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Abstract

We propose a new fuzzy rough set approach which, differently from most known fuzzy set exten-
sions of rough set theory, does not use any fuzzy logical connectives (t-norm, t-conorm, fuzzy impli-
cation). As there is no rationale for a particular choice of these connectives, avoiding this choice
permits to reduce the part of arbitrary in the fuzzy rough approximation. Another advantage of
the new approach is that it is based on the ordinal properties of fuzzy membership degrees only.
The concepts of fuzzy lower and upper approximations are thus proposed, creating a base for induc-
tion of fuzzy decision rules having syntax and semantics of gradual rules. The proposed approach to
rule induction is also interesting from the viewpoint of philosophy supporting data mining and
knowledge discovery, because it is concordant with the method of concomitant variations by John
Stuart Mill. The decision rules are induced from lower and upper approximations defined for posi-
tive and negative relationships between credibility degrees of multiple premises, on one hand, and
conclusion, on the other hand.
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1. Introduction

It has been acknowledged by different studies that fuzzy set theory and rough set theory
are complementary because of handling different kinds of uncertainty. Fuzzy sets deal with
possibilistic uncertainty, connected with imprecision of states, perceptions and preferences
[4]. Rough sets deal, in turn, with uncertainty following from ambiguity of information
[18]. The two types of uncertainty can be encountered together in real-life problems.
For this reason, many approaches have been proposed to combine fuzzy sets with rough
sets (see, e.g., [6]).

Let us remember that fuzzy sets [21] are based on the idea that, given a universe U, the
membership of y 2 U in a set X from U admits a graduality represented by means of func-
tion lX :U! [0,1] such that lX(y) = 0 means non-membership, lX(y) = 1 means full mem-
bership, and for all intermediate values the greater lX(y), the more credible the membership
of y in X. An analogous idea of graduality is introduced in fuzzy logic with respect to the
truth value v(p) of a proposition p such that v(p) = 0 means that p is definitely false, v(p) = 1
that p is definitely true and for all intermediate values the greater v(p), the more credible the
truth of p. In the context of fuzzy sets, fuzzy connectives, being functions from [0,1] · [0, 1]
to [0,1], represent conjunction (t-norm), disjunction (t-conorm) or implication (fuzzy impli-
cations such as S-implication or R-implication) (see, e.g., [13]).

Let us also remember that rough set theory [17,18] is based on the idea that some
knowledge (data, information) is available about elements of a set. For example, knowl-
edge about patients suffering from a certain disease may contain information about body
temperature, blood pressure, etc. All patients described by the same information are indis-
cernible in view of the available knowledge and form groups of similar cases. These groups
are called elementary sets and can be considered as elementary building blocks of the
available knowledge about patients. Elementary sets can be combined into compound con-
cepts. Any union of elementary sets is called crisp set, while other sets are referred to as
rough set. Each rough set has boundary line cases, i.e., objects which, in view of the avail-
able knowledge, cannot be classified with certainty as members of the set or of its comple-
ment. Therefore, in the rough set approach, any set is associated with a pair of crisp sets
called the lower and the upper approximation. Intuitively, the lower approximation con-
sists of all objects, which certainly belong to the set, and the upper approximation contains
all objects, which possibly belong to the set. The difference between the upper and the
lower approximation constitutes the boundary region of the rough set.

The main preoccupation in almost all the studies conjugating rough sets with fuzzy sets
was related to a fuzzy extension of Pawlak�s definition of lower and upper approximations
using fuzzy connectives. In fact, there is no rule for the choice of the ‘‘right’’ connective, so
this choice is always arbitrary to some extent.

Another drawback of fuzzy extensions of rough sets involving fuzzy connectives is that
they are based on cardinal properties of membership degrees. In consequence, the result of
these extensions is sensitive to order preserving transformation of membership degrees.
For example, consider the t-conorm of Lukasiewicz as fuzzy connective; it may be used
in the definition of both fuzzy lower approximation (to build fuzzy implication) and fuzzy
upper approximation (as a fuzzy counterpart of a union). The t-conorm of Lukasiewicz is
defined as

T �ða; bÞ ¼ minfa þ b; 1g.
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T*(a,b) can be interpreted as follows. If a = lX(z) represents the membership of z 2 U in set
X and b = lY(z) represents the membership of z in setY, thenT*(a,b) expresses the member-
ship of z in set X [ Y. Given two fuzzy propositions p and q, putting v(p) = a and v(q) = b,
T*(a,b) can be interpreted also as v(p _ q), the truth value of the proposition p _ q.

Let us consider the following values of arguments:

a ¼ 0:5; b ¼ 0:3; c ¼ 0:2; d ¼ 0:1;

and their order preserving transformation:

a0 ¼ 0:4; b0 ¼ 0:3; c0 ¼ 0:2; d0 ¼ 0:05.

The values of the t-conorm are in the two cases as follows:

T �ða; dÞ ¼ 0:6; T �ðb; cÞ ¼ 0:5; T �ða0; d0Þ ¼ 0:45; T �ðb0; c0Þ ¼ 0:5.

One can see that the order of the results has changed after the order preserving trans-
formation of the arguments. This means that the Lukasiewicz t-conorm takes into account
not only the ordinal properties of the membership degrees, but also their cardinal proper-
ties. A natural question arises: is it reasonable to expect from membership degree a cardi-
nal content instead of ordinal only? Or, in other words, is it realistic to claim that a human
is able to say in a meaningful way not only that

(a) ‘‘object x belongs to fuzzy set X more likely than object y’’ (or ‘‘proposition p is more
credible than proposition q’’)

but even something like

(b) ‘‘object x belongs to fuzzy set X two times more likely than object y’’ (or ‘‘proposition
p is two times more credible than proposition q’’)?

We claim that it is safer to consider information of type (a), because information of type
(b) is rather meaningless for a human (see [14]).

The above doubt about the cardinal content of the fuzzy membership degree shows the
need for methodologies which consider the imprecision in perception typical for fuzzy sets
but avoid as much as possible meaningless transformation of information through fuzzy
connectives.

The approach we propose for fuzzy extension of rough sets takes into account the
above request. It avoids arbitrary choice of fuzzy connectives and not meaningful opera-
tions on membership degrees. Our approach belongs to the minority of fuzzy extensions of
the rough set concept that do not involve fuzzy connectives and cardinal interpretation of
membership degrees. Within this minority, it is related to the approach of Nakamura and
Gao [16] using a-cuts on fuzzy similarity relation between objects.

We propose a methodology of fuzzy rough approximation that infers the most cautious
conclusion from available imprecise information. In particular, we observe that any
approximation of knowledge about Y using knowledge about X is based on positive or
negative relationships between premises and conclusions, i.e.,

(i) ‘‘the more x is X, the more it is Y’’ (positive relationship),
(ii) ‘‘the more x is X, the less it is Y’’ (negative relationship).
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The following simple relationships illustrate (i) and (ii): ‘‘the larger the market share
of a company, the greater its profit’’ (positive relationship) and ‘‘the greater the debt of
a company, the smaller its profit’’ (negative relationship). These relationships have been
already considered within fuzzy set theory under the name of gradual decision rules [5].
Recently, Greco et al. [7,8] proposed an approach for induction of gradual decision
rules relating knowledge about X and knowledge about Y, represented by a single premise
and a single conclusion, respectively. It handles ambiguity of information through fuzzy
rough approximations. In this paper, we want to extend this approach to induction of
gradual decision rules having multiple premises representing knowledge about X. Exam-
ples of these decision rules are: ‘‘if a car is speedy with credibility at least 0.8 and it has
high fuel consumption with credibility at most 0.7, then it is a good car with a credibility
at least 0.9’’ and ‘‘if a car is speedy with credibility at most 0.5 and it has high fuel
consumption with credibility at least 0.8, then it is a good car with a credibility at most
0.6’’.

Remark that the syntax of gradual decision rules is based on monotonic relationship
that can also be found in dominance-based decision rules induced from preference-ordered
data. From this point of view, the fuzzy rough approximation proposed in this article is
related to the dominance-based rough set approach [9–11].

For the reason of greater generality, one could drop the assumption of the monotonic
relationship between premise and conclusion in gradual rules. For example, the gradual
rule ‘‘the greater the temperature the better the weather’’ is true in some range of temper-
ature only (say, up to 25 �C). In such cases, however, one can split the domain of the pre-
mise into sub-intervals, in which the monotonicity still holds, and represents the
regularities observed in these sub-intervals by gradual rules. For example, we can split
the range of the temperature into two open subintervals, under 25 �C and over 25 �C,
obtaining the two gradual rules: ‘‘the greater the temperature the better the weather’’,
which is valid in the first interval, and ‘‘the smaller the temperature the better the weath-
er’’, which is valid in the second interval. Therefore, the concept of monotonicity in grad-
ual rules is intrinsic to the idea of induction whose aim is to represent regularities
according to the simplest law (see, Proposition 6.363 in [20]: ‘‘The process of induction
is the process of assuming the simplest law that can be made to harmonize with our expe-
rience’’). We claim that this simplest law is the monotonicity.

The above proposition of Wittgenstein is borrowed from the paper by Aragones et al.
[1] on a similar subject. Remark, however, that these authors consider rules with non-
monotonic relationships between premise and conclusion, and, moreover, their rule induc-
tion procedure is based on a cardinal concept of the credibility of information.

The model of rule induction proposed in this paper is interesting also from the view-
point of data mining, knowledge discovery, machine learning and their philosophical
background [3,2,19]. In fact, applications of data mining, knowledge discovery and ma-
chine learning requires a proper theory related to such questions as

• Can the whole process of knowledge discovery be automated or reduced to pure-
logics?

• In what degree pieces of evidence found in data support a hypothesis? [12]
• How to choose an inductive strategy appropriate for the task one is facing?
• What is the relationship between machine learning and philosophy of science?
• ‘‘Is machine learning experimental philosophy of science?’’ [2]
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In this paper, we focus on the kind of discoveries permitted by our methodology. The
rule induction approach we are proposing is concordant with the method of concomitant
variation proposed by John Stuart Mill. The general formulation of this method is the fol-
lowing: ‘‘Whatever phenomenon varies in any manner whenever another phenomenon
varies in some particular manner, is either a cause or an effect of that phenomenon, or
it is connected with it through some causation’’ [15]. In simpler words, the method of con-
comitant variation searches for positive or negative relations between magnitudes of con-
sidered variables. Mill�s example concerned the tides and the position of the moon. In the
above example of decision rules concerning evaluation of a car, the variations in evalua-
tion of the car are positively related with variations in its speed and negatively related with
variations in its fuel consumption. Cornish and Elliman [3] note that within current prac-
tice of data mining, the method of concomitant variation is the one which receives the least
attention among the other methods proposed by Mill (method of agreement, method of
difference, method of indirect difference and method of residues). However Cornish and
Elliman [3] observe also that the method of concomitant variation ‘‘is believed to have
the greatest potential for the discovery of knowledge, in such areas as biology and biomed-
icine, as it addresses parameters which are forever present and inseparable’’.

The plan of the article is the following. In Section 2, we are defining the syntax and
semantics of considered gradual decision rules; we also show how they represent positive
and negative relationships between fuzzy sets corresponding to multiple premises and to
conclusion of a decision rule. In Section 3, we are introducing fuzzy rough approximations
consistent with the considered gradual decision rules. Section 4 deals with rule induction
based on rough approximations. In Section 5, we introduce fuzzy rough modus ponens
and fuzzy rough modus tollens based on gradual decision rules. Section 6 is grouping con-
clusions and remarks on further research directions.

2. Gradual decision rules with positively or negatively related premises and conclusion

Let us consider condition attributes X1, . . . ,Xn, related with decision attribute Y. More
precisely, we shall denote by X "

i a fuzzy value of attribute Xi positively related with deci-
sion attribute Y, and by X #

i , a fuzzy value of attribute Xi negatively related with decision
attribute Y. We aim to obtain gradual decision rules of the following types:

• lower-approximation rules (L-rule): ‘‘if

– x 2 X "
i1 with credibility CðX "

i1Þ P ai1, x 2 X "
i2 with credibility CðX "

i2Þ P ai2, . . . , and

x 2 X "
ir with credibility CðX "

irÞ P air, and

– x 2 X #
j1 with credibility CðX #

j1Þ 6 aj1, x 2 X #
j2 with credibility CðX #

j2Þ 6 aj2, . . . , and

x 2 X #
js with credibility CðX #

jsÞ 6 ajs,
then decision x 2 Y has credibility C(Y) P b’’,

• upper-approximation rule (U-rule): ‘‘if
– x 2 X "

i1 with credibility CðX "
i1Þ 6 ai1, x 2 X "

i2 with credibility CðX "
i2Þ 6 ai2, . . . , and

x 2 X "
ir with credibility CðX "

irÞ 6 air, and

– x 2 X #
j1 with credibility CðX #

j1Þ P aj1, x 2 X #
j2 with credibility CðX #

j2Þ P aj2, . . ., and

x 2 X #
js with credibility CðX #

jsÞ P ajs,
then decision x 2 Y has credibility C(Y) 6 b’’.
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The above decision rules will be represented by (r + s + 2)-tuples hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;

X #
js; Y ; f i and hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y ; gi, respectively, where f : [0,1]r+s ! [0, 1] and

g : [0,1]r+s ! [0, 1] are functions relating the credibility of membership in X "
i1; . . . ;X

"
ir;

X #
j1; . . . ;X

#
js with the credibility of membership in Y, in lower- and upper-approximation

rules, respectively. More precisely, functions f and g permit to rewrite the conclusion part
of above decision rules as follows:

• L-rule: ‘‘then decision x 2 Y has credibility C(Y) P b = f(ai1, . . . ,air,aj1, . . . ,ajs)’’;
• U-rule: ‘‘then decision x 2 Y has credibility C(Y) 6 b = g(ai1, . . . ,air,aj1, . . . ,ajs)’’.

If we have sufficient information about the lower boundary and upper boundary of
credibility C(Y), functions f and g would be obtained as functions which are monotoni-
cally non decreasing with ai1, . . . ,air and monotonically non increasing with aj1, . . . ,ajs.
Otherwise, we cannot expect such monotonicity properties of functions f and g. Namely,
under some partial information about those boundaries, functions f and g cannot be
monotonically non decreasing with ai1, . . . ,air and monotonically non increasing with
aj1, . . . ,ajs. In what follows, we assume only some partial information about the lower
boundary and upper boundary of credibility C(Y) so that functions f and g are not always
monotonically non decreasing with ai1, . . . ,air and monotonically non increasing with
aj1, . . . ,ajs.

Given an L-rule LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i and an object z, taking into

account that function f is not necessarily monotonic, we define the lower boundary of
membership of z in Y with respect to LR, denoted by C(z,LR,Y), as follows:

Cðz; LR; Y Þ ¼ inf
a2EþðzÞ

f ðai1; . . . ; air; aj1 . . . ; ajsÞ;

where

EþðzÞ ¼
�

a ¼ ðai1; . . . ; air; aj1; . . . ; ajsÞ 2 ½0; 1�rþs
: ah P lXh

ðzÞ for each

Xh 2 fX "
i1; . . . ;X

"
irg and ah 6 lXh

ðzÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg
�
.

Namely, with f(ai1, . . . ,air,aj1, . . . ,ajs), we revise the lower boundary by using the knowledge
that credibility C(Y) is monotonically non decreasing with credibilities CðX "

i1Þ; . . . ; CðX
"
irÞ

and monotonically non increasing with credibilities CðX #
j1Þ; . . . ;CðX

#
jsÞ. Note that this mod-

ification does not change the conclusion, i.e. C(z,LR,Y) = f(ai1, . . . ,air,aj1, . . . ,ajs), when
function f is monotonically non decreasing with ai1, . . . ,air and monotonically non increas-
ing with aj1, . . . ,ajs.

Intuitively, the lower boundary represents the lowest credibility we can assign to mem-
bership of object z in Y on the basis of an L-rule LR, given the hypothesis about the po-
sitive relationships with respect to membership in X "

i1; . . . ;X
"
ir and the negative relationship

with respect to membership in X #
j1; . . . ;X

#
js. The following example illustrates this idea.

Example 1 (part 1). Let us suppose that in order to evaluate the membership of a car in a
set of good cars Ygood_cars, we should take into account the membership of the car in a set

of speedy cars X "
speedy cars, and the membership of the cars in a set of expensive cars

X #
expensive cars. Of course the membership in set Ygood_cars of good cars is positively related
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with the membership in set X "
speedy cars of speedy cars and negatively related with the

membership in set X #
expensive cars of expensive cars. Given a car z, lspeedy_cars(z) denotes the

degree of membership of z in set X "
speedy cars, lexpensive_cars(z) denotes the degree of

membership of z in set X #
expensive car and lgood_cars(z) denotes the degree of membership of z

in set Ygood_cars.
Let us suppose that the membership of each car z in set Ygood_cars is based on L-rule

LR ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; f i where f : [0, 1]2 ! [0, 1] is defined as follows:

f ðaspeedy cars; aexpensive carsÞ ¼

0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:50;

0:66 if � 0:50 < aspeedy cars � aexpensive cars 6 0;

0:33 if 0 < aspeedy cars � aexpensive cars 6 0:50;

1 if 0:50 < aspeedy cars � aexpensive cars 6 1.

8>>>>>><
>>>>>>:

Let us observe that function f is not monotonically non decreasing with lspeedy_cars(z) and
monotonically non increasing with lexpensive_cars(z) since we assume that only partial infor-
mation is available.

Now, let us consider a car z such that lspeedy_cars(z) = 0.4 and lexpensive_cars(z) = 0.8. We
have

Cðz; LR; Y good carsÞ ¼ inf
a2EþðzÞ

f ðaspeedy cars; aexpensive carsÞ ¼ 0:33;

where

EþðzÞ ¼
�

a ¼ ðaspeedy cars; aexpensive carsÞ 2 ½0; 1�2 : aspeedy cars P lspeedy carsðzÞ ¼ 0:4

and aexpensive cars 6 lexpensive carsðzÞ ¼ 0:8

�
.

Let us remark that

f ½lspeedy carsðzÞ; lexpensive carsðzÞ� ¼ 0:66 > 0:33 ¼ Cðz; LR; Y good carsÞ.

This is explained by the principle of coherence with respect to the sign of relationships
between condition attributes X "

speedy cars and X #
expensive cars, on one hand, and decision attri-

bute Ygood_cars, on the other hand. According to this principle, membership of car z in set
Ygood_cars should not be greater than that of car w such that lspeedy_cars(w) P lspeedy_cars(z)
and lexpensive_cars(w) 6 lexpensive_cars(z). Remark that, for example, in case of car w, for
which lspeedy_cars(w) = 0.7 and lexpensive_cars(w) = 0.5, the above function f suggests a
membership degree of w in Ygood_cars equal to lgood_cars(w) = f[lspeedy_cars(w),
lexpensive_cars(w)] = 0.33. Therefore, we should also have lgood_cars(z) 6 0.33. In this
perspective, C(z,LR,Ygood_cars) represents a prudent evaluation of lgood_cars(z) in such a
way that for all cars w for which

lspeedy carsðwÞ P lspeedy carsðzÞ and lexpensive carsðwÞ 6 lexpensive carsðzÞ; ðiÞ

we have

lgood carsðwÞ P lgood carsðzÞ. ðiiÞ

More precisely, C(z,LR,Ygood_cars) is the maximal value one can assign to lgood_cars(z) in
such a way that (i) and (ii) hold.
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For the sake of completeness let us observe that

Cðz; LR; Y good carsÞ ¼
0 if � 1 6 lspeedy carsðzÞ � lexpensive carsðzÞ 6 �0:5;

0:33 if � 0:5 < lspeedy carsðzÞ � lexpensive carsðzÞ 6 0:5;

1 if 0:5 < lspeedy carsðzÞ � lexpensive carsðzÞ 6 1.

8><
>:
Analogously, given an U-rule UR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi and an object z, we

define the upper boundary of membership of z to Y with respect to UR, denoted by
C(z,UR,Y), as follows:

Cðz;UR; Y Þ ¼ sup
a2E�ðzÞ

gðai1; . . . ; air; aj1; . . . ; ajsÞ;

where

E�ðzÞ ¼
�

a ¼ ðai1; . . . ; air; aj1; . . . ; ajsÞ 2 ½0; 1�rþs
: ah 6 lXh

ðzÞ for each

Xh 2 fX "
i1; . . . ;X

"
irg and ah P lXh

ðzÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg
�
.

Namely, with g(ai1, . . . ,air,aj1, . . . ,ajs), we modify the upper boundary by using the knowl-
edge that credibility C(Y) is monotonically non decreasing with credibilities
CðX "

i1Þ; . . . ;CðX
"
irÞ and monotonically non increasing with credibilities CðX #

j1Þ; . . . ;
CðX #

jsÞ. Note that this modification does not change the conclusion, i.e. C(z,UR,Y) =

g(ai1, . . . ,air,aj1, . . . ,ajs), when function g is monotonically non decreasing with ai1, . . . ,air
and monotonically non increasing with aj1, . . . ,ajs.

Intuitively, the upper boundary represents the highest credibility we can assign to mem-
bership of object z in Y on the basis of an U-rule UR, given the hypothesis about the
positive relationships with respect to membership in X "

i1; . . . ;X
"
ir and the negative relation-

ship with respect to membership in X #
j1; . . . ;X

#
js. The following continuation of Example 1

illustrates this idea.

Example 1 (part 2). Let us suppose that the membership of each car in set Ygood_cars is
based on U-rule UR ¼ hX "

speedy cars;X
#
expensive cars; Y good cars; gi where g : [0,1]2 ! [0, 1] has

the same definition as above function f, i.e.,

gðaspeedy cars; aexpensive carsÞ ¼ f ðaspeedy cars; aexpensive carsÞ
for all (aspeedy_cars,aexpensive_cars) 2 [0,1]2. Let us also suppose that we want to evaluate
the membership in set Ygood_cars of a car u such that lspeedy_cars(u) = 0.8 and
lexpensive_cars(u) = 0.4. We have

Cðu;UR; Y good carsÞ ¼ sup
a2E�ðuÞ

gðaspeedy cars; aexpensive carsÞ ¼ 0:66;

where

E�ðuÞ ¼ a ¼ ðaspeedy cars; aexpensive carsÞ 2 ½0; 1�2 : aspeedy cars 6 lspeedy carsðuÞ ¼ 0:8 and
n
aexpensive cars P lexpensive carsðuÞ ¼ 0:4

o
.
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Let us remark that

f ½lspeedy carsðuÞ; lexpensive carsðuÞ� ¼ 0:33 < 0:66 ¼ Cðu;UR; Y good carsÞ.

This is explained by the principle of coherence with respect to the sign of relationships be-
tween condition attributes, that are membership in X "

speedy cars and X #
expensive cars, on one

hand, and decision attribute, that is membership in Ygood_cars, on the other hand. Accord-
ing to this principle, membership in set Ygood_cars of car u should not be smaller than that
of car v, such that lspeedy_cars(v) 6 lspeedy_cars(u) and lexpensive_cars(v) P lexpensive_cars(u).
Remark that, for example, in case of car v, for which lspeedy_cars(v) = 0.5 and
lexpensive_cars(v) = 0.7, the above function g suggests a membership degree of v in Ygood_cars

equal to lgood_cars (v) = g[lspeedy_cars(v), lexpensive_cars(v)] = 0.66. Therefore, we should have
also lgood_cars(u) P 0.66. In this perspective, C(u,UR,Ygood_cars) represents a possible and
‘‘optimistic’’ evaluation of lgood_cars(u) in such a way that for all cars v for which

lspeedy carsðvÞ 6 lspeedy carsðuÞ and lexpensive carsðvÞ P lexpensive carsðuÞ; ðiiiÞ

we have

lgood carsðvÞ 6 lgood carsðuÞ. ðivÞ

More precisely C(u,LR,Ygood_cars) is the minimal value one can assign to lgood_cars(u) in
such a way that (iii) and (iv) hold.

For the sake of completeness let us observe that

Cðz;UR; Y good carsÞ ¼
0 if � 1 6 lspeedy carsðzÞ � lexpensive carsðzÞ 6 �0:5;

0:66 if � 0:5 < lspeedy carsðzÞ � lexpensive carsðzÞ 6 0:5;

1 if 0:5 < lspeedy carsðzÞ � lexpensive carsðzÞ 6 1.

8><
>:
Two L-rules LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i and LR0 ¼ hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;

X #
js; Y ; f

0i are equivalent if for all possible objects z we have that C(z,LR,Y) =
C(z,LR 0,Y).

Two U-rules UR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi and UR0 ¼ hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js;

Y ; g0i are equivalent if for all possible objects z we have that C(z,UR,Y) = C(z,UR 0,Y).

Example 1 (part 3). Let us suppose that we want to evaluate the membership of each car
in set Ygood_cars on the basis of L-rule LR0 ¼ hX "

speedy cars;X
#
expensive cars; Y good cars; f 0i, where

f 0 : [0,1]2 ! [0,1] is defined as follows:

f 0½aspeedy cars; aexpensive cars� ¼

0 �1 6 aspeedy cars � aexpensive cars 6 �0:50;

0:50 �0:50 < aspeedy cars � aexpensive cars 6 0;

0:33 0 < aspeedy cars � aexpensive cars 6 0:50;

1 0:50 < aspeedy cars � aexpensive cars 6 1.

8>>>><
>>>>:

We have that C(z,LR,Y) = C(z,LR 0,Y) and, therefore, L-rules LR and LR 0 are equiva-
lent. The reason is that f and f 0 differ in a part of their domain only, where the monoto-
nicity of membership in Ygood_cars with respect to membership in X "

speedy cars and

X #
expensive cars is not satisfied. In fact, f 0[lspeedy_cars(z),lexpensive_cars(z)] differs from

f [lspeedy_cars(z),lexpensive_cars(z)] in case
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�0:50 < lspeedy carsðzÞ � lexpensive carsðzÞ 6 0; ðvÞ

where f 0[lspeedy_cars(z),lexpensive_cars(z)] = 0.5 and f[lspeedy_cars(z),lexpensive_cars(z)] = 0.66,
while in case

0 < lspeedy carsðzÞ � lexpensive carsðzÞ 6 0:50; ðviÞ
we have f 0[lspeedy_cars (z),lexpensive_cars(z)] = f[lspeedy_cars(z),lexpensive_cars(z)] = 0.33. Let us
remark that, for each car h for which

�0:50 < lspeedy carsðhÞ � lexpensive carsðhÞ 6 0;

and therefore f 0[lspeedy_cars(h),lexpensive_cars(h)] = 0.5 and f[lspeedy_cars(h),lexpensive_cars(h)] =
0.66, there exists at least one other car k for which lspeedy_cars(k) P lspeedy_cars(h) and
lexpensive_cars(k) 6 lexpensive_cars(h) such that

0 < lspeedy carsðkÞ � lexpensive carsðkÞ 6 0:50;

and therefore f 0[lspeedy_cars(k),lexpensive_cars(k)] = f[lspeedy_cars(k),lexpensive_cars(k)] = 0.33.
Thus, for the principle of coherence with respect to the sign of relationships between con-
dition attributes X "

speedy cars and X #
expensive cars, on one hand, and decision attribute Ygood_cars

on the other hand, it is cautious with respect to f as well as to f 0 to conclude that

lgood carsðhÞ ¼ lgood carsðkÞ ¼ f 0½lspeedy carsðkÞ; lexpensive carsðkÞ�
¼ f ½lspeedy carsðkÞ; lexpensive carsðkÞ� ¼ 0:33;

without taking into account that f 0[lspeedy_cars(h),lexpensive_cars(h)] = 0.5 and f[lspeedy_cars (h),
lexpensive_cars(h)] = 0.66.

Now, let us suppose that we want to evaluate the membership of each car in set
Ygood_cars on the basis of U-rule UR0 ¼ hX "

speedy cars;X
#
expensive cars; Y good cars; g0i, where

g 0 : [0, 1]2 ! [0, 1] is defined as follows:

g0½aspeedy cars; aexpensive cars� ¼

0 �1 6 aspeedy cars � aexpensive cars 6 �0:50;

0:66 �0:50 < aspeedy cars � aexpensive cars 6 0;

0:40 0 < aspeedy cars � aexpensive cars 6 0:50;

1 0:50 < aspeedy cars � aexpensive cars 6 1.

8>>>>><
>>>>>:
We have that C(z,UR,Y) = C(z,UR 0,Y) and therefore U-rules UR and UR 0 are equiva-
lent. Again, the reason is that g and g 0 differ in a part of their domain only (when 0 <
lspeedy_cars(z) � lexpensive_cars(z) 6 0.5) where the monotonicity of membership in Ygood_cars

with respect to membership in X "
speedy cars and X #

expensive cars is not satisfied.
Theorem 1. For each L-rule LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i there exists an equivalent

L-rule LR0 ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f

0i with functions f 0(ai1, . . . ,air,aj1, . . . ,ajs)

non-decreasing in each of its first r arguments and non-increasing in its last s arguments.

For each U-rule UR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi there exists an equivalent U-rule

UR0 ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; g

0i with functions g 0(ai1, . . . ,air,aj1, . . . ,ajs) non-decreas-
ing in each of its first r arguments and non-increasing in its last s arguments.
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Proof. Let us suppose that the L-rule LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i does not satis-

fies the property to be non-decreasing in each of its first r arguments and/or non-increasing
in its last s arguments. Let us consider the L-rule LR0 ¼ hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y ; f

0i
with function f 0(ai1, . . . ,air,aj1, . . . ,ajs) defined as follows, for each ða0

i1; . . . ; air; a0
j1; . . . ;

a0
jsÞ 2 ½0; 1�rþs

f 0ðai1; . . . ; air; aj1; . . . ; ajsÞ ¼ inf f ða0
i1; . . . ; a

0
ir; a

0
j1; . . . ; a

0
jsÞ : ða0

i1; . . . ; a
0
ir; a

0
j1; . . . ; a

0
jsÞ

n
2 ½0; 1�rþs

; a0
i1 6 ai1; . . . ; a

0
ir 6 air; a

0
j1 P aj1; . . . ; a

0
js P ajs

o
.

Let us prove that function f 0(ai1, . . . ,air, aj1, . . . ,ajs) is non-decreasing in each of its first r
arguments and non-increasing in its last s arguments. In fact, on the basis of definition of
function f 0(ai1, . . . ,air,aj1, . . . ,ajs), for each ða00

i1; . . . ; a
00
ir; a

00
j1; . . . ; a

00
jsÞ, ða000

i1; . . . ; a
000
ir ; a

000
j1; . . . ;

a000
jsÞ 2 ½0; 1�rþs such that

a00
i1 6 a000

i1; . . . a
00
ir 6 a000

ir ; a00
j1 P a000

j1; . . . ; a
00
js P a000

js ; ðiÞ

we have that

f 0ða00
i1; . . . ; a

00
ir; a

00
j1; . . . ; a

00
jsÞ ¼ inf f ða0

i1; . . . ; a
0
ir; a

0
j1; . . . ; a

0
jsÞ : ða0

i1; . . . ; a
0
ir; a

0
j1; . . . ; a

0
jsÞ

n

2 ½0; 1�rþs
; a0

i1 P a00
i1; . . . a

0
ir P a00

ir; a
0
j1 6 a00

j1; . . . ; a
0
js 6 a00

js

o

6 inf f ða0
i1; . . . ; a

0
ir; a

0
j1; . . . ; a

0
jsÞ : ða0

i1; . . . ; a
0
ir; a

0
j1; . . . ; a

0
jsÞ 2 ½0; 1�rþs

; a0
i1

n

P a000
i1; . . . a

0
ir P a000

ir ; a
0
j1 6 a000

j1; . . . ; a
0
js 6 a000

js

o
¼ f 0ða000

i1; . . . ; a
000
ir ; a

000
j1; . . . ; a

000
jsÞ. ðiiÞ

Now we prove that L-rules LR and LR 0 are equivalent. For each possible object z

Cðz; LR; Y Þ ¼ inf
a2EþðzÞ

f ðai1; . . . ; air; aj1; . . . ; ajsÞ

¼ inf f ða0
i1; . . . ; a

0
ir; a

0
j1; . . . ; a

0
jsÞ : ða0

i1; . . . ; a
0
ir; a

0
j1; . . . ; a

0
jsÞ 2 ½0; 1�rþs

; a0
i1

n
P lX i1

ðzÞ; . . . a0
ir P lX ir

ðzÞ; a0
j1 6 lXj1

ðzÞ; . . . ; a0
js 6 lXjs

ðzÞ
o

¼ f 0ðlX i1
ðzÞ; . . . ; lX ir

ðzÞ; lX j1
ðzÞ; . . . ; lX js

ðzÞÞ. ðiiiÞ

On the basis of monotonicity of function f 0(ai1, . . . ,air,aj1, . . . ,ajs)

f 0ðlX i1
ðzÞ; . . . ;lX ir

ðzÞ; lX j1
ðzÞ; . . . ; lX js

ðzÞÞ ¼ inf
a2EþðzÞ

f 0ðai1; . . . ; air; aj1; . . . ; ajsÞ

¼ Cðz; LR0; Y Þ. ðivÞ

Thus from (iii) and (iv) we have

Cðz; LR; Y Þ ¼ Cðz; LR0; Y Þ.

Thus, we proved the Theorem with respect to L-rules. With respect to U-rules an analo-
gous proof holds. h
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Example 1 (part 4). With respect to the L-rule LR ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; f i

presented above, consider the following L-rule LR� ¼ hX "
speedy cars;X

#
expensive cars;

Y good cars; f �i, where

f �ðaspeedy cars; aexpensive carsÞ ¼

0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:33 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

1 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8>><
>>:

We have C(z,LR,Y) = C(z,LR*,Y) and thus L-rule LR and L-rule LR* are equivalent.
Moreover, according to Theorem 1, f*(aspeedy_cars,aexpensive_cars) is non-decreasing with
respect to aspeedy_cars and non-increasing with respect to aexpensive_cars, so it satisfies monoto-
nicity of membership in Ygood_cars with respect to membership in X "

speedy cars and X #
expensive cars.

Analogously, with respect to the U-rule UR ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; gi

presented above, consider the following U-rule UR� ¼ hX "
speedy cars;X

#
expensive cars;

Y good cars; g�i, where

g�ðaspeedy cars; aexpensive carsÞ ¼
0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:66 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

1 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

We have C(z,UR,Y) = C(z,UR*,Y) and thus U-rule UR and U-rule UR* are equivalent.
Moreover, according to Theorem 1, g*(aspeedy_cars,aexpensive_cars) is non-decreasing with re-
spect to aspeedy_cars and non-increasing with respect to aexpensive_cars, so it satisfies monoto-
nicity of membership in Ygood_cars with respect to membership in X "

speedy cars and
X #

expensive cars.

An L-rule can be regarded as a gradual rule [5]; indeed, it can be interpreted as

‘‘the more object x is Xi1, . . . ,Xir and the less object x is Xj1, . . . ,Xjs, the more it is Y’’.

Analogously, the U-rule can be interpreted as

‘‘the less object x is Xi1, . . . ,Xir and the more object x is Xj1, . . . ,Xjs, the less it is Y’’.

On the other hand, the syntax of L- and U-rules is more general than that of usual grad-
ual rules introduced in [5]. Indeed, while the usual gradual rules are statements of the type
‘‘if lX(x) P a, then lY(x) P a’’, the simplest L-rule states ‘‘if lX "

i
ðxÞ P ai, then lY(x) P b’’

or ‘‘if lX #
j
ðxÞ 6 aj, then lY(x) P b’’. Therefore, the L- and U-rules permit to consider dif-

ferent degrees of credibility in premises and conclusion, which is not the case of the grad-
ual rules.

Let us also remark that the syntax of L- and U-rules is similar to the syntax of ‘‘at least’’
and ‘‘at most’’ decision rules induced from dominance-based rough approximations of
preference-ordered decision classes [9–11].

Example 1 (part 5). In terms of gradual rules, the L-rule LR and U-rule UR has the
following structure:
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‘‘the more car z is X "
speedy cars and the less it is X #

expensive cars, the more it is Ygood_cars’’.

This is equivalent to

‘‘the less car z is X "
speedy cars and the more it is X #

expensive cars, the less it is Ygood_cars’’.

An example of a usual gradual rule is the following:

r � ‘‘if lspeedy carsðzÞ P n and N ½lexpensive carsðzÞ� P n; then lgood carsðzÞ P n’’;

where N(Æ) is a negation, i.e., a decreasing function N : [0, 1]! [0, 1] such that N(0) = 1 and
N(1) = 0, so that if a 2 [0,1] is the credibility of proposition p, then N(a) is the credibility
of �p (the negation of p). Let us observe that conditions ‘‘lspeedy_cars(z) P n’’ and
‘‘N[lexpensive_cars(z)] P n’’ and the conclusion ‘‘lgood_cars(z) P n’’ are all related to the
same threshold n. This is not the case of the gradual rules corresponding to above L-rule
LR and U-rule UR. For example, according to above L-rule LR and considering
N(a) = 1 � a,

r0 � ‘‘if lspeedy carsðzÞ P 0:8 and N ½lexpensive carsðzÞ� P 0:6; then lgood carsðzÞ P 0:33’’

(in fact N[lexpensive_cars(z)] = 1 � lexpensive_cars(z) P 0.6 implies lexpensive_cars(z) 6 0.4
and for lspeedy_cars(z) P 0.8 and lexpensive_cars(z) 6 0.4 we have C(z,LR,Ygood_cars) P 33).
Let us remark that in rule r 0 there are different thresholds for lspeedy_cars(z) (0.8),
N[lexpensive_cars(z)] (0.6) and lgood_cars(z) (0.33). Analogous arguments hold with respect
to above U-rule UR.
3. Fuzzy rough approximations

The functions f and g introduced in the previous section are related to specific defini-
tions of lower and upper approximations considered within rough set theory [18]. Let
us consider a universe of discourse U and r + s + 1 fuzzy sets, X "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js

and Y, defined on U by means of membership functions lXh
: U ! ½0; 1�, h 2

{i1, . . . , ir, j1, . . . , js} and lY :U! [0,1]. Suppose that we want to approximate knowledge
contained in Y using knowledge about X "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js, under the hypothesis that

X "
i1; . . . ;X

"
ir are positively related with Y and X #

j1; . . . ;X
#
js are negatively related with Y.

Then, the lower approximation of Y given the information on X "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js

is a fuzzy set AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ, whose membership function for each x 2 U,

denoted by l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�, is defined as follows:

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ inf

z2D"ðxÞ
flY ðzÞg; ð1Þ

where for each x 2 U, D"(x) is a non-empty set defined by

D"ðxÞ ¼
�
z 2 U : lXh

ðzÞ P lXh
ðxÞ for each Xh ¼ X "

i1; . . . ;X
"
ir;

and lXh
ðzÞ 6 lXh

ðxÞ for each Xh ¼ X #
j1; . . . ;X

#
js

�
.
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Lower approximation l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� can be interpreted as follows:

in the universe U the following implication holds:

‘‘If lXh
ðzÞ P lXh

ðxÞ for each Xh ¼ X "
i1; . . . ;X

"
ir, and lXh

ðzÞ 6 lXh
ðxÞ for each

Xh ¼ X #
j1; . . . ;X

#
js, then lY ðzÞ P l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�’’.

Interpretation of lower approximation (1) is based on a specific meaning of the concept
of ambiguity. According to knowledge about X "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js, the membership of

object x 2 U to fuzzy set Y is ambiguous if there exists an object z 2 U such that
lXh

ðzÞ P lXh
ðxÞ for each Xh ¼ X "

i1; . . . ;X
"
ir, and lXh

ðzÞ 6 lXh
ðxÞ for each Xh ¼ X #

j1; . . . ;
X #

js, however, lY(x) > lY(z).
Remark that the above meaning of ambiguity is concordant with the dominance prin-

ciple introduced in rough set theory in order to deal with preference-ordered data [9–11].
In this case, the dominance principle says that, having an object with some membership
degrees in X and Y, its modification consisting in an increase of its membership in X

should not decrease its membership in Y; otherwise, the original object and the modified
object are ambiguous.

Analogously, the upper approximation of Y given the information on X "
i1; . . . ;X

"
ir;

X #
j1; . . . ;X

#
js is a fuzzy set AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ, whose membership function

for each x 2 U, denoted by l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�, is defined as follows:

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ sup

z2D#ðxÞ
flY ðzÞg; ð2Þ

where for each x 2 U, D#(x) is a non-empty set defined by

D#ðxÞ ¼
�
z 2 U : lXh

ðzÞ 6 lXh
ðxÞ for each Xh ¼ X "

i1; . . . ;X
"
ir

and lXh
ðzÞ P lXh

ðxÞ for each Xh ¼ X #
j1; . . . ;X

#
js

�
.

Upper approximation l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� can be interpreted as follows:

in the universe U the following implication holds:

‘‘If lXh
ðzÞ 6 lXh

ðxÞ for each Xh ¼ X "
i1; . . . ;X

"
ir, and lXh

ðzÞ P lXh
ðxÞ for each

Xh ¼ X #
j1; . . . ;X

#
js, then lY ðzÞ 6 l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�’’.
Example 1 (part 6). Let us consider a universe of discourse U composed of all the cars z

such that (lspeedy_cars(z),lexpensive_cars(z)) 2 [0,1]2, i.e., of all possible and imaginable cars.
Suppose that for all z 2 U membership of z in Ygood_cars is given as

lgood carsðzÞ ¼ f ½lspeedy carsðzÞ; lexpensive carsðzÞ�;

where function f (which in our didactic example could represent customer preferences) is
defined as in above part 1 of this example. We want to approximate knowledge contained

in Ygood_cars using knowledge about X "
speedy cars and X #

expensive cars under the hypothesis that
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membership in set Ygood_cars of good cars is positively related with the membership in set

X "
speedy cars of speedy cars and negatively related with the membership in set X #

expensive cars of
expensive cars.

The lower approximation of Ygood_cars given the information on X "
speedy cars and

X #
expensive cars is a fuzzy set AppðX "

speedy cars;X
#
expensive cars; Y good carsÞ, whose membership

function for each x 2 U, denoted by l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�, is

defined as follows:

l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x� ¼ inf

z2D"ðxÞ
flgood carsðzÞg

where for each x 2 U, D"(x) is a non-empty set defined by

D"ðxÞ ¼ z 2 U : lspeedy carsðzÞ P lspeedy carsðxÞ and lexpensive carsðzÞ 6 lexpensive carsðxÞ
	 


.

Thus, for x 2 U such that lspeedy_cars(x) = 0.7 and lexpensive_cars(x) = 0.9, we have that

l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�

¼ inf
z2D"ðxÞ

flgood carsðzÞg ¼ inf lgood carsðzÞ : lspeedy carsðzÞ
	

P 0:7 and lexpensive carsðzÞ 6 0:9


¼ 0:33.

Let us observe that, in general, we have the following explicit formulation of lower

approximation:

l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�

¼
0 if � 1 6 lspeedy carsðxÞ � lexpensive carsðxÞ 6 �0:5;

0:33 if � 0:5 < lspeedy carsðxÞ � lexpensive carsðxÞ 6 0:5;

1 if 0:5 < lspeedy carsðxÞ � lexpensive carsðxÞ 6 1.

8><
>:

The upper approximation of Ygood_cars given the information on X "
speedy cars and

X #
expensive cars is a fuzzy set AppðX "

speedy cars;X
#
expensive cars; Y good carsÞ, whose membership func-

tion for each x 2 U, denoted by l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�, is defined as

follows:

l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x� ¼ sup

z2D#ðxÞ
flgood carsðzÞg;

where for each x 2 U, D#(x) is a non-empty set defined by

D#ðxÞ ¼ z 2 U : lspeedy carsðzÞ 6 lspeedy carsðxÞ and lexpensive carsðzÞ P lexpensive carsðxÞ
	 


.

Thus, for x 2 U such that lspeedy_cars(x) = 0.7 and lexpensive_cars(x) = 0.9, we have that

l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�

¼ sup
z2D#ðxÞ

flgood carsðzÞg ¼ inf lgood carsðzÞ : lspeedy carsðzÞ
	

6 0:7 and lexpensive carsðzÞ P 0:9


¼ 0:66.
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Let us observe that in general we have the following explicit formulation of upper

approximation:

l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�

¼
0 if � 1 6 lspeedy carsðxÞ � lexpensive carsðxÞ 6 �0:5;

0:66 if � 0:5 < lspeedy carsðxÞ � lexpensive carsðxÞ 6 0:5;

1 if 0:5 < lspeedy carsðxÞ � lexpensive carsðxÞ 6 1.

8><
>:
Theorem 2. Let us consider fuzzy sets X "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js and Y defined on U. The fol-

lowing properties are satisfied:

(1) for each x 2 U

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� 6 lY ðxÞ 6 l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�

(2) for any negation N(Æ), being a strictly decreasing function N:[0,1] ! [0,1] such that

N(1) = 0 and N(0) = 1, for each fuzzy set Xh ¼ X "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js and Y defined

on U, and for each x 2 U
(2.1) l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js;Y

cÞ;x� ¼Nðl½AppðX c"
i1 ; . . . ;X

c"
ir ;X

c#
j1 ; . . . ;X

c#
js ;Y Þ;x�Þ,

(2.2) l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js;Y

cÞ;x� ¼Nðl½AppðX c"
i1 ; . . . ;X

c"
ir ;X

c#
j1 ; . . . ;X

c#
js ;Y Þ;x�Þ,

(2.3) Nðl½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�Þ ¼ l½AppðX c"

i1 ; . . . ;X
c"
ir ;X

c#
j1 ; . . . ;X

c#
js ;Y

cÞ;x�,
(2.4) Nðl½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�Þ ¼ l½AppðX c"

i1 ; . . . ;X
c"
ir ;X

c#
j1 ; . . . ;X

c#
js ;Y

cÞ;x�,
where for a given fuzzy set W, the fuzzy set Wc is its complement defined by

lW cðxÞ ¼ NðlW ðxÞÞ.
(3) for each fX "

h1; . . . ;X
"
hvg � fX "

i1; . . . ;X
"
irg and fX #

k1; . . . ;X
#
kwg � fX #

j1; . . . ;X
#
jsg
(3.1) l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� P l½AppðX "

h1; . . . ;X
"
hv;X

#
k1; . . . ;X

#
kw; Y Þ; x�,

(3.2) l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� 6 l½AppðX "

h1; . . . ;X
"
hv;X

#
k1; . . . ;X

#
kw; Y Þ; x�.
(4) for each x,y 2 U, such that lXh
ðxÞ P lXh

ðyÞ for each Xh 2 fX "
i1; . . . ;X

"
irg, and

lXh
ðxÞ 6 lXh

ðyÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg, we have
(4.1) l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� P l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; y�,

(4.2) l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� P l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; y�.
Proof. Obviously, for all x 2 U, lXh
ðxÞ P lXh

ðxÞ for each Xh 2 fX "
i1; . . . ;X

"
irg, and

lXh
ðxÞ 6 lXh

ðxÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg and, therefore, x 2 D"(x). Thus we have

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ inf

z2D"ðxÞ
flY ðzÞg 6 lY ðxÞ. ðiÞ

Analogously, x 2 D#(x) and, therefore, we have that

lY ðxÞ 6 sup
z2D#ðxÞ

flY ðzÞg ¼ l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�. ðiiÞ
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From (i) and (ii) we obtain

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� 6 lY ðxÞ

6 l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�.

Thus, we proved (1).
According to the above definition of rough approximation, we have

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y

cÞ; x� ¼ inf
z2D"ðxÞ

fNðlyðzÞÞg ¼ Nð sup
z2D"ðxÞ

flyðzÞgÞ. ðiiiÞ

Now, to each x 2 U and to each Xh 2 fX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
jsg let us associate the nega-

tion of the membership functions lXh
ðxÞ, i.e., N ½lXh

ðxÞ�. Remembering that N(Æ) is strictly
decreasing we obtain

D"ðxÞ ¼
�
z 2 U : lXh

ðzÞ P lXh
ðxÞ for each Xh 2 fX "

i1; . . . ;X
"
irg; and lXh

ðzÞ

6 lXh
ðxÞ for each Xh 2 fX #

j1; . . . ;X
#
jsg
�

¼
�
z 2 U : NðlXh

ðzÞÞ 6 NðlXh
ðxÞÞ for each Xh 2 fX "

i1; . . . ;X
"
irg; and

NðlXh
ðzÞÞ P NðlXh

ðxÞÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg
�

¼ D#cðxÞ; ðivÞ

where the index ‘‘c’’ in D#c(x) denotes that we are considering the negation of the mem-
bership functions lXh

ðxÞ. On the basis of (iv) we can write

N sup
z2D"ðxÞ

flyðzÞg
 !

¼ N sup
z2D#cðxÞ

flyðzÞg
 !

¼ N l½AppðX c"
i1 ; . . . ;X

c"
ir ;X

c#
j1 ; . . . ;X

c#
js ; Y Þ; x�


 �
. ðvÞ

From (iii) and (v) we obtain

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y

cÞ; x� ¼ N l½AppðXc"
i1 ; . . . ;X

c"
ir ;X

c#
j1 ; . . . ;X

c#
js ; Y Þ; x�


 �
.

Thus we proved (2.1). (2.2)–(2.4) can be proved analogously.
Now we consider R ¼ fX "

h1; . . . ;X
"
hvg, S ¼ fX "

i1; . . . ;X
"
irg, T ¼ fX #

k1; . . . ;X
#
kwg and V ¼

fX #
j1; . . . ;X

#
jsg such that R � S and T � V.

We consider also

DðR[T Þ"ðxÞ
¼ z2U : lXh

ðzÞP lXh
ðxÞ for each Xh 2R; and lXh

ðzÞ6 lXh
ðxÞ for each Xh 2 T

	 

;

DðS[V Þ"ðxÞ
¼ z2U : lXh

ðzÞP lXh
ðxÞ for each Xh 2 S; and lXh

ðzÞ6lXh
ðxÞ for each Xh 2 V

	 

;

DðR[T Þ#ðxÞ
¼ z2U : lXh

ðzÞ6 lXh
ðxÞ for each Xh 2R; and lXh

ðzÞP lXh
ðxÞ for each Xh 2 T

	 

;
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and

DðS [ V Þ#ðxÞ ¼ z 2 U : lXh
ðzÞ 6 lXh

ðxÞ for each Xh 2 S; and
	
lXh

ðzÞP lXh
ðxÞ for each Xh 2 V



.

Since R � S and T � V, we have that

DðS [ V Þ"ðxÞ � DðR [ T Þ"ðxÞ ðviÞ
and

DðS [ V Þ#ðxÞ � DðR [ T Þ#ðxÞ. ðviiÞ
On the basis of (vi) we have that

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ inf

z2DðS[V Þ"ðxÞ
flyðzÞg P inf

z2DðR[T Þ"ðxÞ
flyðzÞg

¼ l½AppðX "
h1; . . . ;X

"
hv;X

#
k1; . . . ;X

#
kw; Y Þ; x�.

Thus we proved (3.1).
On the basis of (vii) we have that

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ sup

z2DðS[V Þ#ðxÞ
flyðzÞg 6 sup

z2DðR[T Þ#ðxÞ
flyðzÞg

¼ l½AppðX "
h1; . . . ;X

"
hv;X

#
k1; . . . ;X

#
kw; Y Þ; x�.

Thus we proved (3.2).
Now let us consider x,y 2 U such that lXh

ðxÞ P lXh
ðyÞ for each Xh 2 fX "

i1; . . . ;X
"
irg,

and lXh
ðxÞ 6 lXh

ðyÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg. We have that

D"ðxÞ � D"ðyÞ ðviiiÞ
and

D#ðxÞ � D#ðyÞ. ðixÞ
From (viii) we obtain

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ inf

z2D"ðxÞ
flY ðzÞg P inf

z2D"ðyÞ
flyðzÞg

¼ l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; y�.

Thus we proved (4.1).
From (ix) we obtain

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� ¼ sup

z2D#ðxÞ
flY ðzÞg P sup

z2D#ðyÞ
flyðzÞg

¼ l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; y�.

Thus we proved (4.2). h

Results (1), (2) and (3) of Theorem 2 can be read as fuzzy counterparts of results well-
known within the classical rough set theory. More precisely, (1) says that fuzzy set Y in-
cludes its lower approximation and is included in its upper approximation; (2) represents
complementarity properties of the proposed fuzzy rough approximations; (3) expresses the
fact that when we approximate Y, if we pass from a set of attributes to its subset, for any
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x 2 U, the membership to the lower approximation of Y does not increase while the mem-
bership to the upper approximation of Y does not decrease. Result (4) is more related with
the specific context in which we are defining rough approximation: it says that lower and
upper approximations respect monotonicity with respect to fuzzy membership functions
lXh

ðxÞ, and more precisely, that they are non-decreasing operators with respect to
lXh

ðxÞ for Xh 2 fX "
i1; . . . ;X

"
irg and non-increasing operators with respect to lXh

ðxÞ for
Xh 2 fX #

j1; . . . ;X
#
jsg.

Example 1 (part 7). Taking into account car x already introduced in part 6 of this
example (let us remember that lspeedy_cars(x) = 0.7 and lexpensive_cars(x) = 0.9), we can see
that, according to point (1) of Theorem 2,

l½AppðX "
speedy cars;X

#
expensive cars;Y good carsÞ;x�6 lgood carsðxÞ

6 l½AppðX "
speedy cars;X

#
expensive cars;Y good carsÞ;x�

(let us remember that l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x� ¼ 0:33, lgood_cars(x) =

0.33 and l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x� ¼ 0:66).

Let us suppose now that we want to approximate the membership in set
ðY good carsÞc ¼ Y bad cars such that for each x 2 U, we have that lbad_cars(x) =
N[ lgood_cars(x)], where N(a) = 1 � a (but the results we obtain in this part of the example
do not depend on the specific formulation of N). Let us also suppose that we approximate

the knowledge contained in Ybad_cars using knowledge about X "
speedy cars and X #

expensive cars
under the hypothesis that membership in set Ybad_cars of bad cars is positively related with
the membership in set X "

speedy cars of speedy cars and negatively related with the
membership in set X #

expensive cars of expensive cars. Since this hypothesis is not well founded
(‘‘the more a car is speedy and the less it is expensive, the worse it is’’ is a paradoxical
hypothesis), the final results are not interesting. In fact, we have that for each x 2 U

l½AppðX "
speedy cars;X

#
expensive cars; Y bad carsÞ; x� ¼ 0

and

l½AppðX "
speedy cars;X

#
expensive cars; Y bad carsÞ; x� ¼ 1.

Let us also try to approximate knowledge contained in Ygood_cars using knowledge about
ðX "

speedy carsÞ
c ¼ X "

slow cars and ðX #
expensive carsÞ

c ¼ X #
cheap cars (lslow carsðxÞ ¼ N ½lspeedy carsðxÞ�

and lexpensive_cars(x) = N[lcheap_cars(x)]) under the hypothesis that membership in set
Ygood_cars of good cars is positively related with the membership in set X "

slow cars of slow cars
and negatively related with the membership in set X #

cheap cars of cheap cars. Since this
hypothesis is also not well founded (‘‘the more a car is slow and the less it is cheap, the
better it is’’ is a paradoxical hypothesis) the final results are again not interesting. In fact,
we have that for each x 2 U

l½AppðX "
slow cars;X

#
cheap cars; Y good carsÞ; x� ¼ 0

and

l½AppðX "
slow cars;X

#
cheap cars; Y good carsÞ; x� ¼ 1.
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Let us remark that, according to points (2.1) and (2.2) of Theorem 2, we have that

l½AppðX "
speedy cars;X

#
expensive cars;Y bad carsÞ;x� ¼N l½AppðX "

slow cars;X
#
expensive cars;Y good carsÞ;x�


 �

and

l½AppðX "
speedy cars;X

#
expensive cars;Y bad carsÞ;x� ¼N l½AppðX "

slow cars;X
#
expensive cars;Y good carsÞ;x�


 �
.

Now, let us approximate knowledge contained in Ybad_cars using knowledge about X
"
slow cars

and X #
cheap cars, under the hypothesis that membership in set Ybad_cars of good cars is pos-

itively related with the membership in set X "
slow cars of slow cars and negatively related with

the membership in set X #
cheap cars of cheap cars. This hypothesis is meaningful, of course

(‘‘the more a car is slow and the less it is cheap, the worse it is’’ is somehow equivalent
to ‘‘the more a car is speedy and the less it is expensive, the better it is’’), and the final
results are quite interesting. In fact we have that for each x 2 U

l½AppðX "
slow cars;X

#
cheap cars;Y bad ;carsÞ;x� ¼

0 if �16 lslow carsðxÞ�lcheap carsðxÞ<�0:5;

0:34 if �0:56 lslow carsðxÞ�lcheap carsðxÞ< 0:5;

1 if 0:56 lslow carsðxÞ�lcheap carsðxÞ6 1

8>>><
>>>:

and

l½AppðX "
slow cars;X

#
cheap cars;Y bad ;carsÞ;x� ¼

0 if �16 lslow carsðxÞ�lcheap carsðxÞ<�0:5;

0:67 if �0:56 lslow carsðxÞ�lcheap carsðxÞ< 0:5;

1 if 0:56 lslow carsðxÞ�lcheap carsðxÞ6 1.

8>><
>>:

Remembering that lslow_cars(x) = 1 � lspeedy_cars(x) and lcheap_cars(x) = 1 � lexpensive_cars(x)
we can rewrite above membership functions of rough approximations as

l½AppðX "
slow cars;X

#
cheap cars;Y bad carsÞ;x� ¼

0 if 0:5< lspeedy cars�lexpensive cars 6 1;

0:34 if �0:5< lspeedy cars�lexpensive cars 6 0:5;

1 if �16 lspeedy cars�lexpensive cars 6�0:5

8><
>:

and

l½AppðX "
slow cars;X

#
cheap cars;Y bad carsÞ;x� ¼

0 if 0:5< lspeedy carsðxÞ�lexpensive carsðxÞ6 1;

0:67 if �0:5< lspeedy carsðxÞ�lexpensive carsðxÞ6 0:5;

1 if �16 lspeedy carsðxÞ�lexpensive carsðxÞ6�0:5.

8><
>:

Let us remark that, according to points (2.3) and (2.4) of Theorem 2, we have that

N l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�


 �
¼ l½AppðX "

slow cars;X
#
cheap cars; Y bad carsÞ; x�

and

N l½AppðX "
speedy cars;X

#
expensive cars;Y good carsÞ;x�


 �
¼ l½AppðX "

slow cars;X
#
cheap cars;Y bad carsÞ;x�.
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These two equalities can be interpreted as follows:

• the credibility that car x is certainly not a good car – Nðl½AppðX "
speedy cars;X

#
expensive cars;

Y good carsÞ; x�Þ – is equivalent to the credibility that x could be a bad car –
l½AppðX "

slow cars;X
#
expensive cars; Y bad carsÞ; x�;

• the credibility that it is false that car x could be a good car –
Nðl½App ðX "

speedy cars;X
#
expensive cars; Y good carsÞ; x�Þ – is equivalent to the credibility that x

is certainly a bad car – l½AppðX "
slow cars;X

#
expensive cars; Y bad carsÞ; x�.

Now, let us approximate knowledge contained in Ygood_cars using only knowledge about
X "

speedy cars under the hypothesis that X "
speedy cars is positively related with Ygood_cars. In

other words, we do not consider knowledge about X #
expensive cars. We obtain the following

rough approximations: for all x 2 U

l½AppðX "
speedy cars; Y good carsÞ; x� ¼ 0;

l½AppðX "
speedy cars; Y good carsÞ; x� ¼ 1.

It is clear that removing information about X #
expensive cars reduces drastically the accuracy

of the approximation; in fact, according to point (3) of Theorem 2, we have that for all
x 2 U

l½AppðX "
speedy cars; Y good carsÞ; x� 6 l½AppðX "

speedy cars;X
#
expensive cars; Y good carsÞ; x�

and

l½AppðX "
speedy cars; Y good carsÞ; x� P l½AppðX "

speedy cars;X
#
expensive cars; Y good carsÞ; x�.

Approximating knowledge contained in Ygood_cars using only knowledge about

X #
expensive cars, i.e., removing information about X "

speedy cars, we obtain analogous results.

Let us consider two cars, x and y, such that lspeedy_cars(x) = 0.2, lexpensive_cars(x) = 0.8,
lspeedy_cars(y) = 0.8 and lexpensive_cars(y) = 0.4. We have

0 ¼ l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�

6 l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; y� ¼ 0:33

and

0 ¼ l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; x�

6 l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; y� ¼ 0:66.

This result agrees with point (4) of Theorem 3 which states that increasing the value of
the condition attributes being positively related with the decision attributes
(lspeedy_cars(x) 6 lspeedy_cars(y)) and decreasing the value of the attributes being negatively
related with the decision attributes (lexpensive_cars(x) P lexpensive_cars(y)), the value of the
rough approximations increases or, at least, does not decrease (the membership in both
lower and upper approximations of y are greater, or at least not smaller, than the analo-
gous membership of x). More generally, from the explicit formulation of lower and upper
approximations presented in part 6 of the example, it is clear that the membership in rough
approximations is monotonic with respect to attributes positively and negatively related
with the decision attribute.
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4. Decision rule induction from fuzzy rough approximations

The lower and upper approximations defined above can serve to induce L-rules and U-
rules, respectively. Let us remark that inferring L-rules hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y ; f i and

U-rules hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi is equivalent to finding functions f(Æ) and g(Æ). Since

we want to induce decision rules representing the considered universe U, the following

conditions of correct representation must be satisfied by the L-rule hX "
i1; . . . ;X ir;X

#
j1; . . . ;

X #
js; Y ; f i and U-rule hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y ; gi searched for:

• correct representation with respect to the lower approximation: for all x 2 U and for
each a 2 [0,1]r+s,

½lXh
ðxÞ6 ah for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞP ah for each Xh 2fX #
j1; . . . ;X

#
jsg�

) f ðaÞP l½AppðX "
i1;s . . . ;X

"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�;

• correct representation with respect to the upper approximation: for all x 2 U and for
each a 2 [0,1]r+s,

½lXh
ðxÞP ah for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞ6 ah for each Xh 2fX #
j1; . . . ;X

#
jsg�

) gðaÞ6 l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�.
These conditions of correct representation are concordant with the idea that lower and
upper approximation are reference values for a cautious lower and upper evaluation of
membership in set Y on the basis of the membership in X "

i1; . . . ;X
"
ir;X

#
j1; . . . and X #

js.

In general, there are more than one L-rule hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i and more

than one U-rule hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi satisfying the correct representation condi-

tion. Thus, how to choose ‘‘the best L-rule and the best U-rule’’? To answer this question,
we propose the following conditions of prudence:

• given two L-rules LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i and LR0 ¼ hX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;

X #
js; Y ; f

0i we say that LR is more prudent than LR 0 if for all a 2 [0, 1]r+s, f (a) 6 f 0(a),

• given two U-rules UR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi and UR0 ¼ hX "

i1; . . . ;X
"
ir;

X #
j1; . . . ;X

#
js; Y ; g

0i we say that UR is more prudent than UR 0 if for all a 2 [0,1]r+s,
g(a) P g 0( a).

These conditions of prudence are concordant with the idea of presenting the most cau-
tious evaluation of membership in set Y on the base of the membership in X "

i1; . . . ;
X "

ir;X
#
j1; . . . ; and X #

js. In this sense, the ‘‘lower evaluation’’ of the membership in set Y
should be the smallest possible while the ‘‘upper evaluation’’ should be the greatest
possible.

Example 1 (part 8). Let us consider the following L-decision rule LR1 ¼ hX "
speedy cars;

X #
expensive cars; Y good cars; f1i, where f1 : [0, 1] · [0,1] ! [0,1] is defined as follows:
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f1ðaspeedy cars; aexpensive carsÞ ¼
0:16 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:50 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

1 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

Comparing rule LR1 with the lower approximation of Ygood_cars (more precisely, compar-
ing f1 with the explicit formulation of the lower approximation of Ygood_cars presented in
part 6) and taking into account that for all x 2 U and for each
(aspeedy_cars,aexpensive_cars) 2 [0,1]2

½lspeedy carsðxÞ 6 aspeedy cars and lexpensive carsðxÞ P aexpensive cars�
) f 1ðaspeedy cars; aexpensive carsÞ P l½AppðX "

speedy cars;X
#
expensive cars; Y good carsÞ; x�;

we can conclude that rule LR1 satisfies the property of correct representation with respect
to the lower approximation. This means that using rule LR1, we are considering the lower
approximation of Ygood_cars as a reference for the minimum value we can give to decision
attribute Ygood_cars on the basis of condition attributes X "

speedy cars and X #
expensive cars. Thus,

there is no case for which rule LR1 gives to attribute Ygood_cars an evaluation smaller than
the lower approximation of any x 2 U such that x has a smaller evaluation on the
attributes positively related with the decision attribute (in our example lspeedy_cars(x)
6 aspeedy_car) and a larger evaluation on the attributes negatively related with the decision
attribute (in our example lexpensive_cars(x) P aexpensive_cars).

Let us consider now the following U-decision rule UR1 ¼ hX "
speedy cars;

X #
expensive cars; Y good cars; g1i where g1 : [0,1] · [0, 1]! [0, 1]

g1ðaspeedy cars; aexpensive carsÞ ¼
0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:50 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

0:75 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

Comparing rule UR1 with the upper approximation of Ygood_cars (more precisely, compar-
ing g1 with the explicit formulation of the upper approximation of Ygood_cars presented in
part 6) and taking into acount that for all x 2 U and for each
(aspeedy_cars,aexpensive_cars) 2 [0,1]2

½lspeedy carsðxÞ P aspeedy cars and lexpensive carsðxÞ 6 aexpensive cars�
) g1ðaspeedy cars; aexpensive carsÞ P l½AppðX "

speedy cars;X
#
expensive cars; Y good carsÞ; x�;

we can conclude that rule UR1 satisfies the property of correct representation with respect
to the upper approximation. This means that using rule UR1, we are considering the upper
approximation of Ygood_cars as a reference for the maximum value we can give to decision
attribute Ygood_cars on the basis of condition attributes X "

speedy cars and X #
expensive cars. Thus,

there is no case for which rule UR1 gives to attribute Ygood_cars an evaluation greater than
the upper approximation of any x 2 U such that x has a greater evaluation on the attri-
butes positively related with the decision attribute (in our example lspeedy_cars(x) P
aspeedy_cars) and a smaller evaluation on the attributes negatively related with the decision
attribute (in our example lexpensive_cars(x) 6 aexpensive_cars).

Now, let us consider the L-decision rule LR2 ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; f2i,

where f2 : [0,1] · [0, 1]! [0, 1] is defined as follows:



202 S. Greco et al. / Internat. J. Approx. Reason. 41 (2006) 179–211
f2ðaspeedy cars; aexpensive carsÞ ¼
0:05 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:45 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

1 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

One can easily verify that also L-decision rule LR2 satisfies the property of correct repre-
sentation with respect to the lower approximation. Moreover, since for each
(aspeedy_cars,aexpensive_cars) 2 [0, 1]2

f2ðaspeedy cars; aexpensive carsÞ 6 f1ðaspeedy cars; aexpensive carsÞ;
we can conclude that rule LR2 is more prudent than rule LR1.

Let us also consider the U-decision rule UR2 ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; g2i

where g2 : [0,1] · [0,1] ! [0, 1] is defined as follows:

g2ðaspeedy cars; aexpensive carsÞ ¼
0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:55 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

0:90 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

One can easily verify that also U-decision rule UR2 satisfies the property of correct repre-
sentation with respect to the upper approximation. Moreover, since for each (aspeedy_cars,
aexpensive_cars) 2 [0, 1]2

g2ðaspeedy cars; aexpensive carsÞ P g1ðaspeedy cars; aexpensive carsÞ;
we can conclude that rule UR2 is more prudent than rule UR1.

Let CLR be the set of all the L-rules LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i satisfying the

condition of correct representation. We say that the L-rule LR# ¼ hX "
i1; . . . ;X

"
ir;

X #
j1; . . . ;X

#
js; Y ; f

#i is maximally prudent if LR# is more prudent than all other LR rules
in CLR.

Let also CUR be the set of all the U-rules UR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi satisfy-

ing the condition of correct representation. We say that the U-rule UR# ¼ hX "
i1; . . . ;X

"
ir;

X #
j1; . . . ;X

#
js; Y ; g

#i is maximally prudent if UR# is more prudent than all other UR rules
in CUR.

Theorem 3. If LR# ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f

#i is an L-rule maximally prudent and

UR# ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; gi is an U-rule maximally prudent, then: for each

a 2 [0,1]r+s,

f#ðaÞ¼ inf
LR2CLR

f ðaÞ¼
supx2A�ðaÞfl½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�g if A�ðaÞ 6¼ ;;

0 if A�ðaÞ¼ ;

(

and

g#ðaÞ¼ sup
UR2CUR

gðaÞ¼
infþx2AðaÞfl½AppðX

"
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�g if AþðaÞ 6¼ ;;

1 if AþðaÞ¼ ;.

8<
:
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where

A�ðaÞ ¼
�
x 2 U : lXh

ðxÞ 6 ah for each X h 2 fX "
i1; . . . ;X

"
irg; and lXh

ðxÞ

P ah for each X h 2 fX #
j1; . . . ;X

#
jsg
�
;

AþðaÞ ¼
�
x 2 U : lXh

ðxÞ P ah for each X h 2 fX "
i1; . . . ;X

"
irg; and lXh

ðxÞ

6 ah for each X h 2 fX #
j1; . . . ;X

#
jsg
�
.

Moreover, for any z 2 U

f#ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ ¼ l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; z�;

g#ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ ¼ l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; z�.
Proof. Let us start by proving that f#(a) satisfies the correct representation with respect to
the lower approximation. Let us consider a 2 [0, 1]r+s and x 2 U such that

lXh
ðxÞ6 ah for each Xh ¼X "

i1; . . . ;X
"
ir and lXh

ðxÞP ah for each Xh ¼X #
j1; . . . ;X

#
js. ðiÞ

For (i), x 2 A�(a) and, therefore, A�(a)5 ;. Consequently, for the definition of function
f#(Æ) we have that

f#ðaÞ ¼ sup
y2A�ðaÞ

fl½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; y�g. ðiiÞ

x 2 A�(a) implies also that

sup
y2A�ðaÞ

fl½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; y�g

P l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�. ðiiiÞ

From (ii) and (iii) we obtain

f#ðaÞ P l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�. ðivÞ

(iv) means that f#(Æ) satisfies the correct representation with respect to the lower
approximation.

Now, we prove that LR# ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f

#i is the L-rule maximally

prudent. For contradiction, let us suppose that there exists an L-rule LR ¼ hX "
i1; . . . ;X

"
ir;

X #
j1; . . . ;X

#
js; Y ; f i and a 2 [0,1]r+s such that

f ðaÞ < f#ðaÞ. ðviÞ

(vi) would mean that LR# is not more prudent than LR and therefore LR# would not be
the L-rule maximally prudent.

Let us observe that A�(a) 5 ;. Otherwise, for the definition of f#(a), A�(a) = ; would
imply f#(a) = 0 and since f(a) P 0, (vi) could not hold.
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Considering the definition of f #(Æ), (vi) gives

f ðaÞ < sup
x2A�ðaÞ

fl½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�g. ðviiÞ

(vii) means that there exists x 2 U such that lXh
ðxÞ 6 ah for each Xh 2 fX "

i1; . . . ;X
"
irg, and

lXh
ðxÞ P ah for each Xh 2 fX #

j1; . . . ;X
#
jsg and

f ðaÞ < l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x�. ðviiiÞ

(viii) says that L-rule LR ¼ hX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y ; f i does not satisfy correct repre-

sentation with respect to the lower approximation. This means that for any L-rule LR,
if LR is not more prudent than LR#, then LR is not in CLR. Thus we proved that LR#

is more prudent than all other LR rules in CLR. This completes the proof with respect
to LR#. With respect to UR# an analogous proof holds.

Now, we prove that for any z 2 U

f#ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ

¼ l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; z�. ðixÞ

We have that

A�ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ

¼
�
x 2 U : lXh

ðxÞ 6 lXh
ðzÞ for each Xh 2 fX "

i1; . . . ;X
"
irg; and

lXh
ðxÞ P lXh

ðzÞ for each Xh 2 fX #
j1; . . . ;X

#
jsg
�
.

Let us remark that for any z 2 U

z 2 A�ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ

and, therefore,

A�ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ 6¼ ;. ðxÞ

For point (4) of Theorem 2, we have that for all x,z 2 U such that lXh
ðxÞ 6 lXh

ðzÞ for each
Xh 2 fX "

i1; . . . ;X
"
irg and lXh

ðxÞ P lXh
ðzÞ for each Xh 2 fX #

j1; . . . ;X
#
jsg we have that

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js; Y Þ; x� 6 l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; z�. ðxiÞ

Since for any x 2 A�ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ we have lXh

ðxÞ 6 lXh
ðzÞ for

each Xh 2 fX "
i1; . . . ;X

"
irg and lXh

ðxÞ P lXh
ðzÞ for each Xh 2 fX #

j1; . . . ;X
#
jsg we can conclude

that (xi) holds for all x 2 A�ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ and therefore

l½AppðX "
i1; . . . ;X

"
ir;X

#
j1; . . . ;X

#
js;Y Þ;z� ¼ sup

x2A�ðlðzÞÞ
l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js;Y Þ;x�

n o
;

ðxiiÞ
where lðzÞ ¼ ½lX "

i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞ�.
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On the basis of the definition of f #(Æ) and for (x), (xii) gives (ix).
Analogously, we can prove that for any z 2 U

g#ðlX "
i1
ðzÞ; . . . ;lX "

ir
ðzÞ;lX #

j1
ðzÞ; . . . ;lX #

js
ðzÞÞ¼ l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js;Y Þ;z�. �

Theorem 3 is a characterization of the decision rules obtained through our fuzzy rough
approach: there is only one L-rule and one U-rule maximally prudent in the set of L-rules
and U-rules satisfying the property of correct representation and these are the L-rule LR#

and the U-rule UR#. Let us also remark the importance of lower and upper approxima-
tions obtained through our fuzzy rough approach for the definition of L-rule LR# and
U-rule UR#. The last part of Theorem 3 says that L-rule LR# and U-rule UR# permit
an exact reclassification of any object z 2 U. More precisely, function f# reassigns z its
lower approximation, i.e.,

f#ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ ¼ l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; z�;

while function g# reassigns z its upper approximation, i.e.,

g#ðlX "
i1
ðzÞ; . . . ; lX "

ir
ðzÞ; lX #

j1
ðzÞ; . . . ; lX #

js
ðzÞÞ ¼ l½AppðX "

i1; . . . ;X
"
ir;X

#
j1; . . . ;X

#
js; Y Þ; z�.
Example 1 (part 9). According to Theorem 3, the maximally prudent L-rule LR# is the rule
hX "

speedy cars;X
#
expensive cars; Y good cars; f#i, where for each (aspeedy_cars, aexpensive_cars) 2 [0,1]2

f#ðaspeedy cars;aexpensive carsÞ¼
supx2A�ðaspeedy cars ;aexpensive carsÞ l½AppðX "

speedy cars;X
"
expensive cars;ygood carsÞ;x�

n o
if A�ðaspeedy cars;aexpensive carsÞ 6¼ ;;

0 if A�ðaspeedy cars;aexpensive carsÞ¼ ;

8>><
>>:

with

A�ðaspeedy cars; aexpensive carsÞ ¼ fx 2 U : lspeedy carsðxÞ 6 aspeedy cars and lexpensive carsðxÞ
P aexpensive carsg

Writing f #(aspeedy_cars,aexpensive_cars) directly in terms of aspeedy_cars and aexpensive_cars we get

f#ðaspeedy cars; aexpensive carsÞ ¼
0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:33 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

1 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

Analogously, according to Theorem 3 the maximally prudent U-rule UR# is the rule
hX "

speedy cars;X
#
expensive cars; Y good cars; g#i, where for each (aspeedy_cars,aexpensive_cars) 2 [0, 1]2

g#ðaspeedy cars;aexpensive carsÞ¼
infx2Aþðaspeedy cars ;aexpensive carsÞfl½AppðX

"
speedy cars;X

#
expensive cars;Y good carsÞ;x�g

if Aþðaspeedy cars;aexpensive carsÞ 6¼ ;;
1 if Aþðaspeedy cars;aexpensive carsÞ¼ ;;

8><
>:

where

Aþðaspeedy cars; aexpensive carsÞ ¼ fx 2 U : lspeedy carsðxÞ P a1 and lexpensive carsðxÞ 6 a2g

Writing g#(aspeedy_cars,aexpensive_cars) directly in terms of aspeedy_cars and aexpensive_cars, we get
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g#ðaspeedy cars; aexpensive carsÞ ¼
0 if � 1 6 aspeedy cars � aexpensive cars 6 �0:5;

0:66 if � 0:5 < aspeedy cars � aexpensive cars 6 0:5;

1 if 0:5 < aspeedy cars � aexpensive cars 6 1.

8><
>:

Comparing f #(aspeedy_cars,aexpensive_cars) with the explicit formulation of the lower approx-
imation introduced in part 6 of this example, one can easily verify that for any z 2 U,

f#ðlspeedy carsðzÞ; lexpensive carsðzÞÞ ¼ l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; z�.

Analogously, comparing g#(aspeedy_cars,aexpensive_cars) with the explicit formulation of the
upper approximation introduced in part 6 of this example, one can easily verify that for
any z 2 U,

g#ðlspeedy carsðzÞ; lexpensive carsðzÞÞ ¼ l½AppðX "
speedy cars;X

#
expensive cars; Y good carsÞ; z�.

5. Fuzzy rough modus-ponens and fuzzy rough modus tollens

The L-rule and the U-rule can be used to evaluate objects, possibly not belonging to U,
by means of a proper generalization of modus ponens (MP) and modus tollens (MT) in
order to infer a conclusion from gradual rules. Classically, the MP has the following form:

if X ! Y

and X

is true

is true

then Y is true

MP has the following interpretation: assuming an implication X! Y (decision rule) and a
fact X (premise), we obtain another fact Y (conclusion). If we replace the classical decision
rule above by our L-rules and U-rules, then we obtain the following two generalized fuzzy-
rough MP:

if lXh
ðxÞP ah for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞ6 ah for each Xh 2fX #
j1; . . . ;X

#
jsg

! lY ðxÞP f ðaÞ ½a¼ðai1; . . . ;air;aj1; . . . ;ajsÞ�
and lXh

ðxÞP a0
h for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞ6 a0
h for each Xh 2fX #

j1; . . . ;X
#
jsg

then lY ðxÞP f ða0Þ ½a0 ¼ ða0
i1; . . . ;a

0
ir;a

0
j1; . . . ;a

0
jsÞ�;

9>>>>=
>>>>;

if lXh
ðxÞ6 ah for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞP ah for each Xh 2fX #
j1; . . . ;X

#
jsg

! lY ðxÞ6 gðaÞ ½a¼ðai1; . . . ;air;aj1; . . . ;ajsÞ�
and lXh

ðxÞ6 a0
h for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞP a0
h for each Xh 2fX #

j1; . . . ;X
#
jsg

then lY ðxÞ6 gða0Þ ½a0 ¼ ða0
i1; . . . ;a

0
ir;a

0
j1; . . . ;a

0
jsÞ�.

9>>>>>=
>>>>>;

Classically, the MT has the following form:

if X ! Y

and Y

is true

is false

then X is false
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MT has the following interpretation: assuming an implication X! Y (decision rule) and a
fact not Y (premise), we obtain another fact not X (conclusion). If we replace the classical
decision rule above by our L-rules and U-rules, then we obtain the following two general-
ized fuzzy-rough MT:

if lXh
ðxÞP ah for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞ6 ah for each Xh 2fX #
j1; . . . ;X

#
jsg

! lY ðxÞP f ðaÞ ½a¼ðai1; . . . ;air;aj1; . . . ;ajsÞ�
and lY ðxÞ< f ða0Þ ½a0 ¼ ða0

i1; . . . ;a
0
ir;a

0
j1; . . . ;a

0
jsÞ�

then lXh
ðxÞ< a0

h for at least one Xh 2fX "
i1; . . . ;X

"
irg; or

lXh
ðxÞ> a0

h for at least one Xh 2fX #
j1; . . . ;X

#
jsg.

9>>>>>>>=
>>>>>>>;

if lXh
ðxÞ6 ah for each Xh 2fX "

i1; . . . ;X
"
irg; and lXh

ðxÞP ah for each Xh 2fX #
j1; . . . ;X

#
jsg

! lY ðxÞ6 gðaÞ ½a¼ðai1; . . . ;air;aj1; . . . ;ajsÞ�

and lY ðxÞ> gða0Þ½a0 ¼ ða0
i1; . . . ;a

0
ir;a

0
j1; . . . ;a

0
jsÞ�

then lXh
ðxÞ> a0

h for at least one Xh 2fX "
i1; . . . ;X

"
irg; or

lXh
ðxÞ< a0

h for at least one Xh 2fX #
j1; . . . ;X

#
jsg.

9>>>>>>>>>=
>>>>>>>>>;
Example 1 (part 10). Let us consider L-rule LR# ¼ hX "
speedy cars;X

#
expensive cars;

Y good cars; f#i presented in part 9. Let us also consider car x such that lspeedy carsðxÞ ¼
0:7 and lexpensive_cars(x) = 0.3. Applying L-rule LR# to car x we obtain the following
generalized fuzzy-rough MP:

if lspeedy carsðxÞ P aspeedy cars and lexpensive carsðxÞ 6 aexpensive cars

! lgood carsðxÞ P f#ðaspeedy cars; aexpensive carsÞ
and lspeedy carsðxÞ P 0:7 and lexpensive carsðxÞ 6 0:3

then lgood carsðxÞ P f#ð0:7; 0:3Þ ¼ 0:33.

9>>>>=
>>>>;

Let us consider now U-rule UR# ¼ X "
speedy cars;X

#
expensive cars; Y good cars; g#i presented in part

9 too. Let us consider again car x. Applying U-rule UR# to car x we obtain the following
generalized fuzzy-rough MP:

if lspeedy carsðxÞ 6 aspeedy cars and lexpensive carsðxÞ P aexpensive cars

! lgood carsðxÞ 6 g#ðaspeedy cars; aexpensive carsÞ
and lspeedy carsðxÞ 6 0:7 and lexpensive carsðxÞ P 0:3

then lgood carsðxÞ 6 g#ð0:7; 0:3Þ ¼ 0:66.

9>>>>=
>>>>;

Now, let us also consider car y such that lgood_cars(y) = 0.3. Applying above L-rule
LR# ¼ hX "

speedy cars;X
#
expensive cars; Y good cars; f#i to car y we obtain the following generalized

fuzzy-rough MT:

if lspeedy carsðyÞ P aspeedy cars and lexpensive carsðyÞ 6 aexpensive cars

! lgood carsðyÞ P f#ðaspeedy cars; aexpensive carsÞ
and lgood carsðyÞ ¼ 0:3 < f#ð0:7; 0:4Þ ¼ 0:33

then lspeedy carsðyÞ < 0:7 or lexpensive carsðyÞ > 0:4.

9>>>>=
>>>>;
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Applying U-rule UR# ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; f#i to car z such that

lgood_cars(z) = 0.8. we obtain the following generalized fuzzy-rough MT:

if lspeedy carsðzÞ 6 aspeedy cars and lexpensive carsðzÞ P aexpensive cars

! lgood carsðzÞ 6 f#ðaspeedy cars; aexpensive carsÞ
and lgood carsðzÞ ¼ 0:8 > g#ð0:6; 0:2Þ ¼ 0:66

then lspeedy carsðzÞ > 0:6 or lexpensive carsðzÞ < 0:2.

9>>>>=
>>>>;
Example 2. In this example we show that all the concepts introduced until now can also
be applied to finite sets of objects. In a certain sense this is a more natural application of
the introduced concepts. An infinite universe of discourse as that one considered in Exam-
ple 1, is interesting for didactic reasons, but it is not appropriate for real life applications.
Therefore, let us suppose that, more realistically, U is a finite set of cars described in Table
1.

Let us approximate knowledge contained in Ygood_cars using knowledge about X
"
speedy cars

andX #
expensive cars under the hypothesis thatmembership inX "

speedy cars is positively related and

membership in X #
expensive cars is negatively related with membership in Ygood_cars. The results

of the approximations are in Table 2.
On the basis of the rough approximations presented in Table 2 we can induce the

maximally prudent L-rule with

LR#� ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; f#�i;

and the maximally prudent U-rule with

UR#�hX "
speedy cars;X

#
expensive cars; Y good cars; g#�i;
Table 1
Data table about cars

Car lspeedy_cars(Æ) lexpensive_cars(Æ) lgood_cars(Æ)

C1 0.9 0.8 0.4
C2 0.7 0.5 0.7
C3 0.5 0.3 0.5
C4 0.4 0.4 0.6
C5 0.8 0.2 0.8

Table 2
Rough approximations

Car l½AppðX "
speedy cars;

X #
expensive cars; Y good carsÞ; ��

l½AppðX "
speedy cars;

X #
expensive cars; Y good carsÞ; ��

C1 0.4 0.4
C2 0.7 0.7
C3 0.5 0.6
C4 0.5 0.6
C5 0.8 0.8
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where

f#�ðaspeedy cars;aexpensive carsÞ¼

0:4 if aspeedy cars P 0:9 and 0:5< aexpensive cars 6 0:8;

0:5 if 0:46 aspeedy cars < 0:7 and aexpensive cars 6 0:4;

0:7 if aspeedy cars P 0:7 and 0:2< aexpensive cars 6 0:5;

0:7 if 0:76 aspeedy cars < 0:8 and aexpensive cars 6 0:2;

0:8 if aspeedy cars P 0:8 and aexpensive cars 6 0:2;

0 otherwise

8>>>>>>>>><
>>>>>>>>>:

and

g#�ðaspeedy cars;aexpensive carsÞ¼

0:4 if aspeedy cars 6 0:9 and aexpensive cars P 0:8;

0:6 if aspeedy cars 6 0:5 and 0:36 aexpensive cars < 0:8;

0:7 if 0:5< aspeedy cars 6 0:7 and 0:56 aexpensive cars < 0:8;

0:8 if 0:5< aspeedy cars 6 0:8 and 0:26 aexpensive cars < 0:5;

0:8 if 0:7< aspeedy cars 6 0:8 and 0:56 aexpensive cars < 0:8;

0:8 if aspeedy cars 6 0:5 and 0:26 aexpensive cars < 0:3;

1 otherwise.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Let us also consider car w such that lspeedy_cars(w) = 0.6 and lexpensive_cars(w) = 0.3. Apply-
ing L-rule LR#* to car w, we obtain the following generalized fuzzy-rough MP:

if lspeedy carsðwÞ P aspeedy cars and lexpensive carsðwÞ 6 aexpensive cars

! lgood carsðwÞ P f#�ðaspeedy cars; aexpensive carsÞ
and lspeedy carsðwÞ P 0:6 and lexpensive carsðwÞ 6 0:3

then lgood carsðwÞ P f#�ð0:6; 0:3Þ ¼ 0:5.

9>>>>=
>>>>;

Let us consider in turn U-rule UR#� ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; g#�i and car w.

Applying U-rule UR#* to car w we obtain the following generalized fuzzy-rough MP:

if lspeedy carsðwÞ 6 aspeedy cars and lexpensive carsðwÞ P aexpensive cars

! lgood carsðwÞ 6 g#�ðaspeedy cars; aexpensive carsÞ
and lspeedy carsðwÞ 6 0:6 and lexpensive carsðwÞ P 0:3

then lgood carsðwÞ 6 g#�ð0:6; 0:3Þ ¼ 0:8.

9>>>>=
>>>>;

Now, let us also consider another car z such that lgood_cars(z) = 0.55. Applying above L-
rule LR#� ¼ hX "

speedy cars;X
#
expensive cars; Y good cars; f#�i to car z, we obtain the following gen-

eralized fuzzy-rough MT:

if lspeedy carsðzÞ P aspeedy cars and lexpensive carsðzÞ 6 aexpensive cars

! lgood carsðzÞ P f#�ðaspeedy cars; aexpensive carsÞ
and lgood carsðzÞ ¼ 0:55 < f#�ð0:8; 0:3Þ ¼ 0:7

then lspeedy carsðzÞ < 0:8 or lexpensive carsðzÞ > 0:3.

9>>>>=
>>>>;

Applying U-rule UR# ¼ hX "
speedy cars;X

#
expensive cars; Y good cars; g#�i to car z such that

lgood_cars(z) = 0.55, we obtain the following generalized fuzzy-rough MT:
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if lspeedy carsðzÞ 6 aspeedy cars and lexpensive carsðzÞ P aexpensive cars

! lgood carsðzÞ 6 g#�ðaspeedy cars; aexpensive carsÞ

and lgood carsðzÞ ¼ 0:55 > g#�ð0:80; 0:85Þ ¼ 0:4

then lspeedy carsðzÞ > 0:80 or lexpensive carsðzÞ < 0:85.

9>>>>>>>=
>>>>>>>;

6. Conclusions and further research directions

In this paper we presented a new fuzzy rough set approach. The main advantage of this
new approach is that it infers the most cautious conclusions from available imprecise infor-
mation, without using neither fuzzy connectives nor specific parameters, whose choice are
always subjective to some extent. Another advantage of our approach is that it uses only
ordinal properties of membership degrees. We noticed that our approach is related to:

• gradual rules, with respect to syntax and semantics of considered decision rules,
• dominance-based rough set approach, with respect to the idea of monotonic relation-
ship between credibility degrees of multiple premises and conclusion,

• Mill�s method of concomitant variation with respect to the philosophy of data mining
and knowledge discovery.

We think that this approach gives a new prospect for applications of fuzzy rough
approximations in real-world decision problems. More precisely, we envisage the follow-
ing two extensions of this methodology:

(1) Variable precision fuzzy rough approximation: in this paper we propose to calculate
the degree of membership to the fuzzy lower approximation on the basis of non-
ambiguous objects only, however, it might be useful in practical applications to
allow a limited number of ambiguous objects as well; in this way we may get less spe-
cific rules of the type: ‘‘the larger the market share of a company, the greater its
profit, in l% of the cases’’, where l is a parameter controlling the proportion of
ambiguous objects in the definition of the lower approximation.

(2) Imprecise input data represented by fuzzy numbers and missing values: the evalua-
tion of the objects in the universe U from which the rough approximations and the
gradual decision rules are induced may include imprecise values, represented by
fuzzy numbers, or missing values.
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