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Abstract
Aims/hypothesis The results of studies on the genetics of
complex traits need to be replicated and to reach robust
statistical significance before they can be considered as
established. We here tried to replicate the previously
reported association between the TRIB3 Q84R polymor-
phism (rs2295490) and glucose homeostasis.
Methods Three samples of Europeans with fasting glucose
<7.0 mmol/l were studied. In sample 1 (n=791), the
association between TRIB3 Q84R and impaired glucose
regulation (IGR; defined as impaired fasting glucose and/or
impaired glucose tolerance and/or type 2 diabetes by
OGTT) and insulin sensitivity (ISI), and its interplay with
early-phase insulin secretion (i.e. disposition index [DI])
were analysed. Sample 2 (n=374) and sample 3 (n=394)

were used to replicate the association with IGR and insulin
sensitivity (by glucose clamp), respectively. Genotyping
was performed by TaqMan allele discrimination.
Results R84 carriers were at higher risk of IGR: OR for the
additivemodel 1.54, p=0.004, and 1.63, p=0.027, in samples
1 and 2, respectively. In sample 1, both ISI (p=0.005) and DI
(p=0.043) were progressively lower from QQ to QR and RR
individuals. A ‘triangulation approach’ indicated that the
association with IGR was mostly mediated by DI rather than
by ISI changes (i.e. being the expected ORs 1.51 and 1.25,
respectively). In sample 3, glucose disposal was 38.8±17.7,
33.8±14.4, and 31.6±13.3 μmol min−1kg−1, p=0.022, in
QQ, QR and RR individuals, respectively.
Conclusions/interpretation Our data confirm that the TRIB3
R84 variant affects glucose homeostasis and suggest this
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effect is due to an alteration of the interplay between insulin
sensitivity and secretion.

Keywords Akt . Early type 2 diabetes .

Inhibitors of insulin signalling

Abbreviations
ANCOVA Analysis of covariance
DI Disposition index
HOMA-IR HOMA of insulin resistance
IFG Impaired fasting glucose
IGI Insulinogenic index
IGR Impaired glucose regulation
IGT Impaired glucose tolerance
ISI Insulin sensitivity index
NG Normoglycaemic
SNP Single nucleotide polymorphism

Introduction

In insulin-resistant individuals who eventually develop type
2 diabetes, normal or near-normal glycaemia is maintained
for many years by compensatory hyperinsulinaemia [1, 2].
Hyperglycaemia eventually ensues when beta cells fail to
secrete sufficient insulin to adequately counteract insulin
resistance [3, 4]. Thus, an altered interplay between insulin
sensitivity and secretion is instrumental for the develop-
ment of abnormal glucose homeostasis [3, 4].

The mammalian tribbles homologue 3 (TRIB3) is an
insulin signalling inhibitor which binds Akt [5] and inhibits
[5–7] insulin-stimulated Akt phosphorylation and subse-
quent insulin action.

We have recently described a TRIB3 missense single
nucleotide polymorphism (SNP) Q84R (i.e. rs2295490,
where arginine replaces glutamine at position 84), resulting
in a gain-of-function variant [6, 7]. In vitro studies have
revealed that the R84 variant is more effective than the Q84
variant in engaging Akt and reducing insulin-mediated
Ser473 Akt phosphorylation in human insulin target tissues
[6, 7] as well as in insulin-secreting beta cells (C. Wee
Liew, J. Bochenski, J. Hu, A.S. Krowleski and R.N.
Kulkarni, unpublished data), thus suggesting a deleterious
role of this variant on both insulin action and secretion. In
vivo, the R84 variant has been associated with insulin
resistance [6, 8] and with type 2 diabetes (C. Wee Liew, J.
Bochenski, J. Hu, A.S. Krowleski and R.N. Kulkarni,
unpublished data); this latter association is likely to be
secondary to an altered interplay between insulin secretion
and insulin action observed in R84 carriers [9]. As for any
genetic study of complex traits, these findings—despite
coherence with the biological function of the Q84R

polymorphism—need to be replicated as much as possible,
with results reaching a high level of statistical significance
before they can be considered established. Unfortunately,
neither the Q84R polymorphism, nor any other SNP in
good linkage disequilibrium with it, is included in the
arrays utilised in the publicly available genome-wide
association studies for type 2 diabetes and related traits
[10, 11], thus precluding the possibility of performing
additional in silico analyses and, conversely, indicating the
need for further studies to address this issue.

Thus, in order to accumulate additional data on the
association of the TRIB3 R84 variant with abnormal
glucose homeostasis we studied several samples of Italians
of European ancestry. In addition, we used a ‘triangulation
approach’ [12] to get deeper insights into the mechanisms
underlying this association.

Methods

Study participants and design

Three different samples of adult (≥18 years of age)
unrelated Italians of European ancestry with fasting plasma
glucose <7.0 mmol/l were studied.

Sample 1 comprised 791 unrelated adults (age 18–
72 years) from Eastern Sicily, with fasting plasma glucose
<7.0 mmol/l, not taking medications known to interfere
with glucose and lipid metabolism, who were recruited at
the Endocrine Unit of Garibaldi Hospital (Catania, Italy).
Of these, 196 were non-obese individuals (BMI <30 kg/m2,
80 men and 116 women, age 36.1±12.4 years) recruited
among the hospital staff and 595 were obese individuals
(BMI≥30 kg/m2, 158 men and 437 women, age 35.5±
11.7 years) recruited from the outpatient Obesity Clinic of
the same institution. According to the American Diabetes
Association 2003 criteria, 465 individuals (58.8%) were
normoglycaemic (NG: normal glucose levels both fasting
and after OGTT), 326 (41.2%) had impaired glucose
regulation (IGR), including impaired fasting glucose (IFG,
n=102) and/or impaired glucose tolerance (IGT, n=177) or
type 2 diabetes (n=47) as indicated by OGTT. No gene-by-
obesity status (i.e. non-obese or obese subgroup) interaction
was observed in determining indices derived by OGTT
data, including the insulin sensitivity index (ISI, see below)
(p value for interaction = 0.49) and the disposition index
(DI, see below) (adjusted p=0.14); thus, in order to increase
the study statistical power, the two subgroups were pooled
and analysed together after adjusting for age, sex and BMI.
This sample was analysed for the association of the R84
variant with both glucose homeostasis and the interplay
between insulin sensitivity and secretion as indicated by the
DI obtained from the OGTT-derived data.
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Sample 2 comprised 374 unrelated obese (i.e. BMI≥
30 kg/m2) patients (109 men and 265 women, age 41.3±
13.6 years and BMI 42.3±8.4 kg/m2) with fasting plasma
glucose <7.0 mmol/l, consecutively recruited from the
outpatient Obesity Clinic at the Department of Clinical
Sciences of ‘Sapienza’ University in Rome. Of these, 141
individuals (37.7%) had IGR (either IFG, n=29, and/or
IGT, n=96, or type 2 diabetes, n=16, as indicated by
OGTT). This sample was analysed to try to replicate the
association observed in sample 1 between the R84 variant
and IGR.

Sample 3 comprised 394 individuals (153 men and 241
women, age 38.9±10.5 years, BMI 29.3±6.7 kg/m2) with
fasting plasma glucose <7 mmol/l, consecutively recruited
at the Department of Experimental and Clinical Medicine of
the University ‘Magna Graecia’ of Catanzaro. Among these,
301 were offspring of patients with type 2 diabetes, with 178
having been previously analysed for the association
between insulin sensitivity (as measured by the euglycaemic–
hyperinsulinaemic glucose clamp technique [13]) and TRIB3
Q84R polymorphism [6]. This sample group was analysed to
try to replicate the association observed in sample 1 between
the R84 variant and insulin resistance.

All participants underwent physical examination including
the measurements of height and weight and were kept on a
weight-maintaining diet in the 4 days preceding the study. In
sample 1, glucose, insulin, triacylglycerol levels and HDL-
cholesterol were measured using commercially available kits
in blood specimens obtained after an overnight fast and
immediately frozen at −20°C. The HOMA of insulin
resistance (HOMA-IR) index was calculated as previously
described [14]. An OGTT measuring baseline and 120 min
glucose values was carried out for sample group 1; glucose
and insulin values were also measured before and 30, 60, 90
and 120 min after glucose (75 g) load.

The study protocol was approved by the institutional
review boards and performed according to the Helsinki
Declaration. Written informed consent was obtained from
each participant in the study.

OGTT-derived measurements

The disposition index is the product of the insulinogenic
index (IGI) (as calculated according to the formula: [insulin
{pmol/l} at 30 min−fasting plasma insulin {pmol/l}]/
[glucose {mmol/l} at 30 min−fasting plasma glucose
{mmol/l}]) by the insulin sensitivity index, ISI (as calculated
by the following formula: 10,000/√[fasting plasma glucose
{mmol/l}×fasting plasma insulin {pmol/l}]×[mean OGTT
glucose concentration {mmol/l}×mean OGTT insulin con-
centration {pmol/l}]). Of note, potential violations of the
hyperbolic shape (IGI � ISI ¼ k, where k is a constant
value) were excluded through a goodness-of-fit test for

the following non-linear model IGI ¼ k=ISI (R2=0.50,
p<0.0001).

Euglycaemic–hyperinsulinaemic glucose clamp

Euglycaemic–hyperinsulinaemic clamp was performed as
previously described [13]. Briefly, after a 12 h overnight
fast, a continuous insulin infusion was initiated at the rate
of 40 mU/m2 of body surface area per min, after a priming
dose, in order to reach and maintain a steady-state plasma
insulin of about 625 pmol/l. Plasma glucose was assessed at
5 min intervals during the 2 h clamp study by a glucose
analyser. In the study participants, mean plasma glucose
concentration during the last hour of the clamp was 5.16±
0.3 mmol/l. The mean amount of exogenous glucose
infused during the last hour of the clamp period was used
to calculate the rates of glucose disposal rate, and is
expressed as µmol min−1kg−1.

Genotyping

DNA was extracted from whole blood using a standard
method. Genotyping was performed by TaqMan allele
discrimination (assay C_16190162_10, Applied Biosys-
tems, Forster City, CA, USA) on the HT7900 platform.
The failure rate was <1%. Genotyping quality was checked
by directly sequencing 10% of randomly selected samples.
The agreement rate of re-sequenced samples was 100%.
The proportion of the Q84R genotypes obeyed Hardy–
Weinberg equilibrium in all samples studied.

Statistical analysis

The general features of the study participants were expressed
as means±SD. The additive genetic model was a priori
decided to be tested in all analyses. Because of the skewed
distribution, fasting insulin, HOMA-IR and triacylglycerol
values as well as ISI, IGI and DI indices, were log trans-
formed before analysis.

Continuous variables were compared between groups
using one-way or repeated-measurements analysis of
covariance (ANCOVA). In particular, for glucose and
insulin profiles during OGTT, repeated-measurements
ANCOVAmodels to assess differences over time were carried
out via hierarchical linear models; within-patient correlation
was accounted for with an unstructured correlation-type
matrix [15]. The exact test for Hardy–Weinberg equilibrium
was carried out as previously described [16]. Multivariate
logistic regression analysis was used to model the effect of
the polymorphism on dichotomous outcomes and results
were estimated as odd ratios with 95% confidence intervals.

An individual patient’s data meta-analysis using a linear
mixed model [17–19] was performed for abnormalities of
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glucose homeostasis (i.e. either type 2 diabetes or IGR,
considered as a categorical trait) and for DI, considered as a
continuous trait. Linear mixed models took into account
potential between-sample heterogeneity (tested as a
genotype-by-sample interaction). An unstructured correla-
tion matrix was assumed. The results of categorical out-
comes meta-analyses were reported as odds ratios with 95%
confidence intervals, while the results of DI meta-analyses
were reported as β and p values.

The possible presence of publication bias was visually
assessed by funnel plots and statistically assessed by Begg
and Mazumdar rank correlation test [20] and Egger’s regres-
sion intercept test [21].

A ‘triangulation approach’ [12] was followed to deter-
mine whether association between polymorphisms of TRIB3
and IGR might be mediated by DI and ISI. The effect size
per minor allele of TRIB3 polymorphism for DI and ISI
level was estimated by a linear regression analysis. The OR
per minor allele of TRIB3 polymorphism for IGR and the
OR of DI and ISI for IGR was estimated by logistic
regression analysis including age and sex as confounders.

A p value <0.05 was considered significant. All analyses
were performed using SPSS Version 15.0 (Chicago, IL,
USA) and SAS Release 9.1 (SAS Institute, Cary, NC,
USA).

Results

TRIB3 Q84R polymorphism and abnormal glucose
homeostasis in samples 1 and 2

For sample 1, the proportion of the TRIB3 genotypes was
significantly different in NG participants as compared with
individuals with IGR, with the risk of IGR being increased
in individuals carrying the R84 variant (Table 1). Similar
data were obtained for sample 2 (Table 1). Minimal

differences were observed after adjusting also for BMI
(OR 1.62, 95% CI 1.18–2.22 and OR 1.64, 95% CI 1.06–
2.52 in samples 1 and 2, respectively). When data from the
two studies were pooled and analysed the OR and 95% CI
for IGR was 1.53, 1.20–1.95, p=0.0005. This pooled
analysis yielded: for IFG (n=131 case individuals), OR
1.86 and 95% CI 1.30–2.65; for IGT (n=273 case
individuals), OR 1.53 and 95% CI 1.15–2.03; and for type
2 diabetes (n=63 case individuals) OR 1.24, 95% CI 0.74–
2.08. Although this trend is intriguing and might deserve
further attention, the number of individuals in each
subgroup is too small to allow any conclusion to be drawn.
The results of meta-analysis of these and recently published
data, indicating a significant association with abnormalities
of glucose homeostasis (either type 2 diabetes or IGR), are
shown in Fig. 1a. Given the stronger association with early-
onset type 2 diabetes (i.e. before age 45 years) observed in
our previous study [9], meta-analysis was also performed
for early-onset forms of abnormal glucose homeostasis
(Fig. 1b).

TRIB3 Q84R polymorphism and intermediate metabolic
traits in sample 1

Baseline characteristics The baseline features of individuals
in sample 1, stratified according to the TRIB3 Q84R geno-
type, are shown in Table 2 and indicate that the R84
variant, especially in the homozygous state, was associated
with higher fasting insulin and HOMA-IR index (Table 2).
Also, fasting glucose and triacylglycerol levels tended to be
different across genotype groups, though the differences did
not reach statistical significance (Table 2).

Glucose and insulin profiles during OGTT Repeated-
measurements ANCOVA models to assess differences
across genotypes over time showed that plasma glucose
and insulin levels during OGTT were progressively higher

Table 1 Risk of IGR according to TRIB3 Q84R genotype in two independent samples of Italian whites

Sample n TRIB3 Q84R genotype OR (95% CI) p value

QQ n (%) QR n (%) RR n (%)

Sample 1 791

NG 465 352 (75.7) 108 (23.2) 5 (1.1) 1.54 (1.15–2.06) 0.004
IGR 326 213 (65.3) 104 (31.9) 9 (2.8)

Sample 2 374

NG 233 181 (77.7) 45 (19.3) 7 (3.0) 1.63 (1.06–2.51) 0.027
IGR 141 96 (68.1) 41 (29.1) 4 (2.8)

Data are adjusted for age and sex

Sample 1: individuals were recruited at the Endocrine Unit of Garibaldi Hospital in Catania, Eastern Sicily, Italy

Sample 2: individuals were recruited at the Department of Clinical Sciences of ‘Sapienza’, University of Rome, Rome, Italy
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in QR and RR individuals as compared with wild-type QQ
individuals (age-, sex- and BMI-adjusted p=0.023 for
glucose and p=0.009 for insulin; Fig. 2a, b).

OGTT-derived data on insulin sensitivity, insulin secretion
and their interplay ISI was progressively lower in QQ, QR
and RR (10.1±7.3, 9.3±6.7 and 5.4±2.4, adjusted p=
0.005). Absolute values of early-phase insulin secretion, as
indicated by the IGI, were not significantly different across

TRIB3 genotypes (203.7±135.2, 197.0±165.8 and 192.0±
115.9 in QQ, QR and RR individuals; adjusted p=0.83).
Most importantly in the specific context of this study, when
early-phase insulin secretion was adjusted for insulin
sensitivity, as indicated by the DI, a significant and
progressive reduction across the three genotype groups
was observed (2,090.6±2,311.1, 1,774.7±2,092.4 and
1,055.2±718.4 in QQ, QR and RR, respectively, adjusted
p=0.043). Meta-analysis was then performed on data on DI

Boston

Catanzaro 

Dallas

SGR 

This study (sample 1)

Cases
QQ/QR/RR

844/341/37

351/139/10

52/24/0

856/333/31

213/104/9

96/41/4

2,412/982/91

Controls
QQ/QR/RR

262/90/4

895/284/39

199/68/5

430/157/18

352/108/5

181/45/7

2,319/752/78

Samples

This study (sample 2)

Overall

1.28 (1.01–1.64), 0.04

1.06 (0.85–1.32), 0.60

1.04 (0.56–1.92), 0.90

1.09 (0.79–1.49), 0.60

1.54 (1.15–2.06), 0.004

1.63 (1.06–2.51), 0.03

1.19 (1.06–1.34), 0.003

OR (95% CI), p value

0.2 0.5 1 2 5

OR and 95% CI

OR and 95% CI

0.2 0.5 1 2 5

Samples Controls
QQ/QR/RR

Cases
QQ/QR/RR

1.37 (1.04–1.80),  0.02332/145/15 262/90/4Bostona

1.42 (1.04–1.92),  0.0385/50/3 895/284/39Catanzaroa 

0.68 (0.20–2.31),  0.5416/3/0 199/68/5Dallasa

1.11 (0.87–1.42),  0.40268/113/11 430/157/18SGRa

1.45 (1.06–2.01),   0.02149/61/7 352/108/5This study (sample 1)b

1.82 (1.10–3.01 ,  0.02181/45/736/19/3This study (sample 2)b

1.31 (1.15–1.50),   0.00007886/391/39 2,319/752/78Overall

OR (95% CI), p value
b

aFig. 1 Individual meta-analysis
of six case–control studies. The
cumulative effect of four
published [9] and the two
unpublished present studies on
the association between TRIB3
Q84R polymorphism and
abnormalities of glucose
homeostasis (either type 2
diabetes or IGR) diagnosed
either at any age (a) or at age
<45 years (b) was tested by a
fixed-effects model. No hetero-
geneity was observed across
studies (p values for sample-by-
genotype interaction=0.17 and
0.36, respectively). ORs and
95% CIs for the additive genetic
model are shown. The sizes of
OR symbols are proportional to
the study sample size. The data
from all samples were adjusted
for age and sex (a) and for sex
(b). SGR, San Giovanni
Rotondo, Italy. aCases were
patients with frank type 2
diabetes. bCases were patients
with either impaired fasting
glucose and/or impaired glucose
tolerance or type 2 diabetes
diagnosed at OGTT

Characteristic TRIB3 Q84R genotype

QQ QR RR p value

n (men/women) 565 (166/399) 212 (68/144) 14 (4/10) 0.55

Age (years) 34.9±12.0 37.6±11.3 35.1±12.5 0.013

BMI (kg/m2) 38.6±10.8 38.8±9.9 39.6±7.8 0.69

Fasting glucose (mmol/l) 5.2±0.7 5.3±0.7 5.4±0.9 0.10a

Fasting insulin (pmol/l) 111.4±66.5 114.0±67.7 150.6±51.9 0.020a

HOMA-IR 3.8±2.5 4.0±2.6 5.3±2.4 0.012a

Triacylglycerol (mmol/l) 1.3±0.8 1.4±0.7 1.5±0.8 0.081a

HDL-cholesterol (mmol/l) 1.2±0.3 1.1±0.3 1.2±0.4 0.97a

Metabolic syndrome (%) 239 (42.3%) 98 (46.2%) 8 (57.1%) 0.42a

Table 2 Anthropometric and
biochemical characteristics of
the study participants in sample
1 according to TRIB3 Q84R
genotype

Data are means±SD or
percentage of total
a Adjusted for age, sex and BMI
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from this study and recently published data reporting a
similar association [9]; the results obtained in a total
number of 1,436 individuals, confirmed the association
(adjusted β (SE) of log DI for each R84 allele=−0.15
(0.04), adjusted p=0.0007). We then asked whether the R84
effect on the risk of IGR was mediated either by DI or by
ISI changes and tested it by a ‘triangulation approach’ in
sample 1, for whom all the data needed to test these
hypotheses were available. The observed OR for IGR
(1.54) was virtually identical to the expected one when DI
(i.e. 1.51; Fig. 3) was taken into account, but not when ISI
(i.e. 1.25) was taken into account, thus supporting the idea
that changes in DI, more than in ISI, are likely to mediate
the effect of R84 on the risk of IGR.

TRIB3 Q84R polymorphism and insulin sensitivity in
sample 3 In order to get further insights about the role of
the R84 variant on insulin sensitivity, an additional sample
of 394 individuals who underwent the euglycaemic–
hyperinsulinaemic glucose clamp was analysed. Preliminary
data on 178 of these individuals have been already reported
[6]. Insulin sensitivity as indicated by insulin-stimulated
glucose disposal was progressively lower in QQ, QR and RR
individuals (38.8±17.7, 33.8±14.4 and 31.6±13.3 μmol

min−1kg−1, respectively, p=0.022). This association did not
change much after adjusting for age, sex and BMI (p=0.05).

Discussion

We here report that the TRIB3 R84 variant is associated
with altered glucose homeostasis in Europeans from Italy,
recruited on the basis of having a fasting glucose level in
the non-diabetic range (i.e. below 7.0 mmol/l). Virtually
identical results were obtained in two different heteroge-
neous samples, thus providing evidence of formal replica-
tion. Of note, obtaining similar results in samples which are
clinically heterogeneous increases the chance that our
finding is a generalisable one.

When the current data are meta-analysed with those
previously published for the association with type 2
diabetes [9], the statistical association becomes quite
robust, especially for abnormal glucose homeostasis before
age 45 years. In addition, we also report that individuals
carrying the R84 variant are characterised by altered
interplay between insulin sensitivity and secretion as
indicated by reduced DI values for OGTT. These data too
represent a formal replication of a previous finding [9]; also
in this case, when present and previous [9] data are meta-
analysed a quite robustly significant association is reached.
Taken together, these and previous [9] data suggest that the
TRIB3 R84 variant exerts a deleterious role on glucose
homeostasis by affecting the interplay between insulin
sensitivity and insulin secretion; the subtle equilibrium is
instrumental for the maintenance of glucose homeostasis
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[22, 23]. To test this possibility a ‘triangulation approach’
was used [12]; as a matter of fact, the observed and
expected ORs for IGR were virtually identical, strongly
supporting our hypothesis.

A few differences between present and previous [9]
findings on insulin sensitivity and the risk of IGR as well as
the absolute amount of early phase insulin secretion deserve
some comment. In contrast to the present study, no
association between the R84 variant and insulin resistance
and IGR was previously observed [9]. It is of note that, as
per different selection criteria, individuals with type 2
diabetes at OGTT were included in the present but not in
the previous [9] study, thus limiting in the latter one the
distribution toward the high end of the spectrum of insulin
sensitivity. This might have reduced the power to detect a
significant association between the R84 variant and both
insulin resistance and abnormalities of glucose homeostasis.
Overall, given these conflicting results we tested in an
additional sample the association of the R84 variant with
insulin resistance as measured by the gold-standard tech-
nique, the euglycaemic–hyperinsulinaemic glucose clamp
[13]. The data obtained further support the role of R84 in
affecting insulin sensitivity.

A second difference refers to absolute values of early-
phase insulin secretion, as indicated by the IGI, which was
reduced in R84 carriers in a previous [9], but not in the
present, study. Absolute insulin secretion is partly deter-
mined by insulin sensitivity in the sense that it depends on
the amount of insulin needed to maintain normoglycaemia.
It is therefore expected that a condition of insulin
resistance, as in R84 carriers in the present study, exerts
an increased stimulus for insulin secretion; thus, even in the
presence of beta cell dysfunction, insulin resistance may
well explain similar IGI values observed across genotype
groups as was found in the present study. What is really of
note from a pathophysiological perspective is that, regard-
less of the observed differences in absolute values of insulin
secretion and/or sensitivity, the interplay between these two
variables, as indicated by DI—the best predictor of future
type 2 diabetes [22, 23]—is similarly reduced in R84
carriers both in the previous [9] and the present study. As
for any genetic study of complex traits, data replication is
of particular importance in order to reduce the risk of false-
positive results and to accumulate data aimed at establish-
ing a new finding by reaching a high level of statistical
significance.

In functional studies on transfected cells, an inhibitory
role of R84 variant on insulin-stimulated Akt phosphoryla-
tion has been observed in vitro in both cells from peripheral
insulin target tissues [6, 7] and insulin-secreting beta cells
(C. Wee Liew, J. Bochenski, J. Hu, A.S. Krowleski and
R.N. Kulkarni, unpublished data), making plausible a direct
role of this variant on both in vivo insulin sensitivity and

insulin secretion. A similar deleterious role on both insulin
sensitivity and secretion has been reported for other non-
synonymous genetic variations of insulin signalling genes,
including IRS-1 (also known as IRS1) G972R [24–26] and
ENPP1 K121Q [27–29] polymorphisms. Taken together,
present and previous genetic data are consistent with a
pathogenic role of altered insulin signalling in inducing
both peripheral insulin resistance and impaired insulin
secretion [30].

In conclusion, the present study serves the important
function of confirming that, among individuals of Southern
European ancestry, the TRIB3 R84 variant is associated
with an increased risk of abnormal glucose homeostasis.
The present data also strengthen the previous hypothesis [9]
that this association is mediated by an abnormal interplay
between insulin sensitivity and insulin secretion; despite
this replication we acknowledge that, as in any cross-
sectional study, association cannot guarantee a cause-and-
effect relationship and that only prospective data can
establish such a relationship. We also acknowledge that
further replication attempts—either by studying new sam-
ples (possibly comprising individuals other than Southern
Europeans) or by in silico analysis of databases that are
presently not publicly available—are needed before TRIB3
can be conclusively listed among genes able to modulate
the susceptibility to abnormal glucose homeostasis.

Acknowledgements This work was partly supported by Grants
from: the Italian Ministry of Health (Ricerca Finalizzata 2006 to S.
Prudente and F. Barbetti, Ricerca Corrente 2008 and 2009 to S.
Prudente and V. Trischitta), the Italian Ministry of University and
Research (PRIN 2005 to L. Frittitta and PRIN 2005 and 2007 to V.
Trischitta), the European Community (FP6 EUGENE2 no. LSHM-CT-
2004-512013 Grant to G. Sesti) and University of Catania (2005 and
2006 to L. Frittitta).

We thank N. Abate (Division of Endocrinology and Metabolism,
University of Texas Medical Branch, Galveston, TX, USA) and A.
Doria (Research Division, Joslin Diabetes Center, Boston, MA, USA)
for allowing us to meta-analyse our present data with individual data
from the GENIUS consortium’s case–control study for type 2
diabetes, the results of which have been previously published [9].

Duality of interest The authors declare that there is no duality of
interest associated with this manuscript.

References

1. Reaven GM, Banting Lecture (1988) Role of insulin resistance in
human disease. Diabetes 37:1595–1607

2. Kahn CR, Banting Lecture (1994) Insulin action, diabetogenes,
and the cause of type II diabetes. Diabetes 43:1066–1084

3. Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner
JS, Kahn CR (1992) Role of glucose and insulin resistance in
development of type 2 diabetes mellitus: results of a 25-year
follow-up study. Lancet 340:925–929

4. Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural
history of insulin secretory dysfunction and insulin resistance in

Diabetologia



the pathogenesis of type 2 diabetes mellitus. J Clin Invest
104:787–794

5. Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a
tribbles homolog that inhibits Akt/PKB activation by insulin in
liver. Science 6:1574–1577

6. Prudente S, Hribal ML, Flex E et al (2005) The functional Q84R
polymorphism of mammalian Tribbles homolog TRB3 is associ-
ated with insulin resistance and related cardiovascular risk in
Caucasians from Italy. Diabetes 54:2807–2811

7. Andreozzi F, Formoso G, Prudente S et al (2008) TRIB3 R84
variant is associated with impaired insulin mediated nitric oxide
production in human endothelial cells. Arterioscler Thromb Vasc
Biol 28:1355–1360

8. Gong HP, Wang ZH, Jiang H et al (2009) TRIB3 functional Q84R
polymorphism is a risk factor for metabolic syndrome and carotid
atherosclerosis. Diabetes Care 32:1311–1313

9. Prudente S, Scarpelli D, Chandalia M et al (2009) The TRIB3
Q84R polymorphism and risk of early-onset type 2 diabetes. J
Clin Endocrinol Metab 94:190–196

10. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of
genome-wide association data and large-scale replication identi-
fies additional susceptibility loci for type 2 diabetes. Nat Genet
40:638–645

11. Diabetes Genetics Initiative of Broad Institute of Harvard and
MIT, Lund University, and Novartis Institutes of BioMedical
Research, Saxena R, Voight BF, Lyssenko V et al (2007) Genome-
wide association analysis identifies loci for type 2 diabetes and
triglyceride levels. Science 316:1331–1336

12. Freathy RM, Timpson NJ, Lawlor DA et al (2008) Common
variation in the FTO gene alters diabetes-related metabolic traits to
the extent expected given its effect on BMI. Diabetes 57:1419–1426

13. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp tech-
nique: a method for quantifying insulin secretion and resistance. Am
J Physiol 237:E214–223

14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF,
Turner RC (1985) Homeostasis model assessment: insulin
resistance and beta-cell function from fasting plasma glucose
and insulin concentrations in man. Diabetologia 28:412–419

15. Singer JD, Willett JB (2003) Applied longitudinal data analysis:
modeling change and event occurrence. Oxford University Press,
New York

16. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact
tests of Hardy–Weinberg equilibrium. Am J Hum Gen 76:887–893

17. Ioannidis JP, Rosenberg PS, Goedert JJ, O’Brien TR (2002)
International meta-analysis of HIV host genetics. Commentary:
meta-analysis of individual participants’ data in genetic epidemiology.
Am J Epidemiol 156:204–210

18. Higgins JP, Whitehead A, Turner RM, Omar RZ, Thompson SG
(2001) Meta analysis of continuous outcome data from individual
patients. Stat Med 20:2219–2241

19. Sutton AJ, Kendrick D, Coupland CA (2008) Meta-analysis of
individual- and aggregate-level data. Stat Med 27:651–669

20. Begg CB, Mazumdar M (1994) Operating characteristics of a rank
correlation test for publication bias. Biometrics 50:1088–1101

21. Egger M, Davey Smith G, Schnedier M, Minder C (1997) Bias in
meta-analysis detected by a simple graphical test. BMJ 315:629–
634

22. Lyssenko V, Almgren P, Anevski D et al (2005) Predictors of and
longitudinal changes in insulin sensitivity and secretion preceding
onset of type 2 diabetes. Diabetes 54:166–174

23. Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M (2007)
What is the best predictor of future type 2 diabetes? Diabetes Care
30:1544–1548

24. Clausen JO, Hansen T, Bjorbaek C et al (1995) Insulin resistance:
interactions between obesity and a common variant of insulin
receptor substrate-1. Lancet 346:397–402

25. Koch M, Machicao F, Haring H (2001) The Gly972Arg
polymorphism in the insulin receptor substrate-1 gene contributes
to the variation in insulin secretion in normal glucose-tolerant
humans. Diabetes 50:882–885

26. Marchetti P, Lupi R, Federici M et al (2002) Insulin secretory
function is impaired in isolated human islets carrying the Gly
(972)→Arg IRS-1 polymorphism. Diabetes 51:1419–1424

27. Pizzuti A, Frittitta L, Argiolas A et al (1999) Polymorphism
(K121Q) of the human glycoprotein PC-1 gene coding region is
strongly associated with insulin resistance. Diabetes 48:1881–
1884

28. McAteer JB, Prudente S, Bacci S et al (2008) The ENPP1 K121Q
polymorphism is associated with type 2 diabetes in European
populations: evidence from an updated meta-analysis in 42,042
subjects. Diabetes 4:1125–1130

29. Baratta R, Rossetti P, Prudente S et al (2008) Role of the ENPP1
K121Q polymorphism on glucose homeostasis. Diabetes 57:
3360–3364

30. Biddinger SB, Kahn CR (2006) From mice to men: insights into
the insulin resistance syndromes. Annu Rev Physiol 68:123–158

Diabetologia


	TRIB3 R84 variant affects glucose homeostasis by altering the interplay between insulin sensitivity and secretion
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Study participants and design
	OGTT-derived measurements
	Euglycaemic–hyperinsulinaemic glucose clamp
	Genotyping
	Statistical analysis

	Results
	TRIB3 Q84R polymorphism and abnormal glucose homeostasis in samples 1 and 2
	TRIB3 Q84R polymorphism and intermediate metabolic traits in sample 1

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


