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Abstract

Let A be a graded-algebra andV be a finitely generated-module. The Poincaré seri@%(z)
is the formal power serie}_; dimy Tor;4 (k, M)z'. We study the Poincaré series of P&fS], the
module of derivations of a numerical semigroup rki§], and we relate it to the Poincaré serieg of
overk[S] and to the type of. We then use this in order to determine the Poincaré series pkDeir
or, at least, its rationality, for some classes ofrapées. We finally give an example of a non-rational
Pé)EeSrgk[S](Z)‘
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

If A is a commutativé-algebra, withk a field, themodule of derivationsDer, (A) C
Homi (A, A) is the set{p € Honk (A, A) | p(ab) = ap(b) + p(a)b for everya,b € A}.
This set has a natural-module structure by multiplicatiofrom the left by elements iA.
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Let A be a standard gradédalgebra, i.e.A = ;2 A; with Ag =k andA generated
by A1, and letM be a finitely generated-module. ThePoincaré seriesP,(}(z) is the
formal power seried ", dimy Torl.A (k, M)7'.

A gradedk-algebra,A = P, A;, is called aKoszul algebraf the minimal graded
A-resolution ofk is linear, i.e., if(ToriA (k,k)); =01if i # j. If Ais a Koszul algebra, then
PkA(z) =1/H4(—z), whereH, (z) is the Hilbert serie§i>odimk A;z' of A (cf. [16]).

1.1. Description of the content

We now make a closer description of the paper. In Section 2 we give some definitions
and fundamentals about numerical semigroSpsnd we introducé[S], the numerical
semigroup ring. Furthermore, we give a minimal set of generators é}%as a leftk[S]-
module (cf. Proposition 2.1) which represents the starting point of our paper.

In Section 3 we find the minimal free resolution of l’p[é]r for the class of two-generated
numerical semigroups.

In Section 4 we relate the Poincaré series of;[2€§] to the Poincaré series éfover
k[S] and to the type of (cf. Theorem 4.4).

In Section 5, we use Theorem 4.4 in order to determine (or just proving the rational-
ity of) the Poincaré series of Dek[S] for some classes of example. We finally give an

example of a non—rationd?[';gsrk]k[s] (2).

2. Preliminaries

Our object of study in this paper is the Poincaré series of the module of derivations on
affine monomial curves, that is, on numerical semigroup rings. Therefore, we start with
some definitions and fundamentals of numerical semigroups. For a general reference to
properties of numerical semigroups and semigroup rings, see [4].

Let N be the set of natural numbers (including zero). A sub%et N that con-
tains zero and is closed under addition is calleguanerical semigroupEvery nonzero
numerical semigroup is isomorphic to a numerical semigroup with finite complement
to N. Given such a numerical semigroup we always find a unique minimal finite set of
generatorq g1, g2, ..., gm} With g1 < --- < g,,. The numberg; andm are calledthe
multiplicity and theembedding dimensioof S, respectively. We will use the notation
S=1(g1,82,---,8m) ={n1g1+ -+ nmgm | n1, ..., nyu € N}. Now the semigroup ring
associated t§ over a fieldk is k[S] = k[#52, ..., t8"] C k[t].

One of the most important invariants of a numerical semig®igtheFrobenius num-
ber g(S), thatisthe majn € Z | n ¢ S}.

A numerical semigroup is calledymmetricif for eachn € Z, we haven € S or
g(S)—nes.

Thetype ofS is |T(S)| whereT (S)={n€Z\ S|n+s e S foreverys € S\ {0}} (of
courseg(S) € T(S) for everyS). The type ofS equals the CM-type df[S]. An equivalent
condition for a numerical semigroup to be symmetric is théaf) = {g(S)}, hence a nu-
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merical semigroup is symmetric if and only if its type is one. TR{S] is Gorenstein if
and only if S is symmetric.

In general, there is no formula for the Frobenius number in terms of the generators.
However, if the semigroup is 2-generated, $a¥ (g1, g2), then the Frobenius number is
g(S) = g1g2 — g1 — g2 andS is symmetric.

Throughoutthe rest of the paper we always assumeStialN and that the characteristic
of the fieldk is zero.

Since Def(A) >~ Homy (24,4, A), the following proposition is easy to prove, but we
refer to [9], where the result is greatly generalized.

Proposition 2.1. Let S be a numerical semigroup with=# N and7 (S) = {a1, a2, ..., an}.
Then the module of derivations of the numerical semigroupk{sg, Der; k[S], is the left
k[S]-module minimally generated by

{rayu {ritty, i=1,....h},

whered = d/d¢. In particular, the number of minimal generators|i&(S)| + 1.

3. The2-generated case

If Sis generated by two elements, thds] is a hypersurface. Thus it is well known that
the resolution in Proposition 3.1 is perioditle will determine the resolution explicitly.

Proposition 3.1. Let S = (a, b) be a2-generated numerical semigroup and let= k[ S].
Then the lefiA-moduleM = Der; A has the following minimal free resolution

where

o t(a—l)b ta(b—l)
go= (19 1074 "Hy), ¢2’_1:( A

(b (ab=1)
$2r = <_ta _t(a—l)b> ’
with r > 1. In particular, the Poincaré serieﬁ'/(} (z)=2/(1-72).

Proof. We know by Proposition 2.1 tha/ is a left A-module minimally generated by
(19, tab7a7b+la}_

Let¢g: A2 — M with ¢o(er) = 19 andgo(er) = r*b—9=b+1y and{ey, e} the canonical
base forA2. In order to determine the kernel ¢§, we look for elementg (r) andg(z) in
A such thatf (r)e; + g(r)ex = 0. SinceA is graded, kegg is also graded. Furthermore,
kergg is 1-dimensional in each degree, hence a generator @fpkerust be of the form
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(rrab=a=b _t5) with s € S. The two smallest values ofin order to obtain two indepen-
dent generators ate= a ands = b which give ((1©@D?, —) (12®=D _rby) C kergo.
Furthermore, these two elentsmenerate the kernel sineeandb generates. We also get

t(a—l)b ta(b—l)
¢l:( —t4 —b >

Now a generator for kef; must be of the formiz**?=¢, —¢%). Let us consider max|
Ib ¢ aN}. Since gcda, b) = 1, this number iss — 1. Now the two smallest values of
s in order to obtain two independent generators are a ands = (¢ — 1)b. There-
fore ((t?, —19), (19—, —s@a=Dby) C kerg1. These elements generate ger Indeed, if
(15— _15) e kergy, thens = a + s’ for somes’ € S, ors = b with [ > a — 1. We also

get
b a(b—1)
t t
2= <_ta _t(a—l)b)-

Let us consider ket,. We look for generators of the forn +26=4=t %) Froms = a
ands = b, we get, as above, kep = (1@~ D>, —14), 1*=D 1)) and

(a=Db  ja(b-1)
¢3 = ( —14 —tb ) .
Using induction, we have

tb tabfa t(afl)b tabfa
$2r = <_ta _t(a—l)b) and ¢2—1= < _a —¢b )

withr > 1.
By construction this complex is a free resolutionMf Furthermore, since the entries
in the matrices are in the graded maximal idealigpthe resolution is minimal. O

4, Themain theorem

In this section we will prove a theorem which allows us to determine the Poincaré series
of Der, k[S] overk[S], whenever we know the Poincaré serie& averk[S] and the type
of S.

Lemma 4.1. Let S = (g1, 82, ..., &m) be a numerical semigroup witli(S) = {ai, az,
...,ap) and let A = k[S] and A = k[S]/((t51)k[S]) = k[t82,...,18"]. Then SocA =
{t'a1+g1’ . fah+g1}_

Proof. Let7* e SocA with 7* # 0 (hences ¢ g1 + S). By the definition of soclei* 7% =0
for everyi =2, ..., m and this implies that + g; € g1 + S for everyi =1, ..., m. Since
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seS,s—gi¢Sand(s —g1)+g € Sforeveryi=1,...,m, thens — g1 € T(S). Hence
s —g1=a; forsomej =1,...,h and SocA C {f1F81, ... fants1y,

Let us consider now 81 with i e {1, ..., h}. Sinceq; T(S), we geta; + g; € S for
everyj=1,...,manda; + g; + g1 € g1+ S. S0r% 1818 =0 for everyj =1,...,m,
thatis7%+81 € SocA. O

In [15], Levin introduces the idea of a large homomorphism of graded (or local) rings
as a dual notion to small homomorphism of graded rings introduced in [1]. Namaly if
andB are graded rings anfl: A — B is a graded homomaorphism which is surjective, then
f is large if f, : TorA (k, k) — TorB (k, k) is surjective.

If S, A, andA are as in Lemma 4.1, then, as a particular case of [15, Theorem 2.1], we
get that the homomorphist— A = A/((t81)A) is large.

Hence using [15, Theorem 1.1], we have the following lemma.

Lemma 4.2. Let S, A, and A be as in Lemmd.1land letM be a finitely generated left
A-module such thatr$1) M = 0. ThenPj;(z) = Pj;(2) P (2) = (1 +2) Py (2).

Lemma4.3. Let S be a numerical semigroup with(S) = {a1, az, ..., ap}. ThenDer k[S]
is isomorphic as a left[S]-module to the ideafsst, r91+81, | 481y in k[S].

Proof. By Proposition 2.1, Derk[S] is minimally generated as lef[S]-module by
(19, t“1_+18, ..., t*7*13) Since, in our context is just a symbol, we can delete it, and
sincet’ € S if i > 0, we have

O R ) oY S (N e e ol (N S SRS L)

tL—& (tgl’ ta1+g1’ e tah+gl) - (tgl’ td1+g1’ o tah+gl). 0

Theorem 4.4. Let S = (g1, g2, ..., gn) be a numerical semigroup withi (S) = {a1, az,
...,ap}and letA = k[S]. ThenPgerkA(z) =1+hP{(z). In particular, P{)‘erkA(z) is ratio-

nal if and only if P/ (z) is rational.

Proof. By Lemma 4.3, we can replace Qet with = (¢81, 10181, **81) in A and
use the equality’,, ,(z) = P/ (z). We finally note that, by Lemma 4.1, the image of

[in A =k[S]/((r81)k[S]), is the socle ofd and thatP;{‘/,(z) =1+zPM2).

We note thatd /1 and A/ are isomorphic ad-modules, hence, using Lemma 4.2 with
M=A/I andthatl =2k ® --- ® k (h times), we have

P -1 A+29P{ -1 A+@+zPi) -1
- Z - Z - Z
A+2A+hzPH -1 1+2)A+hzPA(R)/(L+2) -1
- Z - Z

_ hzPl () +z
Z

=1+hP}@). O
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5. Examples

In this section we will use Theorem 4.4 in order to determine the Poincaré series of
Der k[S] for some classes of examples.

5.1. The 3-generated case

Let us start with considering the class of rings= k[S] where S = (g1, g2, g3) is a
3-generated numerical semigroup. Ther= A/((t51)A) has embedding dimension 2, and
A is either a complete intersection or a Golod ring (c.f. [18, Satz 9]\ s a com-

plete intersection, we hakaA(z) = 1/(1 — z)? (cf. [19, Theorem 6]), sd’g‘erkA(z) =
(2—z+2%)/(1—z)? since the type is one. Otherwigde= k[x1, x21/(f1. f2, f3) (c.f. [13,
Theorem 3.7]), which give® (z) = (14 2)%/(1 — 322 — 223) (cf. [18]), S0 Phg, 4 (2) =

(3+ 6z +3z%) /(1 — 322 — 27%), since the type equals 2.
5.2. Thecas& ={a,a+1,...,a+d)

Let us now consider the class of rily= k[S] with S = (a,a + 1,...,a + d) with
2d >a—1.LetN := 5\ {0} (the so callednaximal ideal ofS). We denotdny + - - -+ n; |
n; € N} bytN.

Lemmab.l.LetS=(a,a+1,...,a+d)with2d >a — 1. Then3N =a + 2N.

Proof. From 21 > a — 1, we get that 8 + 2d > 4a — 1. This implies that{3a,
3a+1,...,4a—1} Ca+1{2a,2a+1,...,2a+ 2d}, which gives the proof. O

Let A= A/t“A. Then A has an induced-grading fromA, and A exists (and is 1-
dimensional) only in degree$\ (a + S). We can regardt ask[x1, ..., xq1/1, wherel is
the kernel of the epimorphism which sendggo 7%+, sor degx;) = a + i. We thus have
xixjelif(a+D)+@+j)ea+ S, xixj—xxyelifi+ j=k+I1,and, by Lemma5.1,
(X1, x)3C L LetH={d+1,d+2,...,a—1}, F={x;xj | i +j ¢ H}U {x;x; —
Xpn_aXxq |i+j=neH},andB =k[x,...,xq]/(F).

Lemmab5.2. LetA = A/(1?A) = k[x1, ...,x4]1/1. Thenl = (F) + (x1, ..., xq)%. ThusA
is a standard graded algebrédegx; = 1 for eachi) with Hilbert seriesl + dz + (a —
(d+1))z2.

Proof. This follows sinceS ={0,a,a+1,...,a+d, 2a, —} and since, using Lemma5.1,
S\(@a@+98)={0,a+1,...,a+d,2a+d+1,...,3a—1}. O

We will now show that the sef is a Grobner basis afF') in Degrevlex. We will prove
it considering two different cases. We recall that 1 < 2d. We start to consider the case
a—1<2d.
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Lemmab.3. Leta — 1 < 2d. Thenl = (F) and F is a Grébner bases dfF) (hence off)
in Degrevlex.

Proof. Letus denote the elementsBty f1, ..., f; (in no special order), the Grébner ba-
sis of (F)) by G(F), the initial term of f; by in(f;) andk[x1, ..., xs1/(n(f1), ..., in(f))
by C.

SinceH ;(z) < Hg(z) = Hyy,
is to show thaiH ; (z) = Hz(2).

By Lemma 5.2, we know thatl;(z) = 1 + dz + (a — (d + 1))z%. Since inx;x; —
Xn—dxq) = x;x; (as we use Degrevlex), we get that the only monomiads different from
zeroin degree less than or equalto two arerl. . ., X4, X1X4, . . ., X(30—1)— 2a+d+1)+1%d =
Xa—(d+1)Xd-

The only possible nonzero monomials of degree threexaresjx; with 1 <i <d
and 1< j <a—(d+1). Sincea — 1< 2d we havej <d. If i =d, we getx;x; =0,
if i <d, we getx;x; =0, hence all monomials of degree three are 0. Hefgez) =
1+dz+(@—(d+1)2=H;(z). O

x4/G (1) (2) < Hz(2) (coefficientwise), we only need

yenes

Corollary 5.4. Leta — 1 < 2d. ThenPA(z) = 1/(1 — dz + (a — (d + 1))z?).
Proof. By Lemma 5.3 and [7, Theorem 2.2],is a Koszul algebra. O

Theorem 55. Let S = (a,a + 1,...,a + d) with 2d > a — 1 and A = k[S]. Then
Phega(@)=(a—d+(@=2d-Dz+(@—d-1z%)/(1-dz+(@—d-1z?)ifd <a-1
and Py, 4 () =a/(1— (@ — Do) ifd=a—1.

Proof. By Lemma 4.2 and Corollary 5.4, we gét!(z) = (1 + 2) P*(z) = (1 + 2)/
A—dz+ (a—(d+1)7D.

We note that for this kind of semigroufy we haveT (S) ={a+d +1,...,2a — 1}
(henceh = |T(S)|=a—d+1)ifd<a—-1andT(S)=1{1,...,a — 1} (henceh =
IT(S)|=a—1)ifd =a— 1. Using Theorem 4.4, we get

a—d+@—2d—1z+ (@a—d—1)72

PéerkA(Z):1+(a_(d+1))PkA(Z): 1—dz+(a—d—1)z?

ifd <a—1and

a

PgerkA(Z) =14 (- 1)PkA(Z) = m

fd=a—1. O

Let us consider now the remaining case- 1 = 24. In this case we cannot use the
proof of Lemma 5.3 to show that the sgtis a Grobner basis of as A and B have
not the same Hilbert series (and, in particulag: (F)). This is the case, for example,
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for § = (13,14,15,16,17,18,19), where H;(z) = 1+ 6z + 672 (cf. Lemma 5.2) and
Hp(z) =146z +6z2+6234 - = (1+52)/(1—2).

Lemmas.6. Leta — 1= 2d. ThenF is a Grobner basis ofF') in Degrevlex. In particular,
B =k[x1,...,x4]/(F) is a Koszul algebra.

Proof. We note that in this cas#l = {d + 1, ...,2d}. As in Lemma 5.3, let us denote
the elements of by f1,..., f, and the initial term of a polynomiaf by in . We need
to show that theS-polynomialss; ; of each pair(f;, f;) of the elements fron¥F is zero
modulo F.

Since this happens whenevgr f; are both monomials or géih f;, in f;) = 1, without
loss of generality, we can restrict to consider only two cases, thfatisx;x;, fp = xjx; —
Xn—axq (Withi+1 ¢ Handi+j=n € H),andf, = x;x; —Xny—dXd, fo = XiX| — Xny—dXd
(Withi +1=noe H,i+ j=n1€ H).

In the first cases, , = x; (x;x;) — x;(x;Xj — Xp—aXq) = X;Xn—aXxq. Sincei +1 ¢ H and
i,l<d,theni+l <d+1.Byj<d,wegeti+[+j<2d+1,thatiss+(n—d) <d+1.
This impliesl + (n —d) ¢ H andx;x,—4 € F.

Let us now consider the second case. Here we have

Sab =X1(XiXj — Xpj—dXq) — Xj(XiX] — Xpp—qXd) = —X|Xn;—dXd + X jXn,—dXd.

Byi+j=niandi+/=np wegetl+ny=nz—i+i+j=nz+j. HENCEX Xy, —aXa =
XjXn,—aXq moduloF asB is graded and one-dimensional in each degree.
The second part of the lemma follows by [7, Theorem 2.2].

Lemma 5.7. Leta — 1 =24 and B be as above. Then the Hilbert serigl; (z) = (14
(d—1z2)/1-2).

Proof. We first note thatH|=|{d +1,...,2d}| =d.

Since, by Lemma 5.6F if a Grobner basis in Degrevlex, théf; (z) = Hz(z). More-
over, inx;x; — x,—4xq) = x;x;, hence the only elements hof degree two different from
zero are of the kind,,_sx4 withn € H.

Using induction it is easy to see that the only elements iof degree different from
zero are of the kind,_s%* with n € H.

This givesHy(z) = Hp(z) =1+ dz +dz? +d®+ - =14+ (d - 1z/(1—2). O

Theorem 58. Let S = {(a,a+ 1,...,a +d) with 2d =a — 1 and A = k[S]. Then
Pl () =14d/(1—d2).

Proof. SinceA = k[x1, ..., x4]1/((F) +m3), wherem = (x1, ..., x4), and B is a Koszul
algebra (cf. Lemma 5.6), we get, as a particular case of [16, Theorem 1.5],

Z

PA(—z2) =
(-2 (z—=DHp(z) + Hi(2)
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z 1
T z-1DA+Wd—-12)/A—2)+1+dz+dz2 1+dz

Finally, as above we gei = |T(S)| =a — (d + 1) = d and by Theorem 4.4 and
Lemma 4.2, we have

1+d
1—dz’

Phera(@=1+dPA (@) =1+d((1+2)/(1—dz)) =

Remark 5.9.LetS1 = (a,a+1,...,a+d)andS;={(a,a+I,...,a+ld)with2d > a—1,
[>1andgcda,l)=1. .

Sincek[S1]/((tHk[S1]) = A = k[S1/(*)k[S;]), then Theorems 5.5 and 5.8 hold for
S=3.

5.3. The case of multiplicity less than or equal 7

In [14] there is a classification of all possible algebfasor A = k[S] of multiplicity

at most 7. We will show that’,g*erkA (z) is rational in all these cases.

Since PkR(z) is rational for all ringsk of embedding dimension at most 3 (c.f. [20,

Corollary 4.4]), we get thaP{" (), and thusPy,, ,(2), is rational for allA = k[S], where

S has at most 4 generators. This takes care addtir semigroups of multiplicity at most
5, except one for whicl = k[xq, .. L x4]/(xix;, L <1, j <4), which is a Koszul algebra
(cf. [20)).

If A has multiplicity 6, there are 5 differedt of embedding dimension 4 or 5. All these
have relations of degree 2 which constitute @iBher basis, so they are Koszul algebras
(c.f. [7, Theorem 2.2]).

Finally, if A has multiplicity 7, there are 25 (out of 53) of embedding dimension
larger than 3. They are all of the forbfix1, ..., x,]/1, with I = I> + J, wherel> (the part
of the ideal in degree 2) is a Grobner basis in all cases/aad (so the ring is Koszul),
or J = (x1,...,x,)% or (in one casey = (x1,...,x,)% In the first cased is a Koszul
algebra, saP/(z), and thusPg,, ,(2), is rational. For the last two cases we can use [16,

Theorem 1.5] to conclude tha’;j‘ (z), and thusP[;‘erkA(z), is rational.
5.4. The case of maximal embedding dimension, maximal length, or almost maximal
length

A one-dimensional ring is of maximal embedding dimension if its embedding dimen-
sion equals its multiplicity (the same definiidnolds for the numerical semigroups and
S is of maximal embedding dimension if and onlykifS] is of maximal embedding di-
mension). LetS = (g1, ..., gu). If k[S] is of maximal embedding dimension, then=
k[x1, ..., %m—11/(x1, ..., xm—1)? whichis a Koszul algebra, 9 (z) = 1/(1— (m — 1)z),
and thusPf, 4 (z) =m/(1— (m — 1)7) since the type is: — 1.

For a one-dimensional rin§ we have the inequaliti{ R /R) < [(R/C)t(R), whereR
is the integral closure oR in its field of fractions,C is the conductor, and R) the CM-
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type (c.f. [4]). The ringR is called of maximal length if there is equality, and it is called of
almost maximal length if(R/R) =I(R/C)t(R) — 1.

If k[S]is of maximal length it is either Gorengteor of maximal embedding dimension
(c.f. [5] or [6]) thus, rings of maximal embedding dimension and with type at least two
have rationalPs,, , (2)-

If k[S] is of almost maximal length, thei= (4,5,11), S =(4,7,13), S =(3,3d + 2,
3d + 4) for somed > 1,orS = (p,dp+1,dp+2,...,dp+ p — 1) for somep >3
andd > 1 (c.f. [5, Theorems 3 and 4]). For the first three examplés a Golod ring, so
Py 4(2) = 3+ 62+ 3z%) /(1 — 3:% — 2%) (see Section 5.1). The last class is of maximal
embedding dimension.

5.5. The case of monomial semigroups

Let R be a one-dimensional Noetherian domain witlt R C k[[¢]] andv be the nat-
ural valuation for nonzero elements &{¢)). Thenv(R) is a numerical semigroup. If
S =(g1,...,8m), then byk[r5] we meank[[%, ..., ¢ ]. An equivalent definition of
semigroup ring for this kind of ring® is that R = k[x3]) for somex < (r) \ (). In gen-
eral, if S is fixed and we consider all ring® as above withy(R) = S, it is not true that all
these rings are semigroup rings.

A numerical semigrous is called monomial if each rin@ with v(R) = S is a semi-
group ring.

If S'is a monomial semigroup, thethis one from the following list:

(i) S is such that the only elements smaller than the Frobenius number are multiples
of g1,
(ii) 1 ¢ S only for onel > g1,
(i) g1 > 3 and the only elements greater tharthat are notinS aregy +1and 21+ 1
(cf.[17, Theorem 3.12]).

The first class is of maximal embedding dimension.

Let us consider the second class. In this c&se {0,¢1,...,81 + o« — 1,g1 +
o +1,—). If « =1, thenS is of maximal embedding dimension. ¢f = 2, thenA =
k[x1,...,xm—11/1 = k[x1, ..., xm—11/(I2 + @3), wherel, is the part of/ in degree two
andk[xy, ..., xm—1]/I2 is a Koszul algebra. Using the same argument as in the proof of
Theorem 5.5, we gePgerA(z). Finally, fora > 2, I = I> and even in this case, using the
same argument as in the proof of Theorem 5.8, werggt, (z).

Finally, let S be in the third class. If1 = 3, thenS is two-generated. If1 > 3, then
I = I, andA is Koszul.

A

In all these caseB,, (z) is rational.

e

5.6. Further rational cases

There are some more classes of semigroups for which we can sa}?gg}kq;(z) is

rational. If k[S] is a complete intersection, theP(z), and thusPp,, ,(2), is rational

(cf. [19]). Semigroups defining complete intersections are classified in [8].
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Gorenstein ringsk of codimension at most 4 have rational Poincaré seFgsz)
(c.f. [12]). They treat the case cltay # 2, the general case is in [2]. Thus symmetric
semigroups with at most 5 generators have rational s@@gmsA (2).

In [2] also other classes of rings are shown to have rational series, e.g., almost complete
intersections of codimension 4. Thus,Sifhas 5 generators aridS] (or A) 5 relations,

then P, , (z) is rational. Also ifA has monomial relations, the series are rational, c.f. [3].

5.7. An example of non—rationa‘\ggsrk]k[s] (2)

If S = (18,24, 25, 26,28, 30, 33), it is shown in [11] thatP ! (2) is not rational. Thus

p{;[gjk[s] (z) is not rational.
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