
Order 21: 29–41, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

29

Representable Lexicographic Products

ALFIO GIARLOTTA
Department of Mathematics, University of Illinois, Urbana IL 61801, U.S.A. and
Department of Economics and Quantitative Methods, University of Catania, Catania 95129, Italy.
e-mail: giarlott@math.uiuc.edu

(Received: 29 May 2003; in final form: 3 February 2004)

Abstract. A linear ordering is said to be representable if it can be order-embedded into the reals.
Representable linear orderings have been characterized as those which are separable in the order
topology and have at most countably many jumps. We use this characterization to study the repre-
sentability of a lexicographic product of linear orderings. First we count the jumps in a lexicographic
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graphic product to properties of its factors, and derive a classification of representable lexicographic
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1. Introduction

This paper deals with representations of linear orderings (also called chains) in
ways which are useful in mathematical economics and, in particular, in utility the-
ory. A model of utility theory consists of: (i) a set of elements L, usually interpreted
as decision alternatives or courses of action; (ii) an individual’s binary relation � of
preference/indifference for elements of L (where x � y means “x is not preferred
to y”); (iii) an internally-consistent set of assumptions about L and the behavior of
� on L, together with conclusions that can be deduced from the assumptions (see
Fishburn (1968) for a discussion of this point of view).

In utility theory the relation � of weak preference is usually assumed to be a
total preorder, i.e., a reflexive, transitive and total binary relation. The indifference
relation ∼, defined by x ∼ y if x � y and y � x, is an equivalence relation.
If indifferent elements of L are identified, � yields a linear order on the quotient
space L/∼. In this paper we work on the quotient space, thus assuming that the
relation � is a linear order. A chain will be indifferently denoted by (L,�), (L,≺)

or L. (Here ≺ is the relation of strict preference, defined by x ≺ y if x � y and
x �= y.)

A fundamental concept in utility theory is the representability of chains (see,
e.g., Bridges and Mehta (1995) for an extensive treatment of this topic): a chain
L is representable if there exists a map u: L → R, called a utility function,
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which is an order-embedding. Evidently such a function on L allows us to measure
preferences quantitatively. Representability can be characterized as follows (see
Fleischer, 1961a):

THEOREM 1.1. A chain is representable if and only if it is separable in the order
topology and has at most countably many jumps.

(Recall that a jump in a chain (L,≺) is a pair (a, b) ∈ L2 such that a ≺ b

and the open interval (a, b) is empty.) In this paper we study the representability
of lexicographic products of chains. In view of Theorem 1.1, we carry out this
analysis by determining the relationships between: (a) jumps in a lexicographic
product and jumps in its factors; (b) separability of a lexicographic product and
separability of its factors.

The paper is organized as follows. In Section 2 we introduce some basic ter-
minology. Section 3 deals with jumps in lexicographic products. In particular, we
establish a formula which counts the jumps in a lexicographic product in terms
of the number of jumps in its factors. Then we derive a characterization of lexi-
cographic products which have at most countably many jumps. In Section 4 we
characterize separability of a lexicographic product in terms of some properties of
its factors. (Using the same approach, we also deal with lexicographic products
which satisfy the countable chain condition.) The section ends with a classification
of representable lexicographic products. In Section 5 we mention possible appli-
cations of lexicographic products to mathematical economics and outline future
directions of research.

2. Preliminaries

By R and Q we mean the chains (R,<) and (Q,<), respectively; the chain (N,<)

can be denoted either by N or by the ordinal number ω. As usual, an ordinal α is
identified with the set of all ordinals below it, i.e., α = {β : β < α}. For operations
on ordinals and cardinals see Kunen (1980).

An order-homomorphism (henceforth, homomorphism) is a map f : L → M

between two chains such that for all x, y ∈ L, x � y implies f (x) � f (y). In
particular, an embedding (respectively, isomorphism) is an injective (respectively,
bijective) homomorphism; the notation L ↪→ M stands for embeddability of the
chain L into the chain M, whereas L ∼= M denotes that L and M are isomorphic
chains.

The density d(L) of a chain (L,≺) is the least infinite cardinal κ such that
there is a set D ⊆ L of cardinality κ which is dense in L (i.e., D intersects
every nonempty open interval in L); in particular, L is separable if d(L) = ℵ0.
The cellularity c(L) of L is the least infinite cardinal κ such that every family of
pairwise disjoint nonempty open intervals of L has cardinality � κ; in particular,
L has the c.c.c. (countable chain condition) if c(L) = ℵ0. Note that the density
and the cellularity of a chain (L,≺) are equal, respectively, to the density and the
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cellularity of the topological space (L, τ≺), where τ≺ is the order topology induced
by ≺. Observe also that c(X) � d(X) for any topological space X. In particular,
c(L) � d(L) for any chain L, and so a chain which does not satisfy the c.c.c. is not
representable.

NOTATION 2.1. Let (Li,≺)i∈I be a nonempty family of chains, where the in-
dex set I is a well-ordered set (I,<). The lexicographic product of the family
(Li,≺)i∈I is the chain (

∏
i∈I Li,≺lex), where the order relation is defined as fol-

lows: for any x = (xi)i∈I , y = (yi)i∈I ∈ ∏
i∈I Li , set x ≺lex y if there exists an

index � = �
y
x ∈ I such that x� ≺ y� and xi = yi for all i ∈ I satisfying i < �.

We denote this chain by
∏lex

i∈I Li . In particular, if I is a nonzero ordinal α, we
denote the corresponding lexicographic product by

∏lex
ξ<α Lξ . Similarly, L ×lex M

denotes the lexicographic product of the two chains L and M, whereas Lα
lex denotes∏lex

ξ<α Lξ , with Lξ = L for each ξ < α.

We assume that all factors in a lexicographic product are non-trivial chains
(i.e., they have a least two elements). This assumption causes no loss of generality
for our purposes. In fact, if one of the factors is the empty chain, then the whole
lexicographic product is empty. On the other hand, if any of the factors is the chain
with exactly one element, then we can omit that factor and obtain a lexicographic
product which is isomorphic to the original one.

The following lexicographic products play an important role in studying repre-
sentability.

EXAMPLE 2.2. Qω
lex is representable, but R ×lex 2 is not. In fact Qω

lex is separable
(eventually constant sequences form a countable dense subset) and has no jumps.
On the other hand, R ×lex 2 is separable but has uncountably many jumps.

EXAMPLE 2.3. If L is an uncountable chain and M is a chain with at least three
elements, then L ×lex M fails to have the c.c.c. (hence it is non-representable). Let
a, b ∈ M be such that a ≺ b and (a, b) �= ∅. Then G := {{x} × (a, b) : x ∈ L} is a
set of pairwise disjoint nonempty open intervals in L ×lex M such that |G| = |L|.
Thus, e.g., c(R) = c(2) = ℵ0 < 2ℵ0 = c(R ×lex 3).

We end this section with two monotonicity results.

LEMMA 2.4. Let (Lξ )ξ<α and (Mξ)ξ<α be two families of chains, where α is a
nonzero ordinal.

(i) If Lξ ↪→ Mξ for all ξ < α, then
∏lex

ξ<α Lξ ↪→ ∏lex
ξ<α Mξ .

(ii) For any I ⊆ α,
∏lex

i∈I Li ↪→ ∏lex
ξ<α Lξ .

Proof. The proof of part (i) is easy and is left to the reader. For (ii), let I ⊆ α. For
each ξ ∈ α \ I , select an element l̂ξ ∈ Lξ . Further, for any x = (xi)i∈I ∈ ∏lex

i∈I Li ,
let lx = (lxξ )ξ<α be the element of

∏lex
ξ<α Lξ defined by lxξ := xξ if ξ ∈ I , and
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lxξ := l̂ξ if ξ ∈ α \ I . The correspondence x
ϕ
→ lx gives a well-defined embedding

ϕ:
∏lex

i∈I Li ↪→ ∏lex
ξ<α Lξ . �

3. Jumps in Lexicographic Products

In this section we first obtain a formula to count jumps in a lexicographic product.
Then we characterize lexicographic products with at most countably many jumps.

NOTATION 3.1. For any chain L, we denote by Jump(L) the set of all jumps
in L, and we set j(L) := |Jump(L)|. Further, for L = ∏lex

ξ<α Lξ , we denote by �L

the least ordinal β with the property that for all ordinals ξ satisfying β < ξ < α,
the chain Lξ has both a minimum and a maximum.

Remark 3.2. For any lexicographic product L = ∏lex
ξ<α Lξ , we have 0 � �L

� α. In particular, �L = 0 if and only if each chain Lξ in the factorization of L,
with the possible exception of L0, has both a minimum and a maximum. On the
other hand, �L = α if and only if α is a limit ordinal and α \ 
(L) is unbounded
in α.

Now we describe the jumps in a lexicographic product.

LEMMA 3.3. Let L = ∏lex
ξ<α Lξ be a lexicographic product. Further, let a =

(aξ )ξ<α and b = (bξ )ξ<α be two elements of L such that a ≺lex b. Then (a, b) is a
jump in L if and only if the following two conditions hold:

(i) (a�, b�) is a jump in L�, where � = �b
a;

(ii) for all ξ > �b
a, aξ = max Lξ and bξ = min Lξ .

In particular, (a, b) ∈ Jump(L) implies �b
a � �L.

Proof. The proof is easy and is left to the reader. �
Remark 3.4. The previous result yields that a jump (a, b) in a lexicographic

product L = ∏lex
ξ<α Lξ is determined by the following parameters: (i) the least

coordinate �b
a < α at which a and b differ; (ii) the two endpoints a�b

a
and b�b

a
of

the jump in L�b
a
; and (iii) the sequence (aξ )ξ<�b

a
= (bξ )ξ<�b

a
in

∏
ξ<�b

a
Lξ .

A chain is said to be dense-in-itself if it has no jumps.

PROPOSITION 3.5. A lexicographic product L = ∏lex
ξ<α Lξ is dense-in-itself if

and only if Lξ is dense-in-itself for all ξ � �L. In particular, if �L = α then L is
dense-in-itself.
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Proof. We prove the contrapositive in both directions.
(⇒) Assume that there exists (aβ, bβ) ∈ Jump(Lβ) for some β � �L. For each

ξ < β, select lξ ∈ Lξ . Define two elements a = (aξ )ξ<α and b = (bξ )ξ<α in L as
follows: aξ = bξ := lξ if ξ < β; aξ := max Lξ and bξ := min Lξ if ξ > β. Then
a ≺lex b and �b

a = β, so (a, b) ∈ Jump(L) by Lemma 3.3.
(⇐) Let a = (aξ )ξ<α and b = (bξ )ξ<α be such that (a, b) is a jump in L. Then

Lemma 3.3 yields that (a�b
a
, b�b

a
) is a jump in L�b

a
and �b

a � �L. �
The number of jumps in a lexicographic product can be obtained as follows.

THEOREM 3.6. For any lexicographic product L = ∏lex
ξ<α Lξ , the number of

jumps in L is given by

j(L) =
∑

�L�β<α

(
j(Lβ) ·

∏
ξ<β

|Lξ |
)

where
∑

denotes cardinal addition and
∏

cardinal multiplication.

Proof. The formula holds whenever L has no jumps, since in this case Propo-
sition 3.5 yields j(Lβ) = 0 for all β � �L. (Note that if �L = α, then j(L) = 0
by Proposition 3.5, whereas the right-hand side is an empty sum.) Thus assume
j(L) > 0. Define a map

f : Jump(L) →
⋃

�L�β<α

(∏
ξ<β

Lξ × Jump(Lβ)

)

(a, b) 
→ (
(aξ )ξ<�b

a
, (a�b

a
, b�b

a
)
)

where a = (aξ )ξ<α and b = (bξ )ξ<α are the endpoints of a jump in L. Note that for
any (a, b) ∈ Jump(L), Lemma 3.3 yields (a�b

a
, b�b

a
) ∈ Jump(L�b

a
) and �b

a � �L.
Therefore f is a well-defined function. Next we show that f is a bijection; this will
prove the stated equality.

To check that f is injective, let (a, b) and (c, d) be two different jumps in L.
Note that their left endpoints a = (aξ )ξ<α and c = (cξ )ξ<α cannot be equal, since
otherwise either d ∈ (a, b) or b ∈ (c, d), which is impossible. Without loss of
generality assume that a ≺lex c. If (aξ )ξ<�b

a
�= (cξ )ξ<�d

c
, then f (a, b) �= f (c, d).

On the other hand, if (aξ )ξ<�b
a

= (cξ )ξ<�d
c
, then �b

a = �d
c . Since a ≺lex b �lex

c ≺lex d by hypothesis, we obtain a�b
a

≺ b�b
a

� c�d
c

≺ d�d
c
; in particular, a�b

a
�=

c�d
c
. It follows that f (a, b) �= f (c, d) also in this case.
To show that f is onto, let (x, (y, z)) be any element of

⋃
�L�β<α(

∏
ξ<β Lξ ×

Jump(Lβ)). Thus there exists an ordinal β satisfying the following properties:
�L � β < α, x = (xξ )ξ<β belongs to

∏
ξ<β Lξ , and (y, z) is a jump in Lβ . Define

two elements a = (aξ )ξ<α and b = (bξ )ξ<α in L as follows. Set aξ = bξ := xξ for
all ξ < β; aβ := y and bβ := z; aξ := max Lξ and bξ := min Lξ for all ξ > β.
(Observe that β � �L implies that a and b are well-defined elements of L.) Then
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�b
a = β � �L, so (a, b) ∈ Jump(L). Since f (a, b) = (x, (y, z)), it follows that f

is surjective. �
Remark 3.7. Observe that the order ≺ on a chain L induces naturally a total

order � on the set Jump(L); namely, for any two jumps (a, b), (c, d) in L, let
(a, b) � (c, d) if and only if a ≺ c. If L = ∏lex

ξ<α Lξ , then we can endow the set⋃
�L�β<α(

∏
ξ<β Lξ × Jump(Lβ)) with a linear order � defined as follows:

((aξ )ξ<β, (aβ, bβ)) � ((cξ )ξ<γ , (cγ , dγ )) ⇔ ((aξ )ξ�δ, γ ) ≺lex ((cξ )ξ�δ, β)

where δ := min{β, γ } and �L � δ. Next we show that the map f defined in the
proof of Theorem 3.6 is an isomorphism between (Jump(L),�) and
(
⋃

�L�β<α(
∏

ξ<β Lξ × Jump(Lβ)),�).
Let (a, b), (c, d) ∈ Jump(L) be such that (a, b) � (c, d), i.e., a ≺ c. Denote

δ := min{�b
a,�

d
c }. By Theorem 3.6, it suffices to show that f (a, b) � f (c, d), i.e.,

either (aξ )ξ�δ ≺lex (cξ )ξ�δ , or (aξ )ξ�δ = (cξ )ξ�δ and �d
c < �b

a. Since a ≺ c, we
have (aξ )ξ�δ �lex (cξ )ξ�δ . If the inequality is strict, then we are done. On the other
hand, assume that (aξ )ξ�δ = (cξ )ξ�δ . It follows that �b

a �= �d
c , because otherwise

c ∈ (a, b), contradicting (a, b) ∈ Jump(L). Thus one and only one of the following
cases is possible: either (i) aξ = max Lξ for all ξ > δ, or (ii) cξ = max Lξ for all
ξ > δ. Since a ≺ c and (aξ )ξ�δ = (cξ )ξ�δ , it follows that (ii) holds. Therefore
�d

c = δ < �b
a , and so f (a, b) � f (c, d).

Lexicographic products with at most countably many jumps can be character-
ized as follows.

COROLLARY 3.8. The following statements are equivalent for a lexicographic
product L = ∏lex

ξ<α Lξ :

(i) Jump(L) is countable;

(ii) for all ordinals β, γ < α, the following conditions hold:
(ii.1) β � �L implies j(Lβ) � ℵ0;
(ii.2) β � max{�L,ω} implies j(Lβ) = 0;
(ii.3) if |Lβ | > ℵ0, then γ � max{�L, β + 1} implies j(Lγ ) = 0.

Proof. First we assume that Jump(L) is countable, and prove that conditions
(ii.1), (ii.2) and (ii.3) hold for all ordinals β and γ less than α. For (ii.1), let β

be such that α > β � �L. Then Theorem 3.6 implies j(L) � j(Lβ), whence
j(Lβ) � ℵ0. For (ii.2), assume that β is such that β � max{�L,ω}. Then, j(L) �
j(Lβ)·∏ξ<β |Lξ | by Theorem 3.6, whence countability of j(L) implies that j(Lβ) =
0. For (ii.3), assume that |Lβ | > ℵ0. If γ � max{�L, β + 1}, then

j(L) � j(Lγ ) ·
∏
ξ<γ

|Lξ | � j(Lγ ) · |Lβ |

using Theorem 3.6. Since j(L) � ℵ0, it follows that j(Lγ ) = 0.
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Next, we assume that (ii) holds, and prove (i). If �L � ω, then condition (ii.2)
implies that j(Lβ) = 0 for all β � �L, whence j(L) = 0 by Theorem 3.6. On the
other hand, if �L < ω, then

j(L) =
∑

�L�n<min{α,ω}

(
j(Ln) ·

∏
i<n

|Li|
)

using Theorem 3.6 and (ii.2). Thus to prove (i) it suffices to show that each addend
on the right-hand side is a countable cardinal. Consider the set A := {n ∈ ω :
|Ln| > ℵ0}. If A is empty, then the result is immediate. Next assume that A �= ∅
and denote m := min A. If m < �L, then condition (ii.3) implies j(Ln) = 0 for all
n such that �L � n < min{α,ω}, and so j(L) = 0. On the other hand, if m � �L,
then (ii.1) yields j(Ln) � ℵ0 for all n such that �L � n � m, whereas (ii.3) implies
j(Ln) = 0 for all n such that m < n < min{α,ω}. Thus Jump(L) is countable. �

We conclude this section with an application of Theorem 3.6 to finite combina-
torics.

Remark 3.9. For each n < ω, consider the finite chain Nn := {0, 1, . . . , n} with
the natural order; further, denote Pn := N0 ×lex · · · ×lex Nn. Note that j(Nn) = n

and j(Pn) = (n+ 1)!− 1. Since �Pn
= 0, Theorem 3.6 yields (a bijective proof of)

the well-known combinatorial equation

(n + 1)! − 1 =
n∑

k=1

k · k!

for each n � 1.

4. Representability of Lexicographic Products

In this section we study density and cellularity of lexicographic products. In par-
ticular, first we characterize separable and c.c.c. lexicographic products, and then
derive a classification of representable lexicographic products.

Density and cellularity of topological spaces are not monotone with respect to
subspaces. For example, if βN denotes the Stone–Čech compactification of the
discrete topological space N, then c(βN) = d(βN) = ℵ0 < 2ℵ0 = c(βN \ N).
On the other hand, both of these cardinal invariants are monotone when chains are
considered.

PROPOSITION 4.1. For any two chains L and M, if M embeds into L, then
d(M) � d(L) and c(M) � c(L).

The proof of 4.1 requires a lemma about double-jumps in chains, which we
prove first.
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DEFINITION 4.2. For any chain (L,≺), a double-jump in L is a triple (x, c, y) ∈
L3 such that x ≺ c ≺ y and the open intervals (x, c) and (c, y) are empty. Given
a double jump (x, c, y), x and y are the endpoints of the double-jump, and c is
the center. We denote by Jump2(L) the set of all double-jumps in L; also, we set
j2(L) := |Jump2(L)|.

Assume that M is a subchain of (L,≺) and x, y are two points in M such that
x ≺ y. The open interval (x, y) can be considered both in L and in M. We use the
following notation: (x, y)L := {l ∈ L : x ≺ l ≺ y} and (x, y)M := {m ∈ M : x ≺
m ≺ y}. Similarly, we define [x, y]L and [x, y]M . Note that (x, y)M = (x, y)L ∩M

and [x, y]M = [x, y]L ∩ M.

LEMMA 4.3. For any two chains L and M, if M embeds in L, then j2(M) � c(L).

Proof. Without loss of generality, let M ⊆ L. We argue by contradiction. As-
sume that j2(M) = λ > κ = c(L). (Recall that c(L) � ℵ0 by definition, even if
the chain is finite.) We claim that it is possible to select a subset F of Jump2(M),
which has cardinality λ and has the property that if (x, c, y) and (v, d,w) are
two different double jumps in F , then the open intervals (x, y)L and (v,w)L are
disjoint.

To prove the claim, define a binary relation ∼ on Jump2(M) as follows: for any
two double-jumps (x, c, y), (v, d,w) in M, let (x, c, y) ∼ (v, d,w) if the interval
[c, d]M in M (or the interval [d, c]M , if d ≺ c) is finite. Then ∼ is an equivalence
relation whose equivalence classes are countable or finite. Since j2(M) = λ > ℵ0,
there are λ equivalence classes. The set F ⊆ Jump2(M), obtained by selecting one
element from each equivalence class, has the required properties.

Now let G be the set of open intervals in L determined by the endpoints of all the
double-jumps in F . Then G is a set of pairwise disjoint nonempty open intervals
in L, whose cardinality is λ. This contradicts c(L) < λ. �

Proof of Proposition 4.1. Without loss of generality, assume that M ⊆ L. The
result is immediate for cellularity, because if {(ai, bi)M : i ∈ I } is a set of pairwise
disjoint nonempty open intervals in M, then {(ai, bi)L : i ∈ I } is a set of pairwise
disjoint nonempty open intervals in L.

For density, assume that d(L) = κ and let D be a dense subset of L which has
cardinality κ . Let P := {(a, b) ∈ D2 : M ∩ (a, b) �= ∅}. For each (a, b) ∈ P ,
select mb

a ∈ M such that a ≺ mb
a ≺ b, and set E := {mb

a : (a, b) ∈ P }. Also, let
F be the subset of M composed of all the centers of the double-jumps in M. Let
G := E ∪ F . We prove that |G| � κ . Note that |E| � κ . By Lemma 4.3, we have
j2(M) � c(L) � d(L), whence |F | � κ . Thus |G| � κ . Next, it is easy to show
that the set G is a dense subset of M. This proves that d(M) � d(L). �

Now we analyze density and cellularity of lexicographic products.

LEMMA 4.4. For any chain L, we have:
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(i) d(L ×lex 2) = max{d(L), j(L)};
(ii) c(L ×lex 2) = max{c(L), j(L)}.

In particular, L is representable if and only if L ×lex 2 is separable.

Proof. We prove (i). First observe that d(L×lex2) � d(L), using Proposition 4.1.
Furthermore c(L×lex2) � j(L), because a jump (a, b) in L yields a nonempty open
interval ((a, 0), (b, 1)) in L ×lex 2. It follows that d(L ×lex 2) � max{d(L), j(L)}.
On the other hand, let D be a dense subset of L with cardinality d(L), and C the
set composed of the endpoints of the jumps in L. Set E := C ∪ D. It is easy to
check that E ×lex 2 is dense in L ×lex 2. Since |E ×lex 2| = max{d(L), j(L)}, this
proves that d(L ×lex 2) � max{d(L), j(L)}.

For (ii), observe that the inequality c(L ×lex 2) � max{c(L), j(L)} follows
from Proposition 4.1 and the remark made in the previous paragraph. To prove
the reverse inequality, let F = {((ai, hi), (bi, ki)) : i ∈ I } be any set of pair-
wise disjoint nonempty open intervals in L ×lex 2. Since the intervals in F are
nonempty, we get ai ≺ bi for all i ∈ I . Set I1 := {i ∈ I : (ai, bi) �= ∅}
and I2 := {i ∈ I : (ai, bi) = ∅}. Note that |I1| � c(L) and |I2| � j(L).
Let F1 = {((ai, hi), (bi, ki)) ∈ F : i ∈ I1} and F2 = {((ai, hi), (bi, ki)) ∈
F : i ∈ I2}. Then |F | = max{|F1|, |F2|} � max{c(L), j(L)}, which proves that
c(L ×lex 2) � max{c(L), j(L)}. �
LEMMA 4.5. Let L = ∏lex

n<ω Ln be a lexicographic product. If Ln is countable
for all n < ω, then L is representable.

Proof. If Ln is countable, then it embeds into Q by Cantor’s theorem (see, e.g.,
Rosenstein, 1982). It follows that L ↪→ Qω

lex ↪→ R, using Lemma 2.4 (i) and
Example 2.2. �
LEMMA 4.6. Let L = ∏lex

k<n Lk be a lexicographic product, where Lk is count-
able for all k < n − 1, and Ln−1 is uncountable. If Ln−1 is separable (respectively,
has the c.c.c.), then L is separable (respectively, has the c.c.c.).

Proof. It suffices to prove the result in the case L = L0 ×lex L1. Let L0 be a
countable chain. First assume that L1 is separable and let D1 be a countable dense
subset of L1. (If L1 has a minimum and/or a maximum, add min L1 and/or max L1

to D1.) We claim that the countable set D := L0 ×lex D1 witnesses the separability
of L. To show that D is dense in L, let a = (a0, a1) and b = (b0, b1) be any
two elements of L such that the open interval (a, b) is nonempty; we will find
d = (d0, d1) ∈ D such that a ≺lex d ≺lex b. We consider two cases: (i) a0 ≺ b0;
(ii) a0 = b0 and a1 ≺ b1.

Assume that (i) holds. If the open interval (a0, b0) is nonempty, we can select
d0 ∈ (a0, b0) and d1 ∈ D1. The point d = (d0, d1) ∈ D satisfies a ≺lex d ≺lex b.
On the other hand, assume that (a0, b0) is an empty interval. Since by hypothesis
(a, b) is not a jump in L, Lemma 3.3 implies that there exists x1 ∈ L1 such that
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either a1 ≺ x1 or x1 ≺ b1; without loss of generality, let a1 ≺ x1. By definition
of D1, we can select d1 ∈ D1 such that a1 ≺ d1 � x1. The point d = (a0, d1)

satisfies the claim. Next, assume that (ii) holds. Then (a, b) /∈ Jump(L) implies
that (a1, b1) /∈ Jump(L1). Let d1 ∈ D1 ∩ (a1, b1); then the point d = (a0, d1)

belongs to D ∩ (a, b).
Finally we prove that if L1 satisfies the countable chain condition, then so does

L = L0 ×lex L1. We prove the contrapositive. Assume that L fails to have the c.c.c.
and let F = {(ai, bi) : i ∈ I } be an uncountable set of pairwise disjoint nonempty
open intervals in L. Since L0 is countable, we can extract from F an uncountable
subset G = {(aj , bj ) : j ∈ J } of pairwise disjoint nonempty open intervals such
that a

j

0 = ak
0 and b

j

0 = bk
0 for all j, k ∈ J . It follows that {(aj

1 , b
j

1) : j ∈ J }
is an uncountable set of pairwise disjoint nonempty open intervals in L1, i.e., the
countable chain condition fails for L1. �

We are ready to classify separable and c.c.c. lexicographic products.

THEOREM 4.7. A lexicographic product L = ∏lex
ξ<α Lξ is separable (respec-

tively, has the c.c.c.) if and only if one of the following cases holds:

(a.1) α < ω; Lξ is countable for all ξ < α;
(a.2) α < ω; Lξ is countable for all ξ < α − 1, and Lα−1 is uncountable but is

separable (respectively, has the c.c.c.);
(a.3) α < ω; Lξ is countable for all ξ < α − 2, Lα−2 is uncountable, but it

is separable (respectively, has the c.c.c.) and has at most countably many
jumps, and Lα−1 is isomorphic to 2;

(b) α = ω; Lξ is countable for all ξ < α;
(c) α = ω + 1; Lξ is countable for all ξ < ω, and Lω is isomorphic to 2.

Proof. (⇐) The chain L is obviously separable in case (a.1), since it is even
countable. In case (a.2), the result follows at once from Lemma 4.6. For case (b),
Lemma 4.5 yields separability of L. Similarly, a joint application of Lemma 4.4
and Lemma 4.5 ensures that L is separable also in case (c). Finally, we show that
case (a.3) is an instance of case (a.2). Indeed, let L = ∏lex

k<n Lk be as in (a.3), and
consider L′ := Ln−2 ×lex Ln−1. Since Ln−2 is uncountable, separable (respectively,
has the c.c.c.) and with at most countably many jumps, whereas Ln−1 is isomorphic
to 2, then Lemma 4.4 yields that L′ is a chain which is uncountable and separable
(respectively, has the c.c.c.). Thus, we are in case (a.2), with the last factor equal
to L′.

(⇒) Assume that L = ∏lex
ξ<α Lξ is separable (respectively, has the c.c.c.).

First, note that we cannot have any factor Lξ in the product which fails to be
separable (respectively, fails to have the c.c.c.). Otherwise, Lemma 2.4 (ii) and
Proposition 4.1 would imply that L is not separable (respectively, fails to have the
c.c.c.), too.

Next observe that the number α of factors cannot exceed ω + 1. Indeed, if
α � ω + 2, then Lemma 2.4 yields that 2ω+2

lex embeds into L. Since 2ω+2
lex fails
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to satisfy the c.c.c. (by Example 2.3), so does L by Proposition 4.1, which is a
contradiction. Thus, only three cases are possible: either α < ω, or α = ω, or
α = ω + 1.

If α = n < ω, let Lk be a factor which is uncountable and separable (respec-
tively, has the c.c.c.). (If there is no such factor, we are in case (a.1).) We claim that
k � n − 2. If not, consider the chain M := Lk ×lex 2 ×lex 2. Since k < n − 2,
Lemma 2.4 yields M ↪→ L, and so M has the c.c.c. by Proposition 4.1; this contra-
dicts the result in Example 2.3. Thus, either k = n−1, or k = n−2. In the first case,
(a.2) holds. In the second case, we have |Ln−1| = 2, since otherwise Ln−2 ×lex 3
is a chain which fails to have the c.c.c. (by Example 2.3), but embeds into L (by
Lemma 2.4), and so Proposition 4.1 gives again a contradiction. Therefore (a.3)
holds.

Now assume that α = ω. In this case, no factor can be uncountable, since
otherwise an argument similar to the previous one would show that L fails to have
the c.c.c. This proves that the only possibility is (b).

Finally, if α = ω + 1, then |Lω| = 2, because otherwise 2ω
lex ×lex 3 is a chain

which embeds in L, yet it fails to have the c.c.c. Since no factor can be uncountable,
(c) holds. �
COROLLARY 4.8. A lexicographic product L = ∏lex

ξ<α Lξ is representable if and
only if one of the following cases holds:

(R.1) α � ω; Lξ is countable for all ξ < α;
(R.2) α < ω; Lξ is countable for all ξ < α − 1, and Lα−1 is uncountable but

representable.

Proof. We use Corollary 3.8 to rule out some of the cases in Theorem 4.7. It
is immediate to check that conditions (ii.1), (ii.2) and (ii.3) of Corollary 3.8 are
satisfied in cases (a.1) and (b) of Theorem 4.7. Therefore a lexicographic product
L as in (R.1) is representable.

For case (a.2) of Theorem 4.7, conditions (ii.2) and (ii.3) hold vacuously, but
(ii.1) is satisfied if and only if j(Lα−1) � ℵ0. This proves that lexicographic
products of type (R.2) are representable.

Finally we show that if L is as in cases (a.3) and (c) of Theorem 4.7, then the
last factor (isomorphic to 2) causes L to have uncountably many jumps; thus L is
not representable. Indeed, in case (a.3) condition (ii.3) fails (because j(Lα−1) = 1),
whereas in case (c) condition (ii.2) fails (because j(Lω) = 1). �

5. Final Remarks

Lexicographic products appear quite often in the economic literature. The most
well-known example of non-representable lexicographic product is the lexico-
graphic plane R2

lex: in a famous paper, Debreau (1954) used this chain to disprove
the inveterate belief of economists that every preference relation is representable by
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a utility function. More recently, several authors have been focusing their attention
on non-representable preference relations. Research on this topic has been done
in at least two directions: (a) exploring preference representations via embeddings
into particular lexicographic products; and (b) determining the structure of chains
which fail to be representable.

Concerning (a), some authors have considered representations of preference
relations which use embeddings into a chain Z different from R. For example,
Wakker (1988) examines the case Z = R ×lex 2, whereas Knoblauch (2000) deals
with the case Z = Rn

lex, n ∈ ω. More generally, we define the representability
number of L in Z as the least ordinal α such that L embeds into Zα

lex; we denote
this number by reprZ(L). Kuhlmann (1995) has shown that repr

R
(Rα

lex) = α for
any ordinal α (cf. Corollary 2.4, p. 2660). Further, the following results are proved
in Giarlotta (200?): (i) if κ is a regular cardinal which does not embed into M,
then reprM(κ) = κ; (ii) if L is either an Aronszajn line or a Souslin line, then
repr

R
(L) = ω1.

In the direction of research (b) mentioned above, Beardon et al. (2002) have
recently proved the following result: a chain is non-representable if and only if
it is long (i.e., it embeds ω1 or its reverse ordering ω1

∗), or it embeds a non-
representable subchain of the lexicographic plane, or it embeds an Aronszajn line.
A more direct classification of non-representable chains (and, more generally, of all
chains) can be obtained by using the notion of representability number in R. Since
long chains do not embed into Rα

lex for any countable ordinal α (see Fleischer,
1961b), the class of chains can be partitioned as follows: (i) long chains; (ii) non-
long chains which have an uncountable representability number in R; (iii) chains
with a countable representability number in R. We are currently working on a de-
scription of class (ii), which is surprisingly rich in variety. In fact one can construct
a nested hierarchy of chains which embed neither ω1 nor ω1

∗ nor an Aronszajn
line, and yet have representability number in R equal to ω1.
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