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Abstract

We propose a new fuzzy rough set approach which, differently from most known fuzzy set exten-
sions of rough set theory, does not use any fuzzy logical connectives (¢-norm, z-conorm, fuzzy impli-
cation). As there is no rationale for a particular choice of these connectives, avoiding this choice
permits to reduce the part of arbitrary in the fuzzy rough approximation. Another advantage of
the new approach is that it is based on the ordinal properties of fuzzy membership degrees only.
The concepts of fuzzy lower and upper approximations are thus proposed, creating a base for induc-
tion of fuzzy decision rules having syntax and semantics of gradual rules. The proposed approach to
rule induction is also interesting from the viewpoint of philosophy supporting data mining and
knowledge discovery, because it is concordant with the method of concomitant variations by John
Stuart Mill. The decision rules are induced from lower and upper approximations defined for posi-
tive and negative relationships between credibility degrees of multiple premises, on one hand, and
conclusion, on the other hand.
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1. Introduction

It has been acknowledged by different studies that fuzzy set theory and rough set theory
are complementary because of handling different kinds of uncertainty. Fuzzy sets deal with
possibilistic uncertainty, connected with imprecision of states, perceptions and preferences
[4]. Rough sets deal, in turn, with uncertainty following from ambiguity of information
[18]. The two types of uncertainty can be encountered together in real-life problems.
For this reason, many approaches have been proposed to combine fuzzy sets with rough
sets (see, e.g., [0]).

Let us remember that fuzzy sets [21] are based on the idea that, given a universe U, the
membership of y € Uin a set X from U admits a graduality represented by means of func-
tion uy: U — [0, 1]such that uy{(y) = 0 means non-membership, py(y) = 1 means full mem-
bership, and for all intermediate values the greater py(y), the more credible the membership
of y in X. An analogous idea of graduality is introduced in fuzzy logic with respect to the
truth value v(p) of a proposition p such that v(p) = 0 means that p is definitely false, v(p) =1
that p is definitely true and for all intermediate values the greater v(p), the more credible the
truth of p. In the context of fuzzy sets, fuzzy connectives, being functions from [0, 1]x [0, 1]
to [0, 1], represent conjunction (¢-norm), disjunction (¢-conorm) or implication (fuzzy impli-
cations such as S-implication or R-implication) (see, e.g., [13]).

Let us also remember that rough set theory [17,18] is based on the idea that some
knowledge (data, information) is available about elements of a set. For example, knowl-
edge about patients suffering from a certain disease may contain information about body
temperature, blood pressure, etc. All patients described by the same information are indis-
cernible in view of the available knowledge and form groups of similar cases. These groups
are called elementary sets and can be considered as elementary building blocks of the
available knowledge about patients. Elementary sets can be combined into compound con-
cepts. Any union of elementary sets is called crisp set, while other sets are referred to as
rough set. Each rough set has boundary line cases, i.e., objects which, in view of the avail-
able knowledge, cannot be classified with certainty as members of the set or of its comple-
ment. Therefore, in the rough set approach, any set is associated with a pair of crisp sets
called the lower and the upper approximation. Intuitively, the lower approximation con-
sists of all objects, which certainly belong to the set, and the upper approximation contains
all objects, which possibly belong to the set. The difference between the upper and the
lower approximation constitutes the boundary region of the rough set.

The main preoccupation in almost all the studies conjugating rough sets with fuzzy sets
was related to a fuzzy extension of Pawlak’s definition of lower and upper approximations
using fuzzy connectives. In fact, there is no rule for the choice of the “right” connective, so
this choice is always arbitrary to some extent.

Another drawback of fuzzy extensions of rough sets involving fuzzy connectives is that
they are based on cardinal properties of membership degrees. In consequence, the result of
these extensions is sensitive to order preserving transformation of membership degrees.
For example, consider the z-conorm of Lukasiewicz as fuzzy connective; it may be used
in the definition of both fuzzy lower approximation (to build fuzzy implication) and fuzzy
upper approximation (as a fuzzy counterpart of a union). The z-conorm of Lukasiewicz is
defined as

(e, f) = min{a + f, 1}.
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T" (o, B) can be interpreted as follows. If o = uy(z) represents the membership of z € Uin set
Xand f = uy(z) represents the membership of zin set Y, then T%(a, ) expresses the member-
ship of z in set X U Y. Given two fuzzy propositions p and ¢, putting v(p) = o and v(q) = f,
T"(a, B) can be interpreted also as v(p V ¢), the truth value of the proposition p V q.

Let us consider the following values of arguments:

a=05 =03 v=02, 6=0.1,
and their order preserving transformation:
=04, B=03 7 =02 =005
The values of the #-conorm are in the two cases as follows:
T*(a,0) = 0.6, T*(B,y)=0.5, T, 0)=045 T(f,y)=0.5.

One can see that the order of the results has changed after the order preserving trans-
formation of the arguments. This means that the Lukasiewicz t-conorm takes into account
not only the ordinal properties of the membership degrees, but also their cardinal proper-
ties. A natural question arises: is it reasonable to expect from membership degree a cardi-
nal content instead of ordinal only? Or, in other words, is it realistic to claim that a human
is able to say in a meaningful way not only that

(a) “object x belongs to fuzzy set X more likely than object y”* (or “proposition p is more
credible than proposition ¢”’)

but even something like

(b) “object x belongs to fuzzy set X two times more likely than object y”” (or “proposition
p is two times more credible than proposition ¢’’)?

We claim that it is safer to consider information of type (a), because information of type
(b) is rather meaningless for a human (see [14]).

The above doubt about the cardinal content of the fuzzy membership degree shows the
need for methodologies which consider the imprecision in perception typical for fuzzy sets
but avoid as much as possible meaningless transformation of information through fuzzy
connectives.

The approach we propose for fuzzy extension of rough sets takes into account the
above request. It avoids arbitrary choice of fuzzy connectives and not meaningful opera-
tions on membership degrees. Our approach belongs to the minority of fuzzy extensions of
the rough set concept that do not involve fuzzy connectives and cardinal interpretation of
membership degrees. Within this minority, it is related to the approach of Nakamura and
Gao [16] using a-cuts on fuzzy similarity relation between objects.

We propose a methodology of fuzzy rough approximation that infers the most cautious
conclusion from available imprecise information. In particular, we observe that any
approximation of knowledge about Y using knowledge about X is based on positive or
negative relationships between premises and conclusions, i.c.,

(1) “the more x is X, the more it is Y’ (positive relationship),
(11) “the more x is X, the less it is Y’ (negative relationship).
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The following simple relationships illustrate (i) and (ii): “‘the larger the market share
of a company, the greater its profit” (positive relationship) and “the greater the debt of
a company, the smaller its profit” (negative relationship). These relationships have been
already considered within fuzzy set theory under the name of gradual decision rules [5].
Recently, Greco et al. [7,8] proposed an approach for induction of gradual decision
rules relating knowledge about X and knowledge about Y, represented by a single premise
and a single conclusion, respectively. It handles ambiguity of information through fuzzy
rough approximations. In this paper, we want to extend this approach to induction of
gradual decision rules having multiple premises representing knowledge about X. Exam-
ples of these decision rules are: “if a car is speedy with credibility at least 0.8 and it has
high fuel consumption with credibility at most 0.7, then it is a good car with a credibility
at least 0.9” and “if a car is speedy with credibility at most 0.5 and it has high fuel
consumption with credibility at least 0.8, then it is a good car with a credibility at most
0.6”.

Remark that the syntax of gradual decision rules is based on monotonic relationship
that can also be found in dominance-based decision rules induced from preference-ordered
data. From this point of view, the fuzzy rough approximation proposed in this article is
related to the dominance-based rough set approach [9-11].

For the reason of greater generality, one could drop the assumption of the monotonic
relationship between premise and conclusion in gradual rules. For example, the gradual
rule “the greater the temperature the better the weather™ is true in some range of temper-
ature only (say, up to 25 °C). In such cases, however, one can split the domain of the pre-
mise into sub-intervals, in which the monotonicity still holds, and represents the
regularities observed in these sub-intervals by gradual rules. For example, we can split
the range of the temperature into two open subintervals, under 25 °C and over 25 °C,
obtaining the two gradual rules: “the greater the temperature the better the weather”,
which is valid in the first interval, and “the smaller the temperature the better the weath-
er”, which is valid in the second interval. Therefore, the concept of monotonicity in grad-
ual rules is intrinsic to the idea of induction whose aim is to represent regularities
according to the simplest law (see, Proposition 6.363 in [20]: ““The process of induction
is the process of assuming the simplest law that can be made to harmonize with our expe-
rience”). We claim that this simplest law is the monotonicity.

The above proposition of Wittgenstein is borrowed from the paper by Aragones et al.
[1] on a similar subject. Remark, however, that these authors consider rules with non-
monotonic relationships between premise and conclusion, and, moreover, their rule induc-
tion procedure is based on a cardinal concept of the credibility of information.

The model of rule induction proposed in this paper is interesting also from the view-
point of data mining, knowledge discovery, machine learning and their philosophical
background [3,2,19]. In fact, applications of data mining, knowledge discovery and ma-
chine learning requires a proper theory related to such questions as

e Can the whole process of knowledge discovery be automated or reduced to pure-
logics?

¢ In what degree pieces of evidence found in data support a hypothesis? [12]

e How to choose an inductive strategy appropriate for the task one is facing?

e What is the relationship between machine learning and philosophy of science?

¢ “Is machine learning experimental philosophy of science?”’ [2]
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In this paper, we focus on the kind of discoveries permitted by our methodology. The
rule induction approach we are proposing is concordant with the method of concomitant
variation proposed by John Stuart Mill. The general formulation of this method is the fol-
lowing: ‘“Whatever phenomenon varies in any manner whenever another phenomenon
varies in some particular manner, is either a cause or an effect of that phenomenon, or
it is connected with it through some causation” [15]. In simpler words, the method of con-
comitant variation searches for positive or negative relations between magnitudes of con-
sidered variables. Mill’s example concerned the tides and the position of the moon. In the
above example of decision rules concerning evaluation of a car, the variations in evalua-
tion of the car are positively related with variations in its speed and negatively related with
variations in its fuel consumption. Cornish and Elliman [3] note that within current prac-
tice of data mining, the method of concomitant variation is the one which receives the least
attention among the other methods proposed by Mill (method of agreement, method of
difference, method of indirect difference and method of residues). However Cornish and
Elliman [3] observe also that the method of concomitant variation “is believed to have
the greatest potential for the discovery of knowledge, in such areas as biology and biomed-
icine, as it addresses parameters which are forever present and inseparable”.

The plan of the article is the following. In Section 2, we are defining the syntax and
semantics of considered gradual decision rules; we also show how they represent positive
and negative relationships between fuzzy sets corresponding to multiple premises and to
conclusion of a decision rule. In Section 3, we are introducing fuzzy rough approximations
consistent with the considered gradual decision rules. Section 4 deals with rule induction
based on rough approximations. In Section 5, we introduce fuzzy rough modus ponens
and fuzzy rough modus tollens based on gradual decision rules. Section 6 is grouping con-
clusions and remarks on further research directions.

2. Gradual decision rules with positively or negatively related premises and conclusion

Let us consider condition attributes X7, ..., X, related with decision attribute Y. More
precisely, we shall denote by X! a fuzzy value of attribute X; positively related with deci-
sion attribute Y, and by X?, a fuzzy value of attribute X; negatively related with decision
attribute Y. We aim to obtain gradual decision rules of the following types:

o lower-approximation rules (L-rule): “if

— x € X|, with credibility C(le) > o, x € X], with credibility C(X},) > aa, ..., and
xeX, T with credibility C(X; ) > o, and

- X EXL with credibility C( ’ ) <oy, x GX with credibility C( ) op, ..., and

x € X, | with credibility C(X ) < o,
then decmon x € Y has cred1b111ty ay = po,
o upper-approximation rule (U- rule): “if
- xc XT with credibility C(X; ) <o, X € Xl2 with credibility C(X] ) o, ..., and

x € X, ! with credibility C(X] ) <
- x€ Xl with credibility C(X; L) =, x € ij with credibility C(X; L) =, ..., and
>0

x € X l with credibility C(X -3) = O,
then de01s10n x € Y has credibility C(Y) < .

o, and
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The above dec1s1on rules will be represented by (r + s+ 2)-tuples < X I,,X ;
jé,Yf> and (X],... XI,,X}I,.. XJA,Y g), respectively, where f:[ O 1]r“ [O 1] and

g: [0,17° —10,1] are functions relating the credibility of membership in X ,... X]

ils - ir
X jl.l, X js with the credibility of membership in Y, in lower- and upper- approxnnatlon
rules, respectively. More precisely, functions f'and g permit to rewrite the conclusion part

of above decision rules as follows:

e L-rule: “then decision x € Y has credibility C((Y) = = flogi,. .., %, 01, .., o)
e U-rule: “then decision x € Y has credibility C(Y) < = g(ot1, . .., 0, %1, - -, %is) 7.

If we have sufficient information about the lower boundary and upper boundary of
credibility C(Y), functions f and g would be obtained as functions which are monotoni-
cally non decreasing with o1,...,a; and monotonically non increasing with oy, ..., a.
Otherwise, we cannot expect such monotonicity properties of functions f and g. Namely,
under some partial information about those boundaries, functions f and g cannot be
monotonically non decreasing with a;,...,o; and monotonically non increasing with
o1, .. .,%s In what follows, we assume only some partial information about the lower
boundary and upper boundary of credibility C(Y) so that functions f'and g are not always
monotonically non decreasing with o;,...,%;, and monotonically non increasing with
01+ vy Kjise

Given an L-rule LR = (X],... X,T,,Xﬁl,.. ﬂ,Y f) and an object z, taking into
account that function f is not necessarily monotonic, we define the lower boundary of
membership of z in Y with respect to LR, denoted by C(z, LR, Y), as follows:

C(z,LR,Y) = inf f(oc,l,...7ocl-,,oq,-1...7%),

a€ET(z

where
E"(z) = {ot = (%1, -y iy 01, -5 0t5) € [0,1]7 s oy = py, (2) for each
X,e{x),...,X}}and o, < tiy, (z) for eachXhE{X/l,...,X}S}}.

Namely, with flo;1, - . ., %, 1, - . ., %), We revise the lower boundary by using the knowledge
that credibility C(Y) is monotomcally non decreasing with credibilities C(X],),..., C(X])
and monotonically non increasing with credibilities C(X j )., C(X ,.y)- Note that thlS mod-
ification does not change the conclusion, i.e. C(z, LR, Y) :f(zxil,...,oci,,, 01, . ., %s), When
function f'is monotonically non decreasing with «;1, . . ., «; and monotonically non increas-
ing with oy, .., 0.

Intuitively, the lower boundary represents the lowest credibility we can assign to mem-
bership of object z in Y on the basis of an L-rule LR, given the hypothesis about the po-
sitive relationships with respect to membership in X ,.Tl, ...,X] and the negative relationship
with respect to membership in X /lh X jlv. The following example illustrates this idea.
Example 1 (part 1). Let us suppose that in order to evaluate the membership of a car in a
set of good cars Yyo04 cars, W€ should take into account the membership of the car in a set

of speedy cars X! speedy_cars’ and the membership of the cars in a set of expensive cars

X ixpenswe _cars- Of course the membership in set Ygo04 cars Of g0ood cars is positively related
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with the membershlp in set X! of speedy cars and negatively related with the

speedy_cars
membership in set Xt expensive_cars of expenswe cars. Given a car z, Uspeedy cars(Z) denotes the
degree of membership of z in set X! speedy_cars® ,uexpms1ve cars(z) denotes the degree of
membership of z in set X! expensive_car and fgood cars(z) denotes the degree of membership of z
in set Ygood cars-

Let us suppose that the membership of each car z in set Y004 cars i based on L-rule
LR = (X Ipeedy . ¢ ixpenswe_ms, Y go0d_cars; /) Where f:[0, 17 — [0,1] is defined as follows:

0 if — 1 Ospeedy_cars — Xexpensive_cars g _0~507

0.66 if —0.50 < Olspeedy_cars — Xexpensive_cars g 07

f (O(speedy_carsy OCexpensive_cars) = .
033 if0< Olspeedy_cars — Xexpensive_cars < 0507

1 if 0.50 < Olspeedy _cars — Xexpensive_cars < L.

Let us observe that function f'is not monotonically non decreasing with pgpeedy cars(z) and
monotonically non increasing with pexpensive cars(2) Since we assume that only partial infor-
mation is available.

Now, let us consider a car z such that pspeedy cars(z) = 0.4 and fexpensive cars(2) = 0.8. We
have

C(Z,LR, Ygood_cars) = inf f((xspeedy_carsv “expensnve_cars) =0. 33

acE™(z)

where

E+ (Z) - {d - (“speedy_carsy OCexpensive_cars) S [07 1}2 : O(speedy_cars > Mspeedy_cars (Z) = 04

and aexpensive_cars < :uexpensive_cars (Z) = 08}

Let us remark that
f[ﬂspeedy_cars<2)7 :uexpensive_cars(z)] =0.66 > 0.33 = C(Z7 LR7 Ygood_cars)-

This is explained by the principle of coherence with respect to the sign of relationships
between condition attributes X! speedy_cars A0d X ixpenswe _ears> ON 0one hand, and decision attri-
bute Ygood cars, ON the other hand. According to this principle, membership of car z in set
Yeood cars Should not be greater than that of car w such that pgpecdy cars(W) = Hspeedy cars(Z)
and flexpensive_cars(W) < Hexpensive cars(z). Remark that, for example, in case of car w, for
which fspeedy cars(W) = 0.7 and  flexpensive_cars(W) = 0.5, the above function f suggests a
memberShip degree of w in Ygood_cars equal to ,ugood_cars(w) :.f[:uspeedy_cars(w)a
Mexpensive cars(W)] = 0.33. Therefore, we should also have pgooq cars(z) < 0.33. In this
perspective, C(z, LR, Yyo0d cars) TEPresents a prudent evaluation of pgood cars(z) in such a
way that for all cars w for which

,uspccdy_cars (W) = :uspccdy_cars (Z) and iucxpcnsivc _cars (W> < :ucxpcnsivc_cars (Z) ) (1)
we have
,ugood _cars (W) = :ugood _cars (Z) . (11)

More precisely, C(z, LR, Yg00d cars) is the maximal value one can assign to figood cars(Z) i
such a way that (i) and (ii) hold.
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For the sake of completeness let us observe that
0 if —1 < :uspeedy,cars (Z) - :u'expensive,cars (Z) < _0'5’
C(27 LR7 Ygood_cars) = 0.33 if — 0.5 < :uspeedy_cars (Z) - :uexpensive_cars (Z) g 0.5

1 if 0.5 < Hspeedy _cars (Z) — Hexpensive_cars (Z) < L

9

Analogously, given an U-rule UR = (X L . ¢ ,T,,X jl.l, .4 }S, Y, g) and an object z, we
define the upper boundary of membership of z to ¥ with respect to UR, denoted by
C(z, UR, Y), as follows:

C(z,UR,Y) = sup g(o, ..., 0 41, .. 0%s),
a€E™(2)
where

E (z) = {a = (01« v vy Ly 01 - - -5 0s) € [0, 1" oy < Iy, (z) for each

X, e{x],.... X} and o, > py, (z) for each X, € {th“-»X/l's}}-

Namely, with g(o1,. . ., %, %1, - - ., %;), we modify the upper boundary by using the knowl-
edge that credibility C(Y) is monotonically non decreasing with credibilities
C(X)),...,C(X]) and monotonically non increasing with credibilities C(X /l.l)7 ey
C(x jlg) Note that this modification does not change the conclusion, i.e. C(z, UR,Y) =
g1, - - ., 0 1, - - ., ), When function g is monotonically non decreasing with o, . .., a;
and monotonically non increasing with o1, . . ., a.

Intuitively, the upper boundary represents the highest credibility we can assign to mem-
bership of object z in Y on the basis of an U-rule UR, given the hypothesis about the
positive relationships with respect to membership in X L ,...,X] and the negative relation-
ship with respect to membership in X }17 X jl-s. The following continuation of Example 1
illustrates this idea.

Example 1 (part 2). Let us suppose that the membership of each car in set Ygo0d cars 15
based on U-rule UR = (X ! X! Y good_cars, &) Where g:[0, 17 — [0, 1] has

speedy_cars’“* expensive_cars’
the same definition as above function f; i.e.,

4 (aspeedy_carw o(expensive_cars) = f ((xspeedy_carsa o5expensive_cars)

for all (tspeedy carss Xexpensive cars) € [0, 1]2. Let us also suppose that we want to evaluate
the membership in set Ygo0d cars Of @ car u such that pigpeedy cars(t) =0.8 and
:uexpensivefcars(u) =0.4. We have

C(”? UR» Ygood_cars) = Ssup g(aspeedy_carw O‘expensive_cars) = 0667
acE™ (u)

where
E” (u) = {d = (“speedy,carm O(expensive,cars) € [07 1]2 * Uspeedy _cars < tuspeedy_cars(u) = 0.8 and

Xexpensive _cars = iuexpensive_cars(u) = 04}



S. Greco et al. | Internat. J. Approx. Reason. 41 (2006) 179-211 187

Let us remark that
f[:uspeedy,cars(u)v :uexpensive,cars(u)} =0.33 < 0.66 = C(ua URv Ygood_cars)-

This is explained by the principle of coherence with respect to the sign of relationships be-
tween conditiqq attribgtes, that are membership in X lpeedy,cars and X ixpensive_cars, on one
hand, and decision attribute, that is membership in Y04 cars, On the other hand. Accord-
ing to this principle, membership in set Ygo04 cars Of car u should not be smaller than that
of car U, such that :uspccdyfcars(v) < ,uspccdyfcars(”) and :ucxpcnsivcicars(v) = chpcnsivcﬁcars(u)
Remark that, for example, in case of car v, for which pgeedy cars(v) =0.5 and
Mexpensive_cars(?) = 0.7, the above function g suggests a membership degree of v in Ygo0d cars
equal to Hgood_cars (U) = g[:uspeedyicars(v)a ,uexpensiveicars(v)] = 0.66. Therefore, we should have
also Ugood cars(4) = 0.66. In this perspective, C(u, UR, Ygood cars) T€Presents a possible and
“optimistic” evaluation of Ugood cars(#) In such a way that for all cars v for which

:uspeedy_cars (U) g :uspeedy_cars (u) and :uexpensive_cars (U) = iuexpensive_cars (u) ’ (111)
we have
:ugood_cars(v) g :ugood_cars(u)' (IV)

More precisely C(u, LR, Ygo0d_cars) 1 the minimal value one can assign to fgood cars(#) in
such a way that (iii) and (iv) hold.
For the sake of completeness let us observe that

0 if —1 < :uspeedy,cars(z) - :u'expensive,cars(z) < _0'5’
C(Z; UR, Ygood-cars) =066 if —05< Hspeedy _cars (Z) — Hexpensive_cars (Z) < 0.5,
1 if 0.5 < ,uspeedy_cars (Z) - :uexpensive_cars (Z) < L.
Two Lerules LR= (X},.... X, X}, ... . X, Y,f) and LR = (X},.... X, X}, ...,

X /1_57 Y,f’) are equivalent if for all possible objects z we have that C(z,LR,Y)=
C(z, LR, Y).

Two U-rules UR = (X),,... X}, X}, ..., X}, Y,g) and UR' = (X},,... X X},.... X},
Y,g') are equivalent if for all possible objects z we have that C(z, UR, Y) = C(z, UR, Y).

Example 1 (part 3). Let us suppose that we want to evaluate the membership of each car
in set Ygo0d cars ON the basis of L-rule LR' = (X Tpeedy,camX ixpensive_cars, Y g00d_cars; /'), Where

N
f7:[0,1F — [0,1] is defined as follows:
0 -1 < Olspeedy_cars — Xexpensive_cars g _0-505

0.50 -0.50 < Uspeedy_cars — Xexpensive_cars g 07

/ _
f c‘speedy cars» aexpe] sive_cars
C33 0 < O‘speedy cars ocexpensive cars g 0~507

1 0.50 < Ospeedy_cars — Oexpensive_cars < 1.

We have that C(z, LR, Y) = C(z,LR’, Y) and, therefore, L-rules LR and LR’ are equiva-
lent. The reason is that fand f” differ in a part of their domain only, where the monoto-

nicity of membership in Ygood cars With respect to membership in X lpeedy_cars and
1

expensive_cars
f[:uspeedyfcars(z)a ,uexpensiveicars(z)] n case

is not satisfied. In fact, f'[ispeedy cars(Z); Hexpensive cars(Z)] differs from
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—0.50 < :uspeedy_cars (Z) - :uexpensive_cars (Z) < 07 (V)

where f/[:uspeedyfcars(z)s ,uexpensiveicars(z)] =0.5 and ﬂﬂspeedyﬁcars(z)a ﬂexpensiveicars(z)] = 066,
while in case
0< :uspeedy,cars (Z) - :uexpensive,cars (Z) < 050, (Vl)

we have fl[:uspeedyfcars (Z), ,uexpensivefcars(z)] :f[,uspeedyfcars(z)s Hexpensiveﬁcars(z)] =0.33. Let us
remark that, for each car i for which

N

—0.50 < :uspccdy_cars (h) - :ucxpcnsivc_cars (h) 07

and therefore f,[,uspeedy_cars(h)’ ,uexpensive_cars(h)] =0.5 and f[:uspeedy_cars(h)> ,uexpensive_cars(h)] =
0.66, there exists at least one other car k for which pispeedy cars(K) = Uspeedy cars(f) and

Mexpensiveﬁcars(k) < ,uexpensivefcars(h) such that
0< ,uspeedy,cars(k) - :uexpensive,cars(k) < 0‘507

and therefore f/[.uspeedy_cars(k)’ :uexpensive_cars(k)] :f[:uspeedy_cars(k)’ .uexpensive_cars(k)] =0.33.
Thus, for the principle of coherence with respect to the sign of relationships between con-
dition attributes X' lpeedy_cars and X, ixpensiveicars, on one hand, and decision attribute Ygo0d cars
on the other hand, it 1s cautious with respect to f as well as to ' to conclude that

:ugood_cars (h) = :ugood_cars (k) = f, [:uspeedy_cars (k) ’ :uexpensive_cars (k)]
= f [:uspeedy_cars (k) ’ :uexpensive_cars (k)] =0. 337

without taking into account that f ./[.uspeedyfcars(h)a ,uexpensivefcars(h)] =0.5 and f[,uspeedyfcars (h)s
.uexpensivefcars(h)] = 0.66.

Now, let us suppose that we want to evaluate the membership of each car in set
Ygoo(LC.dzrS on the? basis of U-rule UR' = (X lpeedy_cars, expensive_cars? ¥ good_cars; & ), where
g':[0,1T — [0,1] is defined as follows:

0 -1 § Olspeedy_cars — Xexpensive_cars g _0-507

0.66 —0.50 < Ospeedy_cars — Xexpensive_cars < Oa

/
g [aspccdy_carm acxpcnsivc_cars] =
0.40 0< Ospeedy_cars — Xexpensive_cars < 0507

1 0.50 < Olspeedy _cars — Xexpensive_cars < L.

We have that C(z, UR, Y) = C(z, UR', Y) and therefore U-rules UR and UR’ are equiva-
lent. Again, the reason is that g and g’ differ in a part of their domain only (when 0 <
Uspeedy cars(Z) — Hexpensive cars(Z) < 0.5) where the monotonicity of membership in Ygo0d cars

with respect to membership in X .4 cors A0d X i cars 18 DO satisfied.

Theorem 1. For each L-rule LR = (X;, o ,X},,X}l, . ,X}S, Y, f) there exists an equivalent

L-rule LR = <le, ... ,XI-TY,XJL.I, .. ,le-x, Y, f") with functions f'(01, ..., 0 01, . ., 0g)

non-decreasing in each of its first r arguments and non-increasing in its last s arguments.
For each U-rule UR = <X§1, e X! Y,g) there exists an equivalent U-rule

ir jl":" Jjs»
UR = (X;, ... ,X[T,,X}l, ... ,X}S, Y,g') with functions g'(o;1, . . ., %y, %1, - . ., %) non-decreas-

ing in each of its first r arguments and non-increasing in its last s arguments.



S. Greco et al. | Internat. J. Approx. Reason. 41 (2006) 179-211 189

Proof. Let us suppose that the L-rule LR = (X/,,...,. X} X jﬂ, X ]ls, Y, f) does not satis-
fies the property to be non-decreasing in each of its ﬁrst r arguments and/or non- increasing
in its last s arguments. Let us consider the L-rule LR’ = (X, ... XI,,Xl .. j‘, Y,

with function f'(ot1,. .., % %1, ..., %;) defined as follows, for each (« il,...,oc,,,acﬂ,...,
%) € 0,1

/ o / AN / /
S, oc,,,ocjl,...,ocjs)—1nf{f(ocl.1,.. oclr,ozjl,...,ocjs).(ocl.l,... oc”,ocll,...,ocjs)
r+s / / ! /
€0, 11", oy S otyy. .0, < Uiy Oy 2 Oty ooy Ly = ocjs}.

Let us prove that function f”(o, . . ., %, %, . .,0;) is non-decreasing in each of its first »
arguments and non-increasing in its last s arguments In fact, on the basis of definition of

3 ! 1 " " "
function frgﬁc”"' S0, 1, - - -, ), for each (o, .. Oy Oy B R (PN A P
;) € [0, 1] such that
" " 1" " 1 " 1" " :
oy K Oy e 0 S0, Oy = 0 0 > o (1)
we have that
1 "y o / PN (A /
oy ey, ofy, . 00) = inf {f(ocl.l, e Oy gy 00 ) (O 0 O )
r+s /! 7 ! 1" /! 1
€01 o = off, .. 0 = L Oy S0y, 0 < ocjs}
/ . / / r+s
< inf {f( i eee Oy Wiy ey O ) 2 (S ey By Oy, ey ) € [0, 1], 00
" " / " / " . ! " " " " b
= oy, = oti,,,ocﬂgocﬂ,...,ajsgotjs}ff(ocil,.. Oy Oy ey OU0). (ii)

Now we prove that L-rules LR and LR’ are equivalent. For each possible object z

C(z,LR,Y) = inf f(oc,l,...,ocl,,ocjl,...,ocjs)

a€ET (z
:inf{f(a;“... O Wiy oy o) 5 (ol oy oy, et) € [0, 1) o)
> iy, (@)% 2 i, (2),90 < b, (), < R, ()]
= (e, (@)t (2): e, (D), -, (2)). (iii)

On the basis of monotonicity of function f'(a;, ..., 0, 01, .. ., %)

f/(,uX,-l (Z)a EEER ,lle(Z), ,uX,-] (Z)v s nuX/S(Z)) = aelgrf; )f ((xlla ey Oy Oty e ey OC/'S)
= C(z, LR, Y). (iv)
Thus from (iii) and (iv) we have

C(z,LR,Y) = C(z,LR,Y).

Thus, we proved the Theorem with respect to L-rules. With respect to U-rules an analo-
gous proof holds. O
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speedy_cars’ <™ expensive_cars’

presented above, consider the following L-rule LR* = (X
Ygood_car57f*>, where

Example 1 (part 4). With respect to the L-rule LR = (X ! X! Y sood_carss /)
1

speedy_cars? X expensive_cars?

0 if —1 g aspeedy_cars - O‘expensive_cars < _0~57
” .
f (Ocspeedy_carm oce:xpensive_(:alrs) = 033 if —05< Olspeedy _cars — Xexpensive_cars < 057
1 if 0.5 < Olspeedy_cars — Xexpensive_cars < 1.

We have C(z,LR,Y) = C(z, LR",Y) and thus L-rule LR and L-rule LR" are equivalent.
Moreover, according to Theorem 1, f*(0speedy carss %expensive cars) 1 Non-decreasing with
respect to Ogpeedy cars aNd non-increasing with respect to dexpensive cars» SO it satisfies monoto-
nicity of membership in Y004 cars With respect to membership in X ! and X!

speedy _cars expensive_cars *
Analogously, with respect to the U-rule UR = (X !

1
speedy _cars’ X expensive_cars’ Y good_cars; & >

presented above, consider the following U-rule UR* = (X lpee dy_cars? Xixpensive_cam
Ygood_car57g*>, where
0 if —1 < Xspeedy_cars — Xexpensive_cars < _0-5,
g*(“speedy_cars; aexpensive_cars) = 066 lf - 05 < aSPCCd}’—C‘dFS - O(c:xpcnsivc_cars < 05,
1 if 0.5 < Olspeedy_cars — Xexpensive_cars < 1.

We have C(z, UR, Y) = C(z, UR", Y) and thus U-rule UR and U-rule UR" are equivalent.
Moreover, according to Theorem 1, g"(0speedy carss %expensive cars) 1S non-decreasing with re-
Spect tO Ogpeedy cars aNd non-increasing with respect to dexpensive cars> SO it satisfies monoto-

nicity of membership in Ygo0d cars With respect to membership in X Zpeedy_cars and
X!

expensive_cars”

An L-rule can be regarded as a gradual rule [5]; indeed, it can be interpreted as

“the more object x is Xj,. .., X; and the less object x is X}, ..., X}, the more it is Y.
Analogously, the U-rule can be interpreted as
“the less object x is Xj,..., X; and the more object x is Xj;,..., X, the less it is Y.

On the other hand, the syntax of L- and U-rules is more general than that of usual grad-
ual rules introduced in [5]. Indeed, while the usual gradual rules are statements of the type
“if ux(x) = a, then puy(x) > o, the simplest L-rule states “if u,1(x) > o;, then py(x) > p”
or “if p,1(x) < oy, then puy(x) > B7. Therefore, the L- and U-rules permit to consider dif-

ferent degrees of credibility in premises and conclusion, which is not the case of the grad-
ual rules.

Let us also remark that the syntax of L- and U-rules is similar to the syntax of “at least™
and ‘““‘at most” decision rules induced from dominance-based rough approximations of
preference-ordered decision classes [9-11].

Example 1 (part 5). In terms of gradual rules, the L-rule LR and U-rule UR has the
following structure:
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LX)

and the less it is X' the more it is Ygood cars -

speedy _cars expensive_cars®

“the more car z is X
This is equivalent to

“the less car z is X! and the more it is X* the less it is Ygo0d cars -

speedy_cars expensive_cars?
An example of a usual gradual rule is the following:

r=if :uspeedy_cars( ) = 6 and N[:uexpensive_cars(z)] = 67 then :ugood_cars(z) = 6”7

where N(') is a negation, i.e., a decreasing function N:[0, 1] — [0, 1] such that N(0) =1 and
N(1) =0, so that if « € [0, 1] is the credibility of proposition p, then N(«) is the credibility
of —p (the negation of p). Let us observe that conditions “fgpecdy cars(z) = &7 and
“ N expensive cars(2)] = &7 and the conclusion “igood cars(z) = &7 are all related to the
same threshold &. This is not the case of the gradual rules corresponding to above L-rule
LR and U-rule UR. For example, according to above L-rule LR and considering
No)=1-a,

I” =“if :uspeedy CdrS( ) = 0.8 and N[ = O6a then .ugood_cars(z) = 0.33”

,uexpensive_cars (Z )]
(il’l fact N[.uexpensive_cars(z)] =1- ;uexpensive_cars(z) = 0.6 lmphes .uexpensive_cars(z) < 0.4
and for .uspeedy_cars(z) > 0.8 and .uexpensive_cars(z) < 0.4 we have C(ZaLRa Ygood_cars) = 33)
Let us remark that in rule ' there are different thresholds for pgpeedy cars(z) (0.8),
Nl lexpensive cars(2)] (0.6) and fgood cars(z) (0.33). Analogous arguments hold with respect
to above U-rule UR.

3. Fuzzy rough approximations

The functions f and g introduced in the previous section are related to specific defini-
tions of lower and upper approximations considered within rough set theory [18]. Let
us consider a universe of discourse U and r+ s+ 1 fuzzy sets, X! . ¢ I,,X e X }s
and Y, defined on U by means of membership functions puy, :U —[0,1], he
{il,...,ir,j1,...,js} and uy: U —[0,1]. Suppose that we want to approximate knowledge
contained in Y using knowledge about X X X 4 under the hypothesis that

iry j\"
X1, ..., X are positively related with ¥ and X

X jis are negatively related with Y.
Then, the lower approximation of Y given the information on X ,.Tl, X I,,X jﬂ, X }s

is a fuzzy set Aﬂ(X;, XX , X%, Y), whose membership function for each x € U,

2l ) B A 157

denoted by ,u[App(X}l,.. X XY XY, Y),x], is defined as follows:

iry <%l Js?

HApp (X} X)X XL Y) X = it {1y (2)), (1

LEERR

where for each x € U, D{(x) is a non-empty set defined by

)

Di(x) = {ze Uy, (z) = uy,(x) for each X, =Xxl,....x]

and py, (z) < py, (x) for each X, :X}l,...,X}S}.
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Lower approximation ,u[App( e X0, X, X, Y),x] can be interpreted as follows:

i<t gl e Js?

in the universe U the following 1mphcat10n holds

“If 'uXﬁ() ,uXh() for each X, = le,.. Xjr,land ,uf(/() ,uXh() for each
Xy =Xj,..., X ﬁ, then,uy()>u[App(Xll7.. X”,X]U.. X Y),x]”.

Interpretation of lower approximation (1) is based on a specific meaning of the concept
of ambiguity. According to knowledge about X ,Tl, N ¢ ¢ jll, . jg, the membership of
object x € U to fuzzy set Y is ambiguous if there exists an obJect z € U such that
,uXh( z) > py,(x) for each X, =X],.... X}, and py, (z) < py, (x) for each X, :X}l,...,

js, however, py(x) > uy(z).

Remark that the above meaning of ambiguity is concordant with the dominance prin-
ciple introduced in rough set theory in order to deal with preference-ordered data [9-11].
In this case, the dominance principle says that, having an object with some membership
degrees in X and Y, its modification consisting in an increase of its membership in X
should not decrease its membership in Y; otherwise, the original object and the modified
object are ambiguous.

Analogously, the upper approx1mat1on of Y given the information on X! . ¢5 !

X\ is a fuzzy set App(X),..., X} X! , X' Y), whose membership functlon

Jlose s iry <t 1y Jso

for each x € U, denoted by ,u[App(le, XL XY X Y),x], is defined as follows:

i<t jlo s Js

Xl

[App( il eranla" X/le)ax}: S;l}?){:uY(z)}a (2)
zZE X

where for each x € U, D|(x) is a non-empty set defined by

i

D|(x) = {ze U : py, (z) < py, (x) for each X, =Xxl,... x]
and py, (z) = py, (x) for each X, :le.l,...,X]ﬂ}.

¢

Js?

Upper approximation u[dpp(X},.... X}, x*}

iry <t jlo -
in the universe U the following 1mphcat10n holds:

Y),x| can be interpreted as follows:

“If ,Uxﬁ() uxh() for each X, =X],..., X,T,, and H, (z)>th(x) for each
Xy =Xy, X, then puy(2) < pldpp(Xy, . X, Xy, oo XG0 Y) ]

jloe-- irs Jjs»

Example 1 (part 6). Let us consider a universe of discourse U composed of all the cars z
such that (gspeedy cars(2)s Hexpensive cars(Z)) € [0, 17%, i.e., of all possible and imaginable cars.
Suppose that for all z € U membership of z in Ygo0d cars 1S given as

:ugood_cars (Z) = f[:uspeedy_cars (Z) ’ :uexpensive_cars (Z)] ’

where function f (which in our didactic example could represent customer preferences) is
defined as in above part 1 of this example. We want to approximate knowledge contained

and X! under the hypothesis that

in Ygood cars USII’lg knOWICdge about Xspeedy —cars expensive_cars
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membership in set Yyo0d cars Of good cars is positively related with the membership in set
XT

speedy_'cars
expensive cars.
The lower approximation of Y,q04 cars given the information on X!

X! is a fuzzy set App(X

expenswe_cars

of speedy cars and negatively related with the membership in set X expensive cars ©OF

speedy_cars and

speedy_cars’Xexpenswe_cars’ Ygood,cars), whose memberShlp
!

speedy.cars’‘Xexpf:nsive,cars7 YgOOd—CafS)’ x], 18

function for each x € U, denoted by uldpp(X
defined as follows:

,u[App (X Ipeedy CdrsaX ixpensive-cars’ Y good _cars) ) x] = zeanTf {:“good.cars (Z )}

where for each x € U, D7(x) is a non-empty set defined by

DT(X) = {Z elU: :uspeedy,cars (Z) = :uspeedy,cars ()C) and :uexpensive,cars (Z) < :uexpensive,cars (x)}
Thus, for x € U such that figpeedy cars(X) = 0.7 and fexpensive cars(X) = 0.9, we have that

!
:u[App(Xspeedy (.drs"Xvexpensive_cars7 Ygood_cars) ’ )C]

= zeanTf {:ugood _cars (Z)} = inf {:ugood,cars (Z) : :uspeedy,cars (Z)

= 0.7 and :uexpensive_cars(z) < 09} =0.33.

Let us observe that, in general, we have the following explicit formulation of lower
approximation:

1
“[App(Xspeedy cars’Xexpenswe_Cdrs? YgOOd—CarS) ) x]

0 if — 1 :uspeedy_cars ('x) - :uexpensive_cars (x) < _0-57

= 033 if —05< ,uspeedy_cars (X) - :uexpensive_cars ()C < 0 5;
1 if 0.5 < :uspeedy_cars (X) - :uexpensive_cars (x) < L.
Tllle upper approximation of Ygooq cars given the information on X/ speedy_cars  a0d
X xpensive _cars is a fuzzy set App(X speedy_cars? X expensive_cars? | s0od_cars)» Whose membership func-
tion for each x € U, denoted by u[App(X| speedy_cars? X ixpensive_cars, Y good_cars ), X], 1 defined as
follows:
1 _
[App( speedy.mrs’)(expensive_cars7 YEOOd—U‘dTS)’x] = sup {:ugood_cars (Z)}’

zeD|(x)

where for each x € U, D|(x) is a non-empty set defined by

Dl {Z eU: :uspeedy_cars( ) < :uspeedy_cars(x) and :uexpensive_cars(z) = :uexpensive_cars<x)}'

Thus, for x € U such that pspeedy cars(¥) = 0.7 and fiexpensive cars(X) = 0.9, we have that

1 1
M[App(Xspeedy Cdrs’Xexpensive_cars7 Ygood _cars) ’ )C]

= S;lp {:ugood_cars (Z)} = inf {:ugood_cars (Z) : :uspeedy_cars (Z)
ze X
< 0.7 and feypensive cars(2) = 0.9} = 0.66.

—cars (Z
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Let us observe that in general we have the following explicit formulation of upper
approximation:

u[App(X speedy_cars’X ixpensive_carw Y good_cars) X]
0 i — 1 < fpeedy_cars (¥) — Hexpensive_cars(¥) < —0.
=1 0.66 if —0.5 < fpeady cars(X) = Hexpensive_cars(¥) < 0
L i 0.5 < fgpeedy cars (X) — Hexpensive cars(¥) < 1.

Theorem 2. Let us consider fuzzy sets X Il XL xd X }S and Y defined on U. The fol-

IS
lowing properties are satisfied:

(1) for each x € U
[App( [ X”,X/LI,...,Xl

Js?

Y), x|

Y),x] < py(x) < :U[App(Xm - ervXﬁlﬁ s 7X/l's>
(2) for any negation N(°), being a strictly decreasing functlon N:[0,1] — [0,1] such that
N(1) = 0 and N(0) = 1, for each fuzzy set X, :X,l, .. Xl,,le, .. ,X}S and Y defined
on U, and for each x € U
Q2. l)u[APP(X,Tp XX XY ] = N (ufdpp(X - X5 XS XY ) ),
(2.2) ,u[App( ER X,T”Xﬁl, leﬁyc), ]_N(N[APP(XSITV“ chrTvXj%’ stlvy) x]),
(2.3) N(u [APP(XL, XL X X0 Y)x) = (XS XXX Y ],
x,

(2.4) N(uldpp(X),... X}, X}, ,WY), x]) = uldpp(X;), .. XiLX5h, . XL Y9),

where for a given fuzzy sel the fuzzy set W¢ is its complement defined by
Hpe (x) = N (py (x))-
(3) for each {X};,.... X},} C{X),.... X} and {X};,... X}, } C{X},... . X}}
3.1 :“[App(Xlev . XmXﬁlv X/lw Y),x] > [App(Xhlﬂ = Xth/%U e 7ka7 Y),x,

(3.2) u[App(X)y, - X Xy X, Y),x] < pldpp(X )y X Xy -, X, Y,

(4) for each x,y € U, such that ﬂx, (x) = uy,(v) for each X, € {X},....X}}, and
tiy, (x) < py, (v) for each X, € {x! IR l} we have

4.1 u[App(XL, X Xy X,V,Y) x> [App(X,l,.. X Xy X V)
(4.2) plApp(X)y, .. XL X4 X Y),x] = pldpp(X), . XL X XY
Proof. Obviously, for all x¢& U, ,uX/() fty,(x) for each X, € {X],....X]}, and
Iy, (x) < py, (x) for each X, € {X IR } and, therefore, x € D(x). Thus we have
[App( HERE inX/Ll’ X stv Y),x] = zellr)le ){MY( 2)} < py(x). (i)
Analogously, x € D|(x) and, therefore, we have that
uy(®) < sup {uy(2)} = uldpp(X ), X} Xy X, V), ). (i)

zeD|(x)



S. Greco et al. | Internat. J. Approx. Reason. 41 (2006) 179-211 195
From (i) and (ii) we obtain

[App( iy inX]lla-- X/le)v ]<
<

ﬂy( )
uApp(X), . XL X XY ]

iry <t gl s

Thus, we proved (1).
According to the above definition of rough approximation, we have

WApP(X )y, X} Xy X YE) }=Z€1{)1fo>{N(HV( ))}ZN(ES;I(D){M}Y(Z)}) (iif)

Now, to each x € U and to each X, € {Xm .. X,T,,Xfl, . ,le-s} let us associate the nega-

tion of the membership functions uy, (x), i.e., N [y, (x)]. Remembering that N(-) is strictly
decreasing we obtain

Di(x) = {z € U : py,(2) = uy,(x) for each X, € {xl,....x]}, and Ly, (2)
<u ()foreachXhe{Xll,...,X;g}}
= {z € U : N(uy,(2)) < N(uy,(x)) for each X, € {xl,....,x]}, and

N, (2)) > Ny, (x)) for each X, € {X ﬂw.wxﬁ}}——Drom (iv

“ 29

where the index in D|%(x) denotes that we are considering the negation of the mem-
bership functions gy, (x). On the basis of (iv) we can write

N( sup {uy(Z)}> = N< sup {uy(Z)}>
zeD1(x) zeD|¢(x)
= N (ulpplx x5 X X5 1)), ()
From (iii) and (v) we obtain
Jso

WX XD X X V)] = N (X X5 XX Y.

Thus we proved (2.1). (2.2)— (2 4) can be proved analogously

Now we con51derR {Xhl,.. Xm} S = {Xm-- T = {Xkl,...,X}{w} and V =
{x! IS }suchthatRcSand TCV.
We con51der also
D(RUT)1(x)
={zeU:py,(2) = puy, (x) for each X, € R, and puy, (z) < py, (x) for each X, € T},
D(SUV)1(x)
={z€U:py,(2) > py, (x) for each X, €S, and py (z) < py, (x) for each X, € V' },
D(RUT)L(x)

={z€U: py, (2) < py, (x) for each X, € R, and py, (z) > py, (x) foreach X, € T},
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and
D(SUV)|(x) ={z € U : puy,(z) < iy, (x) for each X, € S, and
fy, (2) = py, (x) for each X, € V'}.

Since R C S and T C V, we have that

D(SUV)1(x) € D(RUT)T(x)
and

D(SUV)l(x) € DRUT)|(x).
On the basis of (vi) we have that

(vi)

(vii)

! ! = > i

,U[APP(X,], N eranla < ij Y)a } zeD(.IS‘{JlIt;) { ( )} zED(}?%g)T(.X){My(Z)}

= [App(Xhl? . thXklv . ,X}{W’Y),x},
Thus we proved (3.1).
On the basis of (vii) we have that
pApp(Xly, . X0 X X Y)] = sup {u ()} < sup {p(2)}
2eD(SUP) |(x) 2eD(RUT) ()

= u[App(X)y, - X Xy oo Xy ¥, X

Thus we proved (3.2).

Now let us consider x,y € U such that puy, (x) > uy, (v) for each X, € xl,... X

and py, (x) < py, (v) for each X, € {X]l.l, . ,X/{} We have that

D1(x) € DI(y) (viii)
and
D|(x) 2 D|(y). (ix)
From (viii) we obtain
HAPP(X s Xy Xy X5 Y)ox] = nf {iy(2)} > Hnf {u,(2)}
= pulApp(X}), .. XL X, XL Y), .
Thus we proved (4.1).
From (ix) we obtain
ulApp (X, . X} Xy X Y)x] = sup {py(2)} > sup {u,(2)}
z€D|(x) zeD)(y)
= uApp(X}), .. XL X0, XY,

Thus we proved (4.2). O

Results (1), (2) and (3) of Theorem 2 can be read as fuzzy counterparts of results well-
known within the classical rough set theory. More precisely, (1) says that fuzzy set Y in-
cludes its lower approximation and is included in its upper approximation; (2) represents
complementarity properties of the proposed fuzzy rough approximations; (3) expresses the
fact that when we approximate Y, if we pass from a set of attributes to its subset, for any



S. Greco et al. | Internat. J. Approx. Reason. 41 (2006) 179-211 197

x € U, the membership to the lower approximation of Y does not increase while the mem-
bership to the upper approximation of Y does not decrease. Result (4) is more related with
the specific context in which we are defining rough approximation: it says that lower and
upper approximations respect monotonicity with respect to fuzzy membership functions
My, (x), and more precisely, that they are non-decreasing operators with respect to
Iy, (x) for X, € {Xll,...,Xl.T,,} and non-increasing operators with respect to uy, (x) for
X, E{ jl""’XjS}'

Example 1 (part 7). Taking into account car x already introduced in part 6 of this
example (let us remember that pigpeedy cars(X) = 0.7 and pexpensive cars(X) = 0.9), we can see
that, according to point (1) of Theorem 2,

M[App(leeedy _cars 7Xixpensive,cars7 Ygood_cars)yx] good_cars (x>

<u
1
g :u[App ( speedy. cars’X expensive_cars? YgOOd-CarS)7x}

(let us remember that M[App(Xspeedy_carwXﬁxpenswe cars’? Ygood_cars)ax] = 033’ ,ugoodicars(x) =
0.33 and pu[App(X] X! Y good_cass), X] = 0.66).

speedy _cars? “* expensive_cars’

Let us suppose now that we want to approximate the membership in set
(Ygood_cars)” = Ybad_cars such that for each xe€ U, we have that pad cars(X)=
N[ Ugood cars(X)], where N(a) = 1 — o (but the results we obtain in this part of the example

do not depend on the specific formulation of N). Let us also suppose that we approximate

the knowledge contained in Yyuq cars Using knowledge about X! spesdy_cars and X! expensive_cars
under the hypothesis that membershlp in set Yypaq cars Of bad cars is positively related with
the membership in set X! speedy_cars of .speedy cars dqd negdtlve.ly. related with the
membership in set X! expensive_cars Of expensive cars. Slnf:e this hypothe.sm. is not well founfied
(“the more a car is speedy and the less it is expensive, the worse it is” is a paradoxical

hypothesis), the final results are not interesting. In fact, we have that for each x € U
1 _
:u[App(‘/Yspeedy_cdls"Xvexpenswe_cars7 Ybad,cars)yx] - O

and

1 —
[App( speedy_cars’‘Xvexpensive,cars7 Ybad—c'drs)>x] = 1.

Let us also try to approximate knowledge contained in Y504 cars Using knowledge about
(leeedy cars) Xllow _cars and (Xixpenswe_cars)c = Xiheap,cars (.uslow,cars (x) = N[:uspeedy,cars (x)]
and flexpensive cars(X) = N[ficheap_cars(¥)]) under the hypothesis that membership in set
Yo00d cars Of good cars is positively related with the membershlp inset X, ... of slow cars
and negatively related with the membership in set X cheap_cars Of cheap cars. Since this
hypothesis is also not well founded (“the more a car is slow and the less it is cheap, the
better it is”’ is a paradoxical hypothesis) the final results are again not interesting. In fact,
we have that for each x € U

:u[App()(llow_cars7‘Xviheap_cars7 YgOOdJﬁrS)a X] =0

and

1 _
[App( slow-cars’Xcheap_cars7 Ygood,cars)ax} =L
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Let us remark that, according to points (2.1) and (2.2) of Theorem 2, we have that

1 1
M[App( speedy cars7chpcn%1vc cars’? Ybad cars) X] N( [App(Xslow cars’chpcmwc _cars? YgOOd—CaTS)7x])

and
T 1 _ T 1
tu[App(Xspeedy cars 7Xexpensive_cars7 Ybad,cars) 7x] =N <M[App(Xslow,cars 7Xexpensive_cars7 YgOOd—C'dTS) ,X]) .

Now, let us approximate knowledge contained in Yy, cars Using knowledge about X!

slow_cars
and X iheap «ars> under the hypothesis that membershlp in set Ypad cars Of good cars is pos-

itively related with the membershlp in set X, ... of slow cars and negatively related with
the membership in set X cheap_cars Of Cheap cars. This hypothesis is meaningful, of course
(““the more a car is slow and the less it is cheap, the worse it is”” is somehow equivalent
o “the more a car is speedy and the less it is expensive, the better it is”), and the final
results are quite interesting. In fact we have that for each x € U

0 if —1< :uslow cars (x) :ucheap,cars (X) < _057
[App(Xblow Ldrh’Xithp _cars’ ded cars) X] = 0.34 if —0.5 < Hslow cars (X) - :uchcap_cars ()C) < 057
1 if 05 g Hslow_cars (X) - :ucheap,cars (x) < 1

and
0 if —1 < Hslow cars ()C) - :ucheap,cars (X) < _057
[APP( slow_ cars’Xiheap,cars’ Ybad,,cars)7x] = 0 67 lf O 5 Hsiow c«us( ) - :u'cheap,cars (x) < 057
1 lf 05 g Hslow_cars (x) - :ucheap,cars (x) g 1

Remembering that :uslow_cars(x) =1- :uspeedy_cars(x) and :ucheap_cars(x) =1- :uexpensive_cars(x)
we can rewrite above membership functions of rough approximations as

0 if 0.5 < :uspeedy_cars - :uexpensive_cars g 17
[App( slow cars7Xiheap,car57 Ybad_cars)ax] = 0.34 if —0.5< :uspeedy_cars - :u'expensive cars < 05’

1 if —1 < Mspeedy_cars :uexpenswe cars —-0.5

and
0 if 0.5 < Upecay.cars (%) = Hexpensive.cars () < 1,
APP(X oy cars X iheap,carw Viadears):x] = § 067 if —0.5 < flgpecay cars (¥) = Hexpensive.cars (¥) < 0-5,
1 i — 1 < fgpeedy cars () — Hexpensive cars (¥) < —0.5.

Let us remark that, according to points (2.3) and (2.4) of Theorem 2, we have that

N( [App(Xbpccdy_carb7Xixpensnve_cars’ YgOOd—CarS)axD

[App( slow-cars’Xihedp_Cdrs’ ded Cdfb) x]

and

T 1 1
N (:u [App (Xspeedy cars 7Xexpensive_cars7 YgOOd-C'drS) ]) [App( slow_cars ’Xcheap_cars7 Ybad_cars) ’x] .
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These two equalities can be interpreted as follows:
e the credibility that car x is certainly not a good car — N (u [App(X speedy_cars» X ixpemive_cars,
Y good_cars) x]) — is equivalent to the credibility that x could be a bad car -
[App(Xslow cars’Xixpenslve _cars? Ybad—CﬁrS)ﬂx};
e the credlblhty that it is false that car x could be a good car -
N(ulApp (X! speedy_cars X 5 Y g00d_cars); X]) — is equivalent to the credibility that x

CXpCl’lSlVC _cars’

is Certalnly a bad car - [App( slow_cars’)(cxpcnblvc_carb7 ded_c«lrs) x]'
Now, let us approximate knowledge contamed in Y004 cars using only knowledge about
speedy_cars Under the hypothesis that x! peedy_cars 1S pos1t1ve1y related with Y004 cars- In
other words, we do not consider knowledge about X' We obtain the following

rough approximations: for all x € U
lu'[App(Xspeedy_Cdrg? Ygood_cars)vx] = 07
[App( speedy_cars’ YgOOd—CafS)7x] =1.

It is clear that removing information about X expensive_cars T€duces drastically the accuracy
of the approximation; in fact, according to point (3) of Theorem 2, we have that for all
xeU

expenswe _cars”

[App(Xspeedy_cars’ YgOOd—CarS)vx] < M[App(leeedy_carsvXixpenswe _cars? YgOOd—CaTS)’x}
and
[App(Xspccdy_carw YgOOd—C«’lrS) ] [App(Xspccdy_cars7Xixpenslve cars? YgOOd—CarS) ) x]'

Approximating knowledge contained in Ygood cars Using only knowledge about
X! i.e., removing information about X!

expensive_cars®

speedy_carss WE obtain analogous results.

Let us consider two cars, x and y, such that pgpeedy cars(X) = 0.2, Uexpensive cars(X) = 0.8
Hspeedy. cars(y) =0.8 and :uexpensive_cars(y) =0.4. We have

1
0 H[App( speedy _cars? Xexpen51ve_cars7 Yg()Od—C‘dTS) ? x]

1 —
I'L[App(Xspeedy_cars ’ Xexpensive_cars7 YgOOd—C'de) ’ y] =0.33

and
0 = ulApp(X! XY e Y good_cars) X
pp speedy_cars? <™ expensive_cars’ good_cars /)5
g lu[App()(lpeedy_cars7)(ixpensive_cars7 YgOOd—C'dFS)’y] = 0.66.

This result agrees with point (4) of Theorem 3 which states that increasing the value of
the condition attributes being positively related with the decision attributes
(Hspeedy cars(X) < Hspeedy cars(¥)) and decreasing the value of the attributes being negatively
related with the decision attributes (fiexpensive cars(X) = Hexpensive cars(¥)), the value of the
rough approximations increases or, at least, does not decrease (the membership in both
lower and upper approximations of y are greater, or at least not smaller, than the analo-
gous membership of x). More generally, from the explicit formulation of lower and upper
approximations presented in part 6 of the example, it is clear that the membership in rough
approximations is monotonic with respect to attributes positively and negatively related
with the decision attribute.
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4. Decision rule induction from fuzzy rough approximations

The lower and upper approximations defined above can serve to induce L-rules and U-
rules, respectively. Let us remark that inferring L-rules (X ;, XX }1, oL X }S, Y,f) and

U-rules (X!,..., x], x! X', Y, g) is equivalent to finding functions f{*) and g(-). Since

iryh 1y st sy
we want to induce decision rules representing the considered universe U, the following

conditions of correct representation must be satisfied by the L-rule (X ;, oy X X fl, cey
X}S? Y,f) and U-rule (le, . ,X,T,,X}I, .. ,le-x, Y, g) searched for:

e correct representation with respect to the lower approximation: for all x € U and for
each a € [0,177,

1y, (x) < oy foreach X, € {x],....,x]}, and Iy, (x) = o for each X, € {le.l,...,Xj{.}]

= f(o) = ulApp(X}),s... X, X}, ... X[, Y),x],

Js?

e correct representation with respect to the upper approximation: for all x € U and for
each a €[0,177,

[y, (x) = oy for each X, € {X},,...,X}}, and py, (x) < oy, for each X, € {X}l,...,X}X}]

= g(a) < .u[App(XiTla"'7X1Tr7XjL'1a"'7X/l'saY)vx]'

These conditions of correct representation are concordant with the idea that lower and
upper approximation are reference values for a cautious lower and upper evaluation of
membership in set Y on the basis of the membership in X ’_T“ Lo XLLx }17 ...and X jﬂ

In general, there are more than one L-rule (XJI, e ,X;,X}l, . ,X}S, Y, f) and more
than one U-rule (X),,...,. X}, X} ... X}, Y, ¢g) satisfying the correct representation condi-

tion. Thus, how to choose “the best L-rule and the best U-rule’? To answer this question,

we propose the following conditions of prudence:

e given two Lerules LR = (X),..., X, X}, ... XY, f) and LR = (X},,... X} . X},...,
X}S, Y, f') we say that LR is more prudent than LR’ if for all & € [0, 177, f(a) < f"(a),

e given two U-rules UR = (XL,...,X},,,X}l,...,X}S,Y,g) and UR = (X],....X],
X/L.I,...,X}Y, Y,g') we say that UR is more prudent than UR’ if for all a € [0,1]77,

g(a) > g'( o).

These conditions of prudence are concordant with the idea of presenting the most cau-
tious evaluation of membership in set ¥ on the base of the membership in X, ...,
Xl x ﬁh ..., and X }Y In this sense, the “lower evaluation” of the membership in set YV

should be the smallest possible while the “upper evaluation” should be the greatest
possible.

Example 1 (part 8). Let us consider the following L—Qecision rule LR; = (X ipeedy_cars,
Xixpensive_cars, Y s00d_carss f1), where f1:[0,1]x[0,1] — [0,1] is defined as follows:



S. Greco et al. | Internat. J. Approx. Reason. 41 (2006) 179-211 201

0.16 if —1 < stpeedy_cars - OCexpensive_cars < _0-57
fl (aspeedy_carsv aexpensive-cars) = 0.50 if -0.5< Olspeedy _cars — Xexpensive_cars g Yy
1 if 0.5 < Olspeedy_cars — Xexpensive_cars g 1.

Comparing rule LR; with the lower approximation of ¥Ygo0d cars (More precisely, compar-
ing f; with the explicit formulation of the lower approximation of Yyo0q cars presented in
part 6) and taking into account that for all xe€ U and for each

2
(aspeedyfcarsa aexpensiveﬁcars) € [On 1]

[:uspeedy_cars(x) < Uspeedy_cars and :uexpensive_cars(x) = fxexpensive_cars]
= fl (O‘SpeedY—Carﬁ aexpensive_cars) = ,u[App(‘lepeedy_cars’‘Xvixpensive_cars7 YgOOd—CarS)7x]’

we can conclude that rule LR, satisfies the property of correct representation with respect
to the lower approximation. This means that using rule LR, we are considering the lower
approximation of Y504 cars as a reference for the minimum value we can give to decision
attribute Yyo04 cars ON the basis of condition attributes X lpccdy_cars and X, ixpensiveiws. Thus,
there is no case for which rule LR, gives to attribute Y004 cars an evaluation smaller than
the lower approximation of any x € U such that x has a smaller evaluation on the
attributes positively related with the decision attribute (in our example pgpeedy cars(X)
< Uspeedy car) and a larger evaluation on the attributes negatively related with the decision
attribute (ln our example :uexpensiveicars(x) = “expensiveﬁcars)-

lLet us consider now the following U-decision rule UR; = (X lpeedy_cars,
X Y d_carsvgl> where gl[osl]x[osl]_)[oal]

expensive_cars’ © 800

0 if —1 < Ospeedy_cars — Xexpensive_cars g _0-57

N

gl(aspeedy_carm O‘expensive_cars) = 0.50 if —0.5< Olspeedy_cars — Xexpensive_cars X 057
0.75 if 0.5 < Olspeedy_cars — Xexpensive_cars g 1.

Comparing rule UR; with the upper approximation of Yg0d cars (Ore precisely, compar-
ing g; with the explicit formulation of the upper approximation of Yyo0d cars presented in
part 6) and taking into acount that for all xe€ U and for -each

2
(aspeedyicarsa o‘expensiveﬁcars) € [0> 1]
[:uspeedy_cars (X ) > aSPECdY—CarS and :uexpensive_cars (X ) < “expensive_car S]
T 1
= & (O(speedy,carsa O‘expensive,cars) = ﬂ[App(Xspeedy_celrs7Xexpensive_carsa Ygood,cars)a x]a

we can conclude that rule UR| satisfies the property of correct representation with respect
to the upper approximation. This means that using rule UR|, we are considering the upper
approximation of Ygo0d cars as @ reference for the maximum value we can give to decision
attribute Yyo0d cars ON the basis of condition attributes X lpeedy_cars and X ixpensive_cars. Thus,
there is no case for which rule UR; gives to attribute Ygo04 cars an evaluation greater than
the upper approximation of any x € U such that x has a greater evaluation on the attri-
butes positively related with the decision attribute (in our example ppeedy cars(X) =
Ospeedy cars) and a smaller evaluation on the attributes negatively related with the decision

attribute (1n our example ,Llexpensiveicars(x) < ocexpensivefcars)-
Now, let us consider the L-decision rule LR, = (X ! X! Y g00d_carss J2)s

speedy_cars’ ™ expensive_cars?’ © 800

where f5:[0,1]x[0,1] — [0, 1] is defined as follows:
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0.05 if — l Ospeedy_cars — Xexpensive_cars < 705,
fZ(O(speedy,cars; o‘expensive,cars) = 045 if —05< Olspeedy_cars — Xexpensive_cars < 057
1 if 0.5 < Ospeedy_cars — Xexpensive_cars g 1.

One can easily verify that also L-decision rule LR, satisfies the property of correct repre-
sentation with respect to the lower approximation. Moreover, since for each

(“speedyfcarsa OCe><pensu've7(:ars) € [07 1]
fZ(aspeedy,carm “expensive,cars) < fl (‘xspeedy,carSa Ocexpensive,cars)a
we can conclude that rule LR; is more prudent than rule LR;.
Let us also consider the U-decision rule UR, = (X lpeedy carss X ixpensive_cars, Y g00d_cars; &2)
where g,:[0,1]x[0,1]— [0, 1] is defined as follows:
0 if —1 g Ocspeedy,cars — aexpensive,cars g —0.5,
gz(fxspeedy_carsy aexpensive-cars) = 0.55 if —05< Ospeedy_cars — Xexpensive_cars < 057
0.90 if 0.5 < dypeedy_cars — Oexpensivecars < 1.

One can easily verify that also U-decision rule UR, satisfies the property of correct repre-
sentation with respect to the upper approximation. Moreover, since for each (Cspeedy carss

aCXPCHSIVC cars) 6 [0 1]
g2<aspeedy_cars; OCexpensive_cars) = &1 (aspeedy_carsa O(expensive_cars)7
we can conclude that rule UR, is more prudent than rule UR;.

Let CLR be the set of all the L-rules LR = (X),..., X], X jl, . ,w Y, f) satisfying the

condltlon of correct representation. We say that the L- rule LR# = (X! X!

iy i

X jll, ﬁ, Y, f#) is maximally prudent if LR" is more prudent than all other LR rules
in CLR.
Let also CUR be the set of all the U-rules UR = ( e ,X/L17 . F, Y,g) satisfy-

ing the condition of correct representation. We say that the U-rule UR# =(X L, X

ir»

lel, .. le Y,g") is maximally prudent if UR" is more prudent than all other UR rules
in C UR

Theorem 3. If LR* = (X ... XL,XJLI,..
—(x! Tyl

URY = (X, X X

o c [0’1]r+s’

js, Y, f%) is an L-rule maximally prudent and

jS,Y g) is an U-rule maximally prudent, then: for each

SuprA’(ot){:u[@(th'“ Xu?Xj'lﬂ"' ijY) ]} lfAi(OC)#Q,

fH)= inf f(a)= {
0 if A" (o) =

and

. inf () {ulApp(Xy, . X0, Xy X X)) if A" (2) #0,
g"(a)= sup g(a)=
URECUR 1 if A (o) =10
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where

A (o) = {x € U : wy, (x) < oy for each X, € {(xl,....x1}, and tiy, (X)
> o for each X, € {X! IR ,X}S}},
At (o) = {x € U : py,(x) = oy for each X € {xl,....x\}, and fy, ()

< oy, for each X, € { jl,-~-7X,l's}}~

Moreover, for any z € U
f#(:u)(}l (Z)a ce hu)(jr(z)v :u)(il (2)7 R .uleé (Z)) [APP(XA? e ervlela e vav Y) ]

g#(:quTI(Z)»'"’NX;(Z)v:qul (Z)v”"/lxjix(z)) [App(X,I, . X”,le“ X/va) z].

Proof. Let us start by proving that /7(a) satisfies the correct representation with respect to
the lower approximation. Let us consider a € [0,17"* and x € U such that
L, (X) < o foreach X, =X|,....X] and Iy, (x) = o for each X = X Xl (1)

For (i), x € A (ar) and, therefore, 4~ () # (). Consequently, for the definition of function
7#(-) we have that

[ (o) = sup {HlApp(X )1, X0 Xy X5, ), 0]} (i)

YEA™ (2)

x € A” (o) implies also that

sup. {uldpp(X ), X1 Xy X5 Y)Y
ye
/’L[App(XlU ervX/lla" ijY) ] (111)
From (ii) and (iii) we obtain
[H(@) = ulApp(X)y, . X0 X X, Y) ] (iv)

(iv) means that f*(-) satisfies the correct representation with respect to the lower
approximation.

Now, we prove that LR* = (x,.... x] x!

i X1 ]S, Y,f#) is the L-rule maximally

prudent. For contradiction, let us suppose that there exists an L-rule LR = (X lev LX)

X}l, ., X}, Y, f) and a € [0,17" such that

f(@) < f*(a). (vi)

(vi) would mean that LR¥ is not more prudent than LR and therefore LR* would not be
the L-rule maximally prudent.

Let us observe that 4 (o) # (). Otherwise, for the definition of f*(at), 4~ (o) = ) would
imply f#(at) = 0 and since flar) > 0, (vi) could not hold.
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Considering the definition of £™(-), (vi) gives

S() < sup {uldpp(X)y, . X0 X5, o X0, Y x] ) (vii)

x€A™ (o)

(vii) means that there exists x € U such that yu, (x) < o for each X, € {xl,...,x}}, and
Ly, (x) = oy for each X, € {X } and

f(o) < uldpp(X}, ... X,,,le,.. L XELY),x]. (viii)

Js?

(viii) says that L-rule LR = (X Lo xL X X' Y, f) does not satisfy correct repre-

il ir» _]1"' Js»

sentation with respect to the lower approximation. This means that for any L-rule LR,
if LR is not more prudent than LR¥ then LR is not in CLR. Thus we proved that LR"
is more prudent than all other LR rules in CLR. This completes the proof with respect
to LR”. With respect to UR™ an analogous proof holds.

Now, we prove that for any z € U

f#(,u)ﬂ (2)7 s 7.“)(T (Z)v.”)(l_ (Z)v s ,,qu_ (Z))
= uApp(X),, ... XL X}, X, Y), 2], (ix)
We have that
Ai(:uX’Tl (Z)v s 7/“1)(;_(2)) :ule_l (Z)a s 7'LtXﬁS (Z))

= {x € U : uy, (x) < piy, (z) for each X, € {x),...,x\}, and

Iy, (x) = py, (z) for each X, € {X jl,...,le.S}}.

Let us remark that for any z € U
z€ Ai(.u)(jl (Z)a s "LtXJ, (Z)v :u)(j1 (Z)v (R .u)(/l,: (Z))
and, therefore,

Ai(:uX!TI (Z)v s 7#)([1(2)) MXﬁ (Z>v s nu)(/l,j (Z)) # 0. (X)

For point (4) of Theorem 2, we have that for all x,z € U such that uy, (x) < py, (z) for each
X, e {Xx],....x}} and py, (x) > py, (2) for each X, € {X' Xl-}wehavethat

[App( ity XIV’XJLI"' X/LMY)’ } [App( ils e XIHXJLI"' X/MY) ] (Xl)

LERRER

Since for any x € 4~ (/‘XT( z), --w“)ﬁ( z), byt (2 (2), ce (z)) we have py, (x) < py, (z) for
each X, € {X],,....X}} and Ky, (x) = py, (z )for eachX,l € {x! TR ,X}Y} we can conclude
that (xi) holds for all x € 4™ (uy1 (2), ..., iy (2), fiys (2),- .., 1yt (2)) and therefore

il ir Jjl Js

[App( il eranllv X}S,Y),Z]: sup { [App( il eraX]lla X/lsaY)7 ]}7
xed” (u(2))
(xii)

where ”(Z) = [#XITI (Z)a cee "uXiTy (Z)a :uxﬁl (2)7 s ‘uX/l‘x (Z)]
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On the basis of the definition of /() and for (x), (xii) gives (ix).
Analogously, we can prove that for any z € U

g#(‘LLXI] (Z>7"')l'tXlTr(Z)7uXi] (2)7"'7MX/11‘V(Z)> :ﬂ[@<XI]""7XIITI"X}I7"' )X_]l-s) Y)7Z]' D

Theorem 3 is a characterization of the decision rules obtained through our fuzzy rough
approach: there is only one L-rule and one U-rule maximally prudent in the set of L-rules
and U-rules satisfying the property of correct representation and these are the L-rule LR*
and the U-rule UR®. Let us also remark the importance of lower and upper approxima-
tions obtained through our fuzzy rough approach for the definition of L-rule LR* and
U-rule UR”. The last part of Theorem 3 says that L-rule LR* and U-rule UR* permit
an exact reclassification of any object z € U. More precisely, function f# reassigns z its
lower approximation, i.e.,

f#(tux;l (Z)a s nu)(;(z)v,u)(ﬁl (Z), .- -,#X}S(Z)) = M[@(lea s 7X7'Tranl’l7 s anL'sv Y),Z],

while function g” reassigns z its upper approximation, i.e.,

g#(:u)([l (2)s---s :quTr(Z)nu)(jll (@), 7/1va(2)) = ﬂ[@(XiTlv e 7X1Tr7)(;17 e vX/l'sv Y),z].

Example 1 (part9). According to Theorem 3, the maximally prudent L-rule LR is the rule
<leeedy_cars’Xixpensive_cars’ Ygood_car57f#>9 where for each (O‘speedyfcarSs O‘expensiveﬁcars) € [0, 1]2

1 T
SUPyey- (otspeedy_cars sexpensive_cars ) {ﬂ [Aﬂ (Xspeedy,cars 7Xexpensive,cars 7ygood,cars) 7x]
lf A” (“speedy_cars ) aexpensive,cars) 7é 07

0 if4- (“specdy,carsa ‘xcxpcnsivc,cars) = @

# .
f (aspeedy_cars s Olexpensive_cars )

with
Ai(“speedy,carm O(expensive,cars) = {x eU: :uspeedy_cars (.X') g Olspeedy _cars and :uexpensive_cars (X)
=

Olexpensive_cars }

" # . .
Wr ltlngf (aspeedyfcarsa “expensiveﬁcars) dir eCtlY in terms of Uspeedy,_cars and Olexpensive_cars we get

0 if —1 < Olspeedy_cars — Xexpensive_cars < _0-57
f#(aspeedy_carsa O(expensive_cars) = 0.33 if -0.5< Uspeedy _cars — Xexpensive_cars < 057
1 if 0.5 < Olspeedy_cars — Xexpensive_cars < 1.

Analogously, according to Theorem 3 the maximally prudent U-rule UR* is the rule
2
<leeedy_cars7Xixpensive,carw Ygood_cars7g#>9 where for each (aspeedyfcars, “expensiveﬁcars) € [0, 1]

: T 1
lnfxeA’ (otspeedy_cars Fexpensive cars) {M[App(Xspeedy_cars 7Xexpensive_cars7 Ygood_cars ),X]}
# . =< +
g (%peedy.carm O(expenswe_cars) =4qif 4 (“speedy_carsu aexpensive_cars) ?é 07
1 lf AJr (aspeedy_cars 5 dexpensive_cars) = (Z)a

where

A+(“speedy_car57 aexpensive_cars) = {x € U: tuspeedy_cars (x) > 291 and :uexpensive_cars (X) < 062}

ops # . .
ertlng g (O(speedyfcarsn O‘expensiveﬁcars) dlfeCtlY in terms of Uspeedy_cars and Olexpensive_carss WE get
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0 if — 1 OCspeedy_cars - OCexpenswe_cars < _0-57
g#(aspeedy_carw (xexpensive_cars) = 0.66 if —0.5< Uspeedy_cars — Xexpensive_cars < 0. ’
1 if 0.5 < Olspeedy_cars — Xexpensive_cars < 1.

Comparing f #(ocspeedy_cars, Olexpensive_cars) With the explicit formulation of the lower approx-
imation introduced in part 6 of this example, one can easily verify that for any z € U,

S # (:uspeedy,cars (2), .uexpensive,cars( z)) = [App (X speedy_cars’ X ixpens]ve_cdrs? Y go0d_cars) 2]-

Analogously, comparing g#(ocspeedyicars, Olexpensive_cars) With the explicit formulation of the
upper approximation introduced in part 6 of this example, one can easily verify that for
any z € U,

g # (/"speedy,cars (2), /‘expensive,cars( 7)) = ,u[App (X speedy_cars’ X El;xpensi\/eicars7 Y go0d_cars ) 2]

5. Fuzzy rough modus-ponens and fuzzy rough modus tollens

The L-rule and the U-rule can be used to evaluate objects, possibly not belonging to U,
by means of a proper generalization of modus ponens (MP) and modus tollens (MT) in
order to infer a conclusion from gradual rules. Classically, the MP has the following form:

if X —7Y istrue
and X is true

then Y is true

MP has the following interpretation: assuming an implication X — Y (decision rule) and a
fact X (premise), we obtain another fact Y (conclusion). If we replace the classical decision
rule above by our L-rules and U-rules, then we obtain the following two generalized fuzzy-
rough MP:

if oy, (x) =0 foreach X, € {X/,.... X} }, and piy, (x) < o for each X, € {X ]1,...,X}S}
- ‘“Y(x) ( ) [a_(allv airv“jlv"'vajé‘)]

and py (x) > o, foreach X, € {X,....X]}, and piy, (x) < o, for each X, E{Xﬂ,...,X}S}

then py(x) > f(o) [0 = (ot 70(11"“]17 70‘;&)]7

it gy, (x) <oy foreach X, € {X,...,X] 1, and py, (x) = o, for each X, € {X jl,...,X}S}
- AuY(x) ( ) [a:(afla (Xlrualv"wajx)]

and py (x ) <o foreach X, € {X],....X}}, and py, (x) = o, foreachXhe{le,...,X}S}

then HY(x)gg(a/) [“/:(“§1a aalm%la ’{x,/v)]

Classically, the MT has the following form:
if X —Y istrue
and Y is false
then X is false
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MT has the following interpretation: assuming an implication X — Y (decision rule) and a
fact not Y (premise), we obtain another fact not X (conclusion). If we replace the classical
decision rule above by our L-rules and U-rules, then we obtain the following two general-
ized fuzzy-rough MT:

if  uy, (x) = o, foreach X, € {x,....x1}, and Hy, (x) < oy for each X, € {X}“...,X}S}

- ﬂY(x) Zf(d) [a:(aih airaailv---a“fs)}

and gy (x) < £(0) [0 = (o)

then py, (x) < ) for at least oneXhe{Xm X1}, or
1y, (x) > o), for at least one X, € {X! bR XL

if ,uX,()<ochforeachXh€{Xm X,Tr},anduxh() «, for each X, € {X* - X}S}
- ,uy(x)gg(ot) [a:(O(,']7...,0(,',,()(/-1,..,,051'5)]

and py(x) > g(o)[o = (e, ., 0, 0y, 0]

then gy, (x) > o, for at least one X, € {X},..., X}, or

My, (x) <o, for at least one X, € {x! X}S}.

e

Example 1 (part 10). Let us consider L-rule LR¥ = (X! X!

speedy_cars’“* expensive_cars’
Y good_cars, /) presented in part 9. Let us also consider car x such that Hspeedy_cars (X) =

0.7 and fiexpensive cars(X) = 0.3. Applying L-rule LR* to car x we obtain the following
generalized fuzzy-rough MP:
if Hspeedy_cars(X) = Uspeedy_cars AN fheypensive_cars (X) < Lexpensive_cars
= Hgood_cars(X) = 7 (Olspeedy_cars Uexpensive_cars )
and uspeedy_cars(x) > 0.7 and Uexpensive _cars (x) <03
then  flgo0q_cars(¥) = f7(0.7,0.3) = 0.33.

Let us consider now U-rule UR* = X! Xt Y g00d_cars g") presented in part

3 N speedy_cars? <™ expensive_cars’ . .
9 too. Let us consider again car x. Applying U-rule UR” to car x we obtain the following

generalized fuzzy-rough MP:
if Hspeedy _cars (x) S Uspeedy-_cars and Hexpensive_cars (x) 2 Olexpensive_cars
= Hgood_cars(X) < 87 (Ospecdy _carss Kexpensive_cars)
and  fpeedy_cars (x) £ 0.7 and Hexpensive _cars (x) =03
then  flyooq_cars(¥) < £7(0.7,0.3) = 0.66.

Now, let us also consider car y such that pyo0dq cars(y) =0.3. Applying above L-rule
LR* = (X ! X! Y good_cars, /) tO car y we obtain the following generalized

speedy_cars? <™ expensive_cars?

fuzzy-rough MT:

if :uspeedy_cars (y ) = Xspeedy_cars and :uexpensive_cars (y ) g Xexpensive_cars

- ,ugood_cars (y) = f#(aspeedy_carsv o[expensive_cars)
and  flgood_curs () = 0.3 < £#(0.7,0.4) = 0.33

then :uspeedy_cars (y) <0.7 or :uexpensive_cars (y) >04.
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Applying U-rule UR* = (X! X! Y good_cars, /) to car z such that

speedy_cars? " expensive_cars’

Hoood cars(z) = 0.8. we obtain the following generalized fuzzy-rough MT:

if luspeedy_cars(z) < Olspeedy_cars aNd :uexpensive_cars(z) 2 Oexpensive_cars
- :ugood_cars (Z) < f #(aspeedy_carsa aexpensive-cars)

and  flyong_cars(2) = 0.8 > g#(0.6,0.2) = 0.66

then :uspeedy_cars (Z) > 0.6 or luexpensive_cars (Z) <0.2.

Example 2. In this example we show that all the concepts introduced until now can also
be applied to finite sets of objects. In a certain sense this is a more natural application of
the introduced concepts. An infinite universe of discourse as that one considered in Exam-
ple 1, is interesting for didactic reasons, but it is not appropriate for real life applications.
Therefore, let us suppose that, more realistically, U is a finite set of cars described in Table
1.

T
. - speedy_cars
is positively related and

Let us approximate knowledge contained in Ygo0d cars Using knowledge about X'
and.Xx! under the hypothesis that membership in.X |

expensive_cars speedy_cars
!

membership in X e o 18 negatively related with membership in Yoood_cars- The results

of the approximations are in Table 2.
On the basis of the rough approximations presented in Table 2 we can induce the
maximally prudent L-rule with

H#Hx T 1 Hx
LR - < speedy_cars’Xexpensive_cars7 Ygood_carsaf >7

and the maximally prudent U-rule with

# T 1 #
UR™ <Xspeedy_cars ’ Xexpensive_cars7 YgOOd_carsa g : > i
Table 1
Data table about cars
Car .uspeedyicars(') ﬂexpensiveicars(') Hgoodﬁcurs(')
Cl 0.9 0.8 0.4
C2 0.7 0.5 0.7
C3 0.5 0.3 0.5
C4 0.4 0.4 0.6
C5 0.8 0.2 0.8
Table 2
Rough approximations
Car Iz [@(leccdy,cary lu[@()(lpccdy,cars7
Xixpensive,cars’ YgOOd—Caf5)7 ] ixpensive,cars7 YEUOd—CafS)v ]
Cl 0.4 0.4
C2 0.7 0.7
C3 0.5 0.6
C4 0.5 0.6

C5 0.8 0.8
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where
0.4 if gpeedy.cars = 0.9 and 0.5 < texpensive.cars < 0.8,
0.5 1f 0.4 < ttspeedy.cars < 0.7 and dlexpensive.cars < 0.4,
f#*(fxspccdy_cars; acxpcnsivc_cars) = 07 lf apeedy.cars g 0-7and0.2< Fepensive.cars ) 057
0.7 1f 0.7 < tspeedy cars < 0.8 and otexpensive cars < 0.2,
0.8 if tgpeedy.cars = 0.8 and Oexpensive cars < 0.2,
0 otherwise

and
0.4 1f tspeedycars < 0.9 and ttexpensive cars = 0.8,
0.6 if ogpeedy cars < 0.5 and 0.3 < expensive.cars < 0.8,
0.7 1f 0.5 < otspeedy.cars < 0.7 and 0.5 < dtexpensive.cars < 0.8,
g (Otspeedy.cars , Xexpensive.cars) = 4 0.8 1f 0.5 < tgpeedy cars < 0.8 and 0.2 < ttexpensive.cars < 0.5,
0.8 if 0.7 < otspeedycars < 0.8 and 0.5 <

0.8 if Ospeedy_cars < 0.5and 0.2 < Oexpensive._cars < 037

Olexpensive_cars < 0.8,

1  otherwise.

Let us also consider car w such that gspeedy cars(W) = 0.6 and pexpensive cars(W) = 0.3. Apply-
ing L-rule LR™ to car w, we obtain the following generalized fuzzy-rough MP:
if Hspeedy_cars(w) > Olspeedy_cars aNd :uexpensive_cars(w) K expensive_cars
= Hgood_cars(W) = 7" (thspecdy_cars, dexpensive _cars)
and  fUgpeedy cars(W) = 0.6 and fepensive cars(W) < 0.3
then  flyo0d_cars(W) = f#7(0.6,0.3) = 0.5.

: : _ Hx T Hx
Let us consider in turn U-rule UR™ = (X eqy carss X expensive_cars? ¥ zood cars; & ) and car w.

Applying U-rule UR** to car w we obtain the following generalized fuzzy-rough MP:

if :uspeedy_cars(w) < Uspeedy_cars and :uexpensive_cars(w) = Olexpensive _cars
*
- :ugood_cars(w) < g# (O(Speedy_carsa OCexpensive_cars)

and ,uspeedy_cars(w) < 0.6 and :uexpensive_cars (W) = 0.3
then  flyo0q_cars(W) < £77(0.6,0.3) = 0.8.

Now, let us also consider another car z such that figood cars(z) = 0.55. Applying above L-
rule LR** = (X ! X! Y good_cars, /7 7) to car z, we obtain the following gen-

speedy _cars? “* expensive _cars?

eralized fuzzy-rough MT:

if :uspeedy_cars(z) = Ospeedy_cars and :uexpensive_cars(z) g Olexpensive_cars
*
- :ugood_cars (Z) = f# (“speedy_carsy O‘expensive.cars)

and  flyong_cars(2) = 0.55 < £#7(0.8,0.3) = 0.7

then :uspeedy,cars(z) < 0.8 or :uexpensive,cars(z) >0.3.

Applying U-rule UR* = (X! X! Ygood_cars; &) to car z such that

speedy_cars? “* expensive_cars’

Hoood cars(z) = 0.55, we obtain the following generalized fuzzy-rough MT:
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lf .uspeedy_cars(z) g aspeedy_cars and :uexpensive_cars(z) 2 fxexpensive_cars
*
- :ugood_cars(z) g g# (uspeedy_carsa aexpensive_cars)

and  figo0q cas(2) = 0.55 > g#°(0.80,0.85) = 0.4

then :uspeedy,cars(z) > 0.80 or Hexpensive_cars (Z) < 0.85.

6. Conclusions and further research directions

In this paper we presented a new fuzzy rough set approach. The main advantage of this
new approach is that it infers the most cautious conclusions from available imprecise infor-
mation, without using neither fuzzy connectives nor specific parameters, whose choice are
always subjective to some extent. Another advantage of our approach is that it uses only
ordinal properties of membership degrees. We noticed that our approach is related to:

e gradual rules, with respect to syntax and semantics of considered decision rules,

e dominance-based rough set approach, with respect to the idea of monotonic relation-
ship between credibility degrees of multiple premises and conclusion,

e Mill’s method of concomitant variation with respect to the philosophy of data mining
and knowledge discovery.

We think that this approach gives a new prospect for applications of fuzzy rough
approximations in real-world decision problems. More precisely, we envisage the follow-
ing two extensions of this methodology:

(1) Variable precision fuzzy rough approximation: in this paper we propose to calculate
the degree of membership to the fuzzy lower approximation on the basis of non-
ambiguous objects only, however, it might be useful in practical applications to
allow a limited number of ambiguous objects as well; in this way we may get less spe-
cific rules of the type: “the larger the market share of a company, the greater its
profit, in /% of the cases”, where / is a parameter controlling the proportion of
ambiguous objects in the definition of the lower approximation.

(2) Imprecise input data represented by fuzzy numbers and missing values: the evalua-
tion of the objects in the universe U from which the rough approximations and the
gradual decision rules are induced may include imprecise values, represented by
fuzzy numbers, or missing values.
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