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Abstract: Silicon nanowires (SiNW) are quasi-one-dimensional structures in which the electrons are
spatially confined in two directions, and they are free to move along the axis of the wire. The spatial
confinement is governed by the Schrödinger–Poisson system, which must be coupled to the transport
in the free motion direction. For devices with the characteristic length of a few tens of nanometers,
the transport of the electrons along the axis of the wire can be considered semiclassical, and it
can be dealt with by the multi-sub-band Boltzmann transport equations (MBTE). By taking the
moments of the MBTE, a hydrodynamic model has been formulated, where explicit closure relations
for the fluxes and production terms (i.e., the moments on the collisional operator) are obtained by
means of the maximum entropy principle of extended thermodynamics, including the scattering of
electrons with phonons, impurities and surface roughness scattering. Numerical results are shown
for a SiNW transistor.
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1. Introduction

As integrating smaller-sized high performance electronic devices has become a key point over the
past few decades, innovative transistor designs have emerged. Chip-to-wafer density has to remain
high to be competitive, so size reduction is still a burning issue, and non-planar devices are part of these
brand new products. As a consequence, multi-gate field-effect transistors (FET) have been developed.
In such a new gate architecture, silicon nanowires (SiNWs) FETs seem to be one of the most attractive
choices. They enable avoiding problems due to the short channel effect, such as threshold voltage or
drain-induced barrier lowering. More precisely, surrounding-gate transistors where the gate encircles
the nanowire channel allow a better electrostatic gate control. SiNW transistors of diameters even
down to 3 nm have already been prepared, during these years, by various experimental groups [1,2].
Silicon nanowires are quasi-one-dimensional structures in which the electrons are spatially confined
in two directions, and they are free to move along the axis of the wire. The nonequilibrium Green’s
function (NEGF) formalism is a more advanced transport model for the simulation of SiNW, as it
takes into account the wave nature of electrons. The NEGF formalism necessitates rather intensive
computational efforts, since it requires detailed information on the propagation of the electron wave
packet injected in the device, and microscopic scattering mechanisms other than electron-phonon
interactions are difficult to incorporate because the corresponding self-energy terms are usually
nonlocal functions of the spatial coordinates.

However, the main quantum transport phenomena in SiNW at room temperature, the source-to-drain
tunneling and the conductance fluctuation induced by the quantum interference become significant
only when the channel lengths of the SiNW are smaller than 10 nm [3]. Therefore, for longer channels,
semiclassical formulations based on the 1D multi-sub-band Boltzmann transport equation (MBTE)
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can give reliable terminal characteristics when it is solved self-consistently with the 3D Poisson
and 2D Schrödinger equations in order to get the self-consistent potential, sub-band energies and
wavefunctions. In the literature, the numerical solution of the MBTE has been obtained using Monte
Carlo simulations [4–8] or deterministic solvers [6,9] at the expense of large computational effort and
statistical noise [10–12].

Another alternative is to obtain from the MBTE hydrodynamic models that are a good
engineering-oriented approach. This can be achieved by taking the moments of the MBTE and
by closing the obtained hierarchy of balance equations, as well as modeling the production terms
(i.e., the moments on the collisional operator). The closure problem can be tackled by means of the
maximum entropy principle (MEP) of extended thermodynamics [13–15], in which the distribution
function used to calculate the higher-order moments and the production terms is assumed to be that
which maximizes the entropy under the constraints of the given set of moments. We want to underline
that the distribution function obtained with the MEP is an approximation of the real one, but from
the other side, this distribution is useful to determine analytically without any fitting procedure
the higher-order moments and the production terms. In this way, a hydrodynamic model has been
obtained with a simplified band structure [16–19].

The goal of this paper is to set up a consistent hydrodynamic model compatible with the real
band structure dictated by atomistic simulation models. The plan of the paper is the following:
in Section 2, the electronic band structure is introduced; in Section 3, the quantum confinement is
discussed, and the main scattering mechanisms are treated in Section 4; in Section 5, we introduce
the kinetic and hydrodynamic models; in Section 6 closure relations are obtained using the MEP;
finally, in Section 7, the low-field mobility for a gate-all-around SiNW transistor has been evaluated,
and conclusions are drawn in Section 8.

2. Electronic Band Structure

In bulk silicon (Si), the lowest conduction band is formed by six equivalent valleys near the
X-point of the Brillouin zone. In this case, we have an indirect band-gap of 1.143 eV at ± 0.85·2 π/a0

in the ∆ direction with m∗t = 0.19, m∗l = 0.98 (units electron mass) and lattice parameter a0 = 5.43 Å [20].
In SiNW, the band structure is altered with respect to the bulk case depending on the cross-section
wire dimension, the atomic configuration and the crystal orientation. The atomistic modeling is
able to capture the nanowire band structure, including information about band coupling and mass
variations as functions of quantization [3,21–24]. Atomistic simulations are more appropriate for
nanowires of a few nanometer cross-sectional sides, due to the high variability of the involved
parameters. However, for SiNW with cross-sections greater than 3 nm, atomistic simulations using
the tight-binding (TB) approach show that the band structure is more stable [21]. For a rectangular
SiNW with longitudinal direction along the [100] crystal orientation, confined in the plane (y, z),
the 1D Brillouin zone is 1/2 as long as the length of the bulk Si Brillouin zone along the ∆ line
(i.e., π/a0). The six equivalent ∆ conduction valleys of the bulk Si are split into two groups because
of the quantum confinement (see Figure 1). The sub-bands related to the four unprimed valleys
∆4 ([0 ± 10] and [00 ± 1] orthogonal to the wire axis) are projected into a unique valley in the Γ
point of the one-dimensional Brillouin zone. Therefore, a SiNW is a direct band-gap semiconductor.
The sub-bands related to the primed valleys ∆2 ([±100] along the wire axis) are found at higher energies
and exhibit a minimum, located at kx = ±0.37π/a0 (see Figure 2), and the energy gap between the
∆4 and ∆2 bottom valley is 117 meV. From the energy dispersion relation E(k) obtained from the TB,
one can evaluate the effective mass m∗ in the parabolic spherical band approximation, i.e.,

1
m∗

=
1
h̄2

∂2E
∂k2 (1)

obtaining m∗∆2
= 0.94, m∗∆4

= 0.27. Non-parabolic correction to Equation (1) can be introduced [3,25,26],
but the fitting parameter depend heavily on the particular atomic configuration.
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Figure 1. Schematic view of a SiNW. Electron transport is assumed to be one-dimensional in
the x-direction.
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Figure 2. SiNW band structure.

3. Quantum Confinement

In an ideal quantum wire, the system is assumed sufficiently long along the axis of the wire
that translational invariance holds. For a quantum wire with linear expansion in the x-direction and
confined in the plane y-z, the normed wave function φ(x, y, z) can be written in the form:

φ(x, y, z) = χµ
l (y, z)

eikx x
√

Lx
(2)

where µ is the valley index (one ∆4 valley and two ∆2 valleys), l = 1, Nsub the sub-band index,
χµ

l (y, z) is the wave function of the l-th sub-band and µ-th valley and the term eikx x/
√

Lx describes
an independent plane wave in the x-direction confined to the normalization length, − Lx

2 ≤ x ≤ Lx
2 ,

with wave number kx. Let us consider a set of conduction electrons moving in the wire. Any one
electron will react to the confining potential U(y, z) and to the presence of all other free electrons
in the system. The simplest approximation that takes into account the presence of many electrons,
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called Hartree approximation, is to assume that the electrons as whole produce an average electrostatic
potential ϕ, and that a given electron feels the resulting total potential energy Vtot, i.e.,

Vtot(x, y, z) = U(y, z)− eϕ(x, y, z) (3)

where e is the absolute value of the electric charge. The spatial confinement in the (y, z) plane is
governed by the Schrödinger–Poisson system (SP):



H[ϕ] χµ
lx[ϕ] = εµlx[ϕ] χµ

lx[ϕ] (4a)

H[ϕ] = − h̄2

2m∗µ

(
∂2

∂y2 +
∂2

∂z2

)
+ Vtot(x, y, z) (4b)

∇ · [ε0εr∇ϕ(x, y, z)] = −e(ND − NA − n[ϕ]) (4c)

n[ϕ](x, y, z, t) = ∑
µ

∑
l
ρ
µ
l (x, t)|χµ

lx[ϕ](y, z, t)|2 (4d)

Equation (4a) is the Schrödinger equation in the effective mass approximation (EMA), which has
been proved adequate down to the 3-nm wire width [27]. Equation (4c) is the Poisson equation, where
ε0 is the absolute dielectric constant (8.854 × 10 −12 C/(V·m)); εr is the relative dielectric constant
(11.7 for Si, 3.9 for SiO2; and ND, NA are the assigned doping profiles (due to donors and acceptors).
The electron density n[φ] is given by Equation (4d), where ρµl (x, t) is the linear density in the µ-valley
and l-sub-band, which must be evaluated by the transport model (hydrodynamic/kinetic) in the
free movement direction. In the following, we shall assume that the cross-section Ω of the wire is
surrounded by an oxide, which gives rise to a deep potential barrier,

U(y, z) =

{
0 if (y,z) ∈ Ω

3.1 eV otherwise.
(5)

where 3.1 is the height of the energy barrier at the Si-SiO2 interface.
The SP system forms a coupled nonlinear Partial Differential Equations, which it is usually solved

by an iteration between Poisson and Schrödinger equations. Since a simple iteration by itself does
not converge, it is necessary to introduce an adaptive iteration scheme [28]. The solution gives the
electrostatic potential ϕ, as well as the eigenvalues (or sub-band energies) εµlx and the eigenvectors
(or electron envelope wavefunctions) χµ

lx as a function of the unconfined x direction.
Finally, the total electron energy in the µ-valley and l-sub-band is:

Eµ
l = εµlx + E(kx) + Ec (6a)

E(kx)[1 + αE(kx)] =
h̄2k2

x
2m∗µ

(6b)

where Ec is the bottom of the conduction band and α is the non-parabolicity factor (zero in the
parabolic case).

4. Carrier Scattering

Essential for the description of any particle transport with a semiclassical approach is the definition
of the transition rate w(k, k’), which represents the probability that an electron with wave number
vector b, due to a scattering, passes into a state with wave number vector k’ in the unit time. In the
SiNW case:

w(k, k’) = w(kx,µ, l, k′x,µ′, l′) = w(kx, k′x)
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representing the probability per unit time that the state φ becomes the state φ′:

φ(x, y, z) = χµ
l (y, z)

eikx x
√

Lx
→ φ′(x, y, z) = χµ′

l′ (y, z)
eik′x x
√

Lx
. (7)

The transitions rate fulfill Fermi’s golden rule, i.e.,

w(kx, k′x) =
2π
h̄
|
〈
φ′|Hp|φ

〉
|2δ
(
E(φ′)− E(φ)∓ h̄ωq

)
(8)

where Hp is the perturbation potential, E(φ) = Eµ
l is the total energy (6a) and it includes thus

the possibility of inter-sub-band scattering processes. The term ±h̄ωq enables that a particle of
wave vector q is involved in the scattering process (the plus stands for absorption and the minus
for emission).

4.1. Electron-Phonon Scattering

The perturbation potential Hp is caused by a deformation potential and writes [29]:

Hp = ∑
q

Kqe±iq·x

√
h̄

2ρVcω(q)

[
g(q) +

1
2
∓ 1

2

]
(9)

where ρ is the mass density, Vc the crystal volume, g(q) is the phonon distribution function involved in
the scattering, h̄ω(q) the phonon energy obtained from the phonon dispersion relation for Si (bulk in
our case) and:

First order deformation potential: Kq = |q|D1

Zero order deformation potential: Kq = Do

The scattering mechanism can drive one electron in the same valley (intra-valley) or in a different
valley (inter-valley). In bulk silicon, the intra-valley scattering involves only acoustic phonons
(two types, LA and TA), and they are evaluated using the first order approximation (with the Debye
approximation ωac(q) = vs|q| [20]). The inter-valley scattering is due to six types of phonons: three
of the g-type, when electrons scatter between valleys on the same axis, or of the f-type, when the
scattering occurs between valleys on perpendicular axes, and they are evaluated in the zero order
approximation (using the Einstein approximation with ω(q) =constant).

For SiNW, we shall consider bulk phonons and follow the bulk Si scattering selection rules.
According to bulk Si scattering selection rules, the elastic processes (due to elastic phonons, surface
roughness scattering, impurity scattering) are only intra-valley, whereas the inelastic ones (due to
inelastic phonons) are only inter-valley [24].

Since in SiNW, the six conduction valleys reduce to a three-valley model, the valley index µ
assumes the value ∆4 (for the unprimed valleys) and ∆2, ∆′2 (for the two primed valleys). However,
the two valleys ∆2, ∆′2 are symmetric with the same mass (see Figure 2), and then, they can be
considered equivalent. Hence, in the following, we shall deal with a two-valley model, the valley
A = ∆4 and the valley B = ∆2 = ∆′2. This equivalence in the valleys introduces the following
scattering rules

valley A


intra-valley, acoustic, elastic A↔ A

intra-valley, inelastic A↔ A ( f − scattering, Ziv = 2)

inter-valley, inelastic A→ B ( f − scattering, Ziv = 2)

(10)
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valley B


intra-valley, acoustic, elastic B↔ B

inter-valley, inelastic B→ A ( f − scattering, Ziv = 2)

intra-valley, inelastic B→ B (g− scattering, Z0 = 1)

(11)

The intra-valley elastic scattering rate (acoustic in the equipartioned case) is given by [30]:

wac(kx,µ, l, k′x,µ, l′) = sacGµµ
ll′ δ

(
Eµ

l′ − Eµ
l
)

, sac =
2πD2

ackBTL

ρh̄v2
s Lx

, µ = (A, B) (12)

For inter-valley scattering, supposing the phonons to be in thermal equilibrium, one obtains:

wiv(kx,µ, l, k′x,µ′, l′) = siv

[
giv +

1
2
∓ 1

2

]
Gµµ′

ll′ δ
(

Eµ′

l′ − Eµ
l − ∆µµ′ ∓ h̄ωiv

)
(13)

siv =
πD2

iv
ρωivLx

Ziv, ∆µµ′ = ε0
µ − ε0

µ′ , µ,µ′ = (A, B) (14)

where ε0
µ is the bottom of the energy valley, Ziv is the the number of possible final equivalent valleys

for the type of inter-valley scattering under consideration, giv is the Bose–Einstein distribution, i.e.,

giv =
1

exp
(

h̄ωiv
kBTL

)
− 1

(15)

where TL is the lattice temperature, and Gµµ′

ll′ is the form factor:

Gµµ′

ll′ =
∫
|χµ′

l′ (y, z)|2|χµ
l (y, z)|2dy dz. (16)

For intra-valley inelastic scattering, Equation (13) is still valid supposing to have µ = µ′, i.e.,

w0(kx,µ, l, k′x,µ, l′) = s0

[
g0 +

1
2
∓ 1

2

]
Gµµ

ll′ δ
(
Eµ

l′ − Eµ
l ∓ h̄ω0

)
, s0 =

πD2
0

ρω0Lx
Z0 (17)

All parameters are listed in Table 1.

Table 1. Silicon nanowire constants.

Symbol Physical Constant Value

me electron rest mass 9.1095 ×10−28 g
m∗A effective mass A = ∆4 valley [21] 0.27 me
m∗B effective mass B = ∆2 valley [21] 0.94 me
TL lattice temperature 300 K
ρ mass density 2.33 g/cm3

vs average sound speed 9 × 105 cm/s
Dac acoustic-phonon deformation potential 9 eV
Do intra-valley deformation potential g-scat [6] 1.1 × 109 eV/cm

h̄ωo intra-valley phonon energy [6] 63.3 meV
Zo number equivalent valleys [6] 1
Div inter-valley deformation potential f-scat [6] 2 × 108 eV/cm

h̄ωiv inter-valley phonon energy [6] 47.48 meV
Ziv number equivalent valleys [6] 2
ε0

A A valley energy minimum [21] 0
ε0

B B valley energy minimum [21] 117 meV
∆sr rms height [6] 0.3 nm
λsr correlation length [6] 1.5 nm
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4.2. Scattering with Impurities

This process is dominant at low temperatures. For an impurity located in the position xi = (xi, yi, zi),
with charge Zie, in the unscreened case, we have:

Hp =
Zie2

4πεsr
, r2 = (x− xi)

2 + (y− yi)
2 + (z− zi)

2 (18)

Then, one obtains [30]:

〈
φ′|Hp|φ

〉
=

Zie2

2πεsLx
e−iqxxi

∫
dz
∫

dy(χµ
l′ )

?χµ
l K0

(
|qx|
√
(y− yi)2 + (z− zi)2

)
(19)

where qx = kx − k′x, and K0(x) is the modified Bessel function.
Since this process is elastic and intra-valley, from Equation (8) for the i-th impurity, we obtain:

wimp(kx,µ, l, k′x,µ, l′) =
2π
h̄

(
Zie2

2πεsLx

)2

|Himp(kx − k′x, yi, zi)|2δ
(
Eµ

l′ − Eµ
l
)

(20)

where:

Himp(kx − k′x, yi, zi) =
∫

dz
∫

dy(χµ
l′ )

? χµ
l K0

(
|kx − k′x|

√
(y− yi)2 + (z− zi)2

)
. (21)

For the sake of simplicity, we shall assume that the impurities are distributed uniformly along the
wire, i.e., they are located in (x, 0, 0) ∀x ∈ [−Lx/2, Lx/2], and in the parabolic band approximation,
we get:

wimp(kx,µ, l, k′x,µ, l′) =
Z2e4nim∗µ
2πε2

s Lxh̄3 |Himp(kx − k′x, 0, 0)|2 H(a)√
a
[
δ(k′x −

√
a) + δ(k′x +

√
a)
]

(22)

a = k2
x +

2m∗µ
h̄2 (εµl − εµl′ ) (23)

where ni is the impurities number per unit length and H(a) the Heaviside function.

4.3. Surface Roughness Scattering

Surface roughness scattering (SRS) in silicon nanowires is the key scattering mechanism, as it
yields a very strong dependence of the low-field electron mobility on the silicon body diameter,
as well as on the effective field.

In the case of perfectly smooth Si-SiO2 interface, the electron wavefunctions and energy level of
each sub-band are obtained by solving the Equation (4a) in each x-cross section, with:

Vtot = Ve f f + U(y, z) , Ve f f = −eϕ(x, y, z) + Vim(y, z) + Vsc(y, z)

where U is the confining potential, Ve f f the effective potential composed byϕ the electrostatic potential
energy (satisfying the Poisson equation), Vim the image potential due to the mismatch of the dielectric
constants between Si and SiO2 and Vsc the exchange-correlation energy due to the electron-electron
interaction. However, practically, one must take into account the roughness surface.

Let us consider the wire interface along the x-z plane (whose normal is the y-direction).
Then, ∆(x, z) is a random function, which describes the deviation of the actual interface from the ideal
flat interface. This fluctuation modifies directly the barrier potential U, and it induces a change in the
other potentials. Therefore, the sub-band wave functions and energy bands depend explicitly on x.

For the 1D confinement (e.g., the quantum well), the first order complete theory can be found
in [31]. In the case of infinite confining potential, the main results is (see Figure 4 in [31]) that for
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silicon thickness greater than 8 nm, the SRS mobility converges to the SRS bulk mobility, and moreover,
the contribution of Vim, Vsc can be neglected. Following [4,30], we shall consider a simpler SRS
model, where:

• Vim, Vsc are neglected (which of course is true for silicon thickness greater than 8 nm);
• SRS accounts for deformations only for the potential Ve f f (not the wave functions);
• fluctuation depends only on x, i.e., ∆(x);
• the perturbation in the potential is only in the y-variable, i.e., Ve f f [x, y + ∆(x), z].

If we expand the potential in the y variable (with x, z constants), up to the first order in ∆(x),
we get:

Ve f f [x, y + ∆(x), z] = Ve f f [x, y + ∆(x), z] |∆=0 +
∂Ve f f (x, y, z)

∂y
∆(x) +O(2).

Then, finally, the SRS matrix element is:

Hsr = Ve f f [x, y + ∆(x), z]−Ve f f (x, y, z) = eEy(x, y, z)∆(x) (24)

Ey(x, y, z) =
1
e

∂Ve f f

∂y
= −∂ϕ

∂y
(25)

The SRS is an intra-valley scattering mechanism, and it depends on the electric field normal to the
surface. Since the cross-section of our wire is a rectangle, we have two contributions, one along the
y-direction and the other along the z-direction. Hence,

wsr(kx,µ, l, k′x,µ, l′) = wsr(kx,µ, l, k′x,µ, l′, Ey) + wsr(kx,µ, l, k′x,µ′, l′, Ez) (26)

Assuming exponentially correlated surface roughness, in the parabolic band approximation,
one obtains [4]:

wsr(kx,µ, l, k′x,µ, l′, Ey) =
4
√

2e2m∗µ
h̄3Lx

H(a)√
a
[Fµµ

ll′ (Ey)]
2 λsr∆2

sr
(kx − k′x)2λ2

sr + 2

[
δ
(
k′x −

√
a
)
+ δ

(
k′x +

√
a
)]

(27)

where ∆sr and λsr are the rms (root mean square) height and the correlation length of the fluctuations
at the Si-SiO2 interface, respectively (see Table 1),

a = k2
x +

2m∗µ
h̄

(εµl − εµl′ ) ,Fµµ
ll′ (Ey) =

∫
(χµ

l )
?(y, z)Ey(x, y, z)χµ

l′ (y, z) dydz (28)

and χµ
l , εµl are given by Equation (4a).

The contribution for wsr(k, k’, Ez) is similar to Equation (27), supposing to change Ey → Ez.

5. Kinetic and Hydrodynamic Model

In low-dimensional systems, we consider the lattice with perfectly smooth boundaries, free of
impurities or other random inhomogeneities. In such an ideal system the energy levels due to disorder
are small, so that crystal momentum conservation is approximately preserved. In this framework,
we can then construct a kinetic equation in which the distribution function evolves in time under the
streaming motion of external forces and spatial gradient, and the randomizing influence of nearly
point-like (in space-time) scattering events. For devices with a characteristic length of a few tens of
nanometers, the transport of electrons along the axis of the wire can be considered semiclassical within
a good approximation; otherwise, a quantum-kinetic approach must be used [32]. The distribution
function for the electrons in a quantum wire, with linear expansion in x-direction, depends on the
x-direction in real space, the wave vector in x-direction kx and the time t, i.e.,

fµl = fµl (x, kx, t)
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for the valley µ and sub-band l. The MBTE reads [30]:

∂ fµl
∂t

+ vµ(kx)
∂ fµl
∂x
− e

h̄
Ee f f (x, t,µ, l)

∂ fµl
∂kx

= ∑
η

∑
l′
Cη [ fµl , fµl′ ] + ∑

η
∑

µ′ 6=µ
∑
l′
Cη [ fµl , fµ

′

l′ ] (29)

where h̄ is the Planck constant divided by 2π, vµ the electron group velocity and Ee f f the effective field:

vµ =
1
h̄

∂Eµ
l

∂kx
=

h̄kx

m∗µ
, Ee f f (x, t,µ, l) =

1
e

∂εµl
∂x

. (30)

The RHS of Equation (29) is the collisional operator, which is split into two terms modeling
respectively intra-valley (with µ = µ′) and inter-valley transitions (with µ 6= µ′). In the low density
approximation (not degenerate case), the collisional term for the η-th scattering rate writes:

Cη [ fµl , fµ
′

l′ ] =
Lx

2π

∫
dk′x

{
wη(k′x,µ′, l′, kx,µ, l) fµ

′

l′ (x, k′x, t)− wη(kx,µ, l, k′x,µ′, l′) fµl (x, kx, t)
}

(31)

where η = {ac, sr, o} for the acoustic, SR and inelastic (intra-valley) scattering, η = iv for the
inter-valley scattering. Starting from the kinetic Equation (29), one can obtain balance equations
for macroscopic quantities associated to the flow. By multiplying (29) by a weight function ~ψ(kx) and
integrating over 2/(2π)dkx, one finds:

∂ ~Mµ
l

∂t
+

2
(2π)

∫
R
~ψvµ

∂ fµl
∂x

dkx −
2

(2π)
e
h̄

Ee f f
∫
R
~ψ

∂ fµl
∂kx

dkx =

2
(2π) ∑

η,l′

∫
R
~ψ(kx) Cη [ fµl , fµl′ ]dkx +

2
(2π) ∑

η,µ 6=µ′ ,l′

∫
R
~ψ(kx) Cη [ fµl , fµ

′

l′ ]dkx (32)

where:

~Mµ
l =

2
(2π)

∫
R
~ψ(kx) fµl (x, kx, t)dkx (33)

are the moments relative to the weight functions ~ψ. By integrating by parts and supposing that f tends
to zero sufficiently fast as k→ ∞, we obtain:

∂ ~Mµ
l

∂t
+

2
(2π)

∂

∂x

∫
R
~ψvµ fµl dkx +

2
(2π)

e
h̄

Ee f f
∫
R

fµl
∂~ψ(kx)

∂kx
dkx =

2
(2π) ∑

η,l′

∫
R
~ψ(kx) Cη [ fµl , fµl′ ]dkx +

2
(2π) ∑

η,µ 6=µ′ ,l′

∫
R
~ψ(kx) Cη [ fµl , fµ

′

l′ ]dkx (34)

We have chosen a four-moments model with:

~ψ = (1, vµ, E , Evµ) , vµ =
h̄kx

m∗µ
, E =

h̄2k2
x

2m∗µ
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and one obtains from Equation (34) the following balance equations in the unknown (ρµl , Vµ
l , Wµ

l , Sµ
l ):

∂ρµl
∂t

+
∂(ρµl Vµ

l )

∂x
= ρ

µ
l ∑

l′
Cρ(µ, l,µ, l′) + ρµl ∑

l′ ,µ′ 6=µ

Cρ(µ, l,µ′, l′) (35)

∂(ρµl Vµ
l )

∂t
+

2
m∗µ

∂(ρµl Wµ
l )

∂x
+

e
m∗µ

ρ
µ
l Ee f f = ρ

µ
l ∑

l′
CV(µ, l,µ, l′) + ρµl ∑

l′ ,µ′ 6=µ

CV(µ, l,µ′, l′) (36)

∂(ρµl Wµ
l )

∂t
+

∂(ρµl Sµ
l )

∂x
+ ρµl eEe f f Vµ

l = ρ
µ
l ∑

l′
CW(µ, l,µ, l′) + ρµl ∑

l′ ,µ′ 6=µ

CW(µ, l,µ′, l′) (37)

∂(ρµl Sµ
l )

∂t
+

∂(ρµl Fµ
l )

∂x
+ 3

e
m∗µ

ρ
µ
l Ee f f Wµ

l = ρ
µ
l ∑

l′
CS(µ, l,µ, l′) + ρµl ∑

l′ ,µ′ 6=µ

CS(µ, l,µ′, l′) (38)

where:

ρ
µ
l =

2
(2π)

∫
R

fµl (x, kx, t)dkx linear electron density,

Vµ
l =

2
(2π)

1
ρ
µ
l

∫
R

fµl (x, kx, t)vµdkx linear electron velocity,

Wµ
l =

2
(2π)

1
ρ
µ
l

∫
R

fµl (x, kx, t)Edkx linear electron energy,

Sµ
l =

2
(2π)

1
ρ
µ
l

∫
R

fµl (x, kx, t)Evµdkx linear electron energy flux,

Fµ
l =

2
(2π)

1
ρ
µ
l

∫
R

fµl (x, kx, t)v2
µEdkx flux of electron energy flux,

Cρ(µ, l,µ, l′) =
2

(2π)
1
ρ
µ
l

∫
R
Cac[ fµl , fµl′ ]dkx +

2
(2π)

1
ρ
µ
l

∫
R
Csr[ fµl , fµl′ ]dkx,

+
2

(2π)
1
ρ
µ
l

∫
R
Co[ fµl , fµl′ ]dkx.

Cρ(µ, l,µ′, l′) =
2

(2π)
1
ρ
µ
l

∫
R
Civ[ fµl , fµ

′

l′ ]dkx

The production terms for the velocity, energy and energy-flux CV(µ, l,µ′, l′), CW(µ, l,µ′, l′),
CS(µ, l,µ′, l′) are obtained from Cρ(µ, l,µ′, l′) by multiplying the integrand function for {vµ, E , Evµ},
respectively. From the above definitions, we can introduce the following average quantities:

ρ = ∑
µ,l
ρ
µ
l total linear density, (39)

V =
∑µ,l ρ

µ
l Vµ

l
ρ

mean velocity, (40)

W =
∑µ,l ρ

µ
l Wµ

l
ρ

mean energy, (41)

S =
∑µ,l ρ

µ
l Sµ

l
ρ

mean energy flux. (42)

6. Maximum Entropy Principle and Closure Relations

Since the number of unknowns exceeds the number of equations and the production terms are
unknown, closure relations must be introduced. The MEP gives a systematic way for obtaining
constitutive relations on the basis of information theory [13–15]. Such an approach has been used
in the simulation of 2D nanoscale structures [33,34] and for simulating the 3D electron transport in
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sub-micrometric devices, in the case in which the lattice is considered as a thermal bath with constant
temperature [35–38] or when the phonons are off-equilibrium [39–45]. We shall assume that the
electron gas is sufficiently dilute, then the entropy density can be taken as the classical limit of the
expression arising in the Fermi statistics, i.e.,

Se = ∑
µ,l
|χµ

l (y, z, t)|2Se(µ, l) , Se(µ, l) = − 2
(2π)

kB

∫
R
( fµl log fµl − fµl )dkx. (43)

According to the MEP, if a given number of moments MA(µ, l) is known, the distribution functions
f̂µl , which can be used to evaluate the unknown moments, correspond to the extremum of the total
entropy density under the constraint that they yield the known moments, i.e.,

2
(2π)

∫
R
ψA(kx) f̂µl dkx = MA(µ, l). (44)

If we introduce a set of Lagrange multipliers λA, the problem to maximize Se under the constraints (44)
is equivalent to maximizing:

S′ = Se −∑
µ,l

∑
A

λA|χµ
l (y, z, t)|2

[
2

(2π)

∫
R
ψA f̂µl dkx −MA(µ, l)

]
.

So doing, we shall obtain the following distribution function:

f̂µl = exp(−Σ) , Σ =
1
kB

∑
A
ψAλA (45)

ψA = (1, vµ,E ,Evµ) , λA =
(

λµ
l , kBλµ

l V, kBλµ
l W , kBλµ

l S

)
(46)

By inserting the previous Equations in (44), we obtain:

MA = MA(λA)

which defines implicitly the Lagrange multipliers. In order to invert the above relations, we shall
perform an expansion around the thermal equilibrium. In fact, at equilibrium, f̂ must reduce to the
Maxwellian. This means:

λµ
l V |E = λµ

l S|E = 0, λµ
l W |E =

1
kBTL

. (47)

Then, we consider the vanishing Lagrange multipliers of higher order with respect to equilibrium,
by introducing the smallness parameter τ:

λµ
l V = τλ̂µ

lV , λα
S = τλ̂µ

lS. (48)

The inversion problem has been tackled in [16] obtaining, up to the first order in τ (for simplicity,
we shall omit the indexes µ, l):

f̂ = exp
(
− λ

kB
− λWE

){
1− τ

(
λ̂Vv + λ̂SvE

)}
+O(τ2). (49)

The Lagrange multipliers are determined by imposing the constraint (4a):

λµ
l

kB
= − log

ρ
µ
l h̄π

1
2√

4m∗µWµ
l

, λµ
l W =

1
2Wµ

l
(50)



Entropy 2016, 18, 368 12 of 25

λ̂µ
lV = −

5m∗µ
4τWµ

l
Vµ

l +
m∗µ

4τ(Wµ
l )2 Sµ

l , λ̂µ
lS =

m∗µ
4τ(Wµ

l )2 Vµ
l −

m∗µ
12τ(Wµ

l )3 Sµ
l (51)

whereas the higher order flux is:

Fµ
l =

6(Wµ
l )2

m∗µ
. (52)

In order to close the system, we need functional relations for the production terms, which can be
evaluated by using the MEP distribution Function (49).

6.1. Closure for the Electron Number Production

Cρ(µ, l,µ, l′) = Cρ(µ, l,µ, l′)(ac) + Cρ(µ, l,µ, l′)(sr) + Cρ(µ, l,µ, l′)(o) (53)

where:

Cρ(µ, l,µ, l′)(ac) =
2

(2π)

∫
R
Cac[ f

µ
l , fµl′ ]dkx (54)

Cρ(µ, l,µ, l′)(sr) =
2

(2π)

∫
R
Csr[ f

µ
l , fµl′ ]dkx (55)

Cρ(µ, l,µ, l′)(o) =
2

(2π)

∫
R
Co[ f

µ
l , fµl′ ]dkx (56)

and:
Cρ(µ, l,µ′, l′)(iv) =

2
(2π)

∫
R
Civ[ f

µ
l , fµ

′

l′ ]dkx (57)

6.1.1. Evaluation of Cρ(µ, l,µ, l′)(o)

This is an intra-valley inelastic scattering mechanism, where the scattering rate is given by
Equation (17). After long calculations, one obtains:

ρ
µ
l Cρ(µ, l,µ, l′)(o) =

sop

π

Lx

2π

{
g0Gµµ

l′l A+µµ
1l′l (∆+µµ

ll′ ) + (g0 + 1)Gµµ
l′l A−µµ1l′l (∆−µµll′ ) −

g0Gµµ
ll′ A−µµ2ll′ (∆−µµll′ )− (g0 + 1)Gµµ

ll′ A+µµ
2ll′ (∆+µµ

ll′ )
}

(58)

A±µµ1l′l (∆) = ρ
µ
l′

√
2π

Wµ
l′

exp

(
∆

2Wµ
l′

) ∫ +∞

0
dkx

H
(

h̄2(kx)2

2m∗µ
−∆

)
√

h̄2k2
x

2m∗µ
−∆

exp

(
− h̄2k2

x
4m∗µWµ

l′

)
(59)

A±µµ2ll′ (∆) = ρ
µ
l

√
2π

Wµ
l

∫ +∞

0

H
(

h̄2(kx)2

2m∗µ
−∆±µµll′

)
√

h̄2(kx)2

2m∗µ
−∆±µµll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (60)

∆±µµll′ = εµl′ − εµl ± h̄ω0 (61)
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6.1.2. Evaluation of Cρ(µ, l,µ, l′)(ac)

This is an intra-valley elastic scattering mechanism, where the scattering rate is given by
Equation (12). We obtain:

ρ
µ
l Cρ(µ, l,µ, l′)(ac) =

sac

π

Lx

2π
{

Gµµ
l′l Jµµ1l′l −Gµµ

ll′ Jµµ2ll′
}

(62)

where:

Jµµ1l′l = ρ
µ
l′

√
2π

Wµ
l′

exp

(
∆µµ

ll′

2Wµ
l′

) ∫ +∞

0

H
(

h̄2(kx)2

2m∗µ
−∆µµ

ll′

)
√

h̄2k2
x

2m∗µ
−∆µµ

ll′

exp

(
− h̄2k2

x
4m∗µWµ

l′

)
dkx (63)

Jµµ2ll′ = ρ
µ
l

√
2π

Wµ
l

∫ +∞

0

H
(

h̄2(kx)2

2m∗µ
−∆µµ

ll′

)
√

h̄2(kx)2

2m∗µ
−∆µµ

ll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (64)

and:

∆µµ
ll′ = εµl′ − εµl . (65)

6.1.3. Evaluation of Cρ(µ, l,µ, l′)(sr)

This is an intra-valley elastic scattering mechanism, where the scattering rate is given by:
Equation (27). We get:

ρ
µ
l Cρ(µ, l,µ, l′)(sr) =

2e2λsr∆2
sr
√

m∗µ

h̄2
√

2πWµ
l

×

{
|Fµµ

l′l |
2ρ

µ
l′
[
I−s (∆µµ

ll′ , Wµ
l′ ) + I+s (∆µµ

ll′ , Wµ
l′ )
]
− |Fµµ

ll′ |
2ρ

µ
l
[
I−s (−∆µµ

ll′ , Wµ
l ) + I+s (−∆µµ

ll′ , Wµ
l )
]}

(66)

where:

I±s (∆µµ
ll′ , Wµ

l ) =
∫ +∞

0

H
(
E + ∆µµ′

ll′

)
2m∗µλ2

sr

h̄2

[√
E ±

√
E + ∆µµ

ll′

]2
+ 2

exp
(
− E

2m∗µWµ
l

)
√
E [E + ∆µµ

ll′ ]
dE (67)

6.1.4. Evaluation of Cρ(µ, l,µ, l′)(imp)

This is an intra-valley scattering, where the scattering mechanism is given by Equation (22).
We get:

ρ
µ
l Cρ(µ, l,µ, l′)(imp) = Ω0(W

µ
l , Wµ

l′ ) + Ω1(W
µ
l′ )V

µ
l′ −Ω2(W

µ
l )Vµ

l + Ω3(W
µ
l′ )S

µ
l′ −Ω4(W

µ
l )Sµ

l (68)
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where:

Ω0(W
µ
l , Wµ

l′ ) =
Z2e4nim∗µ
2π3ε2

s h̄3

{
A−µ1l′ + A+µ

1l′ − B−µ1l − B+µ
1l

}
(69)

Ω1(W
µ
l′ ) =

Z2e4nim∗µ
2π3ε2

s h̄3

{
−

5m∗µ
4Wµ

l′

(
A−µ2l′ + A+µ

2l′

)
+

m∗µ
4(Wµ

l′ )
2

(
A−µ3l′ + A+µ

3l′

)}
(70)

Ω2(W
µ
l ) =

Z2e4nim∗µ
2π3ε2

s h̄3

{
−

5m∗µ
4Wµ

l

(
B−µ2l + B+µ

2l

)
+

m∗µ
4(Wµ

l )2

(
B−µ3l + B+µ

3l

)}
(71)

Ω3(W
µ
l′ ) =

Z2e4nim∗µ
2π3ε2

s h̄3

{
m∗µ

4(Wµ
l′ )

2

(
A−µ2l′ + A+µ

2l′

)
−

m∗µ
12(Wµ

l′ )
3

(
A−µ3l′ + A+µ

3l′

)}
(72)

Ω4(W
µ
l ) =

Z2e4nim∗µ
2π3ε2

s h̄3

{
m∗µ

4(Wµ
l )2

(
B−µ2l + B+µ

2l

)
−

m∗µ
12(Wµ

l )3

(
B−µ3l + B+µ

3l

)}
(73)

A±µ1l′ =
ρ
µ
l′ h̄
√
π√

4m∗µWµ
l′

∫ +∞

−∞
exp

(
− h̄2k

′2
x

4m∗µWµ
l′

)
H(a′)√

a′

∣∣∣Himp(k′x ±
√

a′, 0, 0)
∣∣∣2 dk′x (74)

A±µ2l′ = −
ρ
µ
l′ h̄
√
π√

4m∗µWµ
l′

∫ +∞

−∞
exp

(
− h̄2k

′2
x

4m∗µWµ
l′

)
h̄k′z
m∗µ

H(a′)√
a′

∣∣∣Himp(k′x ±
√

a′, 0, 0)
∣∣∣2 dk′x (75)

A±µ3l′ = −
ρ
µ
l′ h̄
√
π√

4m∗µWµ
l′

∫ +∞

−∞
exp

(
− h̄2k

′2
x

4m∗µWµ
l′

)
h̄3k

′3
x

2(m∗µ)2
H(a′)√

a′

∣∣∣Himp(k′x ±
√

a′, 0, 0)
∣∣∣2 dk′x (76)

B±µ1l =
ρ
µ
l h̄
√
π√

4m∗µWµ
l

∫ +∞

−∞
exp

(
− h̄2k2

x
4m∗µWµ

l

)
H(a)√

a

∣∣Himp(kx ±
√

a, 0, 0)
∣∣2 dkx (77)

B±µ2l = −
ρ
µ
l h̄
√
π√

4m∗µWµ
l

∫ +∞

−∞
exp

(
− h̄2k2

x
4m∗µWµ

l

)
h̄kx

m∗µ

H(a)√
a

∣∣Himp(kx ±
√

a, 0, 0)
∣∣2 dkx (78)

B±µ3l = −
ρ
µ
l h̄
√
π√

4m∗µWµ
l

∫ +∞

−∞
exp

(
− h̄2k2

x
4m∗µWµ

l

)
h̄3k3

x
2(m∗µ)2

H(a)√
a

∣∣Himp(kx ±
√

a, 0, 0)
∣∣2 dkx (79)

Himp(kx ±
√

a, 0, 0) =
∫

dy dz(χµ′

l′ )
?χµ

l K0

(
|kx ∓

√
a|
√

y2 + z2
)

(80)

a = k2
x +

2m∗µ
h̄

(εµl − εµl′ ) , a′ = k
′2
x +

2m∗µ
h̄

(εµl′ − εµl ) (81)

6.1.5. Evaluation of Cρ(µ, l,µ′, l′)(iv)

This is an inter-valley inelastic scattering mechanism, where the scattering rate is given by
Equation (13). The result is similar to Equation (58) (obtained for an intra-valley, inelastic scattering)
with µ 6= µ′, but supposing to change Equation (61) into:

∆̃±µµ
′

ll′ = εµ
′

l′ − εµl ± h̄ωiv + ∆µ′µ (82)
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where ∆µµ′ is given in Equation (14). Then, we obtain:

ρ
µ
l Cρ(µ, l,µ′, l′)(iv) =

siv
π

Lx

2π

{
g0Gµ′µ

l′l A+µ′µ
1l′l (∆̃+µµ′

ll′ ) + (g0 + 1)Gµ′µ
l′l A−µ

′µ
1l′l (∆̃−µµ

′

ll′ )

−g0Gµµ′

ll′ A−µµ
′

2ll′ (∆̃+µµ′

ll′ )− (g0 + 1)Gµµ′

ll′ A+µµ′

2ll′ (∆̃+µµ′

ll′ )
}

(83)

A±µ
′µ

1l′l (∆) = ρ
µ′

l

√
2π

Wµ′

l′
exp

(
∆

2Wµ′

l′

) ∫ +∞

0
dkx

H
(

h̄2(kx)2

2m∗
µ′
−∆

)
√

h̄2k2
x

2m∗
µ′
−∆

exp

− h̄2k2
x

4m∗
µ′W

µ′

l′

 (84)

A±µµ
′

2ll′ (∆) = ρ
µ
l

√
2π

Wµ
l

∫ +∞

0

H
(

h̄2(kx)2

2m∗µ
−∆

)
√

h̄2(kx)2

2m∗µ
−∆

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (85)

6.2. Closure for the Production of Electron Energy

CW(µ, l,µ, l′) = CW(µ, l,µ, l′)(ac) + CW(µ, l,µ, l′)(sr) + CW(µ, l,µ, l′)(o) (86)

where:

CW(µ, l,µ, l′)(ac) =
2

(2π)

∫
R
ECac[ f

µ
l , fµl′ ]dkx (87)

CW(µ, l,µ, l′)(sr) =
2

(2π)

∫
R
ECsr[ f

µ
l , fµl′ ]dkx (88)

CW(µ, l,µ, l′)(o) =
2

(2π)

∫
R
ECo[ f

µ
l , fµl′ ]dkx (89)

and:
CW(µ, l,µ′, l′)(iv) =

2
(2π)

∫
R
ECiv[ f

µ
l , fµ

′

l′ ]dkx (90)

We observe that, with respect to Equations (54)–(57), there is an extra E , and by multiplying all of
the previous integrals by E , similar results hold.

6.3. Closure for the Production of Electron Crystal Momentum

CV(µ, l,µ, l′) = CV(µ, l,µ, l′)(ac) + CV(µ, l,µ, l′)(sr) + CV(µ, l,µ, l′)(o) (91)

where:

CV(µ, l,µ, l′)(ac) =
2

(2π)

∫
R

h̄kx

m∗µ
Cac[ f

µ
l , fµl′ ]dkx (92)

CV(µ, l,µ, l′)(sr) =
2

(2π)

∫
R

h̄kx

m∗µ
Csr[ f

µ
l , fµl′ ]dkx (93)

CV(µ, l,µ, l′)(o) =
2

(2π)

∫
R

h̄kx

m∗µ
Co[ f

µ
l , fµl′ ]dkx (94)

and:
CV(µ, l,µ′, l′)(iv) =

2
(2π)

∫
R

h̄kx

m∗µ
Civ[ f

µ
l , fµ

′

l′ ]dkx (95)
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6.3.1. Evaluation of CV(µ, l,µ, l′)(o)

For this production term, the scattering rate is given by Equation (17). We get:

ρ
µ
l CV(µ, l,µ, l′)(o) = Ωµµ

1ll′ (W
µ
l )ρµl Vµ

l + Ωµµ
2ll′ (W

µ
l )ρµl Sµ

l (96)

where:

Ωµµ
1ll′ (W

µ
l ) =

sop

π

Lx

2π
h̄Gµµ

ll′

[
− 5

4Wµ
l
(I−µµVll′ + I+µµ

Vll′ ) +
1

4(Wµ
l )2 (I−µµSll′ + I+µµ

Sll′ )

]
(97)

Ωµµ
2ll′ (W

µ
l ) =

sop

π

Lx

2π
h̄Gµµ

ll′

[
1

4(Wµ
l )2 (I−µµVll′ + I+µµ

Vll′ )−
1

12(Wµ
l )3 (I−µµSll′ + I+µµ

Sll′ )

]
(98)

I±µµVll′ =
h̄

m∗µ

√
2π

Wµ
l

(
g0 +

1
2
± 1

2

) ∫ +∞

0
k2

x

H
(

h̄2(kx)2

2m∗µ
−∆±µµll′

)
√

h̄2(kx)2

2m∗µ
−∆±µµll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (99)

I±µµSll′ =
h̄3

2m∗µ
2

√
2π

Wµ
l

(
g0 +

1
2
± 1

2

) ∫ +∞

0
k4

x

H
(

h̄2(kx)2

2m∗µ
−∆±µµll′

)
√

h̄2(kx)2

2m∗µ
−∆±µµll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (100)

6.3.2. Evaluation of CV(µ, l,µ, l′)(ac)

This is an intra-valley inelastic scattering rate, where the scattering rate is given by Equation (12).
We get:

ρ
µ
l CV(µ, l,µ, l′)(ac) = ∆µµ

1ll′ (W
µ
l )ρµl Vµ

l + ∆µµ
2ll′ (W

µ
l )ρµl Sµ

l (101)

where:

∆µµ
1ll′ (W

µ
l ) =

sac

π

h̄Lx

2πWµ
l

Gµµ
ll′

[
−5

4
Fµµ

ll′ +
1

4Wµ
l

Lµµ
ll′

]
(102)

∆µµ
2ll′ (W

µ
l ) =

sac

π

h̄Lx

2πWµ
l

Gµµ
ll′

[
1

4Wµ
l

Fµµ
ll′ −

1
12(Wµ

l )2 Lµµ
ll′

]
(103)

Fµµ
ll′ (Wµ

l ) =

√
2π

Wµ
l

∫ +∞

0

H
(

h̄2(kx)2

2m∗µ
−∆µµ

ll′

)
√

h̄2(kx)2

2m∗µ
−∆µµ

ll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
h̄k2

z
m∗µ

dkx (104)

Lµµ
ll′ (W

µ
l ) =

√
2π

Wµ
l

∫ +∞

0

H
(

h̄2(kx)2

2m∗µ
−∆µµ

ll′

)
√

h̄2(kx)2

2m∗µ
−∆µµ

ll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
h̄3k4

z

2m∗µ2 dkx (105)
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6.3.3. Evaluation of CV(µ, l,µ, l′)(sr)

This is an intra-valley elastic scattering mechanism, and from Equation (27), we get:

CV(µ, l,µ, l′)(sr) = −
√

m∗µe2λsr∆2
sr

6h̄2π(Wµ
l )5

|Fµµ
ll′ |

2 [ΩVVµ
l + ΩSSµ

l
]

−
√

m∗µe2λsr∆2
sr

6h̄2π(Wµ
l′ )

5
|Fµµ

l′l |
2 [Ω̃VVµ

l′ + Ω̃SSµ
l′
]

(106)

where:

ΩV =
15
8

√
π

(2Wµ
l )

7
2

[
I−S2

(∆µµ
ll′ , Wµ

l , j = 0) + I+S2
(∆µµ

ll′ , Wµ
l , j = 0)

]
−

3
4

√
π

(2Wµ
l )

5
2

[
I−S2

(∆µµ
ll′ , Wµ

l , j = 1) + I+S2
(∆µµ

ll′ , Wµ
l , j = 1)

]
(107)

Ω̃V =
15
8

√
π

(2Wµ
l′ )

7
2

[
− Ĩ−S2

(∆µµ
l′l , Wµ

l′ , j = 0) + Ĩ+S2
(∆µµ

l′l , Wµ
l′ , j = 0)

]
−

3
4

√
π

(2Wµ
l′ )

5
2

[
− Ĩ−S2

(∆µµ
l′l , Wµ

l′ , j = 1) + Ĩ+S2
(∆µµ

l′l , Wµ
l′ , j = 1)

]
(108)

ΩS = −3
4

√
π

(2Wµ
l )

5
2

[
I−S2

(∆µµ
ll′ , Wµ

l , j = 0) + I+S2
(∆µµ

ll′ , Wµ
l , j = 0)

]
+

√
π

2(2Wµ
l )

3
2

[
I−S2

(∆µµ
ll′ , Wµ

l , j = 1) + I+S2
(∆µµ

ll′ , Wµ
l , j = 1)

]
(109)

Ω̃S = −3
4

√
π

(2Wµ
l′ )

5
2

[
− Ĩ−S2

(∆µµ
l′l , Wµ

l′ , j = 0) + Ĩ+S2
(∆µµ

l′l , Wµ
l′ , j = 0)

]
+

√
π

2(2Wµ
l′ )

3
2

[
− Ĩ−S2

(∆µµ
l′l , Wµ

l′ , j = 1) + Ĩ+S2
(∆µµ

l′l , Wµ
l′ , j = 1)

]
(110)

I±S2
(∆µµ

ll′ , Wµ
l , j) =

∫ +∞

0

E j+ 1
2 H

(
E −∆µµ

ll′
)

2m∗µλ2
sr

h̄2

[√
E ±

√
E −∆µµ

ll′

]2
+ 2

exp
(
− E

2m∗µWµ
l

)
√
E −∆µµ

ll′

dE (111)

Ĩ±S2
(∆µµ

l′l , Wµ
l′ , j) =

∫ +∞

0

E j H
(
E −∆µµ

l′l

)
2m∗µλ2

sr

h̄2

[√
E ±

√
E −∆µµ

l′l

]2
+ 2

exp

(
− E

2m∗µWµ
l′

)
dE (112)

6.3.4. Evaluation of CV(µ, l,µ, l′)(imp)

This is an intra-valley scattering, and from Equation (22), we get:

ρ
µ
l CV(µ, l,µ, l′)(imp) = Ω̃0(W

µ
l , Wµ

l′ ) + Ω̃1(W
µ
l′ )V

µ
l′ − Ω̃2(W

µ
l )Vµ

l + Ω̃3(W
µ
l′ )S

µ
l′ − Ω̃4(W

µ
l )Sµ

l (113)
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where:

Ω̃0(W
µ
l , Wµ

l′ ) =
Z2e4ni

4π3ε2
s h̄2

{
−Ã−µ1l′ + Ã+µ

1l′ − B̃−µ1l − B̃+µ
1l

}
(114)

Ω̃1(W
µ
l′ ) =

Z2e4ni

4π3ε2
s h̄2

{
−

5m∗µ
4Wµ

l′

(
−Ã−µ2l′ + Ã+µ

2l′

)
+

m∗µ
4(Wµ

l′ )
2

(
−Ã−µ3l′ + Ã+µ

3l′

)}
(115)

Ω̃2(W
µ
l ) =

Z2e4ni

4π3ε2
s h̄2

{
−

5m∗µ
4Wµ

l

(
B̃−µ2l + B̃+µ

2l

)
+

m∗µ
4(Wµ

l )2

(
B̃−µ3l + B̃+µ

3l

)}
(116)

Ω̃3(W
µ
l′ ) =

Z2e4ni

4π3ε2
s h̄2

{
m∗µ

4(Wµ
l′ )

2

(
−Ã−µ2l′ + Ã+µ

2l′

)
−

m∗µ
12(Wµ

l′ )
3

(
−Ã−µ3l′ + Ã+µ

3l′

)}
(117)

Ω̃4(W
µ
l ) =

Z2e4ni

4π3ε2
s h̄2

{
m∗µ

4(Wµ
l )2

(
B̃−µ2l + B̃+µ

2l

)
−

m∗µ
12(Wµ

l )3

(
B̃−µ3l + B̃+µ

3l

)}
(118)

Ã±µ1l′ =
ρ
µ
l′ h̄
√
π√

4m∗µWµ
l′

∫ +∞

−∞
exp

(
− h̄2k

′2
x

4m∗µWµ
l′

)
H(a′)

∣∣∣Himp(k′x ±
√

a′, 0, 0)
∣∣∣2 dk′x (119)

Ã±µ2l′ = −
ρ
µ
l′ h̄
√
π√

4m∗µWµ
l′

∫ +∞

−∞

h̄k′z
m∗µ

exp

(
− h̄2k

′2
x

4m∗µWµ
l′

)
H(a′)

∣∣∣Himp(k′x ±
√

a′, 0, 0)
∣∣∣2 dk′x (120)

Ã±µ3l′ = −
ρ
µ
l′ h̄
√
π√

4m∗µWµ
l′

∫ +∞

−∞

h̄3k
′3
x

2(m∗µ)2 exp

(
− h̄2k

′2
x

4m∗µWµ
l′

)
H(a′)

∣∣∣Himp(k′x ±
√

a′, 0, 0)
∣∣∣2 dk′x (121)

B̃±µ1l =
ρ
µ
l h̄
√
π√

4m∗µWµ
l

∫ +∞

−∞
kx exp

(
− h̄2k2

x
4m∗µWµ

l

)
H(a)√

a

∣∣∣Himp(kx ±
√

a, 0, 0)
∣∣∣2 dkx (122)

B̃±µ2l = −
ρ
µ
l h̄
√
π√

4m∗µWµ
l

∫ +∞

−∞

h̄k2
x

m∗µ
exp

(
− h̄2k2

x
4m∗µWµ

l

)
H(a)√

a

∣∣∣Himp(kx ±
√

a, 0, 0)
∣∣∣2 dkx (123)

B̃±µ3l = −
ρ
µ
l h̄
√
π√

4m∗µWµ
l

∫ +∞

−∞

h̄3k4
x

2(m∗µ)2 exp

(
− h̄2k2

x
4m∗µWµ

l

)
H(a)√

a

∣∣∣Himp(kx ±
√

a, 0, 0)
∣∣∣2 dkx (124)

Himp(kx ±
√

a, 0, 0) =
∫

dy dz(χµ′

l′ )
?χµ

l K0

(
|kx ∓

√
a|
√

y2 + z2
)

(125)

a = k2
x +

2m∗µ
h̄

(εµl − εµl′ ) , a′ = k
′2
x +

2m∗µ
h̄

(εµl′ − εµl ) (126)

6.3.5. Evaluation of CV(µ, l,µ′, l′)(iv)

This term is similar to Equation (96) (obtained for an intra-valley inelastic scattering), but with
µ 6= µ′ and supposing to change Equation (61) into:

∆̃±µµ′

ll′ = εµ
′

l′ − εµl ± h̄ωiv + ∆µ′µ (127)

where ∆µµ′ is given in Equation (14), we obtain:

ρ
µ
l CV(µ, l,µ′, l′)(iv) = Ωµµ′

1ll′ (W
µ
l )ρµl Vµ

l + Ωµµ′

2ll′ (W
µ
l )ρµl Sµ

l (128)
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where:

Ωµµ′

1ll′ (W
µ
l ) =

sop

π

Lx

2π
h̄Gµµ′

ll′

[
− 5

4Wµ
l
(I−µµ′

Vll′ + I+µµ′

Vll′ ) +
1

4(Wµ
l )2 (I−µµ′

Sll′ + I+µµ′

Sll′ )

]
(129)

Ωµµ′

2ll′ (W
µ
l ) =

sop

π

Lx

2π
h̄Gµµ′

ll′

[
1

4(Wµ
l )2 (I−µµ′

Vll′ + I+µµ′

Vll′ )− 1
12(Wµ

l )3 (I−µµ′

Sll′ + I+µµ′

Sll′ )

]
(130)

I±µµ′

Vll′ =
h̄

m∗µ

√
2π

Wµ
l

(
g0 +

1
2
± 1

2

) ∫ +∞

0
k2

x

H
(

h̄2(kx)2

2m∗µ
− ∆±µµ′

ll′

)
√

h̄2(kx)2

2m∗µ
− ∆±µµ′

ll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (131)

I±µµ′

Sll′ =
h̄3

2m∗µ
2

√
2π

Wµ
l

(
g0 +

1
2
± 1

2

) ∫ +∞

0
k4

x

H
(

h̄2(kx)2

2m∗µ
− ∆±µµ′

ll′

)
√

h̄2(kx)2

2m∗µ
− ∆±µµ′

ll′

exp

(
− h̄2k2

x
4m∗µWµ

l

)
dkx (132)

6.4. Closure for the Production of Electron Energy-Flux

CS(µ, l,µ, l′) = CS(µ, l,µ, l′)(ac) + CS(µ, l,µ, l′)(sr) + CS(µ, l,µ, l′)(o) (133)

where:

CS(µ, l,µ, l′)(ac) =
2

(2π)

∫
R

vµECac[ fµl , fµl′ ]dkx (134)

CS(µ, l,µ, l′)(sr) =
2

(2π)

∫
R

vµECsr[ fµl , fµl′ ]dkx (135)

CS(µ, l,µ, l′)(o) =
2

(2π)

∫
R

vµECo[ fµl , fµl′ ]dkx (136)

and:

CS(µ, l,µ′, l′)(iv) =
2

(2π)

∫
R

vµECiv[ fµl , fµ
′

l′ ]dkx (137)

We observe that, with respect to Equations (92)–(95), there is an extra E , and by multiplying all of
the previous integrals by E , similar results hold.

7. Case of Study

As a case of study, we introduce the so-called gate-all-around (GAA) SiNW transistor. This is a
silicon nanowire with an added gate wrapped around it, in such a way that we have a three contact
device with source, drain and gate (see Figure 3). Such devices have been designed during these years
in order to maintain a good electrostatic control in the channel [1,2]. The gate electrode is assumed to
be metallic, so that there is no potential drop inside the gate, and depletion effects are not considered.
In the following, we shall consider a very simple SiNW transistor having the channel homogeneously
doped to ND = 3 × 1015 cm−3 and very long (Lx = 120 nm) with respect to the transversal dimensions
(Ly = Lz = 10 nm), where the oxide thickness (SiO2) is tox = 1 nm. In such a case, the moment system
reduces to a set of ordinary differential equations with the time as the only independent variable to be
coupled to the SP system Equation (4).
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Figure 3. Cross-sections of a gate-all-around SiNW transistor.

First of all, let us consider the thermal equilibrium regime where no voltage is applied to the
contacts, i.e., VS = VD = VG = 0 and no current flows. Hence, the electron distribution function is
the Maxwellian:

fµ(eq)
l (kx) = N0 exp

− h̄2k2
x

2m∗µ
+ εµl + ε0

µ − ν

kBT

 (138)

where ν is the Fermi level, ε0
µ the valley energy minimum, T the electron temperature, which we shall

assume to be the same in each sub-band and equal to the lattice temperature. The condition of zero net
current requires that the Fermi level must be constant throughout the sample, and it can be determined
by imposing that the total electron number equals the total donor number in the wire. Then, the linear
electron density at equilibrium writes:

ρ
µ(eq)
l (x) =

NDLyLz
√

m∗µ
Z (eq)

exp

−ε
µ(eq)
lx − ε0

µ

kBT

 , Z (eq) = ∑
µ,l

√
m∗µ exp

−ε
µ(eq)
lx − ε0

µ

kBT

 (139)

where the sub-band energies ε
µ(eq)
lx are obtained by solving the SP system Equation (4) using

Equation (139) with VD = VS = VG = 0.
Now, we consider the quasi-equilibrium regime, where a very small axial electric field frozen

along the channel (1000 V/cm) is applied, and we turn on the gate. The system is still in local thermal
equilibrium, the distribution function is the Maxwellian, but some charge flows in the wire. The linear
density writes:

ρ
µ
l =

NDLyLz
√

m∗µ
Z (eq)

exp

[
−εµlx − ε0

µ

kBT

]
(140)

where the only difference between Equations (139) and (140) is in the energy sub-bands εµlx, which
now are obtained solving the SP system Equation (4) with VS = 0.012 V, VD = 0 V, VG = 1 V. Once the
solution has been obtained, the energies εµl and wave functions χµ

l for each sub-band are fixed and
exported into the hydrodynamic model. Moreover, the obtained linear density ρµl is used as the initial
condition for this model. The other initial conditions for the balance Equations (35)–(38) are:

Vµ
l = 0 , Wµ

l =
1
2

kBT , Sµ
l = 0. (141)
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Figure 4. Charge density and total potential along the cross-section at x = 48 nm and z = 0 nm,
under a 1 V gate bias.

Figure 4 shows the distribution of charge density (4d) and the total potential (3) along the
cross-section at x = 48 nm and z = 0 nm. A surface inversion layer is formed, similar to a usual
MOSFET channel with the electron density peak 1 nm from the oxide interface. The band-bending at
the interface forms the quantum well for the electrons.

In Figure 5, the total linear density for the A and B valleys (i.e., ρA = ∑l ρ
A
l , ρB = ∑l ρ

B
l ) versus the

simulation time is plotted. One can note a depletion of the higher B valley. In fact, the electrons change
valley according to the inter-valley scattering mechanism given by Equation (13). The scattering from A
to B happens if the electron energy is greater than a certain threshold (related to the energy gap between
the two valleys, (i.e., 117 meV), whereas the converse is more probable. If we apply a small electric field
(1000 V/cm) in the wire, the electrons, at the beginning of the simulation, cannot gain enough energy
to jump from A to B, whereas it is more probable that the opposite will happen. As the simulation
time increases, the electrons in A gain enough energy (i.e., they have a slightly increase of the mean
energy) to activate the jump from A to B, and in the stationary regime, an equilibrium state is reached.
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Figure 5. Linear density for the A and B valleys versus the simulation time.
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Figure 6. The mean velocity (40) versus the simulation time, obtained with and without the surface
roughness scattering mechanism.

In Figures 6–8, we show the mean velocity (40), energy (41) and energy-flux (42), respectively,
versus the simulation time, obtained with and without the SRS mechanism. In these figures,
one observes that the stationary regime is reached in a few picoseconds for the velocity and the
energy flux, in about ten picoseconds for the energy, and the dependence on the SRS mechanism is
clearly understood.

Finally, we have computed the low-field mobility µlow, which is a fundamental parameter for
engineering applications. It is defined as the ratio between the average electron velocity, evaluated in
the stationary regime, and the driving field (E = 1 kV/cm), i.e.,

µlow =
µAρA + µBρB

ρA + ρB , µA =
∑l VA

l
E

, µB =
∑l VB

l
E

(142)

where µA,µB are the mobilities in the respective valleys.
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Figure 7. The mean energy (41) versus the simulation time, obtained with and without the surface
roughness scattering mechanism.
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Figure 8. The mean energy flux (42) versus the simulation time, obtained with and without the surface
roughness scattering mechanism.

In Table 2, the results for the A and B valley mobility, obtained with and without the SRS
mechanism, are presented. The difference between these values proves that the SRS is a key mechanism
in the SiNW device performance. In the above table, we can notice that mobility in the A-valley is
bigger with respect to that obtained in the B-valley. Since the mobility depends (inversely) on the
effective mass, the valley splitting reduces the mobility along the axis of the wire (in the B-valley where
the effective mass is 0.94), but quantum confinement increases mobility in the transverse direction
(in the A-valley where the effective mass is 0.27).

Table 2. Low-field mobility (in cm2/Vs). SRS, surface roughness scattering.

µA µB µlow

no SRS 556 62 430
with SRS 131 42 108

8. Conclusions

Charge transport phenomena in SiNW can be treated by coupling the Schrödinger–Poisson system
(governing the spatial confinement) with a hydrodynamic model (governing the transport along the
free motion direction). The hydrodynamic model has been derived from the multi-sub-band Boltzmann
transport equations using the MEP in order to obtain a closed system of PDEs. An appropriate
electronic band structure obtained by tight-binding simulations has been included, as well as the main
scattering mechanisms. This model has been used to evaluate the low-field mobility in a very simple
gate-all-around SiNW transistor. The inclusion of high doping effects in the model and simulation of
SiNW transistors will be the topics of future research.
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