Applied Mathematics
Letters

Existence and Location of Solutions to the Dirichlet Problem for a Class of Nonlinear Elliptic Equations

B. Ricceri
Department of Mathematics, University of Catania
Viale A. Doria 6, 95125 Catania, Italy
ricceri@dipmat.unict.it
(Received March 2000; accepted April 2000)
Communicated by R. P. Agarwal

$$
\begin{aligned}
& \text { Abstract-In a bounded open set } \Omega \subset \mathbf{R}^{n} \text {, we consider a Dirichlet problem of the type } \\
& \qquad \begin{array}{l}
-\Delta u=g(x, u)+h(x, u)+\alpha(x)+\frac{1}{\mu}(f(x, u)+l(x, u)+\beta(x)), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega}=0,
\end{array}
\end{aligned}
$$

where, in particular, $f(x, \cdot), g(x, \cdot)$ have a subcritical growth, and $h(x, \cdot), l(x, \cdot)$ are nonincreasing, with a critical growth. It is our aim to show that, for explicitly determined $\Psi: W_{0}^{1,2}(\Omega)-\mathbf{R}$, and $\varphi:] r^{*},+\infty\left[\rightarrow\left[0,+\infty\left[\right.\right.\right.$, with $r^{*}=\inf _{W_{0}^{1,2}(\Omega)} \Psi$, for each $r>r^{*}$ and each $\mu>\varphi(r)$, the above problem has at least one weak solution that lies in $\Psi^{-1}(]-\infty, r[)$. A major novelty is just the precise determination of φ. (C) 2000 Elsevier Science Ltd. All rights reserved.

Keywords-Dirichlet problem, Weak solution, Location of solutions, Critical points.

Let $\Omega \subset \mathbf{R}^{n}(n \geq 3)$ be an open bounded set, with smooth boundary. The object of this paper is to establish the following result.

Theorem 1. Let $\alpha, \beta \in L^{2 n /(n+2)}(\Omega)$, and let $f, g, h, l: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ be four Carathéonlory functions satisfying, in $\Omega \times \mathbf{R}$, the following conditions:

$$
\begin{aligned}
& \max \{|f(x, \xi)|,|g(x, \xi)|\} \leq a\left(1+|\xi|^{q}\right), \\
& \int_{0}^{\xi}(g(x, t)+h(x, t)) d t \leq a\left(1+|\xi|^{s}\right), \\
& \max \{|h(x, \xi)|,|l(x, \xi)|\} \leq a\left(1+|\xi|^{(n+2) /(n-2)}\right) .
\end{aligned}
$$

where a, q, s are three positive constants, with $s<2$ and $q<(n+2) /(n-2)$. Finally, assume that, for each $x \in \Omega$, both the functions $h(x, \cdot)$ and $l(x, \cdot)$ are nonincreasing. For each $u \in$
$W_{0}^{1,2}(\Omega)$, put

$$
\Phi(u)=-\int_{\Omega}\left(\int_{0}^{u(x)}(f(x, \xi)+l(x, \xi)) d \xi+\beta(x) u(x)\right) d x
$$

and

$$
\Psi(u)=\int_{\Omega}|\nabla u(x)|^{2} d x-2 \int_{\Omega}\left(\int_{0}^{u(x)}(g(x, \xi)+h(x, \xi)) d \xi+\alpha(x) u(x)\right) d x
$$

Then, for each $r>\inf _{W_{0}^{1,2}(\Omega)} \Psi$ and each μ satisfying

$$
\mu>\inf _{u \in \Psi-1(\}-\infty, r[)} \frac{\Phi(u)-\inf _{\overline{(\Psi-1}(]-\infty, r[))_{u}} \Phi}{r-\Psi(u)},
$$

where $\overline{\left(\Psi^{-1}(]-\infty, r[)\right)} w$ is the closure of $\Psi^{-1}(]-\infty, r[)$ in the weak topology of $W_{0}^{1,2}(\Omega)$, the problem

$$
\begin{aligned}
-\Delta u & =g(x, u)+h(x, u)+\alpha(x)+\frac{1}{2 \mu}(f(x, u)+l(x, u)+\beta(x)), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

has at least one weak solution that lies in $\Psi^{-1}(]-\infty, r[)$.
As usual, if $\varphi: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ is a Carathéodory function satisfying, in $\Omega \times \mathbf{R}$, a condition of the type

$$
|\varphi(x, \xi)| \leq a\left(1+|\xi|^{(n+2) /(n-2)}\right)
$$

a weak solution of the problem

$$
\begin{aligned}
-\Delta u & =\varphi(x, u), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

is any $u \in W_{0}^{1,2}(\Omega)$ such that

$$
\int_{\Omega} \nabla u(x) \nabla v(x) d x=\int_{\Omega} \varphi(x, u(x)) v(x) d x
$$

for all $v \in W_{0}^{1,2}(\Omega)$.
The proof of Theorem 1 depends on a critical point theorem we have recently established in [1]. We now recall it for the reader's convenience.
Theorem A. (See [1, Theorem 2.5].) Let X be a reflexive real Banach space. and let Φ, Ψ : $X \rightarrow \mathbf{R}$ be two sequentially weakly lower semicontinuous and Gâteaux differentiable functionals. Assume also that Ψ is strongly continuous and satisfies $\lim _{\|x\| \rightarrow+\infty} \Psi(x)=+\infty$.

Then, for each $r>\inf _{X} \Psi$ and each μ satisfying

$$
\mu>\inf _{x \in \Psi^{-1}(]-\infty, r[)} \frac{\Phi(x)-\inf \frac{\left.\Psi^{-1}(\mathrm{~J}-\infty, r \mid)\right)_{w}}{} \Phi}{r-\Psi(x)},
$$

where $\overline{\left(\Psi^{-1}(]-\infty, r[)\right.}{ }_{w}$ is the closure of $\Psi^{-1}(]-\infty, r[)$ in the weak topology of X, the functional $\Phi+\mu \Psi$ has a critical point that lies in $\Psi^{-1}(]-\infty, r[)$.
Proof of Theorem 1. We apply Theorem A taking $X=W_{0}^{1.2}(\Omega)$, with the norm $\|u\|=$ $\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}$, and Φ, Ψ as defined in the statement of Theorem 1. Let us show that these functionals satisfy the required conditions. First of all, by a classical result (see, for instance,
[2, p. 248]), they are continuously Gâteaux differentiable and, for each $\mu \in \mathbf{R} \backslash\{0\}$, the critical points of $\Phi+\mu \Psi$ are precisely the weak solutions of the problem

$$
\begin{aligned}
-\Delta u & =g(x, u)+h(x, u)+\alpha(x)+\frac{1}{2 \mu}(f(x, u)+l(x, u)+\beta(x)), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0 .
\end{aligned}
$$

Now, observe that, thanks to the Rellich-Kondrachov Theorem, the functional

$$
u \rightarrow \int_{\Omega}\left(\int_{0}^{u(x)} f(x, \xi) d \xi+\beta(x) u(x)\right) d x
$$

is sequentially weakly continuous. Moreover, since $l(x, \cdot)$ is nondecreasing, the functional $u \rightarrow$ $-\int_{\Omega}\left(\int_{0}^{u(x)} l(x, \xi) d \xi\right) d x$ is convex, and so it is weakly lower semicontinuous. Consequently the functional Φ is sequentially weakly lower semicontinuous. In a similar way, it is seen that also Ψ is so. Next, let us show that Ψ is coercive. Indeed, by the Sobolev embedding theorem and the Poincaré inequality, for suitable positive constants c, c_{0}, we have

$$
\begin{aligned}
\Psi(u) & =\|u\|^{2}-2 \int_{\Omega}\left(\int_{0}^{u(x)}(g(x, \xi)+h(x, \xi)) d \xi\right) d x-2 \int_{\Omega} \alpha(x) u(x) d x \\
& \geq\|u\|^{2}-2 a \int_{\Omega}\left(|u(x)|^{s}+1\right) d x-c\|u\| \geq\|u\|^{2}-c_{0}\left(\|u\|^{s}+1\right)-c\|u\|
\end{aligned}
$$

for all $u \in X$. Consequently, $\lim _{\|u\| \rightarrow \infty} \Psi(u)=+\infty$, as claimed. Now, the conclusion follows directly from Theorem A.

Some remarks on Theorem 1 are now in order.
Remark 1. Observe that the condition

$$
\int_{0}^{\xi}(g(x, t)+h(x, t)) d t \leq a\left(1+|\xi|^{s}\right)
$$

can be replaced by

$$
\int_{0}^{\xi} g(x, t) d t \leq a\left(1+|\xi|^{s}\right) .
$$

This follows from the above proof taking into account that, by convexity, there is a constant $c>0$ such that

$$
-\int_{\Omega}\left(\int_{0}^{u(x)} h(x, \xi) d \xi\right) d x \geq-c(\|u\|+1)
$$

for all $u \in W_{0}^{1,2}(\Omega)$.
Remark 2. When $q<1$, for each $\mu>0$, the functional $\Phi+\mu \Psi$ is coercive, and so it admits a global minimum on $W_{0}^{1,2}(\Omega)$ which is a weak solution of our problem. Nevertheless, even in that case, Theorem 1 gives an additional information: the location of a weak solution, expressed by the fact that it lies in $\Psi^{-1}(]-\infty, r[)$. Consequently, if for r and μ as in the statement one also has

$$
\left.\inf _{u \in W_{0}^{1,2}(\Omega)}(\Phi(u)+\mu \Psi(u))<\inf _{u \in \Psi-1}(]-\infty, r \mid\right)(\Phi(u)+\mu \Psi(u)),
$$

the considered Dirichlet problem has at least two distinct weak solutions.
REMARK 3. Stressing again the information given about the location of a weak solution, observe that when $\inf _{W_{0}^{1,2}(\Omega)} \Psi<0$, if we choose $\left.r \in\right] \inf _{W_{0}^{1.2}(\Omega)} \Psi, 0[$ and μ as in the statement, we get a solution u of the problem such that $\Psi(u)<r<0$. Since $\Psi(0)=0$, we then have $u \neq 0$. In other
words, Theorem 1 can also be used to obtain the existence of a nontrivial solution in cases where zero is a solution.
Remark 4. When $q>1$, the functional $\Phi+\mu \Psi$ can be unbounded below for all $\mu>0$. This happens, for instance, if there exist $c, p>0$, with $p<q$, such that, for all $(x, \xi) \in \Omega \times[0,+\infty[$, one has

$$
\begin{aligned}
& f(x, \xi) \geq c\left(1+|\xi|^{q}\right) \\
& g(x, \xi) \geq-c\left(1+|\xi|^{p}\right),
\end{aligned}
$$

and

$$
h(x, \xi)=l(x, \xi)=0
$$

Among the consequences of Theorem 1, it is worth noticing the following.
Theorem 2. Let $\beta \in L^{2 n /(n+2)}(\Omega)$, and let $f, g, h: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ be three Carathéodory functions satisfying, in $\Omega \times \mathbf{R}$, the following conditions:

$$
\begin{aligned}
|f(x, \xi)| & \leq a|\xi|^{p}+b, \\
|g(x, \xi)| & \leq d\left(1+|\xi|^{q}\right) \\
\int_{0}^{\xi}(g(x, t)+h(x, t)) d t & \leq 0 \\
|h(x, \xi)| & \leq d\left(1+|\xi|^{(n+2) /(n-2)}\right),
\end{aligned}
$$

where $a, b, d>0$, and $1<p, q<(n+2) /(n-2)$. Finally, assume that, for each $x \in \Omega$, the function $h(x, \cdot)$ is nonincreasing. Put

$$
\begin{aligned}
c & =\left(\sup _{u \in W_{0}^{1,2}(\Omega) \backslash\{0\}} \frac{\left(\int_{\Omega}|u(x)|^{p+1} d x\right)^{1 /(p+1)}}{\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}}\right)^{p+1}, \\
c_{1} & =\sup _{u \in W_{0}^{1,2}(\Omega) \backslash\{0\}} \frac{\left|\int_{\Omega} u(x) d x\right|}{\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}},
\end{aligned}
$$

anc'

$$
c_{2}=\sup _{u \in W_{0}^{1,2}(\Omega) \backslash\{0\}} \frac{\left|\int_{\Omega} \beta(x) u(x) d x\right|}{\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}} .
$$

Then, for each μ satisfying

$$
\mu>p\left[\frac{a c}{p+1}\left(\frac{b c_{1}+c_{2}}{p-1}\right)^{p-1}\right]^{1 / p}
$$

the problem

$$
\begin{aligned}
-\Delta u & =g(x, u)+h(x, u)+\frac{1}{2 \mu}(f(x, u)+\beta(x)), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

has at least one weak solution u_{0} satisfying

$$
\int_{\Omega}\left|\nabla u_{0}(x)\right|^{2} d x-2 \int_{\Omega}\left(\int_{0}^{u_{0}(x)}(g(x, \xi)+h(x, \xi)) d \xi\right) d x<\left(\frac{(p+1)\left(b c_{1}+c_{2}\right)}{a c(p-1)}\right)^{2 / p}
$$

Proof. Let Φ, Ψ be defined as in the statement of Theorem 1, with $\alpha=l=0$. Since $\int_{0}^{\xi}(g(x, t)+$ $h(x, t)) d t \leq 0$, one has

$$
\inf _{u \in W_{0}^{1.2}(\Omega)} \Psi(u)=\Psi(0)=0
$$

as well as. for each $r>0$,

$$
\begin{aligned}
& \inf _{u \in \Psi^{-1}(\}-\infty, r[)} \frac{\Phi(u)-\inf _{\left.\overline{\left(\Psi^{-1}([-\infty, r[)]\right.}\right]_{u}} \Phi}{r-\Psi(u)} \leq \inf _{u \in \Psi^{-1}(\}-\infty, r[)} \frac{\Phi(u)-\inf _{\left.\left.\Psi^{-1}(\}-\infty . r\right]\right)} \Phi}{r-\Psi(u)} \\
& \leq \frac{\left.-\inf _{\Psi-1}(\mid-x . r]\right) \Phi}{r} \leq \frac{\sup _{f_{\Omega}|\nabla u(x)|^{2} d x \leq r}-\Phi(u)}{r} \\
& \leq \frac{\sup _{\int_{\Omega}|\nabla u(x)|^{2} d x \leq r}\left((a /(p+1)) \int_{\Omega}|u(x)|^{p+1} d x+b \int_{\Omega}|u(x)| d x+\int_{\Omega} \beta(x) u(x) d x\right)}{r} \\
& \leq \frac{(a c /(p+1)) r^{(p+1) / 2}+\left(b c_{1}+c_{2}\right) r^{1 / 2}}{r} .
\end{aligned}
$$

Now, an immediate calculation shows that

$$
\inf _{r>0} \frac{(a c /(p+1)) r^{(p+1) / 2}+\left(b c_{1}+c_{2}\right) r^{1 / 2}}{r}=p\left[\frac{a c}{p+1}\left(\frac{b c_{1}+c_{2}}{p-1}\right)^{p-1}\right]^{1 / r}
$$

and that the infimum is attained at the point

$$
\left(\frac{(p+1)\left(b c_{1}+c_{2}\right)}{a c(p-1)}\right)^{2 / p}
$$

Now, the conclusion follows directly from Theorem 1.
For instance, from Theorem 2 one can get propositions as follows.
Proposition 1. Let $n=3$, let λ_{1} be the first eigenvalue of the problem

$$
\begin{aligned}
-\Delta u & =\lambda u, \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

and set

$$
c=\left(\sup _{u \in W_{0}^{1.2}(\Omega) \backslash\{0\}} \frac{\left(\int_{\Omega}|u(x)|^{4} d x\right)^{1 / 4}}{\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}}\right)^{4} .
$$

Then, for each $\beta \in L^{2}(\Omega) \backslash\{0\}$ and each a satisfying

$$
0<a<\frac{2 \lambda_{1}}{27 c\|\beta\|_{L^{2}(\Omega)}^{2}}
$$

the (unique) weak solution u_{0} of the problem

$$
\begin{aligned}
-\Delta u & =-u^{5}+\beta(x), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

satisfies the inequality

$$
\int_{\Omega 2}\left|\nabla u_{0}(x)\right|^{2} d x+\frac{1}{3} \int_{\Omega}\left|u_{0}(x)\right|^{6} d x+\frac{a}{2} \int_{\Omega}\left|u_{0}(x)\right|^{4} d x<\left(\frac{2\|\beta\|_{L^{2}(\Omega)}}{a c \lambda_{1}^{1 / 2}}\right)^{2 / 3} .
$$

Proof. Apply Theorem 2 taking $p=3$, and

$$
\begin{aligned}
& f(x, \xi)=a \xi^{3} \\
& g(x, \xi)=-a \xi^{3} \\
& h(x, \xi)=-\xi^{5}
\end{aligned}
$$

To conclude, take into account that

$$
c_{2} \leq \frac{\|\beta\|_{L^{2}(\Omega)}}{\lambda_{1}^{1 / 2}}
$$

and that the choice of a gives

$$
\frac{1}{2}>3\left(\frac{a c c_{2}^{2}}{16}\right)^{1 / 3}
$$

The uniqueness of the weak solution of the considered problem follows from the fact the functional

$$
u \rightarrow \int_{\Omega}\left(\frac{1}{2}|\nabla u(x)|^{2}+\frac{1}{6}|u(x)|^{6}-\beta(x) u(x)\right) d x
$$

is coercive and strictly convex, and so it has a unique global minimum.
Finally, concerning the comparison of Theorem 1 with other known results, we believe that the closest one, in the spirit, is the following.

Theorem B. (See [3, Theorem 4].) Let $f: \Omega \times \mathbf{R} \rightarrow \mathbf{R}$ be a Carathéodory function satisfying, in $\Omega \times \mathbf{R}$, the condition

$$
|f(x, \xi)| \leq a\left(1+|\xi|^{q}\right)
$$

where $a>0$ and $0<q<(n+2) /(n-2)$.
Then, the following alternative holds: either the problem

$$
\begin{aligned}
-\Delta u & =f(x, u), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

has at least one weak solution, or for each $r>0$ there is $\lambda \in] 0,1[$ such that the problem

$$
\begin{aligned}
-\Delta u & =\lambda f(x, u), \quad \text { in } \Omega, \\
u_{\mid \partial \Omega} & =0
\end{aligned}
$$

has at least one weak solution u_{0} satisfying $\left\|u_{0}\right\|=r$.

REFERENCES

1. B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113, 401-410, (2000).
2. M. Struwe, Variational Methods, Springer, (1996).
3. M. Schechter, The mountain cliff theorem, In Differential Equations and Mathematical Physics, Math. Sci. Engineering, Volume 186, pp. 263-279, Academic Press, (1992).
