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1. Introduction

In the present paper we consider the following singular quasilinear elliptic
problem

⎧
⎨

⎩

−Δpu = λf(x, u) + μa(x)u−γ , in Ω
u > 0, in Ω
u = 0, on ∂Ω

(Pλ,μ)

where Ω is a bounded domain in R
N (1 < p ≤ N), f : Ω × [0,+∞[→ [0,+∞[

is a Carathéodory function not identically zero, a : Ω → R is a function in
L(p∗)′

(Ω) which is positive almost everywhere (being p∗ the critical Sobolev
exponent and (p∗)′ its conjugate), λ, μ are positive parameters and γ is a
positive real number.

There is a wide literature dealing with existence and multiplicity results
for quasilinear elliptic problems depending on a singular term of the type u−γ

when 0 < γ < 1. In such a case it is natural to associate to problem (Pλ,μ) the
following energy functional

Eλ,μ(u) =
1

p

∫

Ω

|∇u(x)|pdx − λ

∫

Ω

∫ u(x)

0

f(x, t)dt dx +
μ

γ − 1

∫

Ω

a(x)u(x)−γ+1dx

which is well defined on the Sobolev space W 1,p
0 (Ω). Although not continu-

ously Gâteaux differentiable, under standard assumptions Eλ,μ is continuous
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and variational methods are still applicable (see for example [4,5,13] and the
references therein).

When γ ≥ 1, such kind of problems have been less investigated. Notice in
fact that the above functional (when γ > 1) is not defined on the whole space
W 1,p

0 (Ω). However, the existence of one or two solutions can be still obtained
in the framework of variational setting by using suitable truncation methods
(see [7,8]) or techniques from non smooth analysis (see [1,6]).

As far as we know, the existence of three solutions for arbitrary γ > 0 has
been investigated only in [12]. More precisely, the authors employ an abstract
three critical points theorem in the lower dimensional case, i.e. when p > N ,
being crucial the continuous embedding of W 1,p

0 (Ω) into C(Ω).
In the present paper we derive three positive solutions to the problem

(Pλ,μ) for all γ > 0, 1 < p ≤ N , for λ large enough and μ sufficiently small.
In our approach we combine an abstract multiplicity result by Ricceri [9] with
techniques from non smooth analysis. With respect to [1] and [6] where a suit-
able variational approach is provided, we employ some topological arguments
to guarantee the existence of two local minimizers. The third solution is given
by a suitable version of the Mountain Pass Theorem for Szulkin functionals.
To the best of our knowledge, this is the first contribution establishing three
solutions in the higher dimensional case and for any γ > 0.

Under further restrictions on the function a we also show that the solu-
tions belong to C1(Ω). This work extends a previous result of the authors [4]
in which three solutions are obtained for 0 < γ < 1 by means of a different ap-
proach which exploits truncation techniques and classical critical point theory.
It is to be mentioned that in [4], extra properties of the solutions are derived,
namely, the solutions lie in int(C1

0 (Ω))+ and are bounded in norms uniformly
with respect to the parameters.

First of all we clarify the meaning of solution we adopt in the sequel.

Definition 1.1. A weak solution of (Pλ,μ) is a function u ∈ W 1,p
0 (Ω) such that

(i) u > 0 almost everywhere in Ω,
(ii) au−γϕ ∈ L1(Ω), for all ϕ ∈ W 1,p

0 (Ω),

(iii)
∫

Ω

|∇u|p−2∇u∇ϕ dx =
∫

Ω

[λf(x, u) + μau−γ ]ϕ dx, for all ϕ ∈
W 1,p

0 (Ω).

We assume that for almost all x ∈ Ω, f(x, 0) = 0 and for almost all x ∈ Ω
and all t ≥ 0
(H) f(x, t) ≤ c(1 + tr−1)
where c > 0, 1 < r < p∗.

Let also F : Ω × [0,+∞[→ R be the primitive of f , i.e.

F (x, t) =
∫ t

0

f(x, τ)dτ.

We require that:

(H1) lim
t→0+

supx∈Ω F (x, t)
tp

= 0;
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(H2) lim
t→+∞

supx∈Ω F (x, t)
tp

= 0;

(H3) there exists ū ∈ C1
0 (Ω) such that ū > 0 on Ω and aū−γ ∈ L(p∗)′

(Ω).
Assumption (H3) is a standard hypothesis in the setting of singular problems
with arbitrary γ > 0 (see for example [8]).

As usual, if u ∈ W 1,p
0 (Ω), we denote by u+ its positive part, that is,

u+ = max{u, 0}.
Our main multiplicity result is the following

Theorem 1.1. In addition to (H), assume (H1), (H2), (H3).
Set

λ∗ =
1
p

inf
{ ∫

Ω
|∇u(x)|p dx

∫

Ω
F (x, u+(x)) dx

:
∫

Ω

F (x, u+(x)) dx > 0
}

. (1)

Then, for each λ > λ∗ there exists μ∗ > 0 such that for each μ ∈]0, μ∗], the
problem (Pλ,μ) has at least three weak solutions.

In order to derive weak solutions in C1(Ω), we replace hypothesis (H3)
by the following stronger one:

(H ′
3) there exist ū ∈ C1

0 (Ω), q > p′N such that ū > 0 on Ω and
aū−γ ∈ Lq(Ω) (where p′ = p/(p − 1)).

We have the following

Theorem 1.2. In addition to (H), assume (H1), (H2), (H ′
3) and let λ∗ be as

in (1).
Then, for each λ > λ∗ there exists μ∗ > 0 such that for each μ ∈]0, μ∗],

the problem (Pλ,μ) has at least three weak solutions in C1(Ω).

2. Preliminaries

Let us recall first some well known facts from non-smooth analysis (see [11]).
Let X be a Banach space and Φ, Ψ be two functionals with Φ ∈ C1(X)

and Ψ : X →] − ∞,+∞] proper, convex and lower semicontinuous. A point
u ∈ X is said to be critical for the Szulkin functional I = Φ + Ψ if u ∈
domΨ(u) = {u ∈ X : Ψ(u) < +∞} and

〈Φ′(u), v − u〉 + Ψ(v) − Ψ(u) ≥ 0 for all v ∈ X.

It is well known that a local minimum of I is a critical point of I.
We also say that I satisfies the Palais Smale condition if the following

holds:
(PS) If {un}n∈N is a sequence in X such that I(un) → c ∈ R and

〈Φ′(un), v − un〉 + Ψ(v) − Ψ(un) ≥ −εn‖v − un‖ for all v ∈ X, n ∈ N

(where {εn} is a sequence of positive numbers converging to zero) then, it has
a strongly convergent subsequence.

Theorem 2.1. ([11], Corollary 3.3) Suppose that I satisfies (PS). If I has two
local minima, then it has at least three critical points.
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If X is a reflexive Banach space, a map A : X → X∗ satisfies the (S)+
condition if the following holds:

(S)+ If {un}n∈N is a sequence in X such that un ⇀ u (weakly) and

lim sup
n

〈A(un), un − u〉 ≤ 0,

then, it strongly converges to u.

Remark 2.1. Let X be a reflexive Banach space, Φ ∈ C1(X), Ψ : X →
]−∞,+∞] such that Φ is sequentially weakly lower semicontinuous with Φ′

of type (S)+ and Ψ is proper, convex and lower semicontinuous. If I = Φ+Ψ
is coercive, then I satisfies (PS).

Proof. Indeed, choose {un}n∈N ⊆ X, {εn}n∈N ⊆]0,+∞[ such that I(un) →
c ∈ R, εn → 0 and

〈Φ′(un), v − un〉 + Ψ(v) − Ψ(un) ≥ −εn‖un − v‖, for all v ∈ X, n ≥ 1.

By coercivity of I and by passing to subsequences, we may assume that
un ⇀ u. Since I is sequentially weakly lower semicontinuous, we have I(u) ≤
lim infn I(un) = c < +∞, thus Ψ(u) < +∞. Putting v = u in the above
inequality we obtain

〈Φ′(un), un − u〉 ≤ Ψ(u) − Ψ(un) + εn‖un − u‖, for all n ≥ 1

and hence, lim supn〈Φ′(un), un − u〉 ≤ 0 (recall that Ψ is weakly lower
semicontinuous). Exploiting the fact that Φ′ is of type (S)+, we infer that
un → u strongly. �

We will need the following theorem which we state here in a convenient
form for our purposes:
Theorem A([10], Theorem C) Let Xbe a reflexive and separable real Banach
space, I : X → R be a sequentially weakly lower semicontinuous functional
and p > 0. Denote by I : X → R the functional

I(u) =
1
p
‖u‖p + I(u)

and assume that I is coercive. Then, any strict local minimizer of I in the
strong topology is so in the weak topology.

The following is a convenient form of the Weak Comparison Principle
whose proof is standard and we omit:

Proposition 2.1. Let g : Ω×]0,+∞[→ R be a Carathéodory function, nonin-
creasing with respect to the real variable and u,w ∈ W 1,p(Ω) are such that
u > 0, w > 0 almost everywhere in Ω and w |∂Ω ≤ u |∂Ω in the sense of
trace. Suppose that

−Δpu(x) − g(x, u(x)) ≥ −Δpw(x) − g(x,w(x)),
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that is, for each non negative ϕ ∈ W 1,p
0 (Ω) we have g(x, u)ϕ, g(x,w)ϕ ∈

L1(Ω) and
∫

Ω

|∇u|p−2∇u∇ϕdx −
∫

Ω

g(x, u)ϕdx ≥
∫

Ω

|∇w|p−2∇w∇ϕdx −
∫

Ω

g(x,w)ϕdx.

Then, u ≥ w almost everywhere in Ω.

We conclude this section with a topological remark which will be useful
in the sequel.

Proposition 2.2. Let X be a Hausdorff topological space and {Kn}n∈N be a
sequence of nonempty compact subsets of X s.t. Kn+1 ⊆ Kn for all n ∈ N and

∞⋂

n=1

Kn = D1 ∪ D2, D1 ∩ D2 = ∅,

where D1, D2 are nonempty and compact. Then, there exist n̄ ∈ N and
C1, C2 nonempty compact sets such that

Kn̄ = C1 ∪ C2, C1 ∩ C2 = ∅, D1 ⊆ C1, D2 ⊆ C2.

Proof. Since X is a Hausdorff topological space, the compact sets D1, D2 can
be separated by two disjoint open sets, i.e. there exist disjoint, nonempty, open
sets A, B such that D1 ⊆ A, D2 ⊆ B. So, K1 ⊆ ⋃∞

n=2(X \ Kn) ∪ A ∪ B. By
compactness and since {Kn}n∈N is nonincreasing, we may find n̄ ≥ 2 such
that K1 ⊆ (X\Kn̄)∪A∪B, thus Kn̄ ⊆ A∪B. Then we set C1 = Kn̄\B, C2 =
Kn̄ \ A. �

3. Proofs of Theorems 1.1, 1.2.

In order to prove our main results, let us introduce the functional Eλ,μ associ-
ated to problem (Pλ,μ) and some of its properties.

Without loss of generality we can assume that f(x, t) = 0 for almost all
x ∈ Ω and all t ≤ 0. Set, for all λ > 0, Φλ = H−λJ , being H,J : W 1,p

0 (Ω) → R

defined by

H(u) =
1
p
‖u‖p =

1
p

∫

Ω

|∇u(x)|pdx,

J(u) =
∫

Ω

F (x, u(x))dx,

respectively, where F : Ω × R → R is the function

F (x, t) =
∫ t

0

f(x, τ)dτ.

Because of assumption (H), the functional Φλ turns out to be of class
C1 on the Sobolev space W 1,p

0 (Ω).
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Define G : Ω × R →] − ∞,+∞] as it follows:

if 0 < γ < 1, G(x, t) =

⎧
⎨

⎩

− a(x)
1 − γ

t−γ+1, if x ∈ Ω and t ≥ 0

+∞, if x ∈ Ω and t < 0

if γ = 1, G(x, t) =
{−a(x) ln t, if x ∈ Ω and t > 0

+∞, if x ∈ Ω and t ≤ 0

if γ > 1, G(x, t) =

⎧
⎨

⎩

a(x)
γ − 1

t−γ+1, if x ∈ Ω and t > 0

+∞, if x ∈ Ω and t ≤ 0.

Remark 3.1. For almost every x ∈ Ω
1. G(x, ·) is convex,
2. G(x, ·) is lower semicontinuous,
3. G(x, ·) belongs to C1(]0,+∞[) and G′(x, t) = −a(x)t−γ for all t > 0.

Remark 3.2. 1. From assumption (H3), it follows at once that a ∈ L(p∗)′
(Ω).

2. For all u ∈ W 1,p
0 (Ω), the function a · u ∈ L1(Ω) and from Hölder’s in-

equality, there exists a constant c (the embedding constant of W 1,p
0 (Ω)

into Lp∗
(Ω))such that

∫

Ω

a(x)|u(x)|dx ≤ c‖a‖(p∗)′ ‖u‖.

Moreover, if u ∈ W 1,p
0 (Ω) with u ≥ 0 a.e. in Ω, then for

0 < γ < 1 we have au1−γ ∈ L1(Ω). [This follows from the above
inequality combined with the inequality t1−γ ≤ 1 + t which holds for
t ≥ 0.]

3. For all u ∈ W 1,p
0 (Ω), the superposition operator associated to the function

G satisfies the following inequalities:

if 0 < γ < 1, G(·, u(·)) ≥ − a(·)
1 − γ

(u(·) + 1) ∈ L1(Ω)

if γ = 1, G(·, u(·)) ≥ −a(·)u(·) ∈ L1(Ω)
if γ > 1, G(·, u(·)) ≥ 0.

Define Ψ : W 1,p
0 (Ω) →] − ∞,+∞] by

Ψ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

G(x, u)dx, if G(x, u) ∈ L1(Ω)

+∞, if G(x, u) �∈ L1(Ω).

Using Remark 3.1, Ψ turns out to be convex and lower semicontinuous
(thus, sequentially weakly lower semicontinuous). Moreover, Ψ is proper. In
fact, we have the following

Lemma 3.1. Assume (H3). Then,

int(C1
0 (Ω)+) ⊂ dom(Ψ)



NoDEA Three solutions for a class of higher dimensional Page 7 of 14  45 

where int(C1
0 (Ω)+) denotes the interior in the ordered Banach space C1

0 (Ω) of
the positive cone

C1
0 (Ω)+ = {u ∈ C1

0 (Ω) : u(x) ≥ 0 ∀ x ∈ Ω}.

Proof. Let u ∈ int(C1
0 (Ω)+). Choose a C1- open ball B(u, δ) (δ > 0) such

that B(u, δ) ⊂ int(C1
0 (Ω)+). Therefore, for ε > 0 small enough, u − εū ∈

B(u, δ) ⊂ int(C1
0 (Ω)+), that implies u(x) > εū(x) for every x ∈ Ω. Then,

0 ≤ au−γ ≤ ε−γaū−γ ∈ L(p∗)′
(Ω) (see (H3)).

If γ = 1, then

|G(·, u)| = a| ln u| ≤ a

u
max

t∈]0,‖u‖∞]
|t ln t| ∈ L(p∗)′

(Ω) ⊂ L1(Ω).

If γ �= 1, then,

|G(·, u)| = a
u−γ+1

| − γ + 1| .

By Hölder inequality, au−γ+1 ∈ L1(Ω) as the product of au−γ ∈ L(p∗)′
(Ω) and

of u ∈ Lp∗
(Ω), so the latter is a function of L1(Ω). �

Define Eλ,μ : W 1,p
0 (Ω) →] − ∞,+∞] by

Eλ,μ(u) = Φλ(u) + μΨ(u), λ, μ ≥ 0.

Eλ,μ is a Szulkin functional according to the definition given at the beginning
of Sect. 2.

Lemma 3.2. If u is a critical point of Eλ,μ, then u is a weak solution of (Pλ,μ).

Proof. By definition, u is a critical point of Eλ,μ if u ∈ dom(Ψ) and

〈Φ′
λ(u), v − u〉 + μ(Ψ(v) − Ψ(u)) ≥ 0 for all v ∈ W 1,p

0 (Ω). (2)

Let us prove first that u > 0 almost everywhere in Ω.
Since

∫

Ω
|G(x, u(x))|dx < +∞, then G(·, u(·)) is finite almost everywhere.

We distinguish two cases.
When γ ≥ 1, according to the definition of G, u > 0 almost everywhere.
When 0 < γ < 1, from the definition of G, u ≥ 0 almost everywhere.
Assume that there exists a set of positive measure A such that u = 0

in A. Let ϕ : Ω → R be a function in W 1,p
0 (Ω), positive in Ω. Let ε > 0

small enough and define v = u + εϕ. Notice that since G(x, ·) is a decreasing
function in [0,+∞[, we have G(·, v(·)) ≤ G(·, u(·)) ∈ L1(Ω). This fact together
with Remark 3.2 implies that v ∈ dom(Ψ). Plugging v into (2), dividing by
ε and using the monotonicity of G(x, ·), that is G(·, u(·) + εϕ(·)) ≤ G(·, u(·))
almost everywhere in Ω, we get
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0 ≤
∫

Ω

|∇u|p−2∇u∇ϕ dx − λ

∫

Ω

f(x, u)ϕ dx

+
μ

ε

∫

A

[G(x, εϕ) − G(x, 0)] dx +
μ

ε

∫

Ω\A

[G(x, u + εϕ) − G(x, u)] dx

≤
∫

Ω

|∇u|p−2∇u∇ϕ dx − λ

∫

Ω

f(x, u)ϕ dx

− μ

(1 − γ)
ε−γ

∫

A

a(x)ϕ(x)−γ+1dx → −∞ as ε → 0+

(notice that
∫

A
a(x)ϕ(x)−γ+1dx ∈ R

+, thanks to Remark 3.2). The contradic-
tion ensures that u > 0 almost everywhere in Ω.

Next, let us prove that

au−γϕ ∈ L1(Ω) for all ϕ ∈ W 1,p
0 (Ω) (3)

and that
∫

Ω

|∇u|p−2∇u∇ϕ dx − λ

∫

Ω

f(x, u)ϕ dx − μ

∫

Ω

a(x)u−γϕ dx ≥ 0 for all

ϕ ∈ W 1,p
0 (Ω), ϕ ≥ 0. (4)

Choose ϕ ∈ W 1,p
0 (Ω), ϕ ≥ 0. Fix a decreasing sequence {εn}n∈N ⊆]0, 1] with

limn εn = 0. The functions

hn(x) =
G(x, u(x)) − G(x, u(x) + εnϕ(x))

εn

are measurable, non-negative and limn hn(x) = a(x)u(x)−γϕ(x) for almost all
x ∈ Ω. From Fatou’s lemma, we deduce

∫

Ω

a(x)u−γϕ dx ≤ lim inf
n

∫

Ω

hn dx. (5)

From the definition of critical point, using again as test function v = u + εnϕ,
it follows that

μ

∫

Ω

hn dx ≤
∫

Ω

|∇u|p−2∇u∇ϕ dx − λ

∫

Ω

f(x, u)ϕ dx.

Passing to the liminf as n → ∞ in the above inequality and taking into
account (5), we deduce at once (3) (it is enough to prove the integrability for
nonnegative test functions) and (4).

To proceed, first note that for each c > 0, we have that cu ∈ dom(Ψ).
Indeed, by the definition of G we get that for γ �= 1,

|G(·, cu(·))| ≤ 1
|γ − 1| c1−γa(·)u(·)1−γ ∈ L1(Ω) (see (3)).

For γ = 1, we have G(·, cu(·)) = − ln c a(·) + G(·, u(·)) ∈ L1(Ω).
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Now fix ε ∈]0, 1[ and plug v = (1 − ε)u into (2). Dividing by ε, there
exists τ = τ(ε) ∈]0, ε[ such that

0 ≤ −
∫

Ω

|∇u|p dx + λ

∫

Ω

f(x, u)u dx + μ

∫

Ω

G(x, u − εu) − G(x, u)
ε

dx

= −
∫

Ω

|∇u|p dx + λ

∫

Ω

f(x, u)u dx + μ(1 − τ)−γ

∫

Ω

a(x)u−γ+1 dx.

Passing to the limit as ε → 0 and taking into account (4) we get
∫

Ω

|∇u|p dx = λ

∫

Ω

f(x, u)u dx + μ

∫

Ω

a(x)u−γ+1 dx. (6)

Let ϕ ∈ W 1,p
0 (Ω) and plug into (4) the test function v = (u+εϕ)+ where

ε is a positive number. Hence, by using (6) we have

0 ≤
∫

{u+εϕ≥0}
|∇u|p−2∇u∇(u + εϕ) dx − λ

∫

{u+εϕ≥0}
f(x, u)(u + εϕ) dx

−μ

∫

{u+εϕ≥0}
a(x)u−γ(u + εϕ) dx

=

∫

Ω

|∇u|p dx + ε

∫

Ω

|∇u|p−2∇u∇ϕ dx

−λ

∫

Ω

f(x, u)u dx − ελ

∫

Ω

f(x, u)ϕ dx − μ

∫

Ω

a(x)u−γ+1 dx

−εμ

∫

Ω

a(x)u−γϕ dx −
∫

{u+εϕ<0}
|∇u|p dx − ε

∫

{u+εϕ<0}
|∇u|p−2∇u∇ϕ dx

+λ

∫

{u+εϕ<0}
f(x, u)(u + εϕ) dx + μ

∫

{u+εϕ<0}
a(x)u−γ(u + εϕ) dx ≤

≤ ε

[∫

Ω

|∇u|p−2∇u∇ϕ dx − λ

∫

Ω

f(x, u)ϕ dx − μ

∫

Ω

a(x)u−γϕ dx

]

−ε

∫

{u+εϕ<0}
|∇u|p−2∇u∇ϕ dx.

Notice that as ε → 0, the measure of the set {u + εϕ < 0} tends to zero, so
∫

{u+εϕ<0}
|∇u|p−2∇u∇ϕ dx → 0.

Hence, dividing by ε and passing to the limit as ε → 0, we get that
∫

Ω

|∇u|p−2∇u∇ϕ dx − λ

∫

Ω

f(x, u)ϕ dx − μ

∫

Ω

a(x)u−γϕ dx ≥ 0.

From the arbitrariness of ϕ, we get at once that u is a weak solution of (Pλ,μ).
�

Lemma 3.3. Under hypotheses (H), (H2) and (H3), the functional Eλ,μ satisfies
(PS).

Proof. By using hypothesis (H) together with the Sobolev embedding theorem
and the strong monotonicity of −Δp, one may show that Φ′

λ is of type of
(S)+. Then due to Remark 2.1, it suffices to prove that Eλ,μ is coercive.
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By virtue of Remark 3.2, we may find positive constants c1, c2 s.t.

Ψ(u) ≥ −c1‖u‖ − c2, for all u ∈ W 1,p
0 (Ω). (7)

Next, fix ε > 0. From (H) and (H2), we may choose cε > 0 such that for
almost all x ∈ Ω and all t ≥ 0

F (x, t) < εtp + cε.

Then for all u ∈ W 1,p
0 (Ω),

Φλ(u) ≥ 1
p
‖u‖p − λ

∫

Ω

F (x, u)dx ≥ 1
p
‖u‖p − λε‖u‖p

p − λcε|Ω|

≥
(

1
p

− λc3ε

)

‖u‖p − λcε|Ω|,

for some positive constant c3.
Hence,

Eλ,μ(u) = Φλ(u) + μΨ(u) ≥
(

1
p

− λc3ε

)

‖u‖p − λcε|Ω| − μc1‖u‖ − μc2 .

Choosing ε > 0 sufficiently small, we obtain the coercivity of Eλ,μ. �

We can prove now our multiplicity result. The existence of two local
minimizers is obtained by following the ideas of Theorem 1 in [9], while the
third solution of (Pλ,μ) derives from Theorem 2.1.
Proof of Theorem 1.1.

From hypotheses (H), (H1) and (H2) one has

lim
u→0

J(u)
H(u)

= 0 (8)

and

lim
‖u‖→+∞

J(u)
H(u)

= 0. (9)

Therefore, for each λ > 0, the functional Φλ is sequentially weakly lower
semicontinuous and coercive [as it follows from (9)]. Let u0 be a global mini-
mizer of Φλ.

For every s ∈ R, the set Φ−1
λ (]−∞, s]) is weakly compact and metrizable

(thus, weakly sequentially compact) with respect to the weak topology.
Choose λ > λ∗ [see (1)]. One has that the null function 0 turns out to be

a strict local minimizer of Φλ [see (8)]. Applying Theorem A we get also that
0 is a strict local minimizer of Φλ in the weak topology. Thus, we may choose
a weak neighborhood of zero Uw such that

0 = Φλ(0) < Φλ(u) for every u ∈ Uw \ {0}.

By the choice of λ it follows that 0 is not a global minimum, that is

Φλ(u0) = min
W 1,p

0 (Ω)
Φλ < 0 = Φλ(0).

We may write

Φ−1
λ (] − ∞, 0]) = D1 ∪ D2, D1 = {0}, D2 = Φ−1

λ (] − ∞, 0]) \ Uw .
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Clearly D1, D2 are disjoint and weakly compact in X.
On the other hand, one has

Φ−1
λ (] − ∞, 0]) =

∞⋂

n=1

Φ−1
λ

(]

−∞,
1
n

])

.

Exploiting Proposition 2.2 we may find n̄ ≥ 1 and weakly compact sets
C1, C2 s.t.

Φ−1
λ

(]

−∞,
1
n̄

])

= C1 ∪ C2, C1 ∩ C2 = ∅, D1 ⊆ C1, D2 ⊆ C2.

Note that C1, C2 are also weakly sequentially compact and that 0 ∈ C1, u0 ∈
C2.

Put σ = 1
n̄ . We separate C1, C2 by two disjoint weakly open sets A1 and

A2 and we consider the sets

Gi = {u ∈ Ai : Φλ(u) < σ}, i = 1, 2.

Obviously, Gi ⊆ Ci, i = 1, 2 and 0 ∈ G1, u0 ∈ G2.
The sets A1, A2 are also open with respect to the strong topology.

Moreover, the functional Φλ is continuous with respect to the strong topology,
as the sum of two continuous functionals. It follows that the sets G1 , G2 are
open with respect to the strong topology.

We wish to prove that dom(Ψ) ∩ Gi �= ∅, for i = 1, 2. By virtue of
Lemma 3.1, it suffices to check that

int(C1
0 (Ω)+) ∩ Gi �= ∅, i = 1, 2.

Since 0 ∈ G1, there exists a positive number ε such that B(0, ε) ⊂ G1.
Choose ũ ∈ int(C1

0 (Ω)+). Then ε
2‖ũ‖ ũ ∈ G1 and this proves that dom(Ψ) ∩

G1 �= ∅.
On the other hand, u0 ∈ G2 and u0 is a critical point of Φλ, thus it is a

weak solution of

−Δpu = λf(x, u), u |∂Ω= 0.

By classical regularity theory, u0 ∈ int(C1
0 (Ω)+) and thus, dom(Ψ) ∩ G2 �= ∅.

Since Ψ is sequentially weakly lower semicontinuous and Ci are sequen-
tially weakly compact sets, the infimum of Ψ on each Ci is attained.

Set

mi = inf
{

Ψ(u) − minCi
Ψ

σ − Φλ(u)
: u ∈ dom(Ψ) ∩ Gi

}

i = 1, 2

and choose μ∗ > 0 s.t.

1/μ∗ > max{m1, m2}.

Let μ ∈]0, μ∗]. For each i ∈ {1, 2}, we have 1/μ > mi, so there exists
yi ∈ dom(Ψ) ∩ Gi s.t.

σ > Φλ(yi) + μΨ(yi) − μmin
Ci

Ψ. (10)
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Since Φλ +μΨ is sequentially weakly lower semicontinuous we may find
u1 ∈ dom(Ψ) ∩ C1, u2 ∈ dom(Ψ) ∩ C2 s.t.

min
Ci

(Φλ + μΨ) = Φλ(ui) + μΨ(ui), i = 1, 2.

We claim that ui ∈ Gi, i = 1, 2. Suppose on the contrary that Φλ(ui) ≥
σ, for some i ∈ {1, 2}. Then, by (10)

Φλ(ui) + μΨ(ui) ≥ σ + μmin
Ci

Ψ > Φλ(yi) + μΨ(yi),

which is a contradiction.
Since G1, G2 are open in the strong topology, we infer that u1, u2

are two local minima of Φλ + μΨ (recall that Gi ⊆ Ci). Thus, from Theorem
2.1, we deduce the existence of a third critical point for Eλ,μ. Bearing in mind
that local minimizers of Eλ,μ are critical points of Eλ,μ, Lemma 3.2 ensures
that problem (Pλ,μ) has at least three weak solutions.

Remark 3.3. It is clear that for μ = 0 the thesis still holds. Indeed, 0 and
the function u0 are respectively a local and a global minimizer of Φλ. The
existence of a third critical point for Φλ follows in a standard way through the
classical Mountain Pass Theorem.

Proof of Theorem 1.2. It suffices to prove that for all λ, μ > 0, each positive
weak solution of the problem (Pλ,μ) lies in C1(Ω). Fix λ, μ > 0. Since
q > p′N > N , from Proposition 2.1 of [8], there exists a unique weak solution
ν ∈ int(C1

0 (Ω)) of the problem

−Δpν = μa, ν |∂Ω= 0.

Put u = ε
1

p−1 ν ∈ int(C1
0 (Ω)) with ε ∈]0, 1] and such that ‖u‖∞ ≤ 1. One has

that

−Δpu − μau−γ = μa(ε − u−γ) ≤ 0.

Arguing as in Lemma 3.1, au−γ ∈ Lq(Ω) ⊆ L(p∗)′
(Ω) (recall that q >

N > (p∗)′). Thus, au−γϕ ∈ L1(Ω), for all ϕ ∈ W 1,p
0 (Ω). To proceed, let u

be a positive weak solution of the problem (Pλ,μ). We have

−Δpu − μau−γ = λf(·, u(·)) ≥ 0 ≥ −Δpu − μau−γ

which implies that u ≥ u (see Proposition 2.1). Hence, au−γ ≤ au−γ , so
au−γ ∈ Lq(Ω) and q > N > N/p = (p∗/p)′. Now by virtue of hypothesis (H),
we have

−Δpu ≤ λcur−1 + μau−γ + λc,

where 1 < r < p∗. Exploiting Theorem 2.3 of [2], we infer that u is locally
bounded. It follows that

−Δpu = λf(·, u(·)) + μau−γ ∈ Lq
loc(Ω)

with q > p′N . Consequently, u ∈ C1(Ω), due to [3, Corollary,p.830].
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