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Abstract—In a bounded open set Q@ C R", we consider a Dirichlet problem of the type
~Au = g(z,u) + h(z,u) + afz) + i(f(x,u) + iz, u) + 8(x)). in 2,
ugn =0,
where, in particular, f(z,),g(z,-) have a subcritical growth, and h(z,-),l(z,-) are nonincreasing,.

with a critical growth. It is our aim to show that, for explicitly determined ¥ : Hfol‘z(Q) — R, and

@ r*, oo [— [0,+00], with v* = inf 1,2 ¥, for each r > r* and each u > ¢(r), the above
Wy ()

problem has at least one weak solution that lies in ¥~1(] — co,7[). A major novelty is just the precise
determination of ¢. (© 2000 Elsevier Science Ltd. All rights reserved.
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Let @ C R™ (n > 3) be an open bounded set, with smooth boundary. The object of this paper
is to establish the following resulit.

THEOREM 1. Let o, € L™/ (®+2(Q), and let f,g,h,l : & x R — R be four Carathéorlory
functions satisfying, in Q x R, the following conditions:

max{| £(z,6)] lg(z, €)[} < a(l + [€]%).
£

/0 (9. 1) + h(z,t)) dt < a(1 + |¢]°).

max{|h(z, &), Uz, &)} < a (1+[¢]"+2/ =),

where a,q, s are three positive constants, with s < 2 and q¢ < (n+2)/(n — 2). Finally, assume
that, for each x € €, both the functions h(z,-) and l(z,-) are nonincreasing. For each u €
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W42(Q), put .
®(u) = —/ﬂ (/0 (f(w,ﬁ)+l(w,£))d§+ﬂ(m)U(I)> dz

and

u(x)
¥(w) = [ [Vu@)Pdz -2 < | o)+ b de + a(x)u(ac)) dr.
Q a \Jo
Then, for each r > ianOl,Q(Q) U and each p satisfying

O(u) — infrg= i)

inf H]=oor)),,

uE\II—%(]—-oo,T[) T - \Il(u)

w >

)

where (U=1(] — oo, 7)), is the closure of ¥~1(] — oo, 7[) in the weak topology of Wy'3(), the
problem

—-Au = g(x,u) + h(z,u) + a(z) + é%(f(x,u) + l(x,u) + 8(z)), in Q,

ulaQ =0

has at least one weak solution that lies in ¥~1(] — oo, 7).
As usual, if p : @ X R — R is a Carathéodory function satisfying, in 2 x R, a condition of the
type
(@, ) < a (14 fg ot/ =)

a weak solution of the problem

—Au = p(z,u), in £,
ulag =0

is any u € Wol’z(Q) such that
/ Vu(z)Vv(z)dz = / oz, u(x))v(r) de,
Q Q

for all v € Wy *().
The proof of Theorem 1 depends on a critical point theorem we have recently established in [1].
We now recall it for the reader’s convenience.

THEOREM A. (See [1, Theorem 2.5].) Let X be a reflexive real Banach space. and let ®, ¥ :
X — R be two sequentially weakly lower semicontinuous and Gateaux differentiable functionals.
Assume also that ¥ is strongly continuous and satisfies lim;j— 4~ ¥(z) = +oc.

Then, for each r > infx ¥ and each u satisfving

. (D(:E) — infmw @
w> inf ’
z€¥ 1 (]—o0,r() e ‘Il(a;)

where (¥ ~1(] — 0o, 7)), is the closure of ¥~1(] — 0o, r|) in the weak topology of X, the functional
® + p¥ has a critical point that lies in ¥~ (] — oo, 7[).

PrOOF OF THEOREM 1. We apply Theorem A taking X = WOLQ(Q), with the norm |lu} =
(Jo IVu(z)|2dz)'/?, and @, T as defined in the statement of Theorem 1. Let us show that these
functionals satisfy the required conditions. First of all, by a classical result (see, for instance,
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(2, p. 248]), they are continuously Géateaux differentiable and, for each u € R\ {0}, the critical
points of ® + p¥ are precisely the weak solutions of the problem

—Au = g(z,u) + h(z,u) + a(z) + 2—1u-(f(x, W+l u) + B(z),  nQ

Ujan = 0.

Now, observe that, thanks to the Rellich-Kondrachov Theorem, the functional

u(x)
uw— / ( / f(w,ﬁ)d£+ﬂ(x)U(w)> d
9] 0

is sequentially weakly continuous. Moreover, since I{z,-) is nondecreasing, the functional u —
— Jol fou(m) {{z,€)dE) dz is convex, and so it is weakly lower semicontinuous. Consequently. the
functional ® is sequentially weakly lower semicontinuous. In a similar way, it is seen that also ¥
is so. Next, let us show that ¥ is coercive. Indeed, by the Sobolev embedding theorem and the
Poincaré inequality, for suitable positive constants ¢, ¢g, we have

u(x)
U(u) = [Ju]® - 2 /Q ( / (g(z,s)m(x,s))de) dz 2 /Q o(z)u(x) dr
> Jlul]? - 2 /Q (@)l + 1) dz — clul > full® — collfull* +1) — cllu]

for all w € X. Consequently, limjyjj—,oc ¥(u) = 400, as claimed. Now, the conclusion follows
directly from Theorem A. ]

Some remarks on Theorem 1 are now in order.

REMARK 1. Observe that the condition

3
/0 (9(e. 1) + bz, 1)) dt < a(1 + |E[*)

can be replaced by -
£
| ot de <atu+ i),
0

This follows from the above proof taking into account that, by convexity, there is a constant
¢ > 0 such that
u(x)
-/ < [ hae dg) do > ~c(ull + 1)
o \Jo
for all u € W, %(Q).

REMARK 2. When ¢ < 1, for each y > 0, the functional ® + p¥ is coercive, and so it admits a
global minimum on WOI’Q(Q) which is a weak solution of our problem. Nevertheless, even in that
case, Theorem 1 gives an additional information: the location of a weak solution, expressed by
the fact that it lies in ¥~!(] — 0o, 7[). Consequently, if for r and p as in the statement one also
has

inf O(u) + pu¥(u)) < inf
uewgvz(m( (u) + p¥(u)) e 0

(B(u) + p¥(u)),

the considered Dirichlet problem has at least two distinct weak solutions.

REMARK 3. Stressing again the information given about the location of a weak solution, observe
that when infy,12 o, ¥ <0, if we choose r €] infya26, 0, 0] and p as in the statement, we get a

solution u of the problem such that ¥(u) < r < 0. Since ¥(0) = 0. we then have u # 0. In other
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words, Theorem 1 can also be used to obtain the existence of a nontrivial solution in cases where
zero is a solution.

REMARK 4. When ¢ > 1, the functional ® + py¥ can be unbounded below for all i > 0. This
happens, for instance, if there exist ¢,p > 0, with p < g, such that, for all (z,£) €  x [0, +00],
one has

flz,8) 2 e(1+[€]7),
g(wvf) Z _C(l + |£lp) ’
and
Mz, &) =1(z,£) =0
Among the consequences of Theorem 1, it is worth noticing the following.
THEOREM 2. Let 8 € L>Y(+2(Q), and let f,g,h : QxR — R be three Carathéodory functions

satisfying, in 2 x R, the following conditions:

1z, )] < algl” +b,
lg(z, )] < d(1+[£]7).
4
| tote.t) + byt e <o
0
bz, )] < d (1+ g2/,
where a,b,d > 0, and 1 < p,q < (n-+2)/(n—2). Finally, assume that, for each = € (, the
function h(zx,-) is nonincreasing. Put
(. IU(x)lp“d;r)l/(”“) ptl
c= su 2 72 )
weWE2(Q)\{0} (fQ [Vu(z)|? dm)

o — “ | [, u(z) d|

wEWL (N[0} (fQ [Vu(z)|? da:)

1/2°

anc

B [fQ B(x)u(z) d:r’
cp = su 7
weWg 2 (@N\ {0} (fq [Vu(z)|? dx)

S ac bey + ¢ Pl
p=p p+1 p—1

Then, for each p satisfying
1/p

the problew

—Au = g(z,u) + hiz,u) + i(f(m,u) + B(z)), in Q,

Ujpq = 0

has at least one weak solution ug satisfying

/Q Vuo(a)|? do — 2 /Q ( /0 ”M(g(x,fuh(m,s))dg) iz < (<P+1)<bq+c2>)2/p.

ac(p—1)
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ProoF. Let ®, ¥ be defined as in the statement of Theorem 1, with o = [ = 0. Since f(f(g(:lf. t)+
h{x,t))dt <0, one has
inf  W(u)=¥(0)=0
ueWg ()

as well as. for each r > 0,

- O(u) — infmw ¢ < o6 d(u) — nfy-1( ocr ®
1mn 1
wew—1(j=.r[) r— W(u) T ugv-1(j-no.r|) r— U(u)
- illfq,vl (J—oc.r]) P < SUP_[Q |Vu(z)|? de<r A(D(u)
- ‘]- - ,.
SU[)} |Vule l2(1r<r( a/(p+1))f(ziu(l‘)|p+l dl+b}Q | |dT+fQ )(il‘)
- r

(ac/(p+ 1))rPtD/2 4 (bey + cp)r!/?
r

Now, an immediate calculation shows that

; _ 1/!
(ac/(p + 1))rP+1/2 4 (bey + ¢g)rl/? ac [ber+ex\PH
f —p|— [ 222
r>0 r p+1\ p-1

and that the infimum is attained at the point

ac(p — 1)

Now, the conclusion follows directly from Theorem 1. ]

For instance, from Theorem 2 one can get propositions as follows.

PROPOSITION 1. Let n = 3, let A\ be the first eigenvalue of the problem

—-Au = du, in O

b

ujpq =0

and sct

, 1/4
B (fQ |u(z)*
c= sup 7
wewd 2@\ {0} (fo [Vu(z)|? dzc)
Then, for each 8 € L?(Q) \ {0} and each a satisfying

21
O<a< o—as—
97C||/6”L2 Q)
the (unique) weak solution ug of the problem

—Au = —u® + 3(z), in €2,

U|3Q =0

satisfies the inequality

| ' 208l |
|V?1,0(.l‘)[2(i1‘+§/ lug (z)|® d + = /Iu )|t da < <—“—_L1/ ) '
0 acA
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ProoOF. Apply Theorem 2 taking p = 3, and

f(.’L‘,{) = a§37
g(m?g) = _a£3,
h($,§) = "55-
To conclude, take into account that
181 L2(02)
S —7p—
A2

and that the choice of a gives
o\ 1/3
1 S 3 [ %
2 ( 16 > ‘

The uniqueness of the weak solution of the considered problem follows from the fact the functional

um [ (élw(x)i? + L) —a(:ou(m)) dz

is coercive and strictly convex, and so it has a unique global minimum. ]
Finally, concerning the comparison of Theorem 1 with other known results, we believe that the
closest one, in the spirit, is the following.

THEOREM B. (See [3, Theorem 4].) Let f : @ x R — R be a Carathéodory function satisfying,
in  x R, the condition
1f(z, )] < a(l+[¢]%),
where a >0 and 0 < ¢ < (n+2)/(n—2).
Then, the following alternative holds: either the problem

—-Au = f(z,u), in Q,
'U,|aQ =0

has at least one weak solution, or for each v > 0 there is A €]0,1] such that the problem

—Au = Af(z,u), in €2,
Yan =0

has at least one weak solution ug satisfying {lug| = r.
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