$
B(x, r)=\{y \in X:\|y-x\| \leq r\}
$$

and

$$
S(x, r)=\{y \in X:\|y-x\|=r\}
$$

Given a functional $J: X \rightarrow \mathbf{R}$ and a set $C \subseteq X$, we say that the problem of minimizing J over C is well-posed if the following two conditions hold:

- the restriction of J to C has a unique global minimum, say \hat{x};
- for every sequence $\left\{x_{n}\right\}$ in C such that $\lim _{n \rightarrow \infty} J\left(x_{n}\right)=\inf _{C} J$, one has $\lim _{n \rightarrow \infty}\left\|x_{n}-\hat{x}\right\|=0$.

Assuming $J \in C^{1}(X)$, our basic question is: under which assumptions is the problem of minimizing J over $S(0, r)$ well posed for each $r>0$ small enough?

To introduce our result in response to this question, let us make some considerations.

First, consider the case where J is even. Then, for any $r>0, J_{\mid S(0, r)}$ has either none or at least two global minima. Note that $J^{\prime}(0)=0$, since J^{\prime} is odd.

However, even if $J^{\prime}(0) \neq 0$, it may occur either that $J_{\mid S(0, r)}$ has at least two global minima for each $r>0$, or that $J_{\mid S(0, r)}$ has no global minima for each $r>0$. In this connection, consider the following two examples.

Example 1. Take $X=\mathbf{R}^{2}$ and

$$
J(x, y)=x-|y|^{q}
$$

[^0]where $1<q<2$. Note that $J \in C^{1}\left(\mathbf{R}^{2}\right)$ and $\nabla J(0) \neq 0$. Let $r>0$. Since
$$
\lim _{n \rightarrow \infty} n^{q-1}\left(n-\sqrt{n^{2}-1}\right)=0
$$
for $n \in \mathbf{N}$ large enough, we have
$$
J\left(-\sqrt{r^{2}-\frac{r^{2}}{n^{2}}}, \frac{r}{n}\right)=-\sqrt{r^{2}-\frac{r^{2}}{n^{2}}}-\left(\frac{r}{n}\right)^{q}<-r=J(-r, 0) .
$$

Now, observe that $J_{\mid S(0, r)}$ attains its infimum at some point $\left(x_{0}, y_{0}\right)$ with $x_{0} \leq 0$. The above inequality shows that $x_{0}>-r$ (and so $y_{0} \neq 0$). Consequently, $\left(x_{0},-y_{0}\right)$ is also a global minimum of $J_{\mid S(0, r)}$.

Example 2. Take $X=l^{2}$ and

$$
J(x)=x_{1}-\left(\sum_{n=2}^{\infty} a_{n}^{2} x_{n}^{2}\right)^{p}
$$

where $\frac{1}{2}<p<1$ and $\left\{a_{n}\right\}$ is a strictly increasing sequence of positive numbers converging to 1 . Note that $J \in C^{1}\left(l^{2}\right)$ and $J^{\prime}(0) \neq 0$. Fix $r>0$. Let $\left\{e_{n}\right\}$ be the canonical basis of l^{2}. Moreover, set

$$
I:=\left\{x \in l^{2}: x_{1}=0\right\}
$$

and let $A: l^{2} \rightarrow l^{2}$ be the operator defined by

$$
A(x)=\left\{a_{n} x_{n}\right\}
$$

for all $x \in l^{2}$. Note that $\left\|A\left(e_{n}\right)\right\|=a_{n}$ and so $\sup _{n \in \mathbf{N}}\left\|A\left(e_{n}\right)\right\|=1$. Note also that $\|A(y)\|<1$ for all $y \in I \cap S(0,1)$. Further, it is easy to see that

$$
S(0, r)=\left\{-r \sqrt{1-\lambda^{2}} e_{1}+\lambda r y: \lambda \in[0,1], y \in I \cap S(0,1)\right\}
$$

Consequently, we have

$$
\inf _{S(0, r)} J=\inf _{y \in I \cap S(0,1)} \inf _{\lambda \in[0,1]}-r\left(\sqrt{1-\lambda^{2}}+r^{2 p-1}\|A(y)\|^{2 p} \lambda^{2 p}\right)
$$

Now, let $\eta:[0,+\infty[\rightarrow \mathbf{R}$ be the continuous function defined by

$$
\eta(t)=\sup _{\lambda \in[0,1]}\left(\sqrt{1-\lambda^{2}}+t \lambda^{2 p}\right)
$$

for all $t \geq 0$. Since $p<1$, one readily sees that η is strictly increasing. Hence, we have

$$
\begin{aligned}
\inf _{S(0, r)} J & =-r \sup _{y \in \operatorname{I\cap S}(0,1)} \sup _{\lambda \in[0,1]}\left(\sqrt{1-\lambda^{2}}+r^{2 p-1}\|A(y)\|^{2 p} \lambda^{2 p}\right) \\
& =-r \sup _{y \in \operatorname{InS}(0,1)} \eta\left(r^{2 p-1}\|A(y)\|^{2 p}\right)=-r \eta\left(r^{2 p-1}\right) .
\end{aligned}
$$

But, for every $\lambda \in[0,1]$ and $y \in I \cap S(0,1)$, we have

$$
J\left(-r \sqrt{1-\lambda^{2}} e_{1}+\lambda r y\right) \geq-r \eta\left(r^{2 p-1}\|A(y)\|^{2 p}\right)>-r \eta\left(r^{2 p-1}\right)
$$

and hence $J_{\mid S(0, r)}$ has no global minima.
Note that, in the above examples, J^{\prime} is not locally Lipschitzian at 0.
We can now state our main result.

Theorem 1. Let $J: X \rightarrow \mathbf{R}$ be a C^{1} functional with locally Lipschitzian derivative.
Then, for each $x_{0} \in X$ with $J^{\prime}\left(x_{0}\right) \neq 0$, there exists $\delta>0$ such that, for every $r \in] 0, \delta[$, one has

$$
\inf _{B\left(x_{0}, r\right)} J=\inf _{S\left(x_{0}, r\right)} J
$$

and the problems of minimizing J over $S\left(x_{0}, r\right)$ and over $B\left(x_{0}, r\right)$ are well-posed.
Proof. Fix $x_{0} \in X$ with $J^{\prime}\left(x_{0}\right) \neq 0$. Also fix $\rho>0$ so that

$$
J^{\prime}(x) \neq 0
$$

for all $x \in B\left(x_{0}, \rho\right)$ and

$$
L:=\sup _{x, y \in B\left(x_{0}, \rho\right), x \neq y} \frac{\left\|J^{\prime}(x)-J^{\prime}(y)\right\|}{\|x-y\|}<+\infty
$$

For each $\lambda>0, x \in X$, set

$$
I_{\lambda}(x)=\frac{\lambda}{2}\left\|x-x_{0}\right\|^{2}+J(x) .
$$

Let $\lambda \geq L$. For each $x, y \in B\left(x_{0}, \rho\right)$, we have

$$
\begin{gather*}
\left\langle I_{\lambda}^{\prime}(x)-I_{\lambda}^{\prime}(y), x-y\right\rangle=\left\langle\lambda\left(x-x_{0}\right)+J^{\prime}(x)-\lambda\left(y-x_{0}\right)-J^{\prime}(y), x-y\right\rangle \\
\geq \lambda\|x-y\|^{2}-\left\|J^{\prime}(x)-J^{\prime}(y)\right\|\|x-y\| \geq(\lambda-L)\|x-y\|^{2} \tag{1}
\end{gather*}
$$

From (1), via a classical result ([3, Proposition 25.10]) we then get that the functional I_{λ} is strictly convex (resp. convex) in $B\left(x_{0}, \rho\right)$ if $\lambda>L$ (resp. $\lambda=L$). Denote by Γ the set of all global minima of the restriction of I_{L} to $B\left(x_{0}, \rho\right)$ and set

$$
\delta=\inf _{x \in \Gamma}\left\|x-x_{0}\right\|
$$

Observe that $\delta>0$. Indeed, if $\delta=0$, then x_{0} would be a local minimum in X for I_{L}, and so

$$
0=I_{L}^{\prime}\left(x_{0}\right)=J^{\prime}\left(x_{0}\right)
$$

against an assumption. Now, fix $r \in] 0, \delta\left[\right.$ and consider the function $\Phi: B\left(x_{0}, \rho\right) \times$ $[L,+\infty[\rightarrow \mathbf{R}$ defined by

$$
\Phi(x, \lambda)=I_{\lambda}(x)-\frac{\lambda r^{2}}{2}
$$

for all $(x, \lambda) \in B\left(x_{0}, \rho\right) \times[L,+\infty[$. As we have seen above, $\Phi(\cdot, \lambda)$ is continuous and convex in $B\left(x_{0}, \rho\right)$ for all $\lambda \geq L$, while $\Phi(x, \cdot)$ is continuous and concave for all $x \in B\left(x_{0}, \rho\right)$, with $\lim _{\lambda \rightarrow+\infty} \Phi\left(x_{0}, \lambda\right)=-\infty$. So, we can apply to Φ a classical saddle-point theorem [4, Theorem 49.A] which ensures the existence of $(\hat{x}, \hat{\lambda}) \in B\left(x_{0}, \rho\right) \times[L,+\infty[$ such that

$$
\begin{gathered}
J(\hat{x})+\frac{\hat{\lambda}}{2}\left(\left\|\hat{x}-x_{0}\right\|^{2}-r^{2}\right)=\inf _{x \in B\left(x_{0}, \rho\right)}\left(J(x)+\frac{\hat{\lambda}}{2}\left(\left\|x-x_{0}\right\|^{2}-r^{2}\right)\right) \\
=J(\hat{x})+\sup _{\lambda \geq L} \frac{\lambda}{2}\left(\left\|\hat{x}-x_{0}\right\|^{2}-r^{2}\right)
\end{gathered}
$$

Of course, we have $\left\|\hat{x}-x_{0}\right\| \leq r$, since the sup is finite. But, if it were $\left\|\hat{x}-x_{0}\right\|<r$, we would have $\hat{\lambda}=L$. This, in turn, would imply that $\hat{x} \in \Gamma$, against the fact that $r<\delta$. Hence, we have $\left\|\hat{x}-x_{0}\right\|=r$. Consequently

$$
J(\hat{x})+\frac{\hat{\lambda} r^{2}}{2}=\inf _{x \in B\left(x_{0}, \rho\right)}\left(J(x)+\frac{\hat{\lambda}}{2}\left\|x-x_{0}\right\|^{2}\right)
$$

From this, we infer that $\hat{\lambda}>L$ (since $r<\delta$), that \hat{x} is a global minimum of the restriction of J to $S\left(x_{0}, r\right)$ and that each global minimum of the restriction of J to $S\left(x_{0}, r\right)$ is a global minimum of the restriction of the functional $I_{\hat{\lambda}}$ to $B\left(x_{0}, \rho\right)$. Since $\hat{\lambda}>L$, this functional is strictly convex, and so \hat{x} is its unique global minimum in $B\left(x_{0}, \rho\right)$ towards which every minimizing sequences weakly converges ([1, p. 3]). In particular, note that if $\left\{y_{n}\right\}$ is a sequence in $B\left(x_{0}, \rho\right)$ such that $\lim _{n \rightarrow \infty} J\left(y_{n}\right)=J(\hat{x})$ and $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{0}\right\|=r$, then

$$
\lim _{n \rightarrow \infty}\left(J\left(y_{n}\right)+\frac{\hat{\lambda}}{2}\left\|y_{n}-x_{0}\right\|^{2}\right)=\inf _{x \in B\left(x_{0}, \rho\right)}\left(J(x)+\frac{\hat{\lambda}}{2}\left\|x-x_{0}\right\|^{2}\right)
$$

and so $\left\{y_{n}\right\}$ converges weakly to \hat{x}. Since $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{0}\right\|=\left\|\hat{x}-x_{0}\right\|$ and X is a Hilbert space, it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-\hat{x}\right\|=0$. This shows that, for each $r \in] 0, \delta\left[\right.$, the problem of minimizing J over $S\left(x_{0}, r\right)$ is well posed.

Again fix $r \in] 0, \delta\left[\right.$. Now, let us show that $\inf _{B\left(x_{0}, r\right)} J=\inf _{S\left(x_{0}, r\right)} J$. To this end, for each $t \in[0, r]$, put

$$
\varphi(t)=\inf _{S\left(x_{0}, t\right)} J
$$

and denote by x_{t} the unique global minimum of $J_{\mid S\left(x_{0}, t\right)}$. Clearly, we have

$$
\inf _{B\left(x_{0}, r\right)} J=\inf _{[0, r]} \varphi
$$

Note also that, by the mean value theorem, J is Lipschitzian in $B\left(x_{0}, \rho\right)$, with Lipschitz constant $L_{1}:=\left\|J^{\prime}\left(x_{0}\right)\right\|+L \rho$. Fix $t, s \in[0, r]$. We have

$$
\varphi(s)-\varphi(t) \leq J\left(x_{0}+\frac{s}{t}\left(x_{t}-x_{0}\right)\right)-J\left(x_{t}\right) \leq L_{1}|t-s|
$$

as well as

$$
\varphi(t)-\varphi(s) \leq J\left(x_{0}+\frac{t}{s}\left(x_{s}-x_{0}\right)\right)-J\left(x_{s}\right) \leq L_{1}|t-s|
$$

Thus, φ is Lipschitzian and so it attains its infimum in $[0, r]$ at a point \hat{t}. In other words, we have

$$
\inf _{B\left(x_{0}, r\right)} J=J\left(x_{\hat{t}}\right)
$$

Recalling that $J^{\prime}(x) \neq 0$ for all $x \in B\left(x_{0}, r\right)$, we then infer that $\hat{t}=r$. So, x_{r} is also the unique global minimum of $J_{\mid B\left(x_{0}, r\right)}$. Finally, let $\left\{y_{n}\right\}$ be a sequence in $B\left(x_{0}, r\right)$ such that $\lim _{n \rightarrow \infty} J\left(y_{n}\right)=J\left(x_{r}\right)$. By a remark above, to get that $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{r}\right\|=0$, we have to show that $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{0}\right\|=r$. Argue by contradiction. If it was

$$
\liminf _{n \rightarrow \infty}\left\|y_{n}-x_{0}\right\|<r
$$

then, for some $\gamma \in] 0, r\left[\right.$, we would have $\left\|y_{n}-x_{0}\right\|<\gamma$ for infinitely many n, and so

$$
\inf _{B\left(x_{0}, r\right)} J=\inf _{B\left(x_{0}, \gamma\right)} J=J\left(x_{\gamma}\right)
$$

against the fact that $J^{\prime}\left(x_{\gamma}\right) \neq 0$. Thus, the problem of minimizing J over $B\left(x_{0}, r\right)$ is also well posed, and the proof is complete.

Remark. From the above proof, it is clear the local Lipschitzianity of J^{\prime} serves only to guarantee that, for some $\rho>0$ and for each λ large enough, the functional $x \rightarrow \frac{\lambda}{2}\left\|x-x_{0}\right\|^{2}+J(x)$ is strictly convex in the ball $B\left(x_{0}, \rho\right)$. So, Theorem 1 actually holds for C^{1} functionals with this latter property (see [2, pp. 135-136]).

Acknowledgment

The author thanks Professor J. Saint Raymond for useful correspondence.

References

[1] A. L. DONTCHEV and T. ZOLEZZI, Well-posed optimization problems, Lecture Notes in Mathematics, 1543, Springer-Verlag, 1993. MR1239439 (95a:49002)
[2] B. MORDUKHOVICH, Variational analysis and generalized differentiation, vol. II, SpringerVerlag, 2006. MR2191745
[3] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. II/B, Springer-Verlag, 1985. MR 1033498 (91b:47002)
[4] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985. MR0768749 (90b:49005)

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

E-mail address: ricceri@dmi.unict.it

[^0]: Received by the editors March 22, 2006.
 2000 Mathematics Subject Classification. Primary 49K40, 90C26, 90C30; Secondary 49J35.
 Key words and phrases. Minimization, well-posedness, Hilbert spaces, non-critical points, locally Lipschitzian derivative, saddle points.

