PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY S 0002-9939(07)08789-8 Article electronically published on March 1, 2007

THE PROBLEM OF MINIMIZING LOCALLY A C² FUNCTIONAL AROUND NON-CRITICAL POINTS IS WELL-POSED

BIAGIO RICCERI

(Communicated by Jonathan M. Borwein)

ABSTRACT. In this paper, we prove the following general result: Let X be a real Hilbert space and $J: X \to \mathbf{R}$ a C^1 functional, with locally Lipschitzian derivative.

Then, for each $x_0 \in X$ with $J'(x_0) \neq 0$, there exists $\delta > 0$ such that, for every $r \in]0, \delta[$, the restriction of J to the sphere $\{x \in X : ||x - x_0|| = r\}$ has a unique global minimum toward which every minimizing sequence strongly converges.

In the sequel, $(X, \langle \cdot, \cdot \rangle)$ is a real Hilbert space. For each $x \in X, r > 0$, we set

$$B(x,r) = \{y \in X : \|y - x\| \le r\}$$

and

$$S(x,r) = \{ y \in X : ||y - x|| = r \} .$$

Given a functional $J : X \to \mathbf{R}$ and a set $C \subseteq X$, we say that the problem of minimizing J over C is well-posed if the following two conditions hold:

- the restriction of J to C has a unique global minimum, say \hat{x} ;

- for every sequence $\{x_n\}$ in C such that $\lim_{n\to\infty} J(x_n) = \inf_C J$, one has $\lim_{n\to\infty} ||x_n - \hat{x}|| = 0$.

Assuming $J \in C^1(X)$, our basic question is: under which assumptions is the problem of minimizing J over S(0, r) well posed for each r > 0 small enough?

To introduce our result in response to this question, let us make some considerations.

First, consider the case where J is even. Then, for any r > 0, $J_{|S(0,r)}$ has either none or at least two global minima. Note that J'(0) = 0, since J' is odd.

However, even if $J'(0) \neq 0$, it may occur either that $J_{|S(0,r)}$ has at least two global minima for each r > 0, or that $J_{|S(0,r)}$ has no global minima for each r > 0. In this connection, consider the following two examples.

Example 1. Take $X = \mathbf{R}^2$ and

$$J(x,y) = x - |y|^q$$

 $\textcircled{\sc c}2007$ American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors March 22, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 49K40, 90C26, 90C30; Secondary 49J35.

Key words and phrases. Minimization, well-posedness, Hilbert spaces, non-critical points, locally Lipschitzian derivative, saddle points.

where 1 < q < 2. Note that $J \in C^1(\mathbf{R}^2)$ and $\nabla J(0) \neq 0$. Let r > 0. Since

$$\lim_{n \to \infty} n^{q-1} (n - \sqrt{n^2 - 1}) = 0,$$

for $n \in \mathbf{N}$ large enough, we have

$$J\left(-\sqrt{r^2 - \frac{r^2}{n^2}}, \frac{r}{n}\right) = -\sqrt{r^2 - \frac{r^2}{n^2}} - \left(\frac{r}{n}\right)^q < -r = J(-r, 0) \ .$$

Now, observe that $J_{|S(0,r)}$ attains its infimum at some point (x_0, y_0) with $x_0 \leq 0$. The above inequality shows that $x_0 > -r$ (and so $y_0 \neq 0$). Consequently, $(x_0, -y_0)$ is also a global minimum of $J_{|S(0,r)}$.

Example 2. Take $X = l^2$ and

$$J(x) = x_1 - \left(\sum_{n=2}^{\infty} a_n^2 x_n^2\right)^p,$$

where $\frac{1}{2} and <math>\{a_n\}$ is a strictly increasing sequence of positive numbers converging to 1. Note that $J \in C^1(l^2)$ and $J'(0) \neq 0$. Fix r > 0. Let $\{e_n\}$ be the canonical basis of l^2 . Moreover, set

$$I := \{ x \in l^2 : x_1 = 0 \}$$

and let $A: l^2 \to l^2$ be the operator defined by

$$A(x) = \{a_n x_n\}$$

for all $x \in l^2$. Note that $||A(e_n)|| = a_n$ and so $\sup_{n \in \mathbb{N}} ||A(e_n)|| = 1$. Note also that ||A(y)|| < 1 for all $y \in I \cap S(0, 1)$. Further, it is easy to see that

$$S(0,r) = \{-r\sqrt{1-\lambda^2}e_1 + \lambda ry : \lambda \in [0,1], y \in I \cap S(0,1)\}.$$

Consequently, we have

$$\inf_{S(0,r)} J = \inf_{y \in I \cap S(0,1)} \inf_{\lambda \in [0,1]} -r \left(\sqrt{1 - \lambda^2} + r^{2p-1} \|A(y)\|^{2p} \lambda^{2p} \right) \ .$$

Now, let $\eta: [0, +\infty] \to \mathbf{R}$ be the continuous function defined by

$$\eta(t) = \sup_{\lambda \in [0,1]} (\sqrt{1 - \lambda^2} + t\lambda^{2p})$$

for all $t \ge 0$. Since p < 1, one readily sees that η is strictly increasing. Hence, we have

$$\inf_{S(0,r)} J = -r \sup_{y \in I \cap S(0,1)} \sup_{\lambda \in [0,1]} \left(\sqrt{1 - \lambda^2} + r^{2p-1} \|A(y)\|^{2p} \lambda^{2p} \right)$$
$$= -r \sup_{y \in I \cap S(0,1)} \eta(r^{2p-1} \|A(y)\|^{2p}) = -r\eta(r^{2p-1}) .$$

But, for every $\lambda \in [0,1]$ and $y \in I \cap S(0,1)$, we have

$$J(-r\sqrt{1-\lambda^2}e_1 + \lambda ry) \ge -r\eta(r^{2p-1} ||A(y)||^{2p}) > -r\eta(r^{2p-1})$$

and hence $J_{|S(0,r)}$ has no global minima.

Note that, in the above examples, J' is not locally Lipschitzian at 0. We can now state our main result.

Theorem 1. Let $J : X \to \mathbf{R}$ be a C^1 functional with locally Lipschitzian derivative. Then, for each $x_0 \in X$ with $J'(x_0) \neq 0$, there exists $\delta > 0$ such that, for every

 $r \in]0, \delta[, one has$

$$\inf_{B(x_0,r)} J = \inf_{S(x_0,r)} J,$$

and the problems of minimizing J over $S(x_0,r)$ and over $B(x_0,r)$ are well-posed.

Proof. Fix $x_0 \in X$ with $J'(x_0) \neq 0$. Also fix $\rho > 0$ so that

 $J'(x) \neq 0$

for all $x \in B(x_0, \rho)$ and

$$L := \sup_{x,y \in B(x_0,\rho), x \neq y} \frac{\|J'(x) - J'(y)\|}{\|x - y\|} < +\infty .$$

For each $\lambda > 0, x \in X$, set

$$I_{\lambda}(x) = \frac{\lambda}{2} ||x - x_0||^2 + J(x)$$

Let $\lambda \geq L$. For each $x, y \in B(x_0, \rho)$, we have

(1)
$$\langle I'_{\lambda}(x) - I'_{\lambda}(y), x - y \rangle = \langle \lambda(x - x_0) + J'(x) - \lambda(y - x_0) - J'(y), x - y \rangle$$

(1)
$$\geq \lambda \|x - y\|^2 - \|J'(x) - J'(y)\| \|x - y\| \geq (\lambda - L) \|x - y\|^2 .$$

From (1), via a classical result ([3, Proposition 25.10]) we then get that the functional I_{λ} is strictly convex (resp. convex) in $B(x_0, \rho)$ if $\lambda > L$ (resp. $\lambda = L$). Denote by Γ the set of all global minima of the restriction of I_L to $B(x_0, \rho)$ and set

$$\delta = \inf_{x \in \Gamma} \|x - x_0\|$$

Observe that $\delta > 0$. Indeed, if $\delta = 0$, then x_0 would be a local minimum in X for I_L , and so

$$0 = I'_L(x_0) = J'(x_0)$$

against an assumption. Now, fix $r \in]0, \delta[$ and consider the function $\Phi : B(x_0, \rho) \times [L, +\infty] \to \mathbf{R}$ defined by

$$\Phi(x,\lambda) = I_{\lambda}(x) - \frac{\lambda r^2}{2}$$

for all $(x, \lambda) \in B(x_0, \rho) \times [L, +\infty[$. As we have seen above, $\Phi(\cdot, \lambda)$ is continuous and convex in $B(x_0, \rho)$ for all $\lambda \geq L$, while $\Phi(x, \cdot)$ is continuous and concave for all $x \in B(x_0, \rho)$, with $\lim_{\lambda \to +\infty} \Phi(x_0, \lambda) = -\infty$. So, we can apply to Φ a classical saddle-point theorem [4, Theorem 49.A] which ensures the existence of $(\hat{x}, \hat{\lambda}) \in B(x_0, \rho) \times [L, +\infty]$ such that

$$J(\hat{x}) + \frac{\hat{\lambda}}{2} (\|\hat{x} - x_0\|^2 - r^2) = \inf_{x \in B(x_0, \rho)} \left(J(x) + \frac{\hat{\lambda}}{2} (\|x - x_0\|^2 - r^2) \right)$$
$$= J(\hat{x}) + \sup_{\lambda \ge L} \frac{\lambda}{2} (\|\hat{x} - x_0\|^2 - r^2) .$$

Of course, we have $\|\hat{x} - x_0\| \leq r$, since the sup is finite. But, if it were $\|\hat{x} - x_0\| < r$, we would have $\hat{\lambda} = L$. This, in turn, would imply that $\hat{x} \in \Gamma$, against the fact that $r < \delta$. Hence, we have $\|\hat{x} - x_0\| = r$. Consequently

$$J(\hat{x}) + \frac{\hat{\lambda}r^2}{2} = \inf_{x \in B(x_0,\rho)} \left(J(x) + \frac{\hat{\lambda}}{2} ||x - x_0||^2 \right) .$$

BIAGIO RICCERI

From this, we infer that $\hat{\lambda} > L$ (since $r < \delta$), that \hat{x} is a global minimum of the restriction of J to $S(x_0, r)$ and that each global minimum of the restriction of J to $S(x_0, r)$ is a global minimum of the restriction of the functional $I_{\hat{\lambda}}$ to $B(x_0, \rho)$. Since $\hat{\lambda} > L$, this functional is strictly convex, and so \hat{x} is its unique global minimum in $B(x_0, \rho)$ towards which every minimizing sequences weakly converges ([1, p. 3]). In particular, note that if $\{y_n\}$ is a sequence in $B(x_0, \rho)$ such that $\lim_{n\to\infty} J(y_n) = J(\hat{x})$ and $\lim_{n\to\infty} \|y_n - x_0\| = r$, then

$$\lim_{n \to \infty} \left(J(y_n) + \frac{\hat{\lambda}}{2} \|y_n - x_0\|^2 \right) = \inf_{x \in B(x_0, \rho)} \left(J(x) + \frac{\hat{\lambda}}{2} \|x - x_0\|^2 \right),$$

and so $\{y_n\}$ converges weakly to \hat{x} . Since $\lim_{n\to\infty} ||y_n - x_0|| = ||\hat{x} - x_0||$ and X is a Hilbert space, it follows that $\lim_{n\to\infty} ||y_n - \hat{x}|| = 0$. This shows that, for each $r \in]0, \delta[$, the problem of minimizing J over $S(x_0, r)$ is well posed.

Again fix $r \in [0, \delta[$. Now, let us show that $\inf_{B(x_0,r)} J = \inf_{S(x_0,r)} J$. To this end, for each $t \in [0, r]$, put

$$\varphi(t) = \inf_{S(x_0,t)} J$$

and denote by x_t the unique global minimum of $J_{|S(x_0,t)}$. Clearly, we have

$$\inf_{B(x_0,r)} J = \inf_{[0,r]} \varphi$$

Note also that, by the mean value theorem, J is Lipschitzian in $B(x_0, \rho)$, with Lipschitz constant $L_1 := ||J'(x_0)|| + L\rho$. Fix $t, s \in [0, r]$. We have

$$\varphi(s) - \varphi(t) \le J\left(x_0 + \frac{s}{t}(x_t - x_0)\right) - J(x_t) \le L_1|t - s|$$

as well as

$$\varphi(t) - \varphi(s) \le J\left(x_0 + \frac{t}{s}(x_s - x_0)\right) - J(x_s) \le L_1|t - s| .$$

Thus, φ is Lipschitzian and so it attains its infimum in [0, r] at a point \hat{t} . In other words, we have

$$\inf_{B(x_0,r)} J = J(x_{\hat{t}})$$

Recalling that $J'(x) \neq 0$ for all $x \in B(x_0, r)$, we then infer that $\hat{t} = r$. So, x_r is also the unique global minimum of $J_{|B(x_0,r)}$. Finally, let $\{y_n\}$ be a sequence in $B(x_0, r)$ such that $\lim_{n\to\infty} J(y_n) = J(x_r)$. By a remark above, to get that $\lim_{n\to\infty} \|y_n - x_r\| = 0$, we have to show that $\lim_{n\to\infty} \|y_n - x_0\| = r$. Argue by contradiction. If it was

$$\liminf_{n \to \infty} \|y_n - x_0\| < r,$$

then, for some $\gamma \in]0, r[$, we would have $||y_n - x_0|| < \gamma$ for infinitely many n, and so

$$\inf_{B(x_0,r)} J = \inf_{B(x_0,\gamma)} J = J(x_\gamma)$$

against the fact that $J'(x_{\gamma}) \neq 0$. Thus, the problem of minimizing J over $B(x_0, r)$ is also well posed, and the proof is complete.

Remark. From the above proof, it is clear the local Lipschitzianity of J' serves only to guarantee that, for some $\rho > 0$ and for each λ large enough, the functional $x \to \frac{\lambda}{2} ||x - x_0||^2 + J(x)$ is strictly convex in the ball $B(x_0, \rho)$. So, Theorem 1 actually holds for C^1 functionals with this latter property (see [2, pp. 135-136]).

Acknowledgment

The author thanks Professor J. Saint Raymond for useful correspondence.

References

- A. L. DONTCHEV and T. ZOLEZZI, Well-posed optimization problems, Lecture Notes in Mathematics, 1543, Springer-Verlag, 1993. MR1239439 (95a:49002)
- [2] B. MORDUKHOVICH, Variational analysis and generalized differentiation, vol. II, Springer-Verlag, 2006. MR2191745
- [3] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. II/B, Springer-Verlag, 1985. MR1033498 (91b:47002)
- [4] E. ZEIDLER, Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985. MR0768749 (90b:49005)

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

E-mail address: ricceri@dmi.unict.it