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THE PROBLEM OF MINIMIZING LOCALLY
A C2 FUNCTIONAL AROUND NON-CRITICAL POINTS

IS WELL-POSED

BIAGIO RICCERI

(Communicated by Jonathan M. Borwein)

Abstract. In this paper, we prove the following general result: Let X be a
real Hilbert space and J : X → R a C1 functional, with locally Lipschitzian

derivative.
Then, for each x0 ∈ X with J ′(x0) �= 0, there exists δ > 0 such that, for

every r ∈]0, δ[, the restriction of J to the sphere {x ∈ X : ‖x − x0‖ = r} has
a unique global minimum toward which every minimizing sequence strongly
converges.

In the sequel, (X, 〈·, ·〉) is a real Hilbert space. For each x ∈ X, r > 0, we set

B(x, r) = {y ∈ X : ‖y − x‖ ≤ r}

and
S(x, r) = {y ∈ X : ‖y − x‖ = r} .

Given a functional J : X → R and a set C ⊆ X, we say that the problem of
minimizing J over C is well-posed if the following two conditions hold:

- the restriction of J to C has a unique global minimum, say x̂;
- for every sequence {xn} in C such that limn→∞ J(xn) = infC J , one has

limn→∞ ‖xn − x̂‖ = 0.
Assuming J ∈ C1(X), our basic question is: under which assumptions is the

problem of minimizing J over S(0, r) well posed for each r > 0 small enough?
To introduce our result in response to this question, let us make some consider-

ations.
First, consider the case where J is even. Then, for any r > 0, J|S(0,r) has either

none or at least two global minima. Note that J ′(0) = 0, since J ′ is odd.
However, even if J ′(0) �= 0, it may occur either that J|S(0,r) has at least two

global minima for each r > 0, or that J|S(0,r) has no global minima for each r > 0.
In this connection, consider the following two examples.

Example 1. Take X = R2 and

J(x, y) = x − |y|q
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where 1 < q < 2. Note that J ∈ C1(R2) and ∇J(0) �= 0. Let r > 0. Since

lim
n→∞

nq−1(n −
√

n2 − 1) = 0,

for n ∈ N large enough, we have

J

(
−

√
r2 − r2

n2
,
r

n

)
= −

√
r2 − r2

n2
−

( r

n

)q

< −r = J(−r, 0) .

Now, observe that J|S(0,r) attains its infimum at some point (x0, y0) with x0 ≤ 0.
The above inequality shows that x0 > −r (and so y0 �= 0). Consequently, (x0,−y0)
is also a global minimum of J|S(0,r).

Example 2. Take X = l2 and

J(x) = x1 −
( ∞∑

n=2

a2
nx2

n

)p

,

where 1
2 < p < 1 and {an} is a strictly increasing sequence of positive numbers

converging to 1. Note that J ∈ C1(l2) and J ′(0) �= 0. Fix r > 0. Let {en} be the
canonical basis of l2. Moreover, set

I := {x ∈ l2 : x1 = 0}

and let A : l2 → l2 be the operator defined by

A(x) = {anxn}

for all x ∈ l2. Note that ‖A(en)‖ = an and so supn∈N ‖A(en)‖ = 1. Note also that
‖A(y)‖ < 1 for all y ∈ I ∩ S(0, 1). Further, it is easy to see that

S(0, r) = {−r
√

1 − λ2e1 + λry : λ ∈ [0, 1], y ∈ I ∩ S(0, 1)} .

Consequently, we have

inf
S(0,r)

J = inf
y∈I∩S(0,1)

inf
λ∈[0,1]

−r
(√

1 − λ2 + r2p−1‖A(y)‖2pλ2p
)

.

Now, let η : [0, +∞[→ R be the continuous function defined by

η(t) = sup
λ∈[0,1]

(
√

1 − λ2 + tλ2p)

for all t ≥ 0. Since p < 1, one readily sees that η is strictly increasing. Hence, we
have

inf
S(0,r)

J = −r sup
y∈I∩S(0,1)

sup
λ∈[0,1]

(√
1 − λ2 + r2p−1‖A(y)‖2pλ2p

)
= −r sup

y∈I∩S(0,1)

η(r2p−1‖A(y)‖2p) = −rη(r2p−1) .

But, for every λ ∈ [0, 1] and y ∈ I ∩ S(0, 1), we have

J(−r
√

1 − λ2e1 + λry) ≥ −rη(r2p−1‖A(y)‖2p) > −rη(r2p−1)

and hence J|S(0,r) has no global minima.
Note that, in the above examples, J ′ is not locally Lipschitzian at 0.
We can now state our main result.
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Theorem 1. Let J : X → R be a C1 functional with locally Lipschitzian derivative.
Then, for each x0 ∈ X with J ′(x0) �= 0, there exists δ > 0 such that, for every

r ∈]0, δ[, one has
inf

B(x0,r)
J = inf

S(x0,r)
J,

and the problems of minimizing J over S(x0, r) and over B(x0, r) are well-posed.

Proof. Fix x0 ∈ X with J ′(x0) �= 0. Also fix ρ > 0 so that

J ′(x) �= 0

for all x ∈ B(x0, ρ) and

L := sup
x,y∈B(x0,ρ),x�=y

‖J ′(x) − J ′(y)‖
‖x − y‖ < +∞ .

For each λ > 0, x ∈ X, set

Iλ(x) =
λ

2
‖x − x0‖2 + J(x) .

Let λ ≥ L. For each x, y ∈ B(x0, ρ), we have

〈I ′λ(x) − I ′λ(y), x − y〉 = 〈λ(x − x0) + J ′(x) − λ(y − x0) − J ′(y), x − y〉
≥ λ‖x − y‖2 − ‖J ′(x) − J ′(y)‖‖x − y‖ ≥ (λ − L)‖x − y‖2 .(1)

From (1), via a classical result ([3, Proposition 25.10]) we then get that the func-
tional Iλ is strictly convex (resp. convex) in B(x0, ρ) if λ > L (resp. λ = L).
Denote by Γ the set of all global minima of the restriction of IL to B(x0, ρ) and set

δ = inf
x∈Γ

‖x − x0‖ .

Observe that δ > 0. Indeed, if δ = 0, then x0 would be a local minimum in X for
IL, and so

0 = I ′L(x0) = J ′(x0)
against an assumption. Now, fix r ∈]0, δ[ and consider the function Φ : B(x0, ρ) ×
[L, +∞[→ R defined by

Φ(x, λ) = Iλ(x) − λr2

2
for all (x, λ) ∈ B(x0, ρ) × [L, +∞[. As we have seen above, Φ(·, λ) is continuous
and convex in B(x0, ρ) for all λ ≥ L, while Φ(x, ·) is continuous and concave
for all x ∈ B(x0, ρ), with limλ→+∞ Φ(x0, λ) = −∞. So, we can apply to Φ a
classical saddle-point theorem [4, Theorem 49.A] which ensures the existence of
(x̂, λ̂) ∈ B(x0, ρ) × [L, +∞[ such that

J(x̂) +
λ̂

2
(‖x̂ − x0‖2 − r2) = inf

x∈B(x0,ρ)

(
J(x) +

λ̂

2
(‖x − x0‖2 − r2)

)

= J(x̂) + sup
λ≥L

λ

2
(‖x̂ − x0‖2 − r2) .

Of course, we have ‖x̂−x0‖ ≤ r, since the sup is finite. But, if it were ‖x̂−x0‖ < r,
we would have λ̂ = L. This, in turn, would imply that x̂ ∈ Γ, against the fact that
r < δ. Hence, we have ‖x̂ − x0‖ = r. Consequently

J(x̂) +
λ̂r2

2
= inf

x∈B(x0,ρ)

(
J(x) +

λ̂

2
‖x − x0‖2

)
.
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From this, we infer that λ̂ > L (since r < δ), that x̂ is a global minimum of
the restriction of J to S(x0, r) and that each global minimum of the restriction
of J to S(x0, r) is a global minimum of the restriction of the functional Iλ̂ to
B(x0, ρ). Since λ̂ > L, this functional is strictly convex, and so x̂ is its unique global
minimum in B(x0, ρ) towards which every minimizing sequences weakly converges
([1, p. 3]). In particular, note that if {yn} is a sequence in B(x0, ρ) such that
limn→∞ J(yn) = J(x̂) and limn→∞ ‖yn − x0‖ = r, then

lim
n→∞

(
J(yn) +

λ̂

2
‖yn − x0‖2

)
= inf

x∈B(x0,ρ)

(
J(x) +

λ̂

2
‖x − x0‖2

)
,

and so {yn} converges weakly to x̂. Since limn→∞ ‖yn − x0‖ = ‖x̂ − x0‖ and X is
a Hilbert space, it follows that limn→∞ ‖yn − x̂‖ = 0. This shows that, for each
r ∈]0, δ[, the problem of minimizing J over S(x0, r) is well posed.

Again fix r ∈]0, δ[. Now, let us show that infB(x0,r) J = infS(x0,r) J . To this end,
for each t ∈ [0, r], put

ϕ(t) = inf
S(x0,t)

J

and denote by xt the unique global minimum of J|S(x0,t). Clearly, we have

inf
B(x0,r)

J = inf
[0,r]

ϕ .

Note also that, by the mean value theorem, J is Lipschitzian in B(x0, ρ), with
Lipschitz constant L1 := ‖J ′(x0)‖ + Lρ. Fix t, s ∈ [0, r]. We have

ϕ(s) − ϕ(t) ≤ J
(
x0 +

s

t
(xt − x0)

)
− J(xt) ≤ L1|t − s|

as well as

ϕ(t) − ϕ(s) ≤ J

(
x0 +

t

s
(xs − x0)

)
− J(xs) ≤ L1|t − s| .

Thus, ϕ is Lipschitzian and so it attains its infimum in [0, r] at a point t̂. In other
words, we have

inf
B(x0,r)

J = J(xt̂) .

Recalling that J ′(x) �= 0 for all x ∈ B(x0, r), we then infer that t̂ = r. So, xr

is also the unique global minimum of J|B(x0,r). Finally, let {yn} be a sequence
in B(x0, r) such that limn→∞ J(yn) = J(xr). By a remark above, to get that
limn→∞ ‖yn − xr‖ = 0, we have to show that limn→∞ ‖yn − x0‖ = r. Argue by
contradiction. If it was

lim inf
n→∞

‖yn − x0‖ < r,

then, for some γ ∈]0, r[, we would have ‖yn −x0‖ < γ for infinitely many n, and so

inf
B(x0,r)

J = inf
B(x0,γ)

J = J(xγ)

against the fact that J ′(xγ) �= 0. Thus, the problem of minimizing J over B(x0, r)
is also well posed, and the proof is complete. �

Remark. From the above proof, it is clear the local Lipschitzianity of J ′ serves
only to guarantee that, for some ρ > 0 and for each λ large enough, the functional
x → λ

2 ‖x − x0‖2 + J(x) is strictly convex in the ball B(x0, ρ). So, Theorem 1
actually holds for C1 functionals with this latter property (see [2, pp. 135-136]).
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