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Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by memory loss and personality changes, leading to dementia.

Histopathological hallmarks are represented by aggregates of beta-amyloid

peptide (Ab) in senile plaques and deposition of hyperphosphorylated tau

protein in neurofibrillary tangles in the brain. Rare forms of early onset famil-

ial Alzheimer’s disease are due to gene mutations. This has prompted

researchers to develop genetically modified animals that could recapitulate

the main features of the disease. The use of these models is complemented

by non-genetically modified animals.

Areas covered: This review summarizes the characteristics of the most used

transgenic (Tg) and non-Tg models of AD. The authors have focused on

models mainly used in their laboratories including amyloid precursor protein

(APP) Tg2576, APP/presenilin 1, 3xAD, single h-Tau, non-Tg mice treated with

acute injections of Ab or tau, and models of physiological aging.

Expert opinion: Animal models of disease might be very useful for studying

the pathophysiology of the disease and for testing new therapeutics in

preclinical studies but they do not reproduce the entire clinical features of

human AD. When selecting a model, researchers should consider the various

factors that might influence the phenotype. They should also consider the

timing of testing/treating animals since the age at which each model develops

certain aspects of the AD pathology varies.

Keywords: aging, Alzheimer’s disease, behavior, memory, synaptic plasticity, transgenic models
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1. Introduction

In 1906, the German psychiatrist Alois Alzheimer described a peculiar form of
mental illness characterized by “progressive cognitive impairment, focal symptoms,
hallucinations, delusions, and psychosocial incompetence” [1] in the patient
Augustine Deter [2]. The histopathological examination of her brain revealed the
presence of neurofibrillary tangles with “characteristic thickness and peculiar
impregnability” and “numerous small miliary foci… determined by the storage of
a peculiar material in the cortex” recognizable with the typical senile plaques. In
1909 the Italian physician Gaetano Perusini examined four cases of patients affected
by dementia onset at the age of 50--60 years and confirmed the clinical and histo-
pathological hallmarks of the new disease named ‘Alzheimer’s disease’ (AD) by
Emil Kraepelin [3]. In the following years, several case reports of dementia with
the characteristic histopathological signs were diagnosed and epidemiological stud-
ies recognized AD as the main form of dementia in the elderly [4] expected to grow
exponentially in the decades to follow.

In the 1980s, researchers identified beta-amyloid protein (Ab) as the main
component of brain plaques and tau protein as the main component of neurofibril-
lary tangles. At the same time, the discovery of rare forms of early onset Familial
Alzheimer’s disease (FAD) inherited in an autosomal dominant fashion [5]

10.1517/17460441.2015.1041913 © 2015 Informa UK, Ltd. ISSN 1746-0441, e-ISSN 1746-045X 703
All rights reserved: reproduction in whole or in part not permitted

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

at
an

ia
],

 [
D

an
ie

la
 P

uz
zo

] 
at

 0
6:

22
 0

6 
A

ug
us

t 2
01

5 

http://informahealthcare.com/journal/EDC


highlighted the relevance of genetic factors in the pathogenesis
of the disease [6]. Mutations in the gene for the amyloid
precursor protein (APP) on chromosome 21 were identified
in several families (London, Dutch, Swedish and Flemish
mutations) affected by FAD and, afterwards, other mutations
in the gene for presenilin 1 (PS1) in chromosome 14 and pre-
senilin 2 (PS2) in chromosome 1 were observed in AD fami-
lies, even if they could also be present in healthy subjects.
However, all these mutations induced an increase of Ab pro-
duction from APP, even if it has been recently demonstrated
that PS mutations may cause neurodegeneration and demen-
tia through not only an increase of Ab42/40 ratio but also a
loss of the physiological PS function [7].
APP is a type-1 transmembrane glycoprotein formed by

365 -- 770 aminoacids, with the isoform APP695 predominant
in human neuronal tissue, and the isoforms APP751 and
APP770 widely expressed in non-neuronal cells. APP under-
goes a complex proteolitic cleavage catalyzed by secretases.
APP can be initially cleaved by a- or b-secretases. The
a-secretase cleavage generates a soluble extracellular domain,
sAPPa, and a carboxy-terminal fragments (CTF), containing
83 amino acids (AAs) (CTF83), whereas the b-secretase cleav-
age generates sAPPb and 99 AAs (CTF99). In turn, subsequent
cleavage by g-secretase generates a p3 fragment and a 57-59 AA
CTF from C83 and a 40--42 AA fragment (Ab40 or Ab42)
together with APP intracellular domain fragment from
CTF99. Thus, b-secretase and g-secretase, of which PS1 and
PS2 are a subcomponent, catalyze the production of Ab.
The knowledge of this pathway, together with the genetic

mutations and the post-mortem Ab-plaques in the AD brains,
laid the basis for the so-called Amyloid hypothesis that has
dominated the scientific scene in the last 30 years. Thus, a
number of therapeutic strategies aimed at reducing Ab pro-
duction in the AD brain have been developed.
This also prompted the neuroscience community to find a

‘model’ of disease that, even if it does not reproduce the com-
plete human disease, exhibits the characteristic histological
lesions (amyloid plaques, neurofibrillary tangles and neuronal
loss) and the main symptom of AD: memory loss associated
to a deficit in synaptic plasticity mechanisms. In particular,
rodent models of AD have been used in the last 20 years to
study the pathogenetic mechanisms, the progression of the
disease, and the efficacy of new drugs in preclinical studies.
In this review we will mainly discuss only those models we

have used in our laboratories: single transgenic (Tg) APP
Tg2576, double Tg APP/PS1, triple Tg 3xAD, single
h-Tau, non-Tg models obtained with acute injections of Ab
or tau, models of physiological aging.

2. Transgenic models for the study of AD

To date, animal models used in preclinical studies can be
distinguished in: i) Tg models of AD, consisting in single or
multi-Tg animals overexpressing APP, PS and/or Tau muta-
tions; ii) non-Tg models obtained by toxins injection in the
brain, including direct injection of Ab or tau, and models of
aging.

Most of the Tg models are mice, whereas non-Tg models
could also be rats, dogs and monkeys. Moreover, it could be
useful to note that C57Bl/6 represents the most diffuse
wild-type background of the mouse Tg models.

The first attempt to create a Tg animal was based on the
amyloid hypothesis, thus reproducing the deposits of Ab in
the brain by overexpressing the isoform b-APP751 containing
the Kunitz protease inhibitor domain [8,9], the human APP
C-100 fragment [10], or the entire human APP sequence [11,12].
Notwithstanding these mice could be considered a good
model of Ab hyperproduction, they did not resemble other
features of an AD human brain. Thus, these are excellent
models to better understand the pathophysiologic role of Ab
in AD or to test drugs aimed to modulate or reduce Ab levels,
but they might not be appropriate for the study of other
aspects of AD since they lack other relevant yet critical factors.

In 1995, Games et al. [13] created the PDAPP mouse
expressing high levels of human APP cDNA with a FAD-
associated mutation (substitution of valine at position
717 with phenylalanine). This mouse expressed high levels
of APP and developed several features of human AD such as
extracellular amyloid fibrils organized in plaques, dystrophic
neuritis, apoptosis, subcellular degenerative changes, synaptic
loss and gliosis that spread progressively from hippocampus to
cortex [13,14]. More importantly, PDAPP mice presented the
main feature of a patient with AD, memory loss. In the water
maze and in the radial maze, PDAPP mice were impaired
before and after amyloid plaque deposition [15,16]. Object-
recognition performance decreased with age and was associ-
ated with amyloid deposition [15]. Alterations in emotionality
or fear and exploratory activity were found at 11 months of
age [17]. Overall, these mice presented an age-related
impairment of memory with a peak at 12 -- 15 months of
age [16,18,19].

In 1996, Hsiao et al. created another Tg mouse model of
AD, the Tg2576 line, carrying the double Swedish mutation
(K670N and M671L) [20]. These mice displayed an increase
of APP production (> fivefold) with consequent overproduc-
tion of Ab40 and Ab42 and plaques formation in the frontal,
temporal, and entorhinal cortices, hippocampus, presubicu-
lum, and cerebellum at ~ 11 -- 13 months of age. Other
than the increase in Ab production, they can also display

Article highlights.

. Transgenic and non-transgenic animal models are useful
for Alzheimer’s Disease drug discovery.

. Transgenic and non-transgenic animal models develop
synaptic and memory deficits.

. A brief treatment with amyloid-b oligomers causes an
immediate defect in synaptic plasticity and memory.

This box summarizes key points contained in the article.
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hyperphosphorylated tau at old age. A battery of behavioral
studies (i.e., Y-maze, visible platform, Morris water maze
(MWM), circular platform, passive avoidance, and active
avoidance) performed at different ages (3, 9, 14, and
19 months) demonstrated that Tg2576 mice were impaired
in Y-maze spontaneous alternation and visible platform at
9 months of age, whereas deficit in sensorimotor tasks started
at 14 months. In the fear conditioning test (FC), they
presented normal levels of conditional freezing to an auditory
conditional stimulus, confirming that amygdala function was
normal, whereas they were impaired in the hippocampal-
dependent conditioning for the context [21]. However, they
did not present a profound cognitive impairment, even at
old ages [22]. The deficit in memory was associated with a
severe impairment of in-vitro and in-vivo long-term potentia-
tion (LTP) in both the CA1 and dentate gyrus regions of the
hippocampus [23], without structural alterations of the syn-
apse, but with reduced ability of neurons to integrate and
propagate information [24]. Some studies have found
anxiety-like disturbances in Tg2576 mice, but results are con-
tradictory. For example, Elevated-Plus-Maze has revealed a
reduction [25,26] or an increase [27] of anxiety-like behavior.

In our experience, Tg2576 mice present an impairment of
LTP and short-term memory at ~ 9 -- 10 months of age,
whereas contextual FC is impaired at 4 -- 6 months of age.
MWM (both learning curve and reference memory), and
novel object recognition (NOR), are impaired at ~ 10 -- 12
months. The advantages with using these mice consist in:
i) their well-known characterization (they have been used in
several laboratories as a model of AD for almost 20 years);
ii) the relatively simple management of the colony (good
fertility when using Tg2576 males and C57Bl/6 females,
easier genotyping of a single transgene). The disadvantage is
that the AD phenotype occurs late. Indeed, we usually wait
till the age of 12 months to perform experiments to be sure
that animals present both synaptic and memory dysfunctions.

The onset of the AD phenotype occurs early in double Tg
mice in which Tg2576 are crossed with PS1 (M146L) (line
6.2) [28,29]. Indeed, because FADs are also associated with
PS1 and PS2 mutations [30], mouse models of overexpression
of either M146L or M146V FAD-associated presenilin muta-
tions have been created. However, when expressing only
PS1 and PS2, mice failed to reproduce the AD phenotype
in vivo [31,32]. The PS1 variant (A246E) induced an increase
of Ab42/Ab40 ratio in cell cultures but not amyloid pathol-
ogy in mice [7,33,34]. However, crossing PS1 M146L with
Tg2576 mice (or other APP mutants) caused an increase of
amyloid production and deposition [28]. In particular, mice
overexpressing APP (K670N:M671L) together with PS1
(M146L) have been extensively used to better understand
the pathogenic mechanisms underlying synaptic dysfunction
and memory loss in AD, and to validate new therapeutic
approaches [35-46]. These mice presented a robust age-
dependent Ab deposition in plaques preceded by an increase
of soluble Ab40 and Ab42. In several papers we have reported

that APP/PS1 have abnormal LTP as early as 3 months of age,

paralleling short-term memory and contextual FC

impairment and plaque onset.
Conversely, long-term memory and basal synaptic trans-

mission (BST) were impaired at 6 months, as amyloid burden

increases. As for single APP, there is the conflicting literature

on the emotional changes in APP/PS1 mice. Some studies,

including ours, have demonstrated normal fear and anxiety

levels [38,47,48], whereas others decreased anxiety in APP/

PS1 mice [49].
These mice have the advantage of presenting the AD-

related phenotype at early age. However, they do not show

some aspects of the disease such as neuronal loss and tau

deposition.
Recently, mice containing three different mutations --

3XTg -- such as APPSwe, PS1 M146V, and hyperphosphory-

lated tau (tauP301L) have been generated [50]. These mice

presented Ab pathology at 6 months of age (increased Ab40
and Ab42 levels, intracellular accumulation of Ab, and amy-

loid plaques) that preceded tau pathology with neurofibrillary

tangles formation at ~ 12 months of age. LTP and spatial

memory impairment [50-53] were also evident. In our recent

studies [54], 3XTg at 8 -- 9 months of age showed an increase

of Ab42 levels and an increase of inflammatory mediators in

the hippocampus, and an impairment of cognitive functions

assessed by the MWM test and the NOR test. Increased

age-related anxiety and fearfulness have been reported in

some studies [55-57]. 3XTg did not present a decrease of syn-

apse number and density in CA1 pyramidal layer but a

decrease of perforated junctional areas [58]. Neuronal loss,

potentially due to intraneuronal Ab accumulation [59], has

been found in a 5XTg mouse model containing APP (Swedish

K670N/M671L, Florida I716V, and London V717I) and

PSEN1 (M146L and L286V) mutations. However, reduction

in neurons has been found in cortical layer 5 but not CA1

layer of the hippocampus [60].
More recently, we have started using Tg mice in which the

mouse tau gene is replaced by the human tau gene (a.k.a.

hTau mice) [61]. These animals display tau oligomers at

10--11 months, whereas neurofibrillary tangles are present at

later ages [62,63]. Additionally, they present memory loss asso-

ciated with defects in LTP [64].
Histopathological changes, synaptic dysfunction, memory

loss and other behavioral are not the only features of the dis-

ease that can be mimicked using both Tg and non-Tg models

of the disease. For example, there is extensive evidence from

these animal models suggesting a key role of proinflammatory

cytokine overproduction as a possible driving force for pro-

gression of pathology in AD [65]. Such a role would occur

both early in the disease and at later stages to accelerate its

progression. Indeed, manipulations that lead to overproduc-

tion of cytokines worsen the disease outcomes, whereas selec-

tive suppression of proinflammatory cytokine overproduction

leads to a reduction in disease relevant end points.

Rodent models for AD drug discovery
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3. Non-Tg models for the study of AD

Non-Tg models for the study of AD are mainly obtained by
injecting Ab or tau directly into the brain via intracerebroven-
tricular or intrahippocampal injections [66,67]. This allows

studying the role of acute Ab or tau increase and could be
very useful when researchers want to use animals different
than mice for experimental reasons (i.e., studies on non-
humans primates) or do not have the resources to breed a Tg
colony. However, acute models do not reproduce the gradual
rise in Ab occurring in many years in humans. To this end, we
should also point at the fact that it is not known whether a

chronic exposure to Ab is relevant to the impairment of mem-
ory mechanisms. Indeed, all the studies performed so far point
towards an acute effect of Ab onto memory, regardless of time
exposure to the peptide. This does not exclude though that
other aspects of the disease (i.e., spreading of the pathology
throughout the brain) are dependent upon a more chronic
exposure to the peptide. Moreover both acute Ab infusion

models and Tg APP models have limitations and, unfortu-
nately, resemble some but not all the features of the human
disease. For example, whereas Tg mice mostly reflect genetic
forms of the disease because they overexpress mutated forms
of APP, AD is primarily a sporadic disorder. This can be par-
tially mimicked in vivo by icv or intrahippocampal injections
of Ab, even if they do not reflect neither the concentration
nor the time course of changes seen in humans. Additionally,

Tg models overexpressing APP do not only show elevation of
Ab, but also elevation of full-length APP and other fragments
of APP processing that might interfere with the phenotype
observed and provide misleading results.
For these reasons, we believe it is better to combine both

Tg and non-Tg models to overcome limitations of the differ-
ent models. The use of acute injections, for example, gives the
possibility to better understand how Ab impairs specific
signaling pathways leading to synaptic and memory dysfunc-

tions, and this is crucial when designing new therapeutic strat-
egies. Additionally, acute injection could be used to identify
the targets of specific soluble Ab species (from monomers to
oligomers of different molecular weights) since they might
exert a different role in synaptic plasticity and memory
impairment. In this case, Tg mice do not represent a good
tool because they overproduce different Ab forms (mono-
mers, dimers, trimers, oligomers, fibrils up to plaques) mak-

ing very difficult the evaluation of the specific pathogenic
role of these aggregates. Intrahippocampal or icv injections
of a specific Ab species, in turn, are a more appropriate model
than Tg models.
In summary, these non-Tg models allow: i) to investigate

the effects of Ab and tau in animals for which Tg models
are not available; ii) to exclude the confounding effects of
overexpression of APP and its fragments; iii) to investigate
the different role of Ab and tau species (monomers vs.

oligomers vs. insoluble) at different concentrations; iv) to

investigate the difference between an acute or a chronic
administration (in this last case one could also implant
mini-pumps for a chronic delivery of the peptide); v) to clarify
aspects of the molecular mechanisms underlying Ab and tau
pathology that cannot be investigated using Tg models. In
our laboratories we have often used intrahippocampal injec-
tions of Ab and tau [68-71] with satisfactory results especially
when we wanted to study the physiological role of low con-
centrations of the peptide [72,73], but also with injections of
high (nM) concentrations of Ab and tau to study the effect
of a drug on memory loss [74-76].

Recently, we have also used animal models of aging [77-79].
In this case, notwithstanding genetically- or drug-induced
animal models of aging were available [80-83], we preferred to
use a physiological model of aging to provide more realistic
information on the natural development of the aging process.
However, it is important to notice that a model of aging is not
a model of AD as it could be misinterpreted. In our aged
C57Bl/6 wild-type animals, we found an impairment of
LTP at ~ 22 months, whereas BST was unaffected up to
26 months. In addition these mice were demonstrated to
have severely impaired spatial learning and reference memory
as tested by the MWM [84,85] and recognition memory as
tested by NOR [86,87]. We also found an increase of apoptosis
and, more interestingly, a modification of APP processing and
Ab levels (intensification of the amyloidogenic pathway of
APP cleavage with increase of full-length APP and sAPPb
toward the formation of Ab42 and an increase of the Ab42:
Ab40 ratio) consistently with other studies [88]. As expected,
we did not find senile plaques in normal old mice.

4. Expert opinion

It is noteworthy that both Tg and non-Tg models do not
reproduce the entire clinical features of human AD. At pres-
ent we have a number of very interesting tools to study AD
but we should not forget that they are just models with their
intrinsic limitations. Tg animals have allowed several advances
in this field but, as discussed, they do not reproduce the real
pathophysiology since they are genetically ‘forced’ to imitate
the disease thus resulting in a ‘adulterated’ phenotype with
exacerbated (i.e., plaque deposition) or completely missing
(i.s. neuronal loss) aspects, a different timeframe of the path-
ogenetic events (i.e., Ab pathology always preceding tau
pathology) and several compensatory mechanisms that might
mask the real effect of the gene mutation. Moreover, it is not
uncommon that they develop side behavioral attitudes
(aggressiveness, stereotypies, inability to take care of the
offspring, etc.).

In summary, there are several aspects to consider before
beginning a study using Tg models of disease:

First, you must have a very good knowledge of the selected
model. In addition to carefully read the available literature,
you have always to remember that several factors might influ-
ence the phenotype especially when you work in vivo, from

D. Puzzo et al.
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the genetic background, to the breeding conditions (light/

dark cycle, housing, diet, renewal of the colony). Moreover,

some strains present hearing loss or retinopathies, making

their use not possible for behavioral studies such as FC

(mice should hear the sound and recognize the space around

them) or spatial memory test (mice should see the cues).

One of the most frequent problems faced by researchers is

the timing of testing/treating animals. As pointed out in the

previous paragraph, each model develops the pathology at dif-

ferent ages; thus the aim of the study should be very clear.
Obviously, if you want to understand whether a treatment

might counteract a certain aspect the disease, you should

wait for the appropriate age.
In general, our advice is to perform a prior screening of

your models before starting the experiments. Moreover you

should keep in mind what is impaired when. For example,

in our conditions: i) LTP is impaired at ~ 9 -- 10 months in

Tg2576, at 3 months in APP/PS1, at 22 months in physiolog-

ical models of aging; ii) BST is impaired at ~ 12 months in

Tg2576, at 6 months in APP/PS1, after 26 months in physi-
ological models of aging; iii) short-term memory is impaired

at 12 months in Tg2576, at 3 months in APP/PS1, at

22 months in physiological models of aging; iv) long-term

memory is impaired at 12 months in Tg2576, at 6 months

in APP/PS1, at 24 months in physiological models of aging.

See Figure 1 for a summary. The increase of Ab levels starts

approximately with the impairment of synaptic plasticity

and continues to rise with age leading to plaque deposition.

As already pointed out, in aged mice there was an increase

of Ab load but plaques were not present even at 28 months

of age.
When the aim is to validate a therapy, another important

point is to keep in mind the aim of the treatment: to delay

the onset of the disease; to slow down the progression of the

disease; to act on functional parameters (synaptic plasticity

and/or memory), on plaques and neurofibrillary tangles

formation or both; to investigate the acute, chronic or long-

lasting effect of a drug. In general, we suggest to test the initial

functional deficit (before structural damage as evidenced by

BST impairment and plaques formation) based on the

concept that AD is thought to begin as a synaptic disorder

produced, at least in part, by soluble Ab [89].
On the other hand, if you use a non-Tg model with Ab

injections, it is very important to consider that an acute injec-

tion could be useful to study the mechanisms underlying Ab
toxicity, but it will hardly reproduce the chronic AD

phenotype.
When approaching a pre-clinical study we need to keep in

mind that animal models reproduce only some aspects of the

disease and, at the moment, it is not possible to recapitulate

the entire human clinical picture. Furthermore, even if behav-

ioral tests used in rodents have been designed to parallel the

neuropsychological evaluation used in humans, some cogni-

tive domains (such as language) cannot be investigated in ani-

mals. Several aspects should be considered when designing a

pre-clinical study: a very good knowledge of the selected

Long-term potentiation

Months

3 4 5 6 7 8 9 10 11 12 22 23 24 25 26 27 28 29 30

Basal synaptic transmission

Short-term memory

Long-term memory

Aβ pathology

Tau pathology

Figure 1. Gantt chart showing the onset and progression of synaptic impairment, memory loss and Ab and tau pathology in

three mouse Tg models of AD (single APP Tg2576, double APP/PS1, triple 3xTg) and in a physiological model of aging.
AD: Alzheimer’s disease; APP: Amyloid precursor protein; Tg: Transgenic.
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model, the various factors that might influence the pheno-
type, the timing of testing/treating animals because each
model develops some aspects of the pathology at different
ages. Although with their intrinsic limitations, both Tg and
non-Tg AD models allow investigating synaptic plasticity,
memory, histopathological modifications and molecular
mechanisms underlying the disease. They represent therefore
an invaluable tool to improve our knowledge of the disease,
to better understand its pathophysiology and to establish
new therapeutic strategies.
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