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Abstract

Let Z be a finite set of double points in P! x P! and suppose further that X, the support of Z, is arithmetically Cohen—Macaulay
(ACM). We present an algorithm, which depends only upon a combinatorial description of X, for the bigraded Betti numbers of
17, the defining ideal of Z. We then relate the total Betti numbers of 77 to the shifts in the graded resolution, thus answering a
special case of a question of Romer.
© 2007 Elsevier B.V. All rights reserved.

MSC: 13D40; 13D02; 13H10; 14A15

0. Introduction

Given a set of fat points Z in IP", it has been the goal of many authors to describe the homological invariants encoded
in the graded minimal free resolution of Iz, the defining ideal of Z. A non-exhaustive list of references includes [1,
5-8,16,21]. Many interesting questions about these numerical characters remain open; Harbourne’s survey [15] on
these problems in P? provides a good entry point to this material.

Recently, many authors have extended this circle of problems to include fat points in multiprojective spaces.
The Hilbert function [11-13] and the Castelnuovo—-Mumford regularity [14,20] are two such topics that have been
investigated. Besides their intrinsic interest, motivation to study such points arises from a paper of Catalisano,
Geramita, and Gimigliano [3] which exhibited a connection between specific values of the Hilbert function of a set of
fat points in a multiprojective space and the dimensions of certain secant varieties of the Segre varieties. We contribute
to this ongoing research program by providing an algorithm to compute the bigraded minimal free resolution of the
ideal of double points in P! x P! whose support is arithmetically Cohen—Macaulay.

The N2-graded polynomial ring S = k[xg, x1, yo, y1] with degx; = (1,0) and degy; = (0, 1) is the coordinate
ring of P! x PL.If P = R x Q € P! x P! is a point in P! x P!, then the defining ideal of P is Ip = (L, Lo)
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withdeg Lg = (1,0) anddeg Ly = (0, 1). If X = {Py, ..., Py} is a finite set of points in P! x P!, and my, ..., m;
are positive integers, then the ideal Iz = IZ']‘ n---N I}"f; is an N?-homogeneous ideal that defines a scheme of fat
points Z = {(P1; my), ..., (Ps; mg)} in P! x P!, The set of points X is called the support of Z, while the integer m;
is called the multiplicity of P;. When all the m;s equal two, we call Z a set of double of points. A set of (reduced or
non-reduced) points Z is said to be arithmetically Cohen—Macaulay (ACM) if its associated coordinate ring S/I7 is
Cohen—Macaulay. While it is always true that Z is ACM if Z C P",if Z C P" x ... x P with r > 2, then Z may
or may not be ACM (e.g., see [22]).

We shall focus on sets of double points Z in P! x P! whose support X is ACM. Such schemes were studied by
the first author [11] who used combinatorial information about X to determine both the minimal generators of /7 and
its associated Hilbert function. As shown in [11,13], these schemes are rarely ACM. However, because the support
X is ACM, we can associate to Z a partition A = (A1, ..., A,) of the integer s = |X| which is related to the relative
positions of the points of X, i.e., the number of points which share the same first coordinate, and so on. We extend the
results of [11] by constructing an algorithm to obtain the bigraded minimal resolution of 7z from A.

Our algorithm (see Algorithm 5.1) is based upon the following steps:

e Using A we construct a scheme Y of reduced and double points, which we call the completion of Z, such that
Z C Y and Y is ACM (see Theorem 2.2). Applying a theorem of [13], we compute the bigraded minimal free
resolution of Iy from A.

o Using [11] we use A to construct bihomogeneous forms {F7, ..., Fp} suchthat Iz = Iy + (Fy, ..., F)) and where
deg F; is a function of A (see Theorem 3.6).

eForj=0,...,p,wesetlp = Iy and I; = (Ij1, Fj). Foreach j = 1,..., p, we show (see Lemma 4.3) that
(Ij—1 : F;) is the defining ideal of a complete intersection of points whose type (and hence minimal resolution)
can be computed from A.

e Foreach j =1, ..., p, we have a short exact sequence

F.
0— S/(I;_y : Fj)(—degF}) 4 §/1;_y —> S/I; —> 0.

We prove (cf. Theorem 4.4) that the mapping cone construction gives the bigraded minimal free resolution of S/1;
for each j.

e Because the minimal resolution of Iy = Iy depends only upon A, we can reiteratively use the mapping cone
construction and the fact that (I;_ : F;) is a complete intersection to compute the minimal resolution /7 = I,.

Romer [19] recently asked if the total graded Betti numbers of an ideal / are bounded by the shifts that appear
within the minimal graded free resolution of /. As an application of Algorithm 5.1, we show (see Theorem 6.1) that
the ideals Iz satisfy this bound, thus extending work of both Rémer [19] and Miré-Roig [17].

Some final observations are in order. First, our approach to computing the bigraded minimal free resolution is
similar to the approach taken by Catalisano [4]. Catalisano showed that the Hilbert function and resolution of fat
points on a nonsingular conic in P? can be computed via an algorithm that depends only upon the multiplicities
of the points, and without reference to the coordinates of the points. Second, by viewing Iz as a graded ideal of
S = k[xo, x1, Yo, ¥1], then the ideal Iz defines a set of “fat lines” in P3, and our algorithm describes their graded
minimal free resolutions. We are not of aware of any other such result about the resolutions of “fat lines”. Finally, the
ideals Iz give a new family of examples of codimension two non-perfect ideals whose resolution can be described
(see [18] for another such class arising from lattice ideals).

1. Preliminaries

In this paper k is an algebraically closed field of characteristic zero and N := {0, 1, 2, .. .}.
1.1. Points and fat points in P! x P!

We continue to use the notation and definitions from the introduction. Suppose that P = [ag : a1] X [bg : b1] is a
point of P! x P!. The bihomogeneous ideal associated to P is the ideal Ip = (ajxo — aox1, b1yo — boy1). The ideal

Ip is a prime ideal of height two that is generated by an element of degree (1, 0) and an element of degree (0, 1). If
P = R x Q, then we shall usually write Ip = (Lg, L) where L, is the form of degree (1, 0) and L ¢ is the form of
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degree (0, 1). Because Pl x Pl = Q, the quadric surface in 3, it is useful to note that L g defines a line in one ruling
of Q, L defines a line in the other ruling, and P is the point of intersection of these two lines.

Let X be any set of s points in P! x P!. Let 7; : P! x P! — P! denote the projection morphism defined by
P = R x Q — R. Similarly, let > denote the other projection morphism. The set 71(X) = {Ry, ..., R} is the set
of r < s distinct first coordinates that appear in X, while m2(X) = {Q1, ..., Q,} is the set of + < s distinct second
coordinates. The set X is therefore a subset of {R; x Q; | R; € m1(X) and Q; € m2(X)}. When P € X, we write
P = P;jtomeanthat P = R; x Q;.

Fori = 1,...,r, let Lg, denote the degree (1,0) form that vanishes at all the points of X which have first
coordinate R;. Similarly, for j =1, ...,¢, let LQj denote the degree (0, 1) form that vanishes at all the points whose
second coordinate is Q ;. The defining ideal of Iy is then the ideal

Ix= () In;= [) Lz Loy

P;jeX P jeX

As noted above, X is a subset of {R; x Q; | R; € m1(X) and Q; € m»(X)}. When we have equality, then X is
called a complete intersection of type (r, t), denoted X = CI(r, t), where r = |m1(X)| and t = |m2(X)|. The name
follows from the fact that

IX= ﬂ IPivj:(LRl.'.LRV’LQI'.'LQt)Z(FvG)
P,"jEX

where deg FF = (r,0) and degG = (0, ¢), and furthermore, F and G form a regular sequence on S. When
X = CI(r,t), then the bigraded resolution of Iy is

0— S(—r,—t) — S(—r,00® SO0, —t) — Ix — 0 (1.1)

which follows from the Koszul resolution, but also taking into account that I is bigraded.
If X is a finite set of s points in P! x P!, and mi, j»--.,Mj j ares positive integers, then Z denotes the subscheme
of P! x P! defined by the saturated bihomogeneous ideal

= () 1= () o)

Pl'»j eX ’ Pi,j eX

We call Z a fat point scheme (or sometimes, a set of fat points) of P! x P'. When all the m; j equal one, then Z = X,
and X is called a reduced set of points.

From time to time, we will wish to represent our fat point schemes pictorially. Because P! x P! is isomorphic to
the quadric surface Q C ]P’3, we can draw fat point schemes on Q as subschemes whose support is contained in the
intersection of lines of the two rulings of Q. For example, if P, ; = R; x Q; € P! x P!, then the fat point scheme
Z ={(P1.1;4), (P12;2), (P22; 3)} can be visualized as

01 O
R 44 2

7 =
Ry 3

where a dot represents a point in the support and the number its multiplicity.
1.2. ACM points and fat points

As noted in the introduction, a set of (fat) points in P*! x ... x P with r > 2 may or may not be arithmetically
Cohen—Macaulay (ACM). Currently, only ACM sets of (fat) points in P! x P! have been classified. ACM sets of
points in P! x P! were first classified via their Hilbert function in [9]. An alternative classification was provided by
the second author [22], which we recall here.

We associate to a set of points X in P! x P! two tuples ax and Bx as follows. Let 71 (X) = {Ry, ..., R} be the r
distinct first coordinates in X. Then, for each R; € m1(X), leto; := |JT1_1 (R;)|, i.e., the number of points in X which
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have R; as its first coordinate. After relabeling the o; sothato; > ;41 fori = 1,...,r—1,wesetay = (a1, ..., o).
Analogously, for each Q; € m(X) = {Q1, ..., O}, we let §; == |n;1(Qi)|. After relabeling so that 8; > B;4+1 for
i=1,...,t—1,wesetBx = (B1,...,Br).

Recall that a tuple A = (A, ..., A,) with Ay > Ay > ... > A, is a partition of an integer s if ij = .
So, by construction, ax and Bx are partitions of s = |X|. The conjugate of a partition A, denoted 1*, is the tuple
A =A% .., Ajl) where A;‘ =#{L; € A | A; = i}. With this notation, we can state Theorem 4.8 of [22]:

Theorem 1.1. A set of reduced points X in P! x P! is ACM if and only if ay = Bx.
Example 1.2. Let P; = [1 : 0] and P, = [0 : 1] in P!, and consider X = {P; x Pi, P> x P>} in P! x P!, In this
example ax = (1, 1) and fx = (1, 1), but a’;( = (2) # Bx, so X is not ACM. The set X is the simplest example of a

non-ACM set of points.

Example 1.3. Consider the following set of points in P! x P!

01 02 03 04 Os5 O¢

Ry

Ry,
X =
R3

R4

Rs
For this set of points, 71 (X) = {R1, R2, R3, R4, Rs}. Then
I ROI=3, I (R)I=5, ln (R =6, |m; '(R)I=1, and |7, '(Rs)| = 1.
So, ax = (6, 5,3, 1, 1). Now counting the number of points whose second coordinate is Q; fori =1, ..., 6, we have

Bx =(5,3,3,2,2,1). So X is ACM because oy = Byx.

Remark 1.4. Suppose that X is ACM with «x = (a1, ...,a,) and Bx = (B1, ..., B;). Because a}"( = Bx, we can
assume after relabeling that o; = |JT1_1(R,')| foreachi =1,...,r,and 8; = |n2_1(Qj)| foreach j = 1,...,¢. So,
when X is ACM, the points of X can be represented by a Ferrers diagram for the partition ay.

The two authors [13] found a similar combinatorial description for classifying ACM fat points in P! x P!. We recall
this procedure. Let X denote the support of a fat point scheme Z, and suppose that | X| = s. For each R; € m1(X), set

Zyg = APy jiimijp), (Pijyimijy), ..oy (Pj, i mi )}
where P; ;, = R; x Qj, for some Qj, € m2(X). Thus 71(Supp(Z1,r,)) = {R;}, and Iz = ﬂle IZLR,» For each
R; € m(X) define [; .= max{m, j,, ... s My, }. Then, fork =0, ...[; — 1, we set
o
ai = Z(m,‘,j —k)4+ where (n)4 = max{n, 0}.
j=I
We then put all the numbers g; ; into a tuple; that is, let
az = (alﬁo, e AL —=1,82,05 -5 A2 15 —15 «+ 3 Ar,05 - - 5 ar,lr—1)~
Similarly, for each Q; € m>(X), define
Z2,0; = {(Piy jsmiy, j), (Piy, js i ) -, (Pigjs i )]}

where P ; = R;, x Q; are those points of Supp(Z) whose projection onto its second coordinate is Q ;. Thus
m2(Supp(Z2,0;)) = {Q;}. For Q; € m(X) define l} = max{m;, j, ...,miﬁj,j}. Then, for each integer 0 < k <
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l’/ — 1, we define

Bj
bj = Z(m,,j — k)4 where (n)4 := max{n, 0}.
i=1

As in the case of az, we place all the values b; ; into a tuple:
,BZ = (b])(), PN bl,li—l? bz’(), ey b2,lé—l’ ey b;‘(), ey bt,l;—l)'

If we reorder the entries of &z and Bz in non-increasing ordering, i.e., &; > ;41 and B; > B;4 for all i, then a2
and Bz are partitions of deg Z. The following result of the authors [13, Theorem 4.8] then extends Theorem 1.1. Note
that when Z = X, then ¢z = ax and 8z = Bx, so Theorem 1.1 is a special case of the following theorem.

Theorem 1.5. A set of fat points Z C P! x P! is ACM if and only if ay = pz.

When Z is ACM, we can in fact describe the entire resolution of Iz using only the tuple az = («q, ..., apn).
Define the following two sets from o z:

SZO = {(mv 0), (Oa al)} U {(l - la ai) | o —oj—1 < 0}
SZy={(m, o)} U{(G -1, ;1) | @i —aj—1 < 0}.
We take o_; = 0. With this notation, we have

Theorem 1.6. Suppose that Z is an ACM set of fat points in P! x P! with ay = (a1, ..., am). Then the bigraded
minimal free resolution of 1z is given by

0— P S-i-Hp— @ Si—j)—1z—0
(i,j))eSZ, (i,))eSZy

where S 2 and SZ| are constructed from az as above.

Our goal is to describe the resolution of the following special class of fat points.

Convention 1.7. For the remainder of this paper, Z will denote a set of double points in P! x P! with the property
that Supp(Z) = X is an ACM scheme and the partition A = (A1, ..., A,) will denote the partition cy.

Example 1.8. Let X be as in Example 1.3. The scheme Z defined by 7z = [, jex 1123”_ is an example of a set of

points that satisfies Convention 1.7. For this set of points, A = ax = (6,5, 3, 1, 1). In light of Remark 1.4 we can
visualize this set as

01 02 03 04 Os Qs
2 2 2 2 2 2

Ry ‘—I—F
2 2 2 2 2

R,

Z = 2 2 2

R3
2

Ry
2

Rs

For this set of fat points, we have
az =(12,10,6,6,5,3,2,2,1,1) and Bz =1(10,6,6,5,4,4,3,3,2,2,2,1).
It then follows that Z is not ACM because a} = (10,8,6,5,5,4,2,2,2,2, 1, 1) # Bz.
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2. The completion of Z

Let Z be a set of double points that satisfies Convention 1.7, and let . = (A1, ..., A,) be the partition that describes
the ACM support X. In this section we build a scheme Y, which we call the completion of Z, that contains Z. The
scheme Y will be an ACM set of fat points that will form the base step in our recursive formula to compute the
bigraded resolution of /7. The notion of a completion was originally introduced by the first author in [11] to describe
the minimal generators and Hilbert function of 7.

Geometrically, the completion of Z is formed by adding a number of simple (reduced) points to Z so that the
support of the new scheme becomes a complete intersection. If X is the support of Z, and if 71(X) = {Ry, ..., R/}
and 7[2(X) = {le ) QT}3 then

XCW=(R xQj| R €em(X)and Q; € ma(X)}.

Note that W is a complete intersection of reduced points.

Definition 2.1. Suppose that Z is set of double points that satisfies Convention 1.7. With the notation as above, the
completion of Z is the scheme

Y :i=ZU(W\X).

Note that the support of the completion is the complete intersection C I (r, t). (Because of Convention 1.7, we have
t = Aj1.) As first proved in [11], the completion of Z is ACM. In fact, the bigraded minimal free resolution of Iy is a
function of A.

Theorem 2.2. Let Y be the completion of the scheme Z. If . = (A1, ..., \;) is the tuple describing X = Supp(Z),
then

@) ay =1+ A, A A2, o A A AL A, L A,

(i) Y is ACM.

(iii) the bigraded minimal free resolution of Iy has the form
0> @ Si-p—> P Si.—j)—>1Iy—>0

(i,))eSV (i,/))eSYo
where

S8Yo =1{@2r,0), (r, A1), 0, 22D} U{GE — L, A1 +A) G+r —1,4) | A; — A1 < 0}
SY1={@r,x), r, M +A)U{G — LAt +2i—), G +7— 1, 1) | A; —Ai—1 <O}

Proof. Statement (i) follows directly from the construction of Y. For statement (ii), it suffices to note that if

A* = (AT, ...,)Lj{l), then By = (A} + A], ..., A7 + A*I,AT, . ..,Ajl). Moreover, one can check that ay = By,
so that by Theorem 1.5 it follows that ¥ is ACM. The bigraded resolution of (iii) follows from Theorem 1.6. [

Example 2.3. Let Z be the scheme of Example 1.8. The completion of Z is the scheme

01 02 O3 04 0Os Qs
Ry
R> p—

Y =
R3

R4

Rs
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where e means a double point and o means a simple point (we have suppressed the multiplicities). Because
A = (6,5,3,1,1), it follows that oy = (12,11,9,7,7,6,5, 3, 1, 1). Then the shifts in the bigraded minimal free
resolution of Iy are given by

SYo ={(10,0), (8, 1), (7,3),(6,5),(5,6), (3,7), (2,9), (1, 11), (0, 12)}
SY1 =1{(10,1),(8,3),(7,5),(6,6),(5,7),(3,9), (2,11), (1, 12)}.

3. The generators of Iz and Iy

Using the tuple A, we construct a matrix whose entries are either two or one. We then extract information from this
matrix to describe the minimal generators of Iz and Iy. This technique originated with the first author [11] to describe
the minimal generators and the Hilbert function of /z; this method can also describe the generators of Iy.

Because Iy C Iz, we will identify a family of bigraded forms {F1, ..., Fp} such that F; & Iy + (F1, ..., Fi_1)
fori =1,...,pand Iz = Iy + (F1, ..., Fp).

Definition 3.1. If . = (A, ..., A,) is the partition associated to Z, then the degree matrix of Z is the r x A matrix
M, where
)2 =
(M) = {1 otherwise.

Remark 3.2. If the points in the support of Z have been relabeled according to Remark 1.4, then (M), is the
multiplicity of the point P, in Y, the completion of Z.

‘We now recall some definitions given in [11] using the degree matrix of Z.

Definition 3.3. The base corners of Z is the set:
Co :={(, j) | Myp)i,j = Lbut (My);—1,j = (My);,j—1 =2}
Given the base corners of Z, we then set
Cy={G,D|G,}J)),k,I)eCyandi > k}.
The corners of Z is then the set C := Cp U C;. We shall assume that the elements of C have been ordered from largest

to smallest with respect to the lex order.

Remark 3.4. The set of base corners Cy can be computed directly from the partition A associated to Z. Precisely,
Co:={G i+ 1)1 —2ri—1 <O}

Definition 3.5. For each (i, j) € C, set
uiji=myj+myj+---+mi_; and Vij=mi1+mip 4+ mi o

were mg p = (My)a,p. Thatis, u; ;, respectively v; ;, is the sum of the entries in M, in the column above, respectively
in the row to the left, of the position (i, j). If (i, j) = (i¢, je) is the £th largest element of C with respect to the
lexicographical order, the form

mlyj

_ L pMisljpmin M)
Fe= LRl LRi—l LQI Qj-1

were mg p = (M))q.p is called the form relative to the corner (i, j).

-L

Theorem 3.6. Let Z be a fat point scheme that satisfies Convention 1.7, and furthermore, assume that the points in
the support have been relabeled using Remark 1.4. If (i, j) = (i¢, je) is the £th largest element of C with respect to
the lex order, then let

miy j mi—y,j

Fy=Lyp Ly L

mi,| mi j—1

01 Q-1
be the form relative to the corner (i, j). Set Iy = Iy, and Iy .= (Iy—1, Fy) for £ =0, ..., |C|. Then

.. L
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(1) deg Fe = (ui,j, vi j)-

(i) Fe & Io—1.

(i) Iz = Iy + (F1, ..., Fp) where p = |C|.

(iv) Iy is generated by the generators of ly, and all the forms relative to corners (a, b) with (a,b) bigger than or

equal to (ig, jo).

Proof. Statement (i) is immediate from the definition of F,. For statement (ii), note that after relabeling, P;, ;, =
Ri, x Qj, is a reduced point of Y. Furthermore, every element of /,_; vanishes at the point P;, ;,, i.e., I;—1 C
Ipl.bjl = (LRie , Lsz)’ but the form Fy ¢ Ipi(_j(. Statements (iii) and (iv) are Theorem 3.15 of [11]. [

A slight variation of the above technique enables us to describe the generators of Iy.

Definition 3.7. Let A = (A, ..., A,) be the partition associated to Z, and suppose M, is the degree matrix of Z. The
degree matrix of Y is the (r + 1) x (A1 + 1) matrix

M, 1
MY:[1A 1}

where 1 denotes the appropriately sized matrix consisting only of ones.

Definition 3.8. Let Cy be the base corners of Z constructed from A = (Aq, ..., A,). The outside corners of Z is the
set

OC={r+1LD,(0,xam+D,F+1L,0+DIU{F+1,/7),06r1»+D]3G)) eCl.

Theorem 3.9. Let Z be a fat point scheme that satisfies Convention 1.7, and furthermore, assume that the points in
the support have been relabeled using Remark 1.4. If (i, j) = (i¢, je) € OC, then set

Ge= Ly’ - Ly LY --.L”éiji[‘ll where mq , = (My)ap.
Then {G1, ..., G4} where g = |OC| is a minimal set of generators of Iy.
Proof. Foreach ¢ =1, ..., g, one can show that G, passes through all the points of Y to the correct multiplicity. By

comparing the degrees of each G, with the degrees of the minimal generators of Iy from the bigraded minimal free
resolution in Theorem 2.2, we then see that the G,’s form a minimal set of generators of Iy. [

We end this section with an example illustrating these ideas.

Example 3.10. Let A = (6, 5, 3, 1, 1) be the X associated to the fat point scheme Z of Example 1.8. Then the degree
matrices of Z and Y are given by

[\OJ ]

./\/l)L = MY

[NS2N NS (O I ST S}
il ol \S 2 (ST )
—_— =N NN
e Ll
_—— = NN
— === N
Il
Ll NS SR (ST NS I (S ]
= = =N
—_ == NN
= === NN
_—— == NN
= —_ = = =N
I— === ==

Then Co = {(4, 2), (3,4), (2, 6)}, ordered lexicographically. The corners of Z is the set
C=CU{(44),4,6),3,6}={46),44),472),3,6),3,4), (2,6}

The positions of the underlined 1’s in M, correspond to the elements of C.

The outside corners, which correspond to the positions of the underlined 1’s in the matrix My, is the set
OC = {(6,1),(6,2),(6,4),(6,6),(6,7),(1,7),2,7),(3,7),4,7)}. As an example of Theorem 3.9, consider
(6, 6) € OC. Associated to this tuple is the form

_ 72 71 71 71 71 71 71 71 71 41
G =L Lry,LrsLryLrsLo LoyLosLo,Los-

We see from the picture of Example 2.3 that G passes through all the points (with correct multiplicity) of Y. Also,
deg G = (6, 5) is one of the degrees of the minimal generators.
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Observation 3.11. The following fact will be used implicitly in the next section. For each (i, j) € C there exists non-
negative integers ¢ and d such that ( +c+1, j), (i, j+d+ 1) and (i +c+ 1, j +d + 1) are either elements of C or
OC. Although we leave the proof of this fact to the reader, we can illustrate this observation using the above example.
Note that (4, 2) is a corner of Z. There exists two integers c = 1 andd = 1 suchthat (4 + 1+ 1,2), 4,2+ 1+ 1)
and (4 +1+ 1,2+ 1+ 1) are also corners or outside corners.

4. The resolution of Iz

Let Fi, ..., Fp, be the p forms of Theorem 3.6 where F; is the form relative to the corner (i¢, j¢) € C. As in
Theorem 3.6, we set Ip = Iy and I, = (Iy—1, Fy) for€ =1, ..., p. Then, for each 1 < £ < p, we have a short exact
sequence

F,
0— S/Ue—1: Fo)(—uiy, j,» —Vig, jy) 2L S/l — S/Iy=S/Ue_1, Fr) = 0 4.1

where deg Fy = (u;,, j,, vi,, j,)- Using the short exact sequence and the mapping cone construction, we will reiteratively
describe the bigraded minimal free resolution of 7.
To use the mapping cone construction in conjunction with (4.1), we will prove that (Iy_; : Fy) is a complete

intersection for each £ = 1,..., p whose type can be determined through the following family of matrices. Let
C = {1, j1), ..., (ip, jp)} be the corners of Z ordered from largest to smallest with respect to the lex order. Then set
Moy=M,;,andforl =1,..., p,let M be the r x A matrix where
o]0 it (i, j) = (e, Jjo)
Maij = {(Me—l)i,j otherwise.

Here > denotes the partial order where (i1, j1) > (i2, j2) if and only if i} > ip and j; > j».

Example 4.1. Before preceding to the main results of this paper, we describe in more detail what our algorithm does
geometrically, and how we shall use the matrices M. Let Z, denote the scheme of fat points defined by the ideal
Iy, where Zp = Y is the completion of Z. Roughly speaking, at each step in our algorithm, we are removing a set
of points from Z,_; to form the set of points Z,. In particular, at each step we are removing a complete intersection
whose type can be ascertained from the matrix My_.

We illustrate some of these ideas by using our running example (Example 1.8) of A = (6, 5, 3, 1, 1). The matrix
Moy = M, of Example 3.10 describes the multiplicities of the fat points Zg = Y. By Example 3.10 the largest corner
of Z is (4, 6). The element

2 2
Fy =Ly Lr,LrsLg, Lo,LosLg,Los

is the form relative to the corner (4, 6). The form F) passes through all the points of Zy = Y with correct multiplicity,
except the points P, = R, x Qp with (4,6) < (a,b) < (5,6). These points are C = {R4 X Q¢, R5s X Q¢}, a
complete intersection of points of type (2, 1) defined by Ic = (Lg,Lgs, Lg4). The type can be found by starting at
the location of the first corner (4, 6) in My, and summing the entry in position (4, 6) and all those below it (in this
case, 1 + 1 = 2), to get the first coordinate of the type, and summing the entry in position (4, 6) and all those to right
(in this case, only 1) to get the second coordinate.

The ideal I} = (Ip, F1) is then the defining ideal of Z;, where

Zy=Y\CI@2,1) =Y\ {P4s, P56}

Observe now that the matrix

2 2 2

2
2
My = 1
1
1

[\SIN (I (S 8]
—— NN
—_— NN
— e N DN
OO = =N
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describes the multiplicities of the fat point scheme Z:

01 02 O3 Q4 Q05 Qs
Ry

Ry p—

R3

Ry

Rs

where e means a double point and o means a simple point.
The next largest corner of Z is (4, 4), and the form

2 2 2
= LRlLRzLRsLQ]LQzLQs

is the form relative to the second corner (4, 4). The form F, now passes through all the points of the scheme Z; with
correct multiplicity, except the points P, ;, with (4,4) < (a,b) < (5, 5). These points are C = {R4 X Q4, R4 X
0Os, Rs x Q4, Rs x Qs}, a complete intersection of type (2, 2) defined by Ic = (Lg,Lgs, Lg,Ls). The type can be
found by starting at the location of the second corner (4, 4) in M, and summing the entry in position (4, 4) and all
those below it (in this case, 1 4+ 1 = 2), to get the first coordinate of the type, and summing the entry in position (4, 4)
and all those to right (in this case, 1 + 1 + 0 = 2) to get the second coordinate.

The ideal I, = (I1, F1) now defines the scheme

Zy=Z1\CI1(2,2) =Z \{Pss, Ps5,Psa, Ps5} =Y \{Psa, Pas, Psg, P54, P55, P56},
and analogously, the matrix M> describes the multiplicities of the fat point scheme Z»:
01 Q2 O3 Q4 Os Qs
Ry

Ry p—

R3

Ry

Rs

Continuing in this fashion, we remove all the simple points from Y by removing a suitably sized complete
intersection at each step until we get Zg = Z. In general, the matrices M, allow us to keep track of the size of
the complete intersection we are cutting out from Z, at each step.

Remark 4.2. Let {(i1, j1), ..., (ip, jp)} be the corners of Z starting from the largest corner of Z; the complete
intersection C that we remove at each step from Y is formed from the points P,, with (i¢, je) < (a,b) =<
(i¢ + ¢, jo + d) and such that (i¢, j¢), (i¢, je + ¢+ 1) and (i + d + 1, j,) are either corners or outside corners
of Z.

In the next lemma we show (/y,_; : Fy) is a complete intersection of points.
Lemma 4.3. With the notation as above, let (i, j) = (ig, j¢) be the £th corner of C. Then
(Ie—1: Fo) = Ici(a j.bi )

where aj j = mjj + ..+ My, j, b,',j =m,; + o+ mi, and Mg p = (Mé—l)a,lr
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Proof. Without loss of generality, assume that the points of Z have been relabeled in accordance to Remark 1.4.
From the construction of M,_ there exists integers ¢ and d such that m; ; = m;jy1; = -+ = mjqc; = 1, but
Miteql,j = =My j = 0, and similarly, Mij = -+ =Mjjrd = 1, but Mi jtd+1 = = Mj) = 0. Set

m;, Mjye,j mi, mi j+d
A= L ]"'LRi+C,]=LRi"'LRi+(7 and B=1L J,..LjSd ZLQj"‘LQj+d‘

It will now suffice to show that (I,_1 : Fy) = (A, B).

Note that (A, B) defines a complete intersection C = CI(q; , b;, j). Because the points have been rearranged in
accordance to Remark 1.4, P, , = R, x Qp € C ifand only if (i, j) < (a,b) < (i + ¢, j +d). The points of C form
a subset of the reduced points of Y.

By Theorems 3.6 and 3.9, Iy = (G, ..., Gy, F1, ..., Fy—1). The forms G; vanish at all the points of C C Y.
By Theorem 3.6 we have F; € Ic for 1 <i < £ — 1. However,

mlj

Fp=Lph L Ly L

m,-yj_l
Qj-1
from which it follows that for every P, € C, Fe(Pasp) # 0. So, if HF, € Is—1 C Ic, then H € Ic. That is,
Ug—1: Fp) € Ic = (A, B).
From the construction of M,_1, (i + ¢ + 1, j) is either a corner or outside corner of Z. In either case, set
_ oy ni—1,j y Ni,j Nite,j y Mite+l1,1 Nite+1,j—1
F_LRI “.LRtlL “Lz+c LQI .”LQj—l
where n, j; refers to the entries in My = (n,.), the degree matrix of Y. If (( + ¢+ 1, j) € C, then F € I,_; by
Theorem 3.6;if (i + ¢+ 1, j) € OC, then F € I;_1 by Theorem 3.9. Now set

mi j—1

FeA Lml o Lmz IJLR LR- Lmi,l jSl )

i+c™ Q1 L

We claim that F divides F;A, and hence FyA € I;_;. To see this we compare the matrices My and My_;. By
construction (My)gp = (Mp)a,pb = (My_1)a,p forall (a, b) < (i +c, j). So, the exponents of the Lp,’s in FyA and
F are actually the same.

On the other hand, note that n, ; > n, ; if @ > b in My, i.e., the columns are non-increasing. Since m;; = n; ;
forr =1,...,j — 1, we have that the exponents of the Ly;’s in F are less than or equal than those that appear in
FyA. So, F divides FyA. So A € (Iy—1 : Fy). A similar argument using the fact that (i, j +d + 1) € C or OC will
now show that B € (Iy—; : Fy). Hence (A, B) C (Iy—1 : Fy). O

We now come to the main result of this section, which forms the basis of our recursive algorithm to compute the
resolution of 7.

Theorem 4.4. With the notation as above, suppose that (i, j) = (ig, j¢) is the Lth largest element of C, and
furthermore, suppose that

0—)F2—)F1—)]F0—)](_1—>0

is the bigraded minimal free resolution of Is—1. Then

IFy
1)) ® Fo
0— @ = S(—u;j—aij,—vij) — @ —I; —>0 4.2)
S(—uj,j — aij, —vi,j — bj,j) & S(—ui,j, —vi,j)

S(—u;,j, —vi,j — bi j)
is a bigraded minimal free resolution of Iy = (Iy—1, Fy) where

wij =mij+moyj+---+mi_1j and vij=mi1+mipz~+---+mjj
aij=mij+---+mp; and b;j=m;;j~+---+m;y,

and mgp = (Mg_1)a,p.
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Proof. Let (i, j) = (i¢, je) € C denote the £th largest corner of Z, and assume that the points of Z have been
rearranged in accordance to Remark 1.4. Let
o L

_ my j mi—1,j ymj 1 mi j—1
Fe= LRI ...LRi—l LQI Qj1
be the form relative to the corner (i, j) with deg Fy = (u; j, v;, ;). Note that for all (a, b) with (a, b) < (i, j), we have
(Me—1Da,p = (Mj)a,p. So, the integers u; ; and v; ; as defined above are the same as those of Theorem 3.6.
By Lemma 4.3, we know that (Iy_1 : F¢) = ICI(u;,j,b,-,,-y By using (1.1), a minimal bigraded free resolution of

(Ip—1 : Fp) is:
0 — S(—aj j, —bij) = S(—a; ;j,0)® SO, —b; j) - (Ue—1: Fy) — 0.

When we apply the mapping cone construction to the short exact sequence (4.1), we get that (4.2) is a bigraded free

resolution of I,. It therefore suffices to verify that this resolution is minimal.
The map in (4.1)

F
S/Ue—1 2 Fo)(—ui j, —vij) S/

lifts to a map from the minimal resolution of S/(Iy—1 : F¢) to that of S/1y_1:

0 - § o N s S/Upi:F) = 0
16 {31 I X Fy I X Fe
0o - 3 Fr &L rFrR B s s S/I -~ 0.

We have suppressed all the shifts in the resolutions. The maps in each square commute. Again suppressing the shifts,
the resolution of S//, given by the mapping cone construction has the form

o2 ] e
0> SOF, — S?adF, —> S®F) — S — S/I; > 0

where the maps are

- 0 —¢o 0O
&y — . B = d & =[F .
: |:52 ©2 : s o] O o=[Fe o]

After fixing a basis, each map ¢;, ¢;, and §; can be represented by a matrix with entries in S. It will therefore suffice
to show that all the nonzero entries of the matrix corresponding to the map ¢; fori = 0, 1, 2 belong to the maximal
ideal (xo, x1, yo, ¥1) of S. The matrices corresponding to ¢; and ¢; already have this property because they are the
maps in the minimal resolution of S/(ly—1 : Fy) and S/1I;—1, respectively. So, we need to show that there exists maps
81 and &, that make each square commute, and when these maps are represented as a matrices, all the nonzero entries
belong to (xg, x1, Yo, ¥1)-

From Observation 3.11, because (i, j) € C, there exist integers ¢ and d such that (i + ¢ + 1, j), (i, j +d + 1),
and (i +c + 1, j + d + 1) are either corners or outside corners of Z; in particular, we choose ¢ and d as in the

proof of Lemma 4.3, thatis, m; j = mjy1; = -+ = Mjycj = L, but mjycqy1,j = -+ = m,; = 0, and similarly,
mjj=--+=mjjyq = 1, but Mj jtd+1 =+ =Mj) = 0 with Mmyp = (Mgfl)a,b. Set
_ oy Mmij oy Mitej _ . _ Mg pMij+d _ L.
A—LR[_ LRi+c —LR,- LRi+c and B_LQj LQj+d —LQj LQjer.

Because (I;—; : Fy) = (A, B) is a complete intersection, the maps ¢o and ¢ are simply the Koszul maps. As
matrices, these maps are

¢1:[_BA} and ¢o=[A B].

We also let
H = Lr;ell’j . L'Ig::J'L’Z;—cH,] o Lg;r:rl’f’l
H, = L’;1].j+d+l ... L’;eii—illy_/+d+1 Lrgll . ,5!/::

where ng,, = (My)ap-
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Now (i +c+1,j), G, j+d+1),and ( +c+ 1, j +d + 1) are either corners or outside corners of Z. In the
case that they are corners of Z, then they are larger than the corner (i, j). So by Theorems 3.6 and 3.9 we have that
the forms Hj, H>, H3 are minimal generators of I,_i.

After a suitable change of basis, we can then write ¢g as

po=[H Hy Hy Ki --- K
where K1, ..., K denote the other minimal generators of 7,_.
Let
my,j mi—yj o, mj| mi j—1
FiA LRIJ"'LRH]LQl "'Lij_l Lg -+ LR,
C= Hl = L”l,j . L’11+r,jLni+c+1,1 L. Lni+c+1‘j—]
Ry Riye 70 Qj-1

Now, by the construction of My and M,_1, we also have (My),p = (My—1)ap forall (a,b) < (i +c¢, j+d). The
exponents of the Lg,’s in the above expression are then the same on the top and bottom, and thus they cancel out, i.e.,

mi mi j—1

C= FeA LQI .”LQj—l
- H, - [ttt _”L”iJchrl,j—l :

01 Q-1

Because (i, j) is a corner and (i + ¢ + 1, j) is either a corner or outside corner of Z, by construction of the My,
there exist some j < j — 1 such that n; .41y < n; j = m; jr. (The columns of My are non-increasing, so if
Niyey1,jr = n; j for all J' < j — 1, then the first j — 1 entries of rows i through i + ¢ + 1 are the same, and thus
there would not be a corner (or outside corner) in position (i + ¢ + 1, j).) Because of this fact, we have deg C > 0. A
similar argument implies that if D = %, then deg D > 0.

Because FyH3 = Hy H,, we have the following two syzygies:

BH — DH3;=0 and AH, — CH3z =0.

That is, (B,0,—D,0,...,0T and (0, A, —C,0, ...,0)T are two elements of Fy, written as vectors, in kergpy =
Im ¢;. Let ¢ = (ar,...,am", respectively, b = (b1, ...,bn)T denote an element of F; with p1(@) =
(B,0,—D,0,..., O)T, respectively, ¢1(b) = (0, A, —C,0, ..., O)T. With this notation, we can now prove:

Claim 4.5. The maps 8| and 8, are given by

c 0

Ca, — Dby 0 D

& = and §; = 0 0
Ca,, — Dby, : :

0 0

Proof. We just need to show that each square containing a §; commutes. Now ¢od; = [H 1C H D] = [F[A F/B ]
This map is the same as composing the map ¢o with the map defined by multiplication by F,. For the second square,

@18, = Coi(a) — Do (b) = C(B,0,—D,0,...,00T — D, A, —C,0,...,0)T
= (CB,—DA,0,...,00T = §,¢.

This completes the proof of the claim. [

Because C and D are nonconstant bihomogeneous forms, every nonzero entry of §; and &, belongs to
(x0, X1, Y0, ¥1) € §. Therefore, the resolution of I, is minimal, as desired. [l

Remark 4.6. As observed in Example 4.1, the ideal I; corresponds to a subscheme of Y formed by removing a
number of complete intersections of reduced points. The above theorem allows us to calculate the bigraded minimal
free resolution for each such subscheme “between” Y and Z, that is, those schemes we called Z, in Example 4.1.
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5. The algorithm

The resolution of Iy = Iy depends only upon A. By repeatedly applying Theorem 4.4, we obtain the minimal
resolution of /, = Iz. Furthermore, the shifts that appear at each step only depend upon M, _; which is constructed
from A. Thus, there is an algorithm to compute the bigraded minimal free resolution of a fat point scheme Z which

satisfies Convention 1.7. For the convenience of the reader, we explicitly write out this algorithm.

Algorithm 5.1 (Computing Bigraded Resolution).

Input:

A= (A1,...,Ar) with Ay > Ay > --- > A, where A describes the ACM support of Z.

Output: The shifts in the bigraded minimal free resolution of /7.

Step 1:
[}
[ ]

Step 2:

Step 4:

Remark 5.2. The above algorithm has been implemented in CoCoA [2] and Macaulay 2 [10], and can be downloaded

Compute the shifts in the bigraded resolution of Iy where Y is the completion of Z.
SY1:={Cr, 7)), A + A UG — LA+ A1), G+r =141 [ A —A—1 <0}

Locate the corners
Co:={(Ai +1,0) | & —ri—1 <O} ={(i1, j1), - - -, (s, Js)} (lex ordered from largest to smallest)
Cl = {(itb .]b) | (ia9 ja)v (lbs .]b) € CO anda > b}
C := Cp U and order C in lexicographical order (largest to smallest)

Calculate the shifts in the resolution of 1.

Let M, be the r x A; matrix where (M;); ; = {

SetSZy:=8Vo,SZ1 =8V, and SZ, = {}
For each (i, j) € C (working largest to smallest) do
uij= M+ + Mo,
vij= Mt + -+ (M-t
aj j =M+ + M
bij = (My)ij + -+ (M,
SZo:=8Zo U {(u; j, vij)}
SZ1:=8Z1U{(u;,j +aj,vij), Wij,vij+bij)}
82, =82 U {(u;; + ai.j» Vi j + bi j)}
_Jo it (@', j) = @, j)
(Mij = {(M)L)ij otherwise
Return SZ, SZ1, and S 2> (the shifts at the Oth, 1st, and 2nd step of the resolution, respectively).

2 ifj <
1 otherwise

from the second author’s web page.'

Example 5.3. We use Algorithm 5.1 to compute the bigraded resolution of the fat points of Example 1.8. We have
already computed S)g and S in Example 2.3. To calculate the remaining elements of SZ¢, SZ, and SZ,, where
S2Z; is the set of shifts in ith free module appearing the resolution of /7, we need the numbers u; ;, v; j, a;,j, b; j for

each corner (i, j) € C. We have presented these numbers in the table below:

()€ | uij| vij|aij|bij
C
@6 | 4 6 2 1
s | 514|212
@2 | 6|2 2]2
(3,6) 3 8 1 1
Gd | 46| 1|2
26 | 2101 |1

1 http://flash.lakeheadu.ca/~avantuyl/research/DoublePoints_Guardo_VanTuyl.html.
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By using Theorem 4.4 and the above information, we have

S§Zy=1{(6,2),(5,4), (4,6),(4,6),(3,8), (2,100} USYo
$Z1={8,2),(7,4),(6,6),(6,4), (5,6),(5,6), (4,8),(4,8),(4,7),(3,10), (3,9, 2, 1D} USY;
S§Z,={(8,4),(7,6),(6,7),(5,8),4,9), 3, 11}

Remark 5.4. From Algorithm 5.1 we see that Z is ACM if and only if C = @ if and only if A = (A1, ..., A1), that is,
if the support of Z is a complete intersection and Z =Y.

6. An application: A question of Romer

Let I be a homogeneous ideal of R = k[x1, ..., x,] and consider the minimal graded free resolution of R/I
0O—-F,-F,1—-:--—>F—>R—->R/I—>0

where F; = @ ;7 R(—j)P7R/D. The number p = projdim(R/1) is the projective dimension, while the numbers
Bi,j(R/I) are the i, jth graded Betti numbers of R/I. Romer [19] recently initiated an investigation into the
relationship between the ith Betti number of R/1, i.e., Bi(R/I) = Z./ <7, Bi,j(R/I), and the shifts that appear with
the minimal free resolution. Among other things, Romer asked what ideals satisfy the bound

1
,Bi(R/I)SmQMj 6.1)

where M; = max{j | B; j(R/Iz) # 0} denotes the maximum shift that appears in IF;. In this section, we show the
ideals Iz studied in this paper satisfy (6.1). Precisely,

Theorem 6.1. Let Z be a set of double points in P' x P! with ACM support. Then all the ith Betti numbers of S/Iz
satisfy the upper bound (6.1).

Although we have viewed S /17 as a bigraded ring up to this point, the ring S/Iz also can be given a graded structure
by defining the ith graded piece to be (S/1z); = @B, ,—;(S/1z)a,b- As noted, S/Iz is rarely Cohen-Macaulay, so
this family provides further evidence that (6.1) holds for all codimension 2 ideals (Romer showed (6.1) is true for all
codimension 2 Cohen—Macaulay ideals).

We continue to use the notation we developed in previous sections. In particular, we continue to assume Z satisfies
Convention 1.7. We first show how to obtain precise formulas for 8; (R/Iz) fori = 1, 2 and 3, and lower bounds for
M1, My and M3 using A. With this information, the verification of the bound (6.1) is a straightforward exercise.

Let A = (A1, ..., A,) be any partition, i.e. A1 > Ay > --- > A, > 1. We set

d) =#{i | i — ri—1 <O0}.

Also, leti* =min{i | A; —Aj_1 < 0}. Thismeans A; = Ay = -+ = Ajx_| > Aj*.

Lemma 6.2. Let Z be a set of double points in P! x P! with ACM support with associated tuple A = (A1, ..., Ay).
Letd = d(\). Then

() Bi1(S/1z) =2d +3 + (d;d)'
(iii) B3(S/Iz) = (d-2+1>.

Proof. Let Y be the completion of Z. By Theorem 2.2, R/ Iy is ACM, and B8{(R/Iy) = 34+2d and B2 (R/Iy) = 2+2d.
By Theorem 3.6 there exist p forms F1, ..., F), such that Iz = Iy + (F1, ..., F)). Here, p is the number of corners
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which is p = (dgl). So B1(R/Iz) =2d + 3 + (d;-l)_ By Theorem 4.4, each generator F; contributes two first
syzygies and one second syzygy. Hence B2 (R/1z) =2d + 2+ 2 (dgl) and B3(R/1z) = (d;'l). g

Lemma 6.3. Let Z be a set of double points in P' x P! with ACM support with associated tuple ». = (A1, ..., A.),
and d()) > 0. Then
1) 2A1 < M.
(i) 22 + 1 < M».
(i) A1 + Ax +3 < Ms.

Proof. Let Y be the completion of Z. By Theorem 2.2 there is a generator of Iy of bidegree (0, 2A1) and a first syzygy
of Iy of bidegree (i* — 1, A; 4+ A;x—1). By Algorithm 5.1 we thus have that the bigraded shift (0, —24) appears in [
and (—i* + 1, —A1 — X;x—1) appears as a shift in F>. So, if we only consider the graded resolution of S/Iz, we have
that there must be a shift of —2A; in [Fy and a shiftof —i* +1— X1 —Aj»—; < —1 — A1 — A1 in[F,. So M; > 21y and
My =21 + 1.

Note that (i*, A;++1) is a base corner of Z, and is in fact the smallest corner of Z with respect to the lexicographical
ordering. Consider the matrix (M) as defined before Lemma 4.3. It must have the following form:

22 ... 2 2 ... 2

22 ... 2 1 .- 1

That is, the first row contains A twos, and row i* contains )\; twos and A1 — A;» ones. By Theorem 4.4 there is a
second syzygy of Iz whose bidegree is (1, v) where u is the sum of the entries in column A;+ + 1 and v is the sum of
the entries in row i* of the above matrix. Hence u > 2 + 1 and v = 247 + (A1 — A;+) = A1 + A;+. So, in the graded
resolution of R/Iz, there is a shift of —u — v < —3 — Ay — A}, from which we deduce M3 > A1 + A7 +3. [

With the above lemmas, we now prove Theorem 6.1.

Proof (Of Theorem 6.1). Let A = (A1, ..., A;) be the tuple associated to the support Z, and setd = d(1). If d = 0,
then A = (A1, ..., A1), and in this case S/Iz is Cohen—Macaulay of codimension 2, and thus satisfies the bound (6.1)
by [19, Corollary 4.2].

d+1

So, we can assume that d > 1. In this case S/1Iz is not ACM because 83(S/1z) = ( N ) > (. Before proceeding,

we note that A; — 1 > d and X;+ > d. We need to verify (6.1) fori = 1, 2 and 3 where p = 3 in this case. We consider
each case separately.

Case: i = 1. In this case, we have
d+1
2
But(d+2) <(2d+3)and (d+3) < (2d +3)foralld > 1, so

,31(5/1Z)=2d+3+< >:%(d+2)(d+3).

B1(S/1z)

IA

%(201 +3)2d +3) < %(2(51 + D+ D@+ +d+2)

IA

1 1
=2 D +Aix+2) < ——————M)Ms.
> 1+)(1+,+)_(1_1)!(3_1)! 2 M3

Case: i = 2. For this case

1
ﬂz(S/IZ)=2d+2+2<d—2i_ >=2d+2+(d+1)d:(d+1)(d+2)

<2d+DA+3)=QRUE+1)2d+2)=QU+D)(d+1)+d+3)

1
< @A)+ 2 +3) < mM1M3
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Case: i = 3. In our final case we have

d+1 A 1
( —; )S( l;_ )SM(M-FU

1

B3(S/1z)

IA

1M>.
So, the bound (6.1) is satisfied forall ;. [
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