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ABSTRACT
We study the nonlinear evolution of a dust ellipsoid embedded in a Ñat Friedmann background uni-

verse, in order to determine the evolution of the density of the ellipsoid as the perturbation associated
with it detaches from the general expansion and begins to collapse. We show that while the growth rate
of the density contrast of a mass element is enhanced by shear, in agreement with Ho†manÏs 1986 result,
the angular momentum acquired by the ellipsoid has the right magnitude to counterbalance the e†ect of
the shear. This result conÐrms the previrialization conjecture by showing that initial asphericities and
tidal interactions begin to slow the collapse after the system has broken away from the general
expansion.
Key words : cosmology : theory È galaxies : formation

1. INTRODUCTION

While cosmologists generally believe that structures in
the universe grew via gravitational instability from smaller
inhomogeneities present at the epoch of decoupling, there is
disagreement on several details of the model. One of these is
the role of asphericity in the collapse of perturbations and
structure formation.

According to the previrialization conjecture (Peebles &
Groth 1976 ; Davis & Peebles 1977 ; Peebles 1990), initial
asphericities and tidal interactions between neighboring
density Ñuctuations induce signiÐcant nonradial motions
that oppose collapse. This means that virialized clumps
form later, with respect to the predictions of linear pertur-
bation theory or the spherical collapse model, and that the
initial density contrast needed to obtain a given Ðnal
density contrast must be larger than that for an isolated
spherical Ñuctuation. This kind of conclusion has been
supported by Barrow & Silk (1981), Szalay & Silk (1983),
Villumsen & Davis (1986), Bond & Myers (1996a, 1996b),
and et al. (1996).¢okas

In particular, Barrow & Silk (1981) and Szalay & Silk
(1983) pointed out that nonradial motions would slow the
rate of growth of the density contrast, by lowering the pecu-
liar velocity, and suppress collapse once a system detached
from the general expansion. Villumsen & Davis (1986) gave
examples of the growth of nonradial motions in N-body
simulations. Arguments based on a numerical least-action
method led Peebles (1990) to the conclusion that irregu-
larities in the mass distribution, together with external tides,
induce nonradial motions that slow down the collapse.

et al. (1996) used N-body simulations and a weakly¢okas
nonlinear perturbative approach to study previrialization.
They concluded that when the slope of the initial power
spectrum n [ [1, nonlinear tidal interactions slow down
the growth of density Ñuctuations, and the magnitude of the
e†ect increases when n is increased.
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Opposite conclusions were obtained by Ho†man (1986b,
1989), Evrard & Crone (1992), Bertschinger & Jain (1994),
and Monaco (1995). In particular, Ho†man (1986b, 1989),
using the quasi-linear approximation (Zeldovich 1970 ; Zel-
dovich & Novikov 1983), showed that shear a†ects the
dynamics of collapsing objects and leads to infall velocities
that are higher than in the shear-free case. Bertschinger &
Jain (1994) put this result into theorem form, according to
which spherical perturbations are the slowest in collapsing.
The N-body simulations by Evrard & Crone (1992) did not
reproduce the previrialization e†ect, but the reason is due
to their assumption of an n \ [1 spectrum, di†erent from
the n \ 0 one used by Peebles (1990) that reproduced the
e†ect. If n \ [1, the peculiar gravitational acceleration,
g P R~(n`1)@2, diverges at large R and the gravitational
acceleration moves the Ñuid more or less uniformly, gener-
ating bulk Ñows rather than shearing motions. Therefore,
the collapse will be similar to that of an isolated spherical
clump. If n [ [1, the dominant sources of acceleration are
local, small-scale inhomogeneities, and tidal e†ects will tend
to generate nonradial motions and resist gravitational
collapse.

In a more recent paper, Audit, Teyssier, & Alimi (1997)
proposed some analytic prescriptions for computing the
collapse time along the second and third principal axes of
an ellipsoid, by means of the ““ fuzzy ÏÏ threshold approach.
They point out that the formation of real virialized clumps
must correspond to third-axis collapse and that collapse
along this axis is slowed down by the e†ect of shear rather
than being accelerated by it, in contrast to its e†ect on
Ðrst-axis collapse. They conclude that spherical collapse is
the fastest, in disagreement with Bertschinger & JainÏs
theorem. This result is in agreement with Peebles (1990).

In this paper, we address this controversy by following
the evolution of a dust ellipsoid in an expanding universe.
We shall use a model by Nariai & Fujimoto (1972) that
makes it possible to study separately the e†ect of the shear,
&, and that of angular momentum, L , on the protostruc-
tureÏs evolution.

The paper is organized as follows : In ° 2, we describe the
model used ; in ° 3, we calculate the angular momentum of
the ellipsoid at an intermediate time between the turn-
around of the Ðrst and third axes ; and in ° 4, we describe the
parameters and initial conditions used. Section 5 is devoted
to the discussion of results, and ° 6 to conclusions.
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2. ELLIPSOID MODEL FOR THE COLLAPSE

In order to determine the evolution of the density in an
ellipsoid of ideal Ñuid at zero pressure, we follow Nariai &
Fujimoto (1972) and Barrow & Silk (1981). In what follows,
we shall study the evolution of the density, o, of an ellipsoid
embedded in a pressureless background cosmology with
zero curvature characterized by a background density o

band expansion parameter a(t) :

o
b
\ 1

6nGt2 , a P t2@3 . (1)

As shown by Nariai & Fujimoto (1972), performing two
transformations of coordinates, from the comoving frame

to the inertial frame xk \ (t, xi) withMxü kN

xi\ a(t)xü i (2)

and then to a noninertial system of reference, M(x@)kN, rotat-
ing with angular velocity with respect to the inertial)

iframe MxiN, the Newtonian hydrodynamic equations of con-
tinuity and motion and PoissonÏs equation are
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where o and p are the density and pressure perturbations
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Considering a rotating ellipsoid of uniform density,
o \ o(t), the velocity Ðeld is given by
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where the shear tensor, and the vorticity vector, are&
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, u
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,
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The term represents the ith principal semiaxis of the ellip-a
isoid. Assuming that the rotation velocity possesses only an

and that the initial vorticity (note that herex3-component
the term ““ initial vorticity ÏÏ is not to be interpreted as pri-
mordial vorticity, which is zero before orbit crossing, but as
the vorticity acquired after shell crossing) has no com-
ponents in the directions of and then the equations ofx1 x2,motion for the principal axes of the ellipsoid and that for

the evolution of the density are
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(Nariai & Fujimoto 1972 ; Barrow & Silk 1981), where L is
the angular momentum of the ellipsoid and
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(see eq. [3.22] of Nariai & Fujimoto 1972). Equation (14),
even if not strictly necessary to describe the evolution of the
ellipsoid, is very useful because it allows us to qualitatively
understand how the gravitational instability process is
modiÐed by the rotation and shear anisotropy. If
&\ L\ 0, we are brought back to the spherically sym-
metric case of no rotation. In this event, the density reaches
a maximum value of and afterward the system9n2/16o

brecollapses. The shear, &2, acts in the same sense as gravity,
making collapse easier, while the angular momentum L acts
in the sense opposite to self-gravity, Go, making it easier to
resist gravitational collapse. Obviously, equation (14) could
be also used to obtain the evolution of the density after
calculating &2 and L 2. As shown by Nariai & Fujimoto, &2
is given by equation (18), and can be obtained by means&

iof equation (9) and equation (3.4) of Nariai & Fujimoto
(1972) as follows :
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This last result shows even more clearly that equations (11)È
(13) form a closed system giving the evolution of the ellip-
soid and the shear.

The evolution of the density can then be obtained (once
the angular momentum is known) in two ways :

1. By integrating equations (11)È(13) to determine the
evolution of the semiaxes, in which case &2 can be calcu-
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lated through equations (19) and (18) and the density evolu-
tion Ðnally obtained by integrating equation (14) ;

2. By integrating equations (11)È(13) to determine the
evolution of the semiaxes and then using equation (17).

It is useful to note that while procedure 2 is simpler than 1 if
when L \ &\ 0 it is simpler to use procedure 1&D 0,

because, in this case, we know a priori that &\ 0, and
consequently we have only to perform the integration of
equation (14). If, otherwise, we wanted to use procedure 2,
we should integrate equations (11)È(13) and also impose the
condition that &2\ 0 using equation (19), with a conse-
quent complication of the calculations. In any case, in this
paper we performed the calculations following both pro-
cedures, in order to check the consistency of the results.

A fundamental point to make is the following : the Nariai
& Fujimoto (1972) equations give a description of the evol-
ution and collapse of an ellipsoid only if the ellipsoid has
somehow acquired angular momentum. For the reasons
that follow, we use this model to study the evolution of the
ellipsoid from the epoch of turnaround of the Ðrst axis
onward.

An ellipsoid can have angular momentum for two di†er-
ent reasons :

1. The axes of the ellipsoid and that of the shear of the
velocity Ðeld have an appropriate misalignment, or in other
words, the principal axes of the inertia tensor are not
aligned with the principal axes of the deformation tensor
(see Catelan & Theuns 1996a, 1996b). In this case, the ellip-
soid can have angular momentum even if the vorticity is
zero. We are not interested in this particular case.

2. The system has a nonzero vorticity. Unfortunately, we
know that according to KelvinÏs theorem, if the initial
velocity Ðeld is irrotational, i.e., curl-free, then it should
remain irrotational in the nonlinear regime. However, since
the collapse of a protostructure is a violent phenomenon,
the conditions of KelvinÏs circulation theorem should be
violated (Chernin 1970). Then there are two possibilities for
vorticity generation (see Sasaki & Kasai 1998) :

a) Acquisition of vorticity by the formation of shock
fronts in the protostructure (pancake), corresponding to
shell crossing (Doroshkevich 1970). Analytical studies by
Pichon & Bernardeau (1999) have also shown that vor-
ticity generation becomes signiÐcant at scales of 3È4 h~1
Mpc and increases with decreasing scale.

b) Acquisition of angular momentum by means of
tidal torques (Hoyle 1951 ; Peebles 1969 ; Ho†man 1986a ;
Ryden & Gunn 1987). Current analytical descriptions of
vorticity and spin growth by tidal torques turn out to
depend on a free parameter, i.e., the time when the tidal
torques cut o†. This parameter has been related to either
the beginning of decoupling from the Hubble Ñow (d ^ 1)
or the turnaround epoch (time when expansion halts) (for
the spherical collapse model ; Andriani & Caimmi 1994).
Numerical simulations (Barnes & Efstathiou 1987) have
shown that after decoupling from the Hubble Ñow, there
is no substantial increment in angular momentum.

Summarizing, we know (and assume) that from the linear
phase to shell crossing the vorticity is zero ; the ellipsoid has
no rotation. The perturbation is subject to the gravitational
Ðeld of matter inside the ellipsoid, which tends to make it
collapse into a pancake, and to the tidal Ðeld of the matter
outside, which cancels the e†ects of the interior gravita-

tional Ðeld. As a result, the ellipsoid expands with the rest of
the universe and preserves its shape until it enters the non-
linear phase (Barrow & Silk 1981 ; White & Silk 1979).
When it reaches a density contrast d ^ 1, it detaches from
Hubble expansion and the distribution of matter of the
ellipsoid tends to develop nonradial motions (Peebles 1980),
even if the axes of the ellipsoid and the shear of the velocity
Ðeld do not have an appropriate misalignment.

To take account of the rotation acquired, we identify the
Ðnal angular momentum of the ellipsoid with that acquired
at the maximum of the objectÏs expansion (Peebles 1969 ;
Catelan & Theuns 1996a, 1996b). This assumption is justi-
Ðed by the fact that after the maximum expansion time the
angular momentum stops growing, becoming less sensitive
to tidal couplings (Peebles 1969 ; Barnes & Efstathiou 1987).

In other words, we assume that the total angular momen-
tum is acquired before the ellipsoidÏs collapse, since the tidal
torques are much less e†ective afterward (Peebles 1969 ;
Catelan & Theuns 1996a, 1996b). While for a spherical per-
turbation this time is well deÐned (it is the turnaround
epoch), for an aspherical perturbation this epoch is not well
deÐned, and the system should be followed until the long
axis turns around (Eisenstein & Loeb 1995), since the acqui-
sition of angular momentum is important until the collapse
of this axis. To simplify things, we choose a mean value for
the time, between the turnaround of the shortest axist

M
,

and that of the longest (see Ho†man 1986a)

3. ANGULAR MOMENTUM AT t
M

As previously remarked, if we want equations (11)È(13) to
constitute a closed system in order to determine the ellip-
soidÏs evolution, we need the angular momentum L . As
stressed above, we need only the value of the angular
momentum of the virialized structure, which can be well
approximated (see the above discussion) by its value at the
time t

M
.

The e†ect of tidal torques on structuresÏ evolution has
been studied in several papers, especially in connection with
the origin of galaxiesÏ rotation. The explanation of how
galaxies gain spin through tidal torques was pioneered by
Hoyle (1951) in the context of a collapsing protogalaxy.
Peebles (1969) considered the process in the context of an
expanding world model, showing that the angular momen-
tum gained by the matter in a random comoving Eulerian
sphere grows to second order in proportion to t5@3 (in an
EinsteinÈde Sitter universe), since the protogalaxy still rep-
resented a small perturbation, while in the nonlinear stage
the growth rate of an oblate homogeneous spheroid
decreases with time as t~1.

White (1984) considered an analysis by Doroshkevich
(1970) that showed that the angular momentum of galaxies
grows to Ðrst order in proportion to t and that PeeblesÏs
result is a consequence of the spherical symmetry imposed
on the model. White showed that the angular momentum of
a Lagrangian sphere does not grow either in the Ðrst or in
the second order, while the angular momentum of a non-
spherical volume grows to Ðrst order in agreement with
DoroshkevichÏs result.

Another way to study the acquisition of angular momen-
tum by a protostructure is that followed by Ryden (1988,
hereafter R88) and by Eisenstein & Loeb (1995). Following
Eisenstein & Loeb, we separate the universe into two dis-
joint parts : the collapsing region, characterized by having
high density, and the rest of the universe. The boundary
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between these two regions is taken to be a sphere centered
on the origin. As usual, in the following we denote the
density as a function of space by o(x), x being the position
vector, and The gravitational forced(x)\ [o(x) [ o

b
]/o

b
.

exerted on the spherical central region by the external uni-
verse can be calculated by expanding the potential, '(x), in
spherical harmonics. Assuming that the sphere has radius
R, we have

'(x)\ ;
l/0

= 4n
2l] 1

;
m/~l
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lm
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(h, /)xl , (20)

where are spherical harmonics and the tidal moments,Y
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a
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(h, /)o(s)s~l~1 d3s . (21)

In this approach, the protostructure is divided into a series
of mass shells and the torque on each mass shell is com-
puted separately. The density proÐle of each protostructure
is approximated by the superposition of a spherical proÐle,
d(r), and the same Gaussian density Ðeld that is found far
from the peak, v(r), which provides the quadrupole moment
of the protostructure. To Ðrst order, the asphericity about a
given peak can be represented writing the initial density in
the form

o(r)\ o
b
[1 ] d(r)][1] v(r)] (22)

(Ryden & Gunn 1987 ; R88 ; Peebles 1980, eq. [18.5]), where
v(r) satisÐes the equations

S o v
k
o 2T \ P(k) , (23)

P(k) being the power spectrum, and

Sv(r)T \ 0 , Sv(r)2T \ m(0) (24)

(Ryden & Gunn 1987 ; Peebles 1980), where angle brackets
indicate a mean value of the physical quantity considered
and m is the two-point correlation function. (Note that the
previous equations are obtained in the lowest order approx-
imation. The limits of the same are described in Ryden &
Gunn 1987.) The torque on a thin spherical shell of internal
radius x is given by

q(x)\ [GMsh
4n

P
v(x)x Â $'(x)d) , (25)

where Before going on, recallMsh\ 4no
b
[1] d(x)]x2 dx.

that we are interested in the acquisition of angular momen-
tum from the inner region, and for this purpose we take
account only of the l\ 2 (quadrupole) term. In fact, the
l\ 0 term produces no force, while the dipole (l\ 1) cannot
change the shape or induce any rotation of the inner region.
As shown by Eisenstein & Loeb (1995), in the standard cold
dark matter scenario the dipole is generated at large scales,
so the object we are studying and its neighborhood move as
a bulk Ñow, with the consequence that the angular distribu-
tion of matter will be very small, and then the dipole terms
can be ignored. Because of the isotropy of the random Ðeld,
v(x), equation (25) can be written

S o q o 2T \ J30
4nG
5

] [Sa2m(x)2TSq2m(x)2T [ Sa2m(x)q2m* (x)T2]1@2 . (26)

As stressed in the next section, following Eisenstein & Loeb
(1995), the integration of the equations of motion shall be
ended at some time before the inner external tidal shell (i.e.,
the innermost shell of the part of the universe outside the
sphere containing the ellipsoid) collapses. Then the inner
region behaves as a density peak. This last point is an
important one in the development of the present paper.

An important question to ask before continuing regards
the role of the triaxiality of the ellipsoid (density peak) in
generating a quadrupole moment. Equation (26) takes into
account the quadrupole moment that comes from the sec-
ondary perturbation near the peak. The density distribution
around the inner region is characterized by a mean spher-
ical distribution, d, and a random isotropic Ðeld (see eq.
[22]). In reality, the central region is a triaxial ellipsoid. It is
thus important to evaluate the contribution to the quadru-
pole moment due to the triaxiality. Remembering that the
quadrupole moments are given by

q2m \
P
@r @:R

Y 2m* (h, /)s2o(s)d3s

\ x2Msh
4n

P
Y 2m* (h, /)v(x)d) , (27)

we approximate the density proÐle as

d(x) \ Sd(x)Tsph ] lf (x)A(e, p) , (28)

being the mean spherical proÐle, l\ d/p the peakSd(x)Tsphheight, and p the rms value of d. The function A(e, p) of the
triaxiality parameters, e and p, is given by

A(e, p) \ 3e(1[ sin2 h [ sin2 h sin2 /)

] p(1[ 3 sin2 h cos2 /) , (29)

while the function f(x) is given by

f (x) \ 5
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+2m
B
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(R88), where m, p, and are respectively the two-pointR
*correlation function, the mass variance, and a parameter

connected to the spectral moments (see eq. [4.6d] of
Bardeen et al. 1986, hereafter BBKS). Substituting equa-
tions (28) and (29) into equation (27), it is easy to show that
the sum of the mean quadrupole moments due to triaxiality
is

1
Msh

;
m/~2

2
Sq2m(x)T \ lx2f (x)

]
C 1
2n
S6n

5
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4n
S4n
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(3e] p)

D
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which must be compared with that produced by the second-
ary perturbations, v :

Sq2m(x)2T \ x4
(2n)3 Msh2

P
k2P(k) j2(kx)2dk , (32)

where is the Bessel function of order 2. The values of ej2and p can be obtained from the distribution of ellipticity
and prolateness (BBKS, eq. [7.6] and Fig. 7) or, for l[ 2,
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from

e\ 1

J5x[1 ] 6/(5x2)]1@2
, p \ 6

5x4[1] 6/(5x2)]2 (33)

(BBKS, eq. [7.7]), where x is also given in BBKS
(eq. [6.13]). In the case of a peak with l\ 3, we have
e^ 0.15 and p ^ 0.014, while for peaks having l\ 2 and
l\ 1, the values are respectively given by e^ 0.2, p ^ 0.03
and e^ 0.25, p ^ 0.04.

As shown in Figure 1, for a 3 p proÐle, the quadrupole
moment due to triaxiality is less important than that pro-
duced by the random perturbations v in all of the proto-
structure except the central regions, where the quadrupole
moment due to triaxiality is comparable in magnitude to
that due to secondary perturbations. In other words, the
triaxiality has a signiÐcant e†ect only in the very central
regions, which contain no more than a few percent of the
total mass and where the acquisition of angular momentum
is negligible. It follows that the triaxiality can be ignored
while computing both expansion and spin growth (R88).
Moreover, as observed by Eisenstein & Loeb (1995), the
ellipsoid model does better in describing low-shear regions
(having higher values of l), for which collapse is more spher-
ical and the e†ects of triaxiality are less evident. Just these
peaks, having at least l[ 2, will be studied in this paper. In
any case, even if the triaxiality is not negligible it should
contribute incrementally to the acquisition of angular
momentum (Eisenstein & Loeb 1995), Ðnally yielding a
larger e†ect on the density evolution (i.e., a larger reduction
of the growth rate of the density).

In order to Ðnd the total angular momentum imparted to
a mass shell by tidal torques, it is necessary to know the
time dependence of the torque. This can be accomplished by
connecting the and to the parameters of the spher-q2m a2m

FIG. 1.ÈComparison of the mean quadrupole moments due to tri-
axiality (dotted line) around a 3 p peak, smoothed on a galactic scale, with
the sum of the rms quadrupole moments due to secondary perturbations
(solid line).

ical collapse model (Eisenstein & Loeb 1995, eq. [32] ; R88,
eqs. [32] and [34]). Following R88, we have

q2m(h) \ 1
4

q2m,0 d6 0~3 (1[ cos h)2f2(h)
f1(h) [ (d0/d

6
0) f2(h)

, (34)

a2m(h) \ a2m,0(4/3)4@3d6 0(h [ sin h)~4@3 . (35)

The collapse parameter h is given by

t(h) \ 34t0 d6 0~3@2(h [ sin h) . (36)

Equations (34) and (35), by means of equation (26), give us
the tidal torque :

q(h) \ q0
1
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A4
3
B1@3

d6 0~1 (1[ cos h)2
(h [ sin h)4@3

f2(h)
f1(h) [ (d0/d

6
0) f2(h)

,

(37)

where and are given in R88 (eq. [31]) and andf1(h) f2(h) q0are respectively the torque and the meand0\ (o[ o
b
)/o

bfractional density excess inside the shell as measured at the
current epoch, The angular momentum acquired duringt0.expansion can then be obtained by integrating the torque
over time :

L \
P

q(h)
dt
dh

dh . (38)

As remarked in the previous section, the angular momen-
tum obtained from equation (38) is evaluated at the time t

M
.

Then the calculation of the angular momentum can be
accomplished by means of equation (38), once we have
made a choice for the power spectrum. With the power
spectrum and the parameters given in the next section and
for a l\ 2 peak, the model gives a value of 2.5] 1074 g cm2
s~1.

Since the calculation of the angular momentum is funda-
mental for the evolution of the ellipsoid, it is worthwhile to
comment on the validity of the calculation and the result.

To start with, we want to recall that, independently
of the calculation followed in order to determine the
angular momentum, we need only its Ðnal value. Then it
becomes important to compare the result obtained with
our approach with those obtained following di†erent
approaches. An interesting comparison can be made with
the result of Catelan & Theuns (1996a), who calculated the
angular momentum at maximum expansion time (see their
eqs. [31]È[32]) and compared it with previous theoretical
and observational estimates. Assuming the same value of
mass l used to obtain our previously quoted result
(2.5] 1074 g cm2 s~1) and the same redshift (z\ 3) and
distribution of Ðnal angular momentum as adopted by(l

f
)

Catelan & Theuns (1996a), we obtain a value for the
angular momentum of 2] 1074 g cm2 s~1. This last result
is in good agreement with ours and is well in line with
previous theoretical estimates (Peebles 1969 ; Heavens &
Peacock 1988) and numerical simulations (Fall 1983). It is
obvious that neither the approach used in this paper nor
that of Catelan & Theuns (1996a) can predict the very Ðnal
stages of evolution, when clumps merge and interact nonlin-
early and, in addition, dissipative processes may play an
important role as well. In any case, the value of the Ðnal
angular momentum, as obtained from the extrapolation of
the linear theory, is typically a factor of ^3 larger than the
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Ðnal spin of the nonlinear object (Barnes & Efstathiou 1987 ;
Frenk 1987). The e†ects of this discrepancy can be simply
eliminated by reducing the angular momentum by the same
factor.

It should be commented that we have used some proper-
ties of the random Gaussian Ðelds in order to calculate the
torque (e.g., eq. [30]). This could seem a rather strong
assumption given that we are concerned with small scales,
where the density Ðeld is no longer Gaussian. This assump-
tion is justiÐed by the previous remarks, namely, by the fact
that our calculation of the Ðnal angular momentum is
obtained as an extrapolation from linear theory and, as
noted above, this approach yields values for the angular
momentum that are not too di†erent from those obtained in
numerical simulations.

As previously stated, we assume that from onward thet
Mellipsoid has this constant angular momentum. Following

procedure 1 and/or 2 above (° 2), we can determine the time
evolution of the density and the collapse velocity.

4. PARAMETERS, CONSTRAINTS, AND

INITIAL CONDITIONS

In order to apply the model introduced in the previous
section to the evolution of the collapsing perturbation and
solve equations (11)È(14), we need the initial conditions,
and moreover, it is necessary to connect these conditions
and the time dependence of the shear to properties of the
initial density Ðeld. To begin with, initially the high-density
region that will collapse has d > 1 and is contained in a
spherical region. Following Eisenstein & Loeb (1995), we
require that the average mass, density, and quadrupole
moments of the ellipsoid match those of the inner spherical
region at the initial time. So, deÐning, as usual, the over-
density of the inner region as

d6 (R) \ 3
R3
P
0

R
d(y)y2 dy , (39)

the mass of the region is given by

M \ 4n
3

o
b
R3[1] d6 (R)]\ 4n

3
o
b
R3(1] lp) . (40)

The ellipsoid is chosen to match the previous quantities ; it
has overdensity and massd6 (R) M \ (4n/3)o

b
[1] d6 (R)]

and by comparison with equation (40), we] a1a2a3,obtain

R3\ a1 a2 a3 . (41)

The quadrupole moments, necessary to set in equationq2m,0(34), are obtained from equation (27). The initial axes of the
ellipsoid are Ðxed as follows : Given a value of d (or l) and
the initial mass, M, we can calculate the radius R from
equation (40). Equations (41) and (33) make it possible to
obtain and The initial density, for the case l\ 2,a1, a2, a3.is d \ 2 ] 10~3, and M ^ 2 ] 1011 (since we are con-M

_cerned with galactic mass scales) ; the velocity is chosen to
be a uniform expansion with the Hubble Ñow (a pure
growing mode).

The equations of the model described in ° 2 were inte-
grated using the Bulirsch-Stoer algorithm. We assumed an
)\ 1 universe and a Hubble constant of km s~1H0\ 50
Mpc~1. The cold dark matter power spectrum that we
adopt is P(k)\ AkT 2(k) with the transfer function T (k)

given in BBKS (eq. [G3]),

T (k) \ ln(1] 2.34q)
2.34q

[1] 3.89q ] (16.1q)2

] (5.46q)3] (6.71q)4]~1@4 , (42)

where A is a normalization constant and q \ kh1@2/()X h2
Mpc~1). Here represents the ratio of theh \oer/(1.68oc)energy density in relativistic particles to that in photons
(h \ 1 corresponds to photons and three Ñavors of rela-
tivistic neutrinos). The spectrum was smoothed on a galac-
tic scale (R^ 0.5 h~1 Mpc) and normalized such that p(8
h~1Mpc)\ 1 at the present epoch is the rms value of(p8dM/M in a sphere of 8 h~1 Mpc). The mass variance present
in equation (38) can be obtained from the spectrum, P(k), as

p2(R) \ 1
2n2

P
0

=
dk k2P(k)W 2(kR) , (43)

where W (kR) is a top-hat smoothing function :

W (kR) \ 3(kR)~3(sin kR[ kR cos kR) . (44)

The remaining spectral parameters of equation (38), c and
for the chosen spectrum with the above Ðxed smoothingR

*
,

length, are c^ 0.6 and Regarding the durationR
*

\ 0.52.
of the integration, we followed the suggestions of Eisenstein
& Loeb (1995) : Since the average overdensity of the inner-
most external shell is of the same order of magnitude of that
of the ellipsoid, the two objects collapse at similar times or,
in some cases, the inner external shell collapses before the
long axis of the ellipsoid. To avoid this problem, the inte-
gration must be stopped at some time before the collapse of
the inner tidal shell. This can be accomplished by con-
straining the initial conditions so that none of the exterior
shells has an overdensity greater than 95% of the initial
density of the ellipsoid (Eisenstein & Loeb 1995). This last
assumption ensures that the external tidal shells do not
collapse before the integration ends. As a consequence, the
inner region behaves as a density peak. We also imposed
the condition with l[ 2, implying that thed6 (Rsphere) [ lp
inner spherical regions have high overdensity, and Ðnally,
we follow Bond & Myers (1996a, 1996b) in imposing the
condition that no axis may collapse below 40% of its
maximum length, in order to prevent the dynamics from
approaching the singularity at zero length and to simulate
virialization of the corresponding axis.

5. RESULTS

The results of the calculations involving the evolution of
d are shown in Figures 2È5. In Figure 2, we plot d \

in the case of a density peak having height(o[ o
b
)/o

bl\ d/p(R) \ 2. The solid line represents the solution of
equation (14) in the case L \ &\ 0. The dashed and dotted
lines, representing the cases (L \ 0, and&D 0) (L D 0, &D
0), respectively, were obtained using both procedures 1 and
2 described in ° 2. As shown (dashed line), the shear pro-
duces an enhancement in the growth rate of the density of a
mass element. This is the e†ect Ðrst recognized by Ho†man
(1986b). The shear term, &2, that appears in the equation for
the evolution of the density (eq. [14]) is positive deÐnite, so
as long as the Ñuid is irrotational, the growth rate of the
density contrast must be enhanced by it, and thus the e†ects
of the shear are present in both the linear and nonlinear
regimes. During the linear phase, the ellipsoid expands with
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FIG. 2.ÈEvolution of ellipsoidal density perturbations in an expanding
universe as function of redshift for l\ 2 in the cases L \ &\ 0 (solid line),
L \ 0, (dashed line), and (dotted line).&D 0 L D 0, &D 0

the universe : the tidal Ðeld outside the ellipsoid cancels the
e†ects of the gravitational Ðeld interior to it. The shear
contributes to increase the growth rate of the perturbation.
When the e†ect of the angular momentum can no longer be
neglected, we see that the situation changes (dotted line).
Initially the shear term dominates, but in a short time the
angular momentum begins to inÑuence the growth of the
perturbation, counterbalancing the e†ect of the shear term,
&2, and producing a slowing of the growth. As a Ðnal result
the growth of the density perturbation becomes slower than
in the L \ &\ 0 case. The density contrast at virialization,

is reduced with respect to the expected value,d
v
^ 60, d

v
^

178. The value obtained is intermediate between that
obtained by Peebles (1990) for the half-mass radius, d

v
^ 30,

and that obtained with the modiÐed spherical collapse
model of Engineer, Kanekar, & Padmanabhan (2000), d

v
^

80. We note that in this last paper, the authors showed that
to take account of the e†ects due to the asphericity of a
system, one must include in the density evolution equations
typical of the spherical collapse model an additive term,
(1] d)(&2[ 2)2), depending on the shear and angular
momentum of the system, similarly to the Nariai & Fuji-
moto (1972) model.

The preceding result can be interpreted as follows : When
the overdensity of the ellipsoid become considerable and d
attains amplitudes of order unity, the ellipsoid will begin to
recollapse in at least one direction. As shown by Peebles
(1980), if we consider the collapse of a sphere of equivalent
mass, when this reaches the turnaround epoch one of the
axes of the ellipsoid turns shorter and collapses, forming a
pancake in which the baryons shock and the dark matter
goes through violent relaxation. In the process, the ellipsoid
develops nonradial motion. The angular momentum L
present in equations (11)È(14) becomes nonnegligible and
produces the slowing of the density growth shown in the
Ðgure.

FIG. 3.ÈSame as Fig. 2, but for l\ 2.5

In Figure 3, we show the same calculation as in Figure 2,
but now we have increased the value of the peak height to
l\ 2.5. As in the previous case, the shear term produces an
enhancement of the density growth rate (dashed line), but
this time the e†ect is smaller with respect to that shown in
Figure 2. This is due to the fact that the shear magnitude
decreases with increasing peak height (see also Ho†man
1986b, Table 1). As in Figure 2, the angular momentum acts
in a sense opposite to that of shear, but this time its e†ect is
reduced (dotted line) with respect to the l\ 2 case because
of the well-known L -l anticorrelation e†ect (Ho†man
1986a). The trend is conÐrmed by Figure 4, representing the
same calculations as in Figures 2È3 but now for l\ 3.

In summary, both L and & exhibit reduced rates of
growth with increasing l : rare density peaks are in general

FIG. 4.ÈSame as Fig. 2, but for l\ 3
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characterized by low shear, and thus the evolution of the
perturbation tends to follow the results of the spherical
model when l increases, and, as expected, the collapse will
also be nearly spherical (Bernardeau 1994).

In order to study the e†ects of angular momentum and
shear on the collapse velocity, we calculate the collapse
velocity at the epoch of pancaking numerically, solving the
equations of motion for the principal axes of the ellipsoid.
Using the notation of Barrow & Silk (1981), we indicate
with and the principal axes and are thex0X(t) z0Z(t) (x0 z0initial values). We solve equations (11)È(13) to calculate the
collapse velocity down the shortest axis at the epoch of
pancaking in the case of an oblate spheroid (a1\ a2[ a3).This calculation is similar to that of Barrow & Silk (1981),
with the di†erence that our approach is numerical. Then the
collapse velocity at pancaking is

v
zp

\ [z0Z0
p
(t) (45)

(from here on the subscript p indicates that the quantity is
evaluated at the time of pancaking). The initial conditions
are set similarly to those in ° 4 and the equations are solved
for several values of while In Figure 5, we plotx0, z0 \ 1.

where is the pancake radius (seev
zp

/(a5
p
r
p
/a

p
), r

p
\ r0XpBarrow & Silk 1981), as a function of the ratio of the initial

values of the axes, The solid line represents the col-x0/z0.lapse velocity for an oblate spheroid for the(a1\ a2[a3)case in which and l\ 3. The dotted andL D 0, &D 0,
dashed lines plot the results of the same calculation but for
l\ 2.5 and l\ 2, respectively. The Ðgure shows two
trends :

1. The collapse velocity is reduced with increasing initial
Ñattening (increasing value of For example, forx0). z0/x0\
0.44 the collapse velocity is reduced to the Hubble velocity
in the plane of the pancake while in the case of the(H

p
r
p
),

FIG. 5.ÈCollapse velocity for an oblate spheroid down(a1\ a2[ a3)the z-axis at the epoch of pancaking. Here and are the initial values ofx0 z0the longest (x) and the shortest (z) axis ; and are respectively theH
p

r
pHubble constant and the pancake radius at the pancaking epoch. The solid

line represents the collapse velocity for the case and l\ 3.L D 0, &D 0,
The dotted and dashed lines show the same calculation but for l\ 2.5 and
l\ 2, respectively.

more extreme Ñattening the collapse velocityz0/x0\ 0.125,
is reduced by a factor of ^6 with respect the previous value.

2. The collapse velocity is reduced with increasing
angular momentum acquired by the protostructure. As
shown, the collapse velocity is progressively reduced when
we go from l\ 3 peaks down to l\ 2.

In other words, the slowing of the rate of growth of the
density contrast produces a lowering of the peculiar veloc-
ity, in qualitative and quantitative agreement with Barrow
& Silk (1981) and Szalay & Silk (1983).

The result obtained helps to clarify the controversy
related to the previrialization conjecture. According to this
paper, it is surely true that taking account only of the shear,
&, produces a shortening of the collapse time of non-
spherical perturbations, in agreement with Ho†man (1986b)
and Bertschinger & JainÏs collapse theorem. The question is
that in a real collapse other e†ects have an important role,
namely, external tides and the e†ects of small-scale sub-
structure. The results of both Ho†man (1986b) and Bert-
schinger & Jain (1994) are valid for a Ñuid element, which
has no substructure by deÐnition, while a small-scale sub-
structure produces a slowing down of the collapse at least in
two ways :

a) Encounters between infalling clumps and substruc-
ture internal to the perturbation (Antonuccio-Delogu &
Colafrancesco 1994 ; Del Popolo & Gambera 1997,
1999) ; and

b) Tidal interaction of the main protostructure with
substructure external to the perturbation (Peebles 1990 ;
Del Popolo & Gambera 1998).

Moreover, it should be pointed out that as more small-scale
power is present, the collapse of a perturbation may be
slowed in a way that could inhibit the e†ect of shear. Di†er-
ently from Bertschinger & Jain (1994), our model takes into
account the angular momentum of the system and, thus, at
least the e†ects produced by point b above. Similarly to
Bertschinger & Jain (1994), our model fails to take into
account the substructure internal to the system. This is a
natural limitation of the homogeneous ellipsoid model : a
homogeneous ellipsoid cannot represent the substructure of
the object. We, recall however, that the same shortcoming
was present in Peebles (1990) ; in that paper, the substruc-
ture was suppressed because of the adoption of a homo-
geneous Poisson distribution of particles within the
protocluster. This limitation has the consequence of under-
estimating the e†ect of previrialization and, in particular,
the value of the overdensity at virialization, (Peeblesd

v1990). In other words, the e†ects of the slowdown of the
collapse obtained in this paper (similarly to that of Peebles
1990) are surely smaller than what we would Ðnd if we used
a system with internal substructure, as in point a above.

Before concluding, we wish to spend a few words on the
impact of the results of this paper on our view of structure
formation. The reduction in the growth rate of overdensity
and collapse velocity has several consequences for structure
formation. To begin with, a Ðrst consequence is a change of
the mass function, the two-point correlation function, and
the mass that accretes on density peaks. In fact, as has been
remarked several times, the angular momentum acquired
by a shell centered on a peak in the cold dark matter density
distribution is anticorrelated with density : high-density
peaks acquire less angular momentum than do low-density
peaks (Ho†man 1986a ; R88). A greater amount of angular
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momentum acquired by low-density peaks (with respect to
the high-density ones) implies that these peaks can more
easily resist gravitational collapse, and consequently it is
more difficult for them to form structure. This results in a
tendency for less dense regions to accrete less mass, with
respect to a classical spherical model, inducing a biasing of
overdense regions toward higher mass.

As a result, the number of objects with p ¹ 1 (i.e., high
mass) is smaller, since now the collapse is slowed down and
the mass function is much below the standard Press-
Schechter prediction (Del Popolo & Gambera 1999 ; Del
Popolo et al. 2000 ; Audit et al. 1997). Even the two-point
correlation functions of galaxies and clusters of galaxies are
strongly modiÐed as a consequence (see Del Popolo &
Gambera 1999 ; Del Popolo et al. 1999 ; Peebles 1993).

6. CONCLUSIONS

We have examined the evolution of nonspherical inho-
mogeneities in an EinsteinÈde Sitter universe by numeri-
cally solving the equations of motion for the principal axes
and the density of a dust ellipsoid. We took into account the
e†ect of the mass external to the perturbation by calculating

the angular momentum transferred to the developing pro-
tostructure by the gravitational interaction of the system
with the tidal Ðeld of the matter being concentrated in
neighboring protostructures.

We showed that for lower values of l (l\ 2), the growth-
rate enhancement of the density contrast that is induced
by the shear is counterbalanced by the e†ect of angular
momentum acquisition. For l[ 3, the e†ects of angular
momentum and shear are reduced, and the evolution of
perturbations tends to follow the behavior obtained in the
spherical collapse model. These results corroborate the pre-
virialization conjecture because they show that asphericities
and tidal torques slow down the collapse of the pertur-
bation after the system detaches from the general
expansion.
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