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Abstract

Let A be a gradedk-algebra andM be a finitely generatedA-module. The Poincaré seriesPA
M

(z)

is the formal power series
∑

i dimk TorA
i

(k,M)zi . We study the Poincaré series of Derk k[S], the
module of derivations of a numerical semigroup ringk[S], and we relate it to the Poincaré series ok

overk[S] and to the type ofS. We then use this in order to determine the Poincaré series of Derk k[S]
or, at least, its rationality, for some classes of examples. We finally give an example of a non-ration
P

k[S]
Derkk[S](z).

 2004 Elsevier Inc. All rights reserved.

1. Introduction

If A is a commutativek-algebra, withk a field, themodule of derivations, Derk(A) ⊆
Homk(A,A) is the set{ρ ∈ Homk(A,A) | ρ(ab) = aρ(b) + ρ(a)b for everya, b ∈ A}.
This set has a naturalA-module structure by multiplication from the left by elements inA.
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Let A be a standard gradedk-algebra, i.e.,A = ⊕∞
i=0 Ai with A0 = k andA generated

by A1, and letM be a finitely generatedA-module. ThePoincaré seriesPA
M(z) is the

formal power series
∑

i dimk TorAi (k,M)zi .
A gradedk-algebra,A = ⊕

i�0 Ai , is called aKoszul algebraif the minimal graded

A-resolution ofk is linear, i.e., if(TorAi (k, k))j = 0 if i �= j . If A is a Koszul algebra, the
PA

k (z) = 1/HA(−z), whereHA(z) is the Hilbert series
∑

i�0 dimk Aiz
i of A (cf. [16]).

1.1. Description of the content

We now make a closer description of the paper. In Section 2 we give some defin
and fundamentals about numerical semigroupsS and we introducek[S], the numerica
semigroup ring. Furthermore, we give a minimal set of generators of Derk[S]

k as a leftk[S]-
module (cf. Proposition 2.1) which represents the starting point of our paper.

In Section 3 we find the minimal free resolution of Derk[S]
k for the class of two-generate

numerical semigroupsS.
In Section 4 we relate the Poincaré series of Derk k[S] to the Poincaré series ofk over

k[S] and to the type ofS (cf. Theorem 4.4).
In Section 5, we use Theorem 4.4 in order to determine (or just proving the rat

ity of) the Poincaré series of Derk k[S] for some classes of example. We finally give
example of a non-rationalPk[S]

Derkk[S](z).

2. Preliminaries

Our object of study in this paper is the Poincaré series of the module of derivatio
affine monomial curves, that is, on numerical semigroup rings. Therefore, we star
some definitions and fundamentals of numerical semigroups. For a general refere
properties of numerical semigroups and semigroup rings, see [4].

Let N be the set of natural numbers (including zero). A subsetS ⊆ N that con-
tains zero and is closed under addition is called anumerical semigroup. Every nonzero
numerical semigroup is isomorphic to a numerical semigroup with finite comple
to N. Given such a numerical semigroup we always find a unique minimal finite s
generators{g1, g2, . . . , gm} with g1 < · · · < gm. The numbersg1 and m are calledthe
multiplicity and theembedding dimensionof S, respectively. We will use the notatio
S = 〈g1, g2, . . . , gm〉 = {n1g1 + · · · + nmgm | n1, . . . , nm ∈ N}. Now the semigroup ring
associated toS over a fieldk is k[S] = k[tg1, . . . , tgm ] ⊆ k[t].

One of the most important invariants of a numerical semigroupS is theFrobenius num-
ber g(S), that is the max{n ∈ Z | n /∈ S}.

A numerical semigroup is calledsymmetricif for each n ∈ Z, we haven ∈ S or
g(S) − n ∈ S.

The type ofS is |T (S)| whereT (S) = {n ∈ Z \ S | n + s ∈ S for everys ∈ S \ {0}} (of
courseg(S) ∈ T (S) for everyS). The type ofS equals the CM-type ofk[S]. An equivalent
condition for a numerical semigroup to be symmetric is thatT (S) = {g(S)}, hence a nu
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merical semigroup is symmetric if and only if its type is one. Thusk[S] is Gorenstein if
and only ifS is symmetric.

In general, there is no formula for the Frobenius number in terms of the gener
However, if the semigroup is 2-generated, sayS = 〈g1, g2〉, then the Frobenius number
g(S) = g1g2 − g1 − g2 andS is symmetric.

Throughout the rest of the paper we always assume thatS �= N and that the characterist
of the fieldk is zero.

Since Derk(A) � HomA(ΩA/k,A), the following proposition is easy to prove, but w
refer to [9], where the result is greatly generalized.

Proposition 2.1. LetS be a numerical semigroup withS �= N andT (S) = {a1, a2, . . . , ah}.
Then the module of derivations of the numerical semigroup ringk[S], Derk k[S], is the left
k[S]-module minimally generated by

{t∂} ∪ {
tai+1∂, i = 1, . . . , h

}
,

where∂ = ∂/∂t . In particular, the number of minimal generators is|T (S)| + 1.

3. The 2-generated case

If S is generated by two elements, thenk[S] is a hypersurface. Thus it is well known th
the resolution in Proposition 3.1 is periodic.We will determine the resolution explicitly.

Proposition 3.1. Let S = 〈a, b〉 be a2-generated numerical semigroup and letA = k[S].
Then the leftA-moduleM = Derk A has the following minimal free resolution:

· · · φ4−→ A2 φ3−→ A2 φ2−→ A2 φ1−→ A2 φ0−→ M,

where

φ0 = (
t∂ tab−a−b+1∂

)
, φ2r−1 =

(
t(a−1)b ta(b−1)

−ta −tb

)
,

φ2r =
(

tb ta(b−1)

−ta −t(a−1)b

)
,

with r � 1. In particular, the Poincaré seriesPA
M(z) = 2/(1− z).

Proof. We know by Proposition 2.1 thatM is a left A-module minimally generated b
{t∂, tab−a−b+1∂}.

Let φ0 :A2 → M with φ0(e1) = t∂ andφ0(e2) = tab−a−b+1∂ and{e1, e2} the canonica
base forA2. In order to determine the kernel ofφ0, we look for elementsf (t) andg(t) in
A such thatf (t)e1 + g(t)e2 = 0. SinceA is graded, kerφ0 is also graded. Furthermor
kerφ0 is 1-dimensional in each degree, hence a generator of kerφ0 must be of the form
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(ts+ab−a−b,−ts ) with s ∈ S. The two smallest values ofs in order to obtain two indepen
dent generators ares = a ands = b which give((t(a−1)b,−ta), (ta(b−1),−tb)) ⊆ kerφ0.
Furthermore, these two elements generate the kernel sincea andb generateS. We also get

φ1 =
(

t(a−1)b ta(b−1)

−ta −tb

)
.

Now a generator for kerφ1 must be of the form(ts+b−a,−ts ). Let us consider max{l |
lb /∈ aN}. Since gcd(a, b) = 1, this number isa − 1. Now the two smallest values o
s in order to obtain two independent generators ares = a and s = (a − 1)b. There-
fore ((tb,−ta), (ta(b−1),−t(a−1)b)) ⊆ kerφ1. These elements generate kerφ1. Indeed, if
(ts+b−a,−ts) ∈ kerφ1, thens = a + s′ for somes′ ∈ S, or s = lb with l � a − 1. We also
get

φ2 =
(

tb ta(b−1)

−ta −t(a−1)b

)
.

Let us consider kerφ2. We look for generators of the form(ts+ab−a−b,−ts ). Froms = a

ands = b, we get, as above, kerφ2 = ((t(a−1)b,−ta), (ta(b−1),−tb)) and

φ3 =
(

t(a−1)b ta(b−1)

−ta −tb

)
.

Using induction, we have

φ2r =
(

tb tab−a

−ta −t(a−1)b

)
and φ2r−1 =

(
t(a−1)b tab−a

−ta −tb

)

with r � 1.
By construction this complex is a free resolution ofM. Furthermore, since the entrie

in the matrices are in the graded maximal ideal ofA, the resolution is minimal. �

4. The main theorem

In this section we will prove a theorem which allows us to determine the Poincaré
of Derk k[S] overk[S], whenever we know the Poincaré series ofk overk[S] and the type
of S.

Lemma 4.1. Let S = 〈g1, g2, . . . , gm〉 be a numerical semigroup withT (S) = {a1, a2,

. . . , ah} and let A = k[S] and Ā = k[S]/((tg1)k[S]) = k[t̄ g2, . . . , t̄gm]. Then SocĀ =
{t̄ a1+g1, . . . , t̄ah+g1}.

Proof. Let t̄ s ∈ SocĀ with t̄ s �= 0̄ (hences /∈ g1 + S). By the definition of socle,̄ts t̄gi = 0̄
for everyi = 2, . . . ,m and this implies thats + gi ∈ g1 + S for everyi = 1, . . . ,m. Since
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s ∈ S, s − g1 /∈ S and(s − g1) + gi ∈ S for everyi = 1, . . . ,m, thens − g1 ∈ T (S). Hence
s − g1 = aj for somej = 1, . . . , h and SocĀ ⊆ {t̄ a1+g1, . . . , t̄ah+g1}.

Let us consider now̄tai+g1 with i ∈ {1, . . . , h}. Sinceai ∈ T (S), we getai + gj ∈ S for
everyj = 1, . . . ,m andai + gj + g1 ∈ g1 + S. So t̄ ai+g1 t̄ gj = 0̄ for everyj = 1, . . . ,m,
that ist̄ ai+g1 ∈ SocĀ. �

In [15], Levin introduces the idea of a large homomorphism of graded (or local)
as a dual notion to small homomorphism of graded rings introduced in [1]. NamelyA

andB are graded rings andf :A → B is a graded homomorphism which is surjective, th
f is large iff∗ : TorA(k, k) → TorB(k, k) is surjective.

If S, A, andĀ are as in Lemma 4.1, then, as a particular case of [15, Theorem 2.1
get that the homomorphismA → Ā = A/((tg1)A) is large.

Hence using [15, Theorem 1.1], we have the following lemma.

Lemma 4.2. Let S, A, and Ā be as in Lemma4.1 and letM be a finitely generated le
A-module such that(tg1)M = 0. ThenPA

M(z) = P Ā
M(z)PA

Ā
(z) = (1+ z)P Ā

M(z).

Lemma 4.3. LetS be a numerical semigroup withT (S) = {a1, a2, . . . , ah}. ThenDerk k[S]
is isomorphic as a leftk[S]-module to the ideal(tg1, ta1+g1, . . . , tah+g1) in k[S].
Proof. By Proposition 2.1, Derk k[S] is minimally generated as leftk[S]-module by
(t∂, ta1+1∂, . . . , tah+1∂). Since, in our context,∂ is just a symbol, we can delete it, an
sincet i ∈ S if i � 0, we have

(
t, ta1+1, . . . , tah+1) � tL−1(t, ta1+1, . . . , tah+1) = (

tL, ta1+L, . . . , tah+L
)

= tL−g1
(
tg1, ta1+g1, . . . , tah+g1

)
�

(
tg1, ta1+g1, . . . , tah+g1

)
. �

Theorem 4.4. Let S = 〈g1, g2, . . . , gm〉 be a numerical semigroup withT (S) = {a1, a2,

. . . , ah} and letA = k[S]. ThenPA
DerkA

(z) = 1+ hPA
k (z). In particular,PA

DerkA
(z) is ratio-

nal if and only ifPA
k (z) is rational.

Proof. By Lemma 4.3, we can replace Derk A with I = (tg1, ta1+g1, . . . , tah+g1) in A and
use the equalityPA

DerkA
(z) = PA

I (z). We finally note that, by Lemma 4.1,Ī , the image of

I in Ā = k[S]/((tg1)k[S]), is the socle ofĀ and thatPA
A/I (z) = 1+ zPA

I (z).

We note thatA/I andĀ/Ī are isomorphic as̄A-modules, hence, using Lemma 4.2 w
M = A/I and thatĪ ∼= k ⊕ · · · ⊕ k (h times), we have

PA
I (z) = PA

A/I (z) − 1

z
=

(1+ z)P Ā

Ā/Ī
(z) − 1

z
= (1+ z)(1+ zP Ā

Ī
(z)) − 1

z

= (1+ z)(1+ hzP Ā
k ) − 1

z
= (1+ z)(1+ hzPA

k (z)/(1+ z)) − 1

z

= hzPA
k (z) + z = 1+ hPA

k (z). �

z
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5. Examples

In this section we will use Theorem 4.4 in order to determine the Poincaré ser
Derk k[S] for some classes of examples.

5.1. The 3-generated case

Let us start with considering the class of ringsA = k[S] whereS = 〈g1, g2, g3〉 is a
3-generated numerical semigroup. ThenĀ = A/((tg1)A) has embedding dimension 2, a
Ā is either a complete intersection or a Golod ring (c.f. [18, Satz 9]). IfĀ is a com-
plete intersection, we haveP Ā

k (z) = 1/(1 − z)2 (cf. [19, Theorem 6]), soPA
DerkA

(z) =
(2− z + z2)/(1− z)2 since the type is one. OtherwisēA = k[x1, x2]/(f1, f2, f3) (c.f. [13,
Theorem 3.7]), which givesP Ā

k (z) = (1 + z)2/(1 − 3z2 − 2z3) (cf. [18]), soPA
DerkA

(z) =
(3+ 6z + 3z2)/(1− 3z2 − 2z3), since the type equals 2.

5.2. The caseS = 〈a, a + 1, . . . , a + d〉

Let us now consider the class of ringA = k[S] with S = 〈a, a + 1, . . . , a + d〉 with
2d � a −1. LetN := S \ {0} (the so calledmaximal ideal ofS). We denote{n1 +· · ·+nt |
ni ∈ N} by tN .

Lemma 5.1. LetS = 〈a, a + 1, . . . , a + d〉 with 2d � a − 1. Then3N = a + 2N .

Proof. From 2d � a − 1, we get that 3a + 2d � 4a − 1. This implies that{3a,

3a + 1, . . . ,4a − 1} ⊆ a + {2a,2a + 1, . . . ,2a + 2d}, which gives the proof. �
Let Ā = A/taA. Then Ā has an inducedt-grading fromA, and Ā exists (and is 1-

dimensional) only in degreesS \ (a + S). We can regard̄A ask[x1, . . . , xd ]/I , whereI is
the kernel of the epimorphism which sendsxi to t̄ a+i , so t deg(xi) = a + i. We thus have
xixj ∈ I if (a + i) + (a + j) ∈ a + S, xixj − xkxl ∈ I if i + j = k + l, and, by Lemma 5.1
(x1, . . . , xd)3 ⊆ I . Let H = {d + 1, d + 2, . . . , a − 1}, F = {xixj | i + j /∈ H } ∪ {xixj −
xn−dxd | i + j = n ∈ H }, andB̄ = k[x1, . . . , xd ]/(F ).

Lemma 5.2. Let Ā = A/(taA) = k[x1, . . . , xd ]/I . ThenI = (F ) + (x1, . . . , xd)3. ThusĀ
is a standard graded algebra(degxi = 1 for eachi) with Hilbert series1 + dz + (a −
(d + 1))z2.

Proof. This follows sinceS = {0, a, a+1, . . ., a+d,2a,→} and since, using Lemma 5.
S \ (a + S) = {0, a + 1, . . . , a + d,2a + d + 1, . . . ,3a − 1}. �

We will now show that the setF is a Gröbner basis of(F ) in Degrevlex. We will prove
it considering two different cases. We recall thata − 1 � 2d . We start to consider the ca
a − 1 < 2d .
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Lemma 5.3. Let a − 1 < 2d . ThenI = (F ) andF is a Gröbner bases of(F ) (hence ofI )
in Degrevlex.

Proof. Let us denote the elements ofF by f1, . . . , fr (in no special order), the Gröbner b
sis of(F ) by G(F), the initial term offi by in(fi) andk[x1, . . . , xd ]/(in(f1), . . . , in(fr ))

by C̄.
SinceHĀ(z) � HB̄(z) = Hk[x1,...,xd ]/G(I2)(z) � HC̄(z) (coefficientwise), we only nee

is to show thatHĀ(z) = HC̄(z).
By Lemma 5.2, we know thatHĀ(z) = 1 + dz + (a − (d + 1))z2. Since in(xixj −

xn−dxd) = xixj (as we use Degrevlex), we get that the only monomials inC̄ different from
zero in degree less than or equal to two are 1, x̄1, . . . , x̄d , x̄1x̄d , . . . , x̄(3a−1)−(2a+d+1)+1x̄d =
x̄a−(d+1)x̄d .

The only possible nonzero monomials of degree three arex̄i · x̄j x̄d with 1 � i � d

and 1� j � a − (d + 1). Sincea − 1 < 2d we havej < d . If i = d , we getx̄i x̄d = 0,
if i < d , we getx̄i x̄j = 0, hence all monomials of degree three are 0. HenceHC̄(z) =
1+ dz + (a − (d + 1))z2 = HĀ(z). �
Corollary 5.4. Let a − 1 < 2d . ThenP Ā

k (z) = 1/(1− dz + (a − (d + 1))z2).

Proof. By Lemma 5.3 and [7, Theorem 2.2],Ā is a Koszul algebra. �
Theorem 5.5. Let S = 〈a, a + 1, . . . , a + d〉 with 2d > a − 1 and A = k[S]. Then
PA

DerkA
(z) = (a −d + (a −2d −1)z+ (a −d −1)z2)/(1−dz+ (a −d −1)z2) if d < a −1

andPA
DerkA

(z) = a/(1− (a − 1)z) if d = a − 1.

Proof. By Lemma 4.2 and Corollary 5.4, we getPA
k (z) = (1 + z)P Ā

k (z) = (1 + z)/

(1− dz + (a − (d + 1))z2).
We note that for this kind of semigroupS, we haveT (S) = {a + d + 1, . . . ,2a − 1}

(henceh = |T (S)| = a − (d + 1)) if d < a − 1 andT (S) = {1, . . . , a − 1} (henceh =
|T (S)| = a − 1) if d = a − 1. Using Theorem 4.4, we get

PA
DerkA(z) = 1+ (

a − (d + 1)
)
PA

k (z) = a − d + (a − 2d − 1)z + (a − d − 1)z2

1− dz + (a − d − 1)z2

if d < a − 1 and

PA
DerkA(z) = 1+ (a − 1)PA

k (z) = a

1− (a − 1)z

if d = a − 1. �
Let us consider now the remaining casea − 1 = 2d . In this case we cannot use t

proof of Lemma 5.3 to show that the setF is a Gröbner basis ofI as Ā and B̄ have
not the same Hilbert series (and, in particular,I �= (F )). This is the case, for exampl
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for S = 〈13,14,15,16,17,18,19〉, whereHĀ(z) = 1 + 6z + 6z2 (cf. Lemma 5.2) and
HB̄(z) = 1+ 6z + 6z2 + 6z3 + · · · = (1+ 5z)/(1− z).

Lemma 5.6. Leta − 1= 2d . ThenF is a Gröbner basis of(F ) in Degrevlex. In particular,
B̄ = k[x1, . . . , xd ]/(F ) is a Koszul algebra.

Proof. We note that in this caseH = {d + 1, . . . ,2d}. As in Lemma 5.3, let us deno
the elements ofF by f1, . . . , fr and the initial term of a polynomialf by inf . We need
to show that theS-polynomialsSi,j of each pair(fi , fj ) of the elements fromF is zero
moduloF .

Since this happens wheneverfi, fj are both monomials or gcd(infi, infj ) = 1, without
loss of generality, we can restrict to consider only two cases, that isfa = xixl , fb = xixj −
xn−dxd (with i + l /∈ H andi+j = n ∈ H ), andfa = xixj −xn1−dxd , fb = xixl −xn2−dxd

(with i + l = n2 ∈ H, i + j = n1 ∈ H ).
In the first case,Sa,b = xj (xixl) − xl(xixj − xn−dxd) = xlxn−dxd . Sincei + l /∈ H and

i, l � d , theni + l < d +1. By j � d , we geti + l + j < 2d +1, that isl + (n−d) < d +1.
This impliesl + (n − d) /∈ H andxlxn−d ∈ F .

Let us now consider the second case. Here we have

Sa,b = xl(xixj − xn1−dxd) − xj (xixl − xn2−dxd) = −xlxn1−dxd + xjxn2−dxd.

By i+j = n1 andi+ l = n2, we getl+n1 = n2−i+i+j = n2+j . Hencex̄l x̄n1−d x̄d =
x̄j x̄n2−d x̄d moduloF asB̄ is graded and one-dimensional in each degree.

The second part of the lemma follows by [7, Theorem 2.2].�
Lemma 5.7. Let a − 1 = 2d and B̄ be as above. Then the Hilbert seriesHB̄(z) = (1 +
(d − 1)z)/(1− z).

Proof. We first note that|H | = |{d + 1, . . . ,2d}| = d .
Since, by Lemma 5.6,F if a Gröbner basis in Degrevlex, thenHB̄(z) = HC̄(z). More-

over, in(xixj −xn−dxd) = xixj , hence the only elements in̄C of degree two different from
zero are of the kind̄xn−d x̄d with n ∈ H .

Using induction it is easy to see that the only elements inC̄ of degreei different from
zero are of the kind̄xn−d x̄i−1

d with n ∈ H .
This givesHB̄(z) = HC̄(z) = 1+ dz + dz2 + dz3 + · · · = 1+ (d − 1)z/(1− z). �

Theorem 5.8. Let S = 〈a, a + 1, . . . , a + d〉 with 2d = a − 1 and A = k[S]. Then
PA

DerkA
(z) = 1+ d/(1− dz).

Proof. SinceĀ = k[x1, . . . , xd ]/((F ) + m3), wherem = (x1, . . . , xd), andB̄ is a Koszul
algebra (cf. Lemma 5.6), we get, as a particular case of [16, Theorem 1.5],

P Ā
k (−z) = z
(z − 1)HB̄(z) + HĀ(z)
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-

= z

(z − 1)(1+ (d − 1)z)/(1− z) + 1+ dz + dz2 = 1

1+ dz
.

Finally, as above we geth = |T (S)| = a − (d + 1) = d and by Theorem 4.4 an
Lemma 4.2, we have

PA
DerkA(z) = 1+ dPA

k (z) = 1+ d
(
(1+ z)/(1− dz)

) = 1+ d

1− dz
. �

Remark 5.9. LetS1 = 〈a, a+1, . . . , a+d〉 andSl = 〈a, a+ l, . . . , a+ ld〉 with 2d � a−1,
l � 1 and gcd(a, l) = 1.

Sincek[S1]/((ta)k[S1]) = Ā = k[Sl]/((ta)k[Sl]), then Theorems 5.5 and 5.8 hold f
S = Sl .

5.3. The case of multiplicity less than or equal 7

In [14] there is a classification of all possible algebrasĀ, for A = k[S] of multiplicity
at most 7. We will show thatPA

DerkA
(z) is rational in all these cases.

SincePR
k (z) is rational for all ringsR of embedding dimension at most 3 (c.f. [2

Corollary 4.4]), we get thatPA
k (z), and thusPA

DerkA
(z), is rational for allA = k[S], where

S has at most 4 generators. This takes care of allĀ for semigroups of multiplicity at mos
5, except one for which̄A = k[x1, . . . , x4]/(xixj ,1 � i, j � 4), which is a Koszul algebr
(cf. [10]).

If A has multiplicity 6, there are 5 different̄A of embedding dimension 4 or 5. All thes
have relations of degree 2 which constitute a Gröbner basis, so they are Koszul algeb
(c.f. [7, Theorem 2.2]).

Finally, if A has multiplicity 7, there are 25 (out of 55)̄A of embedding dimensio
larger than 3. They are all of the formk[x1, . . . , xn]/I , with I = I2 + J , whereI2 (the part
of the ideal in degree 2) is a Gröbner basis in all cases andJ = 0 (so the ring is Koszul)
or J = (x1, . . . , xn)

3, or (in one case)J = (x1, . . . , xn)
4. In the first caseĀ is a Koszul

algebra, soP Ā
k (z), and thusPA

DerkA
(z), is rational. For the last two cases we can use

Theorem 1.5] to conclude thatP Ā
k (z), and thusPA

DerkA
(z), is rational.

5.4. The case of maximal embedding dimension, maximal length, or almost maxim
length

A one-dimensional ring is of maximal embedding dimension if its embedding dim
sion equals its multiplicity (the same definition holds for the numerical semigroups a
S is of maximal embedding dimension if and only ifk[S] is of maximal embedding di
mension). LetS = 〈g1, . . . , gm〉. If k[S] is of maximal embedding dimension, then̄A =
k[x1, . . . , xm−1]/(x1, . . . , xm−1)

2, which is a Koszul algebra, soP Ā
k (z) = 1/(1−(m−1)z),

and thusPA
DerkA

(z) = m/(1− (m − 1)z) since the type ism − 1.

For a one-dimensional ringR we have the inequalityl(R̄/R) � l(R/C)t (R), whereR̄

is the integral closure ofR in its field of fractions,C is the conductor, andt (R) the CM-
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type (c.f. [4]). The ringR is called of maximal length if there is equality, and it is called
almost maximal length ifl(R̄/R) = l(R/C)t (R) − 1.

If k[S] is of maximal length it is either Gorenstein or of maximal embedding dimensio
(c.f. [5] or [6]) thus, rings of maximal embedding dimension and with type at least
have rationalPA

DerkA
(z).

If k[S] is of almost maximal length, thenS = 〈4,5,11〉, S = 〈4,7,13〉, S = 〈3,3d + 2,

3d + 4〉 for somed � 1, or S = 〈p,dp + 1, dp + 2, . . . , dp + p − 1〉 for somep � 3
andd � 1 (c.f. [5, Theorems 3 and 4]). For the first three examplesĀ is a Golod ring, so
PA

DerkA
(z) = (3+ 6z + 3z2)/(1− 3z2 − 2z3) (see Section 5.1). The last class is of maxim

embedding dimension.

5.5. The case of monomial semigroups

Let R be a one-dimensional Noetherian domain withk ⊂ R ⊆ k[[t]] andv be the nat-
ural valuation for nonzero elements ofk((t)). Then v(R) is a numerical semigroup.
S = 〈g1, . . . , gm〉, then byk[[tS]] we meank[[tg1, . . . , tgm]]. An equivalent definition o
semigroup ring for this kind of ringsR is thatR = k[[xS]] for somex ∈ (t) \ (t2). In gen-
eral, if S is fixed and we consider all ringsR as above withv(R) = S, it is not true that all
these rings are semigroup rings.

A numerical semigroupS is called monomial if each ringR with v(R) = S is a semi-
group ring.

If S is a monomial semigroup, thenS is one from the following list:

(i) S is such that the only elements smaller than the Frobenius number are mu
of g1,

(ii) l /∈ S only for onel > g1,
(iii) g1 � 3 and the only elements greater thang1 that are not inS areg1 + 1 and 2g1 + 1

(cf. [17, Theorem 3.12]).

The first class is of maximal embedding dimension.
Let us consider the second class. In this caseS = {0, g1, . . . , g1 + α − 1, g1 +

α + 1,→}. If α = 1, thenS is of maximal embedding dimension. Ifα = 2, thenĀ =
k[x1, . . . , xm−1]/I = k[x1, . . . , xm−1]/(I2 + m̃3), whereI2 is the part ofI in degree two
andk[x1, . . . , xm−1]/I2 is a Koszul algebra. Using the same argument as in the pro
Theorem 5.5, we getPA

DerA(z). Finally, for α > 2, I = I2 and even in this case, using t
same argument as in the proof of Theorem 5.8, we getPA

DerA(z).
Finally, let S be in the third class. Ifg1 = 3, thenS is two-generated. Ifg1 > 3, then

I = I2 andĀ is Koszul.
In all these casesPA

DerA(z) is rational.

5.6. Further rational cases

There are some more classes of semigroups for which we can say thatPA
DerkA

(z) is

rational. If k[S] is a complete intersection, thenPA
k (z), and thusPA

DerkA
(z), is rational

(cf. [19]). Semigroups defining complete intersections are classified in [8].
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Gorenstein ringsR of codimension at most 4 have rational Poincaré seriesPR
k (z)

(c.f. [12]). They treat the case char(k) �= 2, the general case is in [2]. Thus symmet
semigroups with at most 5 generators have rational seriesPA

DerkA
(z).

In [2] also other classes of rings are shown to have rational series, e.g., almost co
intersections of codimension 4. Thus, ifS has 5 generators andk[S] (or Ā) 5 relations,
thenPA

DerkA
(z) is rational. Also ifĀ has monomial relations, the series are rational, c.f.

5.7. An example of non-rationalP
k[S]
Derkk[S](z)

If S = 〈18,24,25,26,28,30,33〉, it is shown in [11] thatPk[S]
k (z) is not rational. Thus

P
k[S]
Derkk[S](z) is not rational.
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