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A B S T R A C T

In Alzheimer’s disease (AD) basic research and drug discovery, mouse models are essential resources for

uncovering biological mechanisms, validating molecular targets and screening potential compounds.

Both transgenic and non-genetically modified mouse models enable access to different types of AD-like

pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD

pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any

interventions should be measures of learning and memory. This is particularly important given the lack

of knowledge on disease etiology – assessment by cognitive assays offers the advantage of targeting

relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral

assays are available for assessing cognitive functioning in mouse models, including ones specific for

hippocampal-dependent learning and memory. Here we review the basics of available transgenic and

non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for

testing hippocampal-dependent cognition in mice – contextual fear conditioning, radial arm water maze

and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats

of these behavioral testing paradigms.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized clinically by progressive cognitive decline (reviewed
in [1]). Currently, AD is the most common type of dementia
worldwide; and since age is the biggest risk factor, the prevalence
is expected to greatly increase over the next few decades with
aging population structures. Unfortunately, despite decades of
research, the etiology of AD is unknown, and many fundamental
questions remain unanswered. Continuing research into the basic
underlying biology of AD as well as renewed efforts in developing
disease-modifying drugs are necessary to address this problem. In
both the basic research and translational arenas, animal models of
the disease are critical. In particular, genetic and non-genetic
mouse models of AD pathology have become key research tools for
discovering disease pathways and targets as well as testing new
therapeutic approaches (reviewed in [2,3]).

Ultimately, as a disease of synaptic and cognitive failure
(reviewed in [4,5]), both preclinical hypotheses and translational
developments in AD research need to address the crucial
therapeutic endpoint – amelioration and/or prevention of cogni-
tive dysfunction. Indeed, the most striking characteristic of
Alzheimer’s is the progressive decline of cognitive functioning
that is caused by massive loss of neurons and synapses. Most
importantly, focusing on the behavioral phenotype offers the
advantage of avoiding assumptions on the etiopathogenesis of the
disease, ones which may be disproved by future studies. The
currently-approved medications for AD, which include acetylcho-
linesterase inhibitors and a N-methyl-D-aspartate receptor
(NMDAR) antagonist, offer only minimal temporary improvements
in this regard. In testing new therapeutic targets and compounds,
mouse models are key resources for providing access to AD-type
pathology in vivo concurrently with behavioral testing options.
The mouse models offer the ability to validate molecular targets
and screen potential compounds on the translational pathway
leading to clinical testing.

Several cognitive assays are available for assessing mice,
particularly in their hippocampal-dependent learning and memo-
ry abilities. Given that AD pathology initiates and is most severe in
the hippocampus and entorhinal cortex of the medial temporal
lobe (reviewed in [6]), these murine cognitive assays that are
hippocampal-dependent are ideally-suited for AD research. The
use of these cognitive assays versus other readouts maximizes the
likelihood of selecting a target or compound that is relevant for
memory systems in vivo.

Among the cognitive assays that test murine learning and
memory, we will highlight and discuss three behavioral tasks that
are commonly used to examine associative memory and spatial
memory: fear conditioning (FC), radial arm water maze (RAWM),
and Morris water maze (MWM). Among their advantages, these
tasks are straightforward in implementation and allow for the
relatively fast assessment of several batches of mice in a short
period of time. However, key parameters need to be well-
controlled in order to minimize variability in the results and
maximize reproducibility between experiments. In this review, we
focus on the practical considerations of these assays – the
protocols, guidelines and caveats based on our experience with
various AD mouse models.

2. Alzheimer’s disease pathology

In Alzheimer’s disease, there are two primary histopathological
features evident upon post-mortem examination of brain tissue –
amyloid plaques and neurofibrillary tangles (NFTs) (reviewed in
[1,7]). The plaques consist of insoluble extracellular deposits of the
amyloid-b (Ab) peptide and can be observed throughout the
cortex. Neurofibrillary tangles consist of aggregates of hyperpho-
sphorylated tau, a microtubule-binding protein. Evident with both
the plaques and NFTs, the misfolding and aberrant aggregation of
the constituent protein exemplifies a key pathogenic feature of the
disease.

Although amyloid plaques were observed histopathologically in
AD brains since Alois Alzheimer’s early descriptions [8], the
composition of the plaques remained unknown for decades. In
1985, researchers were finally successful in purifying Ab and
identifying it as the predominant constituent of the plaques [9]. A
vast amount of subsequent research implicated Ab as the main
molecular culprit in AD pathogenesis, in what is classically known
as the ‘‘amyloid cascade hypothesis’’. Isolating the peptide then led
to the identification and sequencing of the amyloid precursor
protein (APP), from which Ab is produced [10].

APP is a type I transmembrane glycoprotein that is abundantly
expressed in the brain, particularly by neurons. APP can undergo a
series of cleavages by secretase enzymes, one pathway of which
results in the production of Ab peptides. APP contains a-, b- and g-
secretase cleavage sites. Processing at the a-secretase site releases
a large portion of the ectodomain and precludes the formation of
Ab since the cleavage occurs within the Ab sequence. Alternative-
ly, APP can be cleaved at the b-secretase site, which together with
an intramembrane g-secretase cleavage, produces Ab peptides. In
neurons, the sole b-secretase is b-site APP cleaving enzyme 1
(BACE1), a transmembrane aspartyl protease that generates the N
terminus of Ab. The g-secretase complex is comprised of four
subunits: presenilin 1 or 2 (PS1/PS2), nicastrin, presenilin enhancer
2 (PEN-2) and anterior pharynx-defective 1 (APH-1). There are
multiple g-cleavage site possibilities, which result in the produc-
tion of Ab peptides with varying lengths (usually 37–43 amino
acids). Approximately 90% of secreted Ab is 40 amino acids long
(Ab40). However, there is also a smaller proportion of 42 residue-
long Ab peptides (Ab42) that make up <10% of the total Ab pool. In
a series of studies, Ab42 was found to have a much higher
propensity for aggregation compared to the shorter peptides,
leading to a focus on Ab42 as the main amyloidogenic species in AD
[11–14].

A strong body of evidence indicates that soluble oligomers of
Ab, consisting of 2–12+ peptides, are a primary neurotoxic culprit
in AD pathogenesis (reviewed in [5]). In contrast to amyloid
plaques, which do not correlate well with cognitive decline, soluble
Ab species are significantly correlated with disease symptoms and
severity [15,16]. These aggregates can be formed from synthetic or
natural Ab peptides, including those secreted by cells or directly
isolated from the brain tissue of AD patients and transgenic mouse
models. Many studies have established that Ab oligomers can
exert detrimental effects on neuronal physiology and synaptic
transmission. For example, Ab oligomers appear to preferentially
bind to or cluster at synapses, with one study observing that >90%
of Ab oligomer binding in neurons occurs at dendritic spines at
sites positive for PSD-95, a marker for post-synaptic compartments
[17]. On a structural level, Ab oligomers have been shown to cause
changes in spine morphology and decreases in spine density
[18,19]. This loss of synapses is highly relevant for underlying the
cognitive impairments of AD, and indeed, it has been found to be a
major structural correlate of dementia [20].

Although the receptor(s)/binding partner(s) and downstream
signaling mechanisms induced by Ab oligomers are not fully
elucidated, the functional effects on cognition are well-established.
High concentrations of Ab (>nanomolar) – whether chronically or
acutely present, synthetic or naturally-derived – can markedly
impair neuronal physiology and synaptic plasticity [e.g. long-term
potentiation (LTP)] [21–29], an electrophysiological correlate of
memory. More importantly, pathological Ab exposure can strongly
impact behavior, including performance in learning and memory
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tasks [30–34]. This has been thoroughly demonstrated in various
AD mouse models, including both genetic (e.g. transgenic) and
non-genetic (e.g. acute exposure) models.

Although the predominant focus in AD research and drug
discovery has been on Ab, accumulating evidence indicates that
the other major protein that undergoes misfolding and accumula-
tion – tau – plays a key mediating role in the pathogenesis of AD as
well as other tauopathies. Tau is a natively unfolded microtubule-
associated protein that functions in regulating microtubule
stability and therefore, axonal development and transport [35].
As a result of alternative splicing, there are multiple tau isoforms. A
primary differentiating feature of these isoforms is the number of
microtubule-binding repeats in the C-terminal region, with three
(3R) and four (4R) repeat-containing tau as the predominant
isoforms in neurons. Both 3R- and 4R-tau are included in the NFTs
of AD [36]. However, similar to Ab, there may be isoform-specific
characteristics in the aggregation and fibril-forming capacity of tau
[37]. In general, with AD and other tauopathies, the dysregulation
of tau phosphorylation and its subsequent aggregation into NFT
structures impairs neuronal functioning and ultimately leads to
cell death. In fact, recent research points to tau as a requisite
mechanistic factor in Ab-induced pathology – lowering of tau can
prevent neurotoxicity in Ab-treated cultures and AD mouse
models [38–41].

2.1. Genetically modified mouse models of AD

Serving as the foundational rationale for many genetically
modified AD mouse models as well as strengthening support for
the amyloid hypothesis, a large number of mutations in the genes
for APP or PS1/2 have been discovered in families with early onset
familial AD (FAD) [42–46]. All of these mutations were found to
increase total Ab production, enhance aggregate formation or
increase the ratio of Ab42:Ab40, resulting in a higher proportion of
aggregation-prone Ab [47–52]. So far, over 30 APP mutations and
almost 200 PS1/PS2 mutations have been identified and linked
with FAD [53]. Although FAD accounts for <5% of all AD cases, there
is a very high degree of phenotypic similarity between FAD and
sporadic late-onset AD (LOAD), suggesting that mechanistic
information obtained about FAD would also be directly relevant
for LOAD [54].

Following upon the discoveries of the various FAD mutations,
the creation of transgenic mouse models which express the
mutated genes further emphasized the pathogenic link between
Ab and AD (Table 1; reviewed in [2,3]). These mouse models
include ones which overexpress mutant human APP, PS1 and/or
microtubule-associated protein tau (MAPT). The first such model
to be developed was the PDAPP transgenic mouse that over-
expresses APP with a FAD-associated mutation (V171F) [55].
Located at the g-secretase cleavage site, this mutation shifts
processing to longer Ab peptide lengths, thereby increasing the
ratio of Ab42:Ab40. Another widely-used model is the Tg2576
mouse line, which overexpresses human APP with two point
mutations (K670N, M671L) that were originally identified in a
Swedish family with FAD [43,56]. These mutations are located by
the b-secretase site and bias APP processing toward the
amyloidogenic pathway, leading to higher overall levels of Ab.

Transgenic mouse models have demonstrated that overexpres-
sion of APP and/or Ab is sufficient to recapitulate many important
characteristics of AD. In general, the mutant APP-overexpressing
mice develop amyloid plaque pathology, loss of synapses, impaired
synaptic plasticity and cognitive deficits. Co-expression of a mutant
PS1 transgene accelerates the pathology to a significantly younger
age, as evidenced by the double transgenic APP/PS1 model [66,67]. A
caveat with some of the AD mouse models is that there is minimal
widespread neurofibrillary tangles and neurodegeneration, a
defining characteristic of AD. However, a triple transgenic mouse
model (3�TgAPP) that expresses mutant tau along with the APP and
PS1 transgenes has been reported exhibit significant neurodegen-
eration along with neurofibrillary tangles [70]. In addition, the
removal of nitric oxide synthase (NOS) 2 in mice expressing mutated
APP results in the development of a much larger spectrum of AD-like
pathology, including amyloid plaques, tau pathology, neuronal loss
and behavioral impairments [76,77].

In AD research efforts, transgenic mouse models have been
valuable tools in elucidating disease mechanisms as well as testing
potential therapeutic strategies. In particular, behavioral testing
with cognitive assays are a primary component of their utility and
value. The transgenic APP-overexpressing mouse models develop
cognitive dysfunction at ages ranging from 2 to 12 months,
depending on the specific transgenes. In the PDAPP mouse model,
significant memory impairments are evident after 6 months of age
in several behavioral tasks including FC, RAWM and MWM. In the
Tg2576 mouse model, the onset of the performance impairments
in these tasks varies depending upon the task, from approximately
4 months with FC [78–82] to more than 6 months with the RAWM
and MWM [83,84]. In general, deficits at the earlier ages tend to be
more subtle but usually progress to marked impairments at older
ages. Significantly, behavioral impairments can start prior to the
accumulation of Ab plaques, a fact that highlights the central
importance of soluble Ab species in AD pathogenesis.

Mutations in the MAPT gene are associated with familial fronto-
temporal dementia (FTD) and parkinsonism linked to chromosome
17 (FTDP-17). These mutations generally decrease tau binding to
microtubules or increase the proportion of 4R-tau, which enhances
susceptibility to aggregation. Various transgenic mouse models
expressing mutant human MAPT have been developed and do
recapitulate tau pathology characterized by hyperphosphorylation
and accumulation into NFTs [64,65]. However, due to significant
pathology in the brainstem and spinal cord in many of these
strains, there can be age-dependent motor defects that prevent
their use in behavioral tasks such as FC, RAWM and MWM.
However, newer models with inducible tau transgene expression
[63,85] as well as the 3�TgAPP model [70] are reported to exhibit
less motor-related pathology and have been characterized in
behavioral cognitive assays.

Although no current model exhibits all of the signs, symptoms
and anatomopathological hallmarks of AD, the use of mouse
models has greatly contributed to a better understanding of the
pathophysiology of the disease and enabled the development of
novel therapeutic strategies. In general, in picking an AD mouse
model, the mice should present an increase in Ab levels and/or
hyperphosphorylated tau along with synaptic and memory deficits
as well as synaptic and neuronal loss (i.e. a human AD-like
phenotype).

2.2. Non-genetic mouse models of AD

Although genetically modified models of AD have been very
valuable resources for investigating the mechanisms underlying
disease pathogenesis and progression, the overexpression of AD-
related genes might mislead the interpretation of the findings
derived from these studies. For instance, the APP and PS1
transgenes could affect neuronal function through a variety of
mechanisms that are not necessarily related to Ab and/or AD-like
pathology [86,87]. Indeed, the trafficking and signaling properties
of the full-length form of APP and its natural cleavage products,
which include Ab, soluble APPa (sAPPa), sAPPb and amyloid
precursor protein intracellular domain (AICD), are likely different
in non-disease physiology and could therefore impact CNS
development, synaptic function and memory with overexpression.
To separate Ab-specific effects from the other effects of APP and



Table 1
Transgenic mouse models of Alzheimer’s disease.

Model Description Outcome Plaques NFTs Neuron

loss

Synaptic

deficits

Memory

deficits

Notes Example References

Single transgenic

APP (Swedish) Mutations at b-secretase

cleavage site (aa 670/1)

Enhanced cleavage by b-

secretase; overall more Ab

(all forms)

YES: 9–12mo NO NO YES YES Mostly dense cored

plaques, some tau

hyperphosphorylation.

Synaptic and memory

defects generally precede

amyloid deposits

Tg2576 (Swedish) Hsiao et al. (1996) [56]

APP (Indiana,

London)

Mutations at gamma-

secretase cleavage site (aa

717)

Enhanced cleavage by

gamma-secretase;

increased Ab 42:40 ratio

YES: 9–12mo NO NO YES YES Higher levels of diffuse

amyloid deposits

PDAPP (Indiana) Games et al. (1995) [55]

APP (Arctic, Dutch,

Flemish, Italian)

Mutations within Ab

sequence (aa 692/3)

Enhanced Ab

oligomerization, formation

of protofibrils

YES: 9–12mo NO NO YES YES Pronounced cerebral

amyloid angiopathy

TgAPParc, APPDutch Ronnback et al. (2011);

Herzig et al. (2004) [57,58]

APP (Japanese) Mutation within Ab
sequence (aa E693delta –

deletion of glulamate 22)

Enhanced Ab
oligomerization with no

fibrillization or plaques

NO NO YES

(>24mo)

YES YES Intracellular accumulation

of Ab oligomers from 8mo;

includes tau

hyperphosphorylatoin,

gliosis

TgAPP (E693) Tomiyama et al. (2010)

[59]

Multiple APP

mutations

Combination of single APP

FAD mutations

Combination of effects on

APP processing/Ab

YES NO NO YES YES Increased amyloid

pathology over single APP

mutation models

TgCRND8, J20 Chishti et al. (2001); Davis

et al. (2004) [60,61]

Amyloid-b (Ab) Human Ab40 or 42 fusion

protein with BRI

Overexpression and

secretion of only Ab, no

extra APP cleavage

products

YES: 3mo NO NO YES YES Reactive gliosis and

amyloid pathology only

with Ab42 model; similar

overexpression level as

Tg2576

BRI-Ab42 McGowan et al. (2005) [62]

Presenilin-1 FAD point mutations or

exon 9 deletion in human

PS1

Altered APP cleavage;

enhanced Ab 42:40 ratio

NO NO NO YES NO Accelerated

neurodegeneration in older

mice >13mo; PS2 model

also available with rare

mutation, not commonly

used

PS1 (M146WL), PS1(dE9) Duff et al. (1996) [51]

Tau Point mutations in human

MAPT (FTD mutations)

Increased tau

phosphorylation/

aggregation

NO YES

(>6mo)

YES YES YES Significant motor defects,

brainstem and spinal cord

pathology in some strains.

Inducible promoter models

may be more appropriate

for cognitive behavioral

studies

JNPL3, MAPT (P301L),

MAPT(VLW)

Ramsden et al. (2005); Lim

et al. (2001); Terwel et al.

(2005) [53–65]

Multi-transgenic

APP/PS1 Double transgenic (APP

FAD mutant

overexpression, PS FAD

mutant expression or

knock-in)

Accelerated phenotype and

pathology but minimal

neurodegeneration

YES: 3–6mo NO NO YES YES Significant hippocampal

neuron loss in some

subtypes (APP(swe+lon)/

PS1)

APP(swe)/PS1(M1 46L),

APP(swe)/PS1(A246E)

Holcomb et al. (1998);

Borchelt et al. (1997)

[66.67]

APP/Tau Double transgenic (APP

FAD mutant

overexpression, tau FTD

mutant overexpression)

Accelerated phenotype and

pathology but minimal

neurodegeneration

YES: 9mo YES YES YES YES Increased amyloid

deposition compared to

Tg2576/reports of high

death rate

APP(swe)/MAPT(P301L),

APP(swe)/MAPT(VLW)

Lewis et al. (2001); Ribe et

al. (2005) [68,69]

APP/PS1/Tau Triple transgenic; FAD APP

and FTD tau transgenes in

PS1 FAD knockin

Accelerated phenotype and

pathology including NFTs

YES: 3–6mo YES YES YES YES Early intraneuronal

deposits; plaques precede

tangles

3�TgAPP [APP(swe)/

PS1(M146V)/

MAPT(P301L)]

Oddo et al. (2003) [70]
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PS1 overexpression, we and others have often used models of the
disease in which Ab per se would be responsible for observed
deficits (Table 2). Given that natural oligomers of human Ab as
well as synthetically produced human Ab oligomers impair LTP
[21–29], oligomeric Ab directly infused into the ventricles or
hippocampi of adult animals provides an acute Ab pathology
model. The Ab can be infused via pre-implanted cannulas, which
facilitate direct delivery and help avoid issues related to the blood
brain barrier [30–34]. These experiments have shown that Ab per
se is capable of impairing different types of memory including
associative and reference memory, suggesting that the peptide
plays a direct role in memory impairment in general.

Another advantage of using the Ab-infusion model is the
possibility of using animals other than mice. For instance,
intracerebroventricular infusion of Ab in rats induced an
impairment of MWM performance [88–93], an effect that was
worsened by a concomitant cerebral hypoxia [94]. Additional
advantages of using this model include the low costs and
significantly less labor/time requirements compared with devel-
oping a transgenic mouse colony. However, disadvantages of using
the Ab infusion model are: (i) it does not reproduce the
characteristic hallmarks of AD represented by senile plaques,
neurofibrillary tangles and neuronal loss; (ii) it requires a very
careful methodological standardization of Ab preparation and
efficacy testing in interleaved experiments; (iii) it does not allow
testing of a treatment on disease progression; (iv) the animals are
cannulated, which can be an issue for behavioral studies since
cannulas can fall out, and multiple injections can stress animals,
making it difficult to follow animals over time.

Following upon the discovery of extracellular soluble tau in the
cerebrospinal fluid (CSF) of both healthy individuals and, in higher
amounts, in AD patients [95–100], our group first tested the effect
of tau oligomers on synaptic function and demonstrated that,
similar to Ab, tau oligomers are capable of impairing LTP
[101,102]. These experiments led to investigations on whether
tau oligomers infused onto the dorsal hippocampi are capable of
affecting memory. Consistent with the LTP results, it was found
that memory was impaired in oligomeric-tau infused mice
[71,103,104]. Taken all together, these studies demonstrate the
potential of using alternative, acute exposure models for investi-
gating AD pathogenesis and drug testing (Table 2).

3. Behavioral studies

The medial temporal lobe (MTL) has been recognized as a
critical region for explicit or declarative memory since the famous
case studies of memory impairment resulting from hippocampal
damage in H.M. and other patients [105]. The MTL belongs to the
limbic system, which supports a variety of functions such as
learning, memory and emotional behavior via the integration of
multiple structures including the hippocampus and the regions
surrounding it (perirhinal, parahippocampal, and entorhinal
cortex), the amygdala, the cingulate gyrus, the fornix, the
mammillary body, the septal area, the piriform cortex, the anterior
thalamic nuclei, the hypothalamus, the epithalamus, and other
structures. The hippocampus, in particular, has been recognized to
be critical for spatial memory and is therefore the focus of this
review [106–108]. Because of its vulnerability to damage at the
earliest stages of AD, the hippocampus is considered fundamental
for understanding the disease pathophysiology [8,109–114].
Indeed, most of the behavioral protocols aim to measure
hippocampal-dependent memory, and many efforts have been
made to develop models of human memory in monkeys and
rodents [115,116]. However, differences across species should be
considered; for example, the hippocampus codes spatial and
episodic verbal memory in humans [117–119], whereas in rodents



Fig. 1. Picture of the fear memory apparatus used in our laboratories.
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it is mainly associated with spatial navigation and a highly
represented olfactory behavior [120–125].

Among the various types of behavioral paradigms, we will
mainly consider behavioral tasks that might reflect defects in
humans affected by AD. For instance, the FC task studies
associative memory that is affected in AD patients. The RAWM
task studies short-term memory (STM), a type of memory that is
affected early in the disease [126]. The MWM task studies long-
term memory (LTM) which is affected at late stages of the disease.
Regardless of the experimental paradigm, it is crucial that the
behavioral task is designed and conducted appropriately by taking
into account the species-specific behavioral characteristics, the
correct interpretation of the results, and the biological mecha-
nisms underlying the type of memory studied, other than strain,
age, sex, and the peculiar features of genetic modified animal
models.

3.1. Fear conditioning (FC)

Memory can be distinguished as explicit and implicit; the latter
can be further differentiated as non-associative (habituation and
sensitization) and associative learning (classical and operant
conditioning). FC is a form of associative learning based on the
classical or Pavlovian conditioning, which involves the learning of
relationships between two stimuli: a neutral stimulus, named
conditioned stimulus (CS), causing a weak responses that typically
has no relation with the task to be learned (e.g. light or sound); and
a stimulus able to evoke a typical behavior response (e.g.
salivation) known as unconditioned stimulus (US). The Russian
physiologist Ivan Pavlov (Nobel Prize for Physiology or Medicine in
1904) was the first to demonstrate the phenomenon of classical
conditioning. Having noticed that the mere sight of the plate with
food induced salivation in dogs (unconditioned response – UR), he
decided to investigate whether salivation could be induced in
response to a neutral stimulus, such as the sound of a bell,
associated with the meal presentation. While the sound of the bell
itself did not evoke any response, after a few trials in which the
sound was coupled to the food, dogs began to salivate before
receiving the food in response to the simple sound of the bell
(conditioned response – CR). This kind of conditioning was called
‘‘classical reward conditioning’’, or appetitive conditioning since
the US was followed by a pleasant event such as food. In contrast,
aversive or defensive FC occurs when the US was followed by an
unpleasant event (such as an electrical shock) triggering a series of
automatic responses e.g. freezing. The important variables in the
phenomenon of Pavlovian conditioning, and thus of FC, are: (i) the
CS should be administered before the US; (ii) the interval between
CS and US is critical for most of the examples of conditioning; (iii)
CS and US should be contiguous; (iv) if the CS is repetitively
presented in the absence of the US, the CR will decrease in
intensity until it disappears according to the phenomenon of
extinction, which also involves the learning of new information
and is therefore not an equivalent of forgetting. Classical
conditioning has the advantage of being long-lasting and
quickly-acquired, thus allowing the additional testing of memory
persistence [127]. FC can be investigated both in animal models
and humans, e.g. as a model for post-traumatic stress disorder
[128]. It is a useful tool for investigating both emotional and
contextual memory, and by extension, the integrity of the main
brain structures involved: the amygdala and the hippocampus,
respectively. Furthermore, FC has the advantage of being much
faster than other behavioral tasks since it requires only one day of
training. Finally, it offers the advantage of precisely confining to a
very short time (we use 2 s) the moment at which contextual
learning occurs (an advantage that turns very useful for
biochemical experiments).
3.1.1. Methodology

FC has been deeply investigated by LeDoux’s and Fanselow’s
research groups (for reviews see [129–132]). In the most
commonly used procedures, a one-trial learning of the CS,
represented by a light or a sound, is paired to an electric foot
shock (aversive US). Rodents will learn to associate: (i) the light or
the sound with the aversive stimulus, which is evident when the CS
is presented again to stimulate remembrance of the foot shock
(Cued FC); (ii) the place or context where they received the
aversive stimulus, which is demonstrated when they are later
placed in the same context (e.g. the conditioning chamber) to
stimulate memory of the foot shock (contextual FC). Following an
aversive stimulus, the CR will be represented by fear [133], which
is physiologically accompanied by a series of behavioral responses
evolved for escaping from the source of danger [134]. The fight-or-
flight sympathetic response [135] involves an increase of
catecholamine, ACTH and cortisol secretion along with a conse-
quent increase of function in cardiovascular, respiratory systems,
and an inhibition of parasympathetic functions such as digestion.
In rodents, several studies have demonstrated that the defensive
behavior associated with fear is represented by freezing [136]: a
total absence of movements except for those necessary for
breathing. This is thought to be an innate defense mechanism
aimed at feigning death in front of a predator.

Although several protocols have been proposed (see for
example [137]), here we will describe a procedure that has been
successfully used in our laboratories to investigate both contextual
and cued conditioning in animal models of AD [33,34,138–144]
(see Fig. 1 for a picture of the apparatus). Mice are tested
individually in a conditioning chamber that is located in a sound-
attenuating box with a clear Plexiglas window that allows video
recording of the experiment. The conditioning chamber has a 36-
bar insulated shock grid floor. The floor is removable, and after
each experimental subject, it is cleaned with 75% ethanol and then
again with water. To provide background white noise (72 dB), a
single computer fan is installed in one side of the sound-
attenuating chamber. Mice are handled once a day for 3 days
before behavioral experiments. Only one animal at a time is
present in the experimentation room. It is placed in the
conditioning chamber for 2 min, following which a discrete tone
(CS) at 2800 Hz and 85 dB is delivered for 30 s. In the last 2 s of the
tone, the mouse receives a foot shock (US) through the bars of the
floor (0.50–0.80 mA for 2 s). The experimenter might regulate the
intensity of foot shock; for example it is possible to elicit stronger
memory by using a 0.75 mA foot shock. After the CS/US pairing, the
mice are left in the conditioning chamber for another 30 s and are
then placed back in their home cages. Freezing behavior can be
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scored by using dedicated software. In our personal experience,
double-checking by manually scoring freezing time has been very
useful. Twenty-four hours after training, the mouse is placed back
in the conditioning chamber. This allows the evaluation of
contextual fear learning, since a mouse with intact contextual
memory should be able to recognize the context where it received
the foot shock the day before. Freezing is measured for 5
consecutive minutes. To evaluate cued fear learning, we replace
the mouse in the conditioning chamber 36 h after training. In this
case, we create a novel context by inserting a triangular cage with
smooth flat floor and with vanilla odorant. After 2 min (pre-CS
test), the mouse is exposed to a tone with the same characteristic of
the tone used during training for 3 min (CS test), and freezing is
measured. To obtain a sample appropriate for statistical analyses,
we usually use 15–20 animals per condition.

An important control that needs to be performed during testing
of fear memory is the sensory threshold assessment. Changes in
the sensory perception of the shock might be due to the
experimental manipulation leading to a false attribution to
memory of the observed phenotype. A sequence of single foot
shocks is delivered to animals placed on the same electrified grid
used for FC. Initially, a 0.1 mA shock is delivered for 1 s, and the
animal’s behavior is evaluated for flinching, jumping, and
vocalization. At 30 s intervals, the shock intensity is increased
by 0.1–0.7 mA and then returned to 0 mA in 0.1 mA increments at
30 s intervals. Threshold to vocalization, flinching, and then
jumping is quantified for each animal by averaging the shock
intensity at which each animal manifests a behavioral response to
the foot shock.

3.1.2. Brain regions involved in FC

Whereas the amygdala is the main brain structure in the fear
circuit that is involved in the formation and storage of emotional
memories, the hippocampus participates in learning the context
that triggers fear [129–132,145–150]. Lesion studies performed in
rodents have demonstrated that the amygdala is involved in the
fear responses triggered by both the cue and the context; when the
hippocampus is damaged, both pre- and post-training, only
contextual conditioning is impaired [146,151,152]. Thus, the
amygdala has a primary associative role in the processing of fear,
whereas the hippocampus communicates the sensorial represen-
tation of the context that informs the amygdala of the environment
of the dangerous event. It acts as a sensory relay for visuo–spatial,
auditory, olfactory, or other sensory input, thus requiring the
integrity of thalamus [153] (reviewed in [131]), and as a motor
relay, since hippocampal lesions can also result in increased
locomotor activity that affects freezing [151]. Contextual condi-
tioning occurs also in the absence of the cue – the impairment of
contextual conditioning by lesions of the hippocampus has been
related with loss of a conjunctive representation of the features of
the context [154]. Once the hippocampus has recognized and
consolidated these features, contextual information would pre-
sumably be stored in the neocortex.

At a molecular level, contextual FC is based on a form of
synaptic plasticity sharing mechanisms with NMDA-dependent
LTP. Actually, administration of an NMDA antagonist into the
dorsal or ventral hippocampus selectively impairs contextual FC
[151,155]. Also NMDA modulation in other brain areas may affect
contextual memory. For example, at the dorsolateral periaque-
ductal gray, inhibition of NMDA receptors, neuronal NOS, and
soluble guanylyl cyclase attenuate contextual FC in rats [156],
whereas activation of NMDA receptors in the medial prefrontal
cortex has been found to be needed for the acquisition of both trace
and contextual fear memories [157,158]. The involvement of
cAMP/PKA and nitric oxide/cGMP/PKG pathways in contextual fear
learning and consolidation has been widely demonstrated by
pharmacological and genetic approaches in hippocampus, amyg-
dala and prefrontal cortex [159–165], and has the role of the
transcription factor c-AMP-Responsive-Element binding (CREB;
[166–168]). Cholinergic, serotoninergic and GABAergic signals
have been also demonstrated to be crucial in contextual FC
[160,169–179].

3.1.3. FC in AD models

Conditioned fear responses have been demonstrated to be
impaired in patients with mild to moderate AD [180,181].
Consistent with these findings, the Tg2576 mouse model showed
an impairment of contextual fear learning at 4–6 months [78–82]
when plaques are not yet detectable, but the Ab42:Ab40 ratio is
modified [80]. This defect worsens with age, [78,182] and becomes
profound at 12–14 months [183,184]. It should be also noted that
the same animals have provided different results in different
studies assessing cued learning which was found to be either
normal [183,184] or altered [185].

Double transgenic APP/PS1 mice present an impairment of
contextual FC starting at about 3 months, whereas cued FC is
normal, indicating that the learning deficits is based upon the
hippocampal dysfunction [78,138,140,186]. In these mice the
behavioral changes are concomitant with the increase of Ab and
early plaque deposition. Some authors have shown a reduction of
auditory FC in aged APP/PS1 mice at 12–14 months, notwith-
standing a very low presence of plaques in the amygdala [187].

The APPswe/PS1dE9 mouse, another double transgenic model of
AD, shows early contextual memory impairment [188,189], even if
some authors have detected it at older age (14-months; [190]), and
others have found normal spatial learning and memory, FC, and
sensorimotor gating at 7 months, with abnormal social recognition
memory [191]. Additional transgenic models that present abnormal
contextual fear memory before the onset of amyloid plaques are the
PS1M146V knockin mice [192], the APP-SL 7–5 transgenic mice
overexpressing human APP695 harboring the double Swedish and
London mutations [193], the APP J20 carrying the APP Indiana
(V717F) and Swedish (K670M) mutations [194], the 5�FAD mice
(Tg6799 line) that co-overexpress FAD mutant forms of human APP
(the Swedish mutation: K670N, M671L; the Florida mutation:
I716V; the London mutation: V717I) and presenilin 1 (PS1) (M146L;
L286V) [195]. Finally, it has been demonstrated that contextual
memory is impaired in acute models of AD induced by i.c.v. or
hippocampal [33] injections of oligomeric Ab42 [34,196].

3.2. Radial arm water maze (RAWM)

The RAWM was designed to measure spatial learning and
memory performances in rodents [197–199], as a combination of
dry radial arm mazes (RAM; [121,200] and MWM [201]). Dry RAM
consists of a platform equipped with a variable number of spaced
arms radiating from the center. Rodents should enter one of the
arms, using spatial cues in the room, to reach food or water. This
kind of task requires both working memory (WM) when retaining
information for a very short time and reference memory when
retaining memory for longer times. The limitations of RAM include
the deprivation of food or water and the presence of confounding
olfactory signals. Moreover, dry RAM is less sensitive in detection
of search strategies than MWM, because once the rodent has
chosen an arm, it goes to the end of it expecting the reward. Thus,
RAM is more useful for investigating changes of error patterns than
searching patterns. Another difference between RAM and MWM
entails the acquisition time. Indeed, spatial learning can be
achieved in about 6–10 trials in MWM, whereas for RAM
acquisition rate depends upon the protocol used ranging from 2
days to 3–4 weeks (for a review on RAM and MWM comparison,
see [202]).
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Thus, the advantages of RAWM result from the ability: (i) to
combine a complex spatial environment with an easy way of
measuring animal performances by counting errors, which does
not require a video tracking system or computers; (ii) to give
animals a strong motivation (to escape from water) without
requiring food deprivation or foot shock; (iii) to possibly test both
WM and reference memory.

3.2.1. Methodology

Several RAWM protocols have been used, with differences in
the apparatus and animal acquisition phase [83,198,199,203,204].
Here, we will describe two different protocols that have been used
in our laboratories, one requiring three weeks, mostly testing WM
[83,138,140,205], and another one requiring two days, testing
reference memory [33,34,204], respectively.

The RAWM apparatus is the same described for MWM (see
below), except for the addition of arms (from 4 to 16, depending on
the pool size and the chosen procedure; [206]), that are equidistant
and radiating from the center. Arms can be made of aluminum,
Plexiglas or plastic. In our apparatus, we have used a 110 cm plastic
large circular pool in which we inserted 6 arms (height 50 cm)
made of white-glazed aluminum and fixed one to each other to
form a 608 angle at the center between two adjacent arms (see
Fig. 2). Each arm is 35 cm long, and the central free area has a
diameter of 40 cm. Each swim alley is 25 cm wide. We label each
alley with a number (1–6) by placing a label on the pool edge
where mouse cannot see it (it should not be a cue). The pool is filled
until 25 cm of the arms are submerged by water and 25 cm are
outside. We add non-toxic paint to increase water opacity.

As in MWM, rodents are tested individually and the goal of the
mouse is to escape from water by finding a submerged platform
positioned at the end of one of six arms. In the three week ‘‘long’’
protocol, the platform remains in the same location for each day of
trial; this location is changed randomly day by day. On each day,
the mouse undergoes 4 consecutive acquisition trials (named A1–
A4). For each trial it starts the test from a different randomly
chosen arm, so that it has to rely on its STM of the platform location
based on spatial cues present in the room, and not on its LTM of the
platform location from previous days. For each trial (lasting up to
60 s), the experimenter counts the errors made by the mouse each
time it enters the wrong arm or when the animal needs more than
15 s to make a decision. Indeed, as in MWM, thigmotaxis or
passivity can occur, whereby a mouse floats or swims in the central
area without choosing an arm. After each error, the mouse is gently
pulled back to the starting arm for that trial. After four consecutive
acquisition trials, the mouse is placed in its home cage for 30 min
and then returned to the maze and administered a fifth retention
trial (R), which is an indicator of STM. Animals are trained for 3
Fig. 2. Picture of the RAWM apparatus used in our laboratories.
weeks, i.e. until the wild type (WT) control mice reach asymptotic
performance (an asymptotic level of one to three errors on A4 and
R). The scores for each mouse on the last 3 days of testing are
averaged and used for statistical analysis.

In the ‘‘short’’ 2-days RAWM version of the task, the goal arm
does not vary from day by day but is kept constant for all trials,
with a different starting arm on successive trials. This protocol
allows reaching of the learning criterion in only 2 days. During the
first day, the mouse is trained in 15 trials (T1–T15) to identify the
platform location in a goal arm by alternating between a visible
and a hidden platform from T1 to T12 (beginning with the visible
platform in the assigned arm). In the last four trials (T13–T15) only
a hidden platform is utilized. During the second day the same
procedure is repeated by using only the hidden platform from T1 to
T15. An entrance into an arm with no platform, or failure to select
an arm after 15 s is counted as an error and the mouse is returned
to the start arm. Each trial lasts up to 60 s, and at the end of each
trial, the mouse is kept on the platform for 15 s. The number of
errors and time to complete the trial is recorded. The average of
errors made in 3 consecutive trials for each mouse is calculated and
used for statistical analyses.

We have found this procedure highly suitable for rapidly testing
STM. A confounding factor could be the physical fatigue that
results from 15 consecutive trials, which may interfere with the
learning process. For this reason, spaced practice training might be
established by running the mice in cohorts of 4 and alternating
different cohorts through the 15 training trials over 3 h testing
periods each day. The goal platform location will be different for
each mouse. After all of the mice in cohort 1 have performed a trial
to locate a visible platform, this is switched from visible to hidden.
After each mouse from cohort 1 completes six alternating visible-
hidden trials, they are left to rest under a heating source, and mice
from cohort 2 are tested in the same way. When all the cohorts
have performed the T1–T6 trials, all of the cohorts are tested again
to complete the T7–T12 trials in a similar alternating fashion. At
this point, all mice have to perform the last 3 hidden platform trials
(T13–T15).

In conclusion, in the ‘‘long’’ RAWM protocol, mice are required
to learn that the platform is maintained in the same position on
each trial within a day, but it is moved to a different arm each day;
in contrast, in the ‘‘short’’ RAWM protocol, the goal arm does not
change day by day.

As for all experiments, one must be assured of the validity of the
controls. Thus, if a large number of WT mice have not reached the
learning criterion in the final three trials, more days of training can
be added.

In both versions of the RAWM, on the day after the last test, the
mice undergo a visible test to control for possible motivational,
visual and motor deficits. This is very important especially when
using genetically modified animals; for example, certain strains
can inherit a retinal degeneration mutation leading to blindness
[207,208]. Following testing with the RAWM, animals undergo two
daily sessions (each consisting of three 1 min trials) for two days,
and the time taken to reach a visible platform (marked with a green
flag) randomly positioned in a different place each time is
measured. Moreover, both during the hidden and the visible test
it is possible to measure swimming speed and distance traveled to
reach the platform in order to analyze possible motor effects on the
performance. Indeed, an animal can reach the platform faster or
slower, not because of an alteration of its spatial memory skills but
because of potential effects on its swimming or sensory abilities.
An impairment of the RAWM test with normal performance on the
visible test indicates that the mouse has a memory impairment
that is not related to motivational, visual and motor skills.

Finally, when assessing performance with the RAWM, the
following factors should also be taken into account: (i) differences
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between rats and mice, especially in correlation with the different
strains of mice (see below); (ii) differences between males and
females, even if the literature is contradictory regarding better WM
performances in males [209] or females [206,210]; for this, we
suggest performing behavioral tests in sex-balanced groups of
mice; (iii) methodological factors such as size of the pool,
lightening, procedures; (iv) animal handling. Another essential
factor is the age of the animals, which will be discussed in detail in
the next section.

3.2.2. RAWM and working memory

The definition of WM is still an issue of debate in the
neuroscience community. Another issue is the difference between
rodent and human WM. Memory can be classified by a temporal or
qualitative criterion: the first takes into account the time that the
memory of the information remains effective, whereas the second
distinguishes memory according to the type of information
retained. Thus, depending of the ‘‘length’’ of memory, we can
distinguish: (i) iconic memory and echoic memory, two forms of
very short sensory memory for visual or auditory stimuli; (ii) STM,
which is able to hold information only for few seconds if it is not
transferred to (iii) LTM, which is a form of permanent memory
theoretically able to store an indefinite amount of information for a
life-time. Conversely, memory classification according to a quality
criterion differentiates declarative or explicit memory and non-
declarative or implicit or procedural memory. Declarative memory
refers to specific personal events characterized by ‘‘warmth and
intimacy’’, as described by William James in 1890 [211]. It is
autobiographical, and events are recalled and placed in relation to
the time of life of the individual in which they occurred (see [212]).
Conversely, non-declarative memory is a typical memory process
aimed at recollecting how to perform an action by identifying or
using a stimulus that had already been presented. Non-declarative
memory is characterized by unconscious influences of past
experiences, which are manifested by changes in the speed or
the ways in which the same task is performed. It includes motor
learning, perceptual representation system (to identify words and
objects on the basis of their shape and structure), procedural
memory (to acquire skills and habits through repeated exercises),
and WM. In particular, the latter is considered a memory system
entrusted with the task of manipulating the information tempo-
rarily in order to maintain it for basic cognitive activities such as
comprehension, reasoning and problem solving. The term ‘‘work-
ing memory’’ was coined in 1960 in relation to the new theories
comparing the mind with computer functioning [213]. Before,
neuroscientific debate focused on STM as the ability to remember
information for a short time (on the order of seconds) as opposite
to the more durable LTM.

What is WM in rodents? How is it possible to differentiate WM
from STM by using behavioral testing in animals? The first attempt
was made in the late seventies [120,121,214] by using behavioral
tasks such as the RAM in which WM was considered the capacity to
remember which arm a rodent had visited in a session. Indeed, this
form of memory is transient and it serves to carry out a specific task
in a given time. In an interesting review, Dudchenko defines WM as
‘‘a short term memory for an object, stimulus, or location that is used
within a testing session, but not typically between sessions and it is
distinguishable from reference memory, which is a memory that
would typically be acquired with repeated training, and would
persist from days to months’’ [215]. Particular emphasis is also given
to the concept of forgetting because WM, once used, is immediately
forgotten. This confirms that WM is a type of STM typically used
within a testing session, but not between testing sessions, because
the information will be deleted after its use [215].

As mentioned before, WM temporarily retains information for
manipulation in carrying out complex cognitive tasks [216]. Thus,
it requires both spatial and procedural memory and relies upon the
same brain structures described for MWM, particularly the
hippocampus and medial prefrontal cortex. This cortical region
is mainly involved in the temporary storage and processing of
information lasting up to seconds, whereas the hippocampus is
more critical when a longer storage is required [217].

3.2.3. RAWM in Alzheimer’s disease models

WM performance is sensitive not only to damage of the above-
mentioned brain areas, but also to normal aging [218], and
neurodegeneration such as AD neuropathology [219]. Indeed,
testing WM deficits is essential in Tg mouse models of AD to
establish the progression of the disease and the effectiveness of
potential new drugs. Although WM might also be tested by a
modified version of MWM [220], we have found RAWM to be the
most reliable task for investigating WM in AD animal models.
RAWM was first used in 1985 [197] by inserting an 8-arm radial
maze into a water tank where rats were forced to swim and escape
onto a bench in one of the maze arms, with the position of the
submerged platform changing for each trial. Since then, several
protocols have been utilized and the RAWM task has also been
modified to study reference spatial memory in a short term
paradigm that lasts only 2 days, particularly suitable for AD models
[33,34,204].

Several studies have been performed using RAWM to detect an
impairment of WM in animal models of AD, but results are
controversial especially with respect to the age at which RAWM
detects a WM deficit [221]. In single Tg2576 transgenic mice the
impairment of WM has been detected at 4.5 [222] or 8–9 months of
age [223,224]. Wilcock et al. [225,226], conversely, found a RAWM
impairment in APP mice at old age (from 24 months), but results
are not available for younger animals that were not tested for
RAWM. Results are also contradictory in APP/PS1 mice. In APPswe/
PS1dE9 some studies demonstrated an impairment of RAWM
performances starting at 6 months of age [227], whereas in other
papers transgenic mouse performance was normal at 7 months of
age and reduced at 13 months [228] or at 10–15 months [229]. The
group of Morgan also showed that RAWM was impaired starting at
about 15 months of age in both APP and APP/PS1 (line 5.1) mice,
whereas they learned and remembered the platform location at 6
and 11.5 months of age [230,231]. Recently, Webster et al. [232]
have studied RAWM in four different age groups (7, 11, 15, and 24
months) in APP/PS1 knock-in mice characterized by the introduc-
tion of a Swedish FAD K670N/M671L point mutations, the
humanization of the mouse b-amyloid sequence, and the
introduction of a P264L mutation in the PS1 gene. These mice
performed worse than WT controls in the RAWM task starting at 15
months of age, and the increase of errors paralleled the increase of
age and the disease progression. In our laboratory, we have also
demonstrated that the worsening of WM increased with age, in
parallel with the accumulation of Ab. However, WM was affected
as early as 3 months of age in APP/PS1 (line 6.2) mice [83,138,140]
as demonstrated by the increased number of errors at A4 and R
compared with WT littermates. This impairment worsened in older
animals (6–8 months). Conversely, reference memory tested by
MWM started to be impaired at 6–8-months in Tg mice
[83,138,140].

The choice of the experimental samples groups is fundamental.
For example, if we aim to demonstrate the positive effect of a drug
on AD onset and progression, we need to use 4 groups of animals:
AD model without treatment; AD model with treatment; WT
littermates without treatment; WT littermates with treatment. If
littermate controls are not available, WT mice of the same sex, age
and with the proper genetic background should be used. This
simple experimental scheme provides important information: (i)
AD model without treatment should present synaptic or cognitive



Fig. 3. Picture of the MWM apparatus used in our laboratories.
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deficits at the appropriate age when such dysfunction is known to
be present; (ii) AD model with treatment, as the primary
experimental group, may demonstrate a change in synaptic
plasticity and memory measures due to the treatment; (iii) WT
without treatment should not present deficits, and synaptic and
memory measures should be consistent with the known data on
the strain; (iv) WT with treatment usually do not present a change
in synaptic plasticity and memory when the treatment selectively
acts on a disease-related pathway; however, in some cases, an
alteration of synaptic plasticity and memory is possible if the drug
affects the physiological mechanisms at the basis of learning and
memory. Moreover, if the treatment is expected to slow the onset
of the disease, it should be started earlier than a drug designed to
treat the overt disease.

In conclusion, despite the possible differences due to the
protocol and the strain used, we believe that RAWM is a useful task
to investigate early STM impairment in animal models of AD.

3.3. Morris water maze (MWM)

The MWM was first recognized by Morris in 1981 [201] as a
behavioral test for hippocampal-dependent spatial learning and
long-term spatial memory in rodents. It is now one of the most
used tools in behavioral neuroscience due to a number of
advantages [233–236]: (i) simple and fast execution, no pre-
training period, and relatively low number of animals required; (ii)
possibility of differentiating between spatial learning and long-
term spatial memory, and testing of non-spatial abilities such as
visual and motor performance; (iii) reduction of olfactory
interferences, which are known to rely on the hippocampus; (iv)
absence of unpleasant procedures based on the delivery of an
electric shock or food deprivation; (v) low costs since the apparatus
can be easily made. Along with many other research groups, we
have successfully used MWM to test spatial memory impairment
in models of AD [83,138,140] and aging [237], and to evaluate the
effects of drugs with enhancing or deleterious effects on cognition.

3.3.1. Methodology

Several papers have described the MWM methodology
(reviewed in [233,236,238,239]) since the apparatus and/or the
training procedures can exert significant influences on spatial
performance. Here, we will describe the most commonly used
apparatus and protocol that we have personally tested in recent
decades with good results and a high degree of reproducibility in
both normal, aged and genetically modified mice models of AD
[32,83,138,140–142,237].

Briefly, the apparatus consists of: (i) a plastic large circular
pool (height: 75–80 cm; diameter 150–200 cm for rats and 90–
120 cm for mice) filled with water (up to about 40 cm below the
edge to prevent the animal jumps out), maintained at about 25 8C
and made opaque to hide the submerged platform, e.g., by the
addition of nontoxic white paint, powdered milk or synthetic
opacifiers; (ii) a submerged platform (1 cm under the surface of
the water) measuring 10 cm � 10 cm, preferably made of
Plexiglas, non visible to the swimming animal (hence the name
‘‘hidden test’’); (iii) stationary geometric cues made by different
objects usually placed on the 4 cardinal points of the maze (we
have found this to be more efficacious) or on the walls of the
room but visible by animals during swimming; it is important
that cues are not moved during the test; (iv) a camera mounted
on the ceiling and connected to a video tracking system and
software for motion detection. If this system is based on the color
difference between the maze and the animal, one should use a
white animal on a black background or, in our case, a black mouse
(e.g. of the common C57Bl/6 genetic background) in a white maze
(see Fig. 3).
During the entire protocol the role of the experimenter should
be carefully considered. It is preferable for the experiment to be
conducted after a period of handling by only one experimenter.
Moreover, the experimenter should remain stationary in a
constant location (or leave the room) because he/she represents
a distal cue for the swimming animals. Finally, it is important to
perform the experiment in at least three cohorts, possibly by
different experimenters (we adopt a similar precaution also for FC
and RAWM).

Rodents are tested individually. First, animals undergo a
training period that can last from 2 to 10 days; this training
reveals the ability of the animal to learn in relation to spatial cues.
Animals are placed into the pool where they learn to locate the
hidden platform beneath the surface of the water. In our protocol,
mice are trained for 3 days in 2 daily sessions each consisting of
three 1 min trials. Conventionally, the maze is divided in 4
quadrants by a cross whose vertices represent the 4 cardinal
points: North (N), South (S), East (E) and West (W). For each trial
the animal is placed in the water starting from a different randomly
chosen quadrant (that does not contain the platform), whereas the
platform is always positioned in the same place (SW). If the animal
fails to find the platform within the given time (60 s), the trial is
considered over and the animal is placed on the platform for 15 s
before starting with the second trial. Sessions are held 4 h apart, so
that the mice have to rely on LTM of the platform location.
Typically, the time taken to reach the hidden submerged platform
(escape latency) is recorded; this time measure progressively
decreases, which produces a characteristic learning curve.
However, since the ability to reach the platform can be based
on a praxis strategy (animals learn sequence of movements), a
taxon strategy (animals recognize proximal cues), or a spatial
navigation strategy (animals map the spatial environment and
recognize distal cues) [240], the video tracking system should also
allow the measurement of non-mnemonic behaviors or strategies
(length of the swimming path, path directionality, or cumulative
distance to platform [241]).

After this acquisition training, on the 4th day (or in any case,
24 h after training) a probe trial is usually performed. The platform
is removed from the pool and mice are allowed to freely swim for a
certain period of time (we perform four 1-min trials, for each
animal starting from a different cardinal point). For the probe
analyses, the maze is virtually divided into 4 quadrants, the target
quadrant (TQ; i.e. the one previously containing the platform), and
3 non-target quadrants (AL = adjacent left, AR = adjacent right, and
OQ = opposite quadrant). The percent time spent in each quadrant
seeking the platform is analyzed (usually, a normal mouse will
spend about 35–40% or more of the time in the TQ). Moreover, it is
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possible to examine the number of times it crosses the platform
area and the traveled trajectory.

As with the RAWM, a visible test is used to assess motivational,
visual and motor abilities. We usually perform this test with the
same protocol as the hidden acquisition training during the 5th
and 6th day. An impairment of the hidden acquisition test with
normal performance on the visible test indicates that the mouse
has a spatial memory impairment that is not related to
motivational, visual and motor skills.

3.3.2. Factors that may influence MWM performance

MWM was originally designed to study spatial memory in rats
[201,233]. However, mice have recently become the most used
animals for studying the pathophysiology and therapeutic target-
ing of diseases due to the availability of transgenic models [242]. In
this regard, it should be noted that mice perform more poorly than
rats in MWM [243], partially due to the fact that their performance
can be affected by thigmotaxis (the tendency to swim near the wall
of the maze) and passivity (mice tend to float more compared to
rats) [236,244]. In these cases, the experimenter could intervene by
prodding the mouse with an object. Alternatively, the mouse can
be left in the water until the end of the trial and then tested again
on the same day or the day after. If it continues to fail, the mouse
should be removed from the data analysis. Maintaining a low
water temperature increases the aversive environment and thus
lessens the potential impact of thigmotaxis and passivity. In any
case, it should be noted if an entire experimental group
consistently exhibits atypical behavioral tendencies that can
influence MWM results, especially when testing transgenic mice
[242]. Among WT mice, C57Bl/6 animals are considered the better
performer of MWM experiments [208,245,246], whereas albino
mice, due to their visual impairment, tend to show impairments in
MWM [247].

In general, lighting is another factor to be considered when
performing tasks that depend upon the ability to process visuo–
spatial information. Light should be soft and diffuse, and there
should be no light reflections in the water. It is important to keep in
mind that rodents are nocturnal animals that usually rely on
olfactory capabilities rather than visual acuity [123,248,249], with
the former not being involved in MWM.

Steroid hormones also affect hippocampal function and
influence animal responses to stress [250–252]. Indeed, it is
important to minimize the amount of stress with a correct period
of pre-training handling, soft lighting, and an appropriate
manipulation during the test (i.e. lift mice out of the water on
the hand rather than by the tail). If very high-anxiety behavior is
noticed, anxiety-specific tests [253,254] can be conducted,
especially in transgenic mouse models, to exclude anxiety-related
effects on performance in the memory tests.

Behavior can be also influenced by viral, bacterial and
nematode infections [255–258]; thus, a veterinary health control
must be up to date.

Another important factor is age. MWM performance declines
with increasing age of the animals [237,259,260]. Part of this
decline may be due to age-related changes in swimming abilities,
locomotion and exploration. On the other hand, it is very difficult
to perform MWM in very young mice (<1 month) due to their
tendency to jump out of the pool.

3.3.3. Brain regions involved in MWM

It is well known that the integrity of the hippocampus is
necessary for spatial memory; however other brain structures
might influence spatial memory by influencing spatial navigation,
motor performances or movement organization (reviewed in
[239]). First, integrity of input and output hippocampal connec-
tions (i.e. fimbria-fornix, entorhinal and perirhinal cortices) is
required [261–267]. Other critical brain structures include:
thalamic structures [92,268–274], mammillary body [275–280],
amygdala [281–284], locus coeruleus [285–288], cerebellum
[289–293], prefrontal cortex [294–300], anterior cingulate cortex
[301–303], and the striatum [304–307]. The cholinergic basal
forebrain, and in particular the nucleus basalis of Meynert, provide
the major cholinergic projections to the cerebral cortex and
hippocampus and has been linked to memory (reviewed in [308]).
Lesions or degeneration of these structures are considered central
during aging and AD (reviewed in [309,310]); indeed, lesions of the
forebrain cholinergic system do induce MWM deficits [311]. These
should be taken into account when designing a protocol, especially
with drug manipulations or the use of genetically modified mice
that can present impairments of several brain structures.

3.3.4. MWM in Alzheimer’s disease models

MWM has been often utilized to investigate the presence of
rodent cognitive impairment that can be correlated with the
cognitive decline in AD patients. However, given that LTM deficits
start late in the disease process in AD, MWM deficits can similarly
manifest later in AD animal models (see below).

It is possible to use non-transgenic, single transgenic or multi-
transgenic models of the disease and each model has its strengths
and weakness. Among the most commonly used transgenic mouse
models, many manifest an increase of Ab with plaque formation
that parallels the onset of LTM deficits (reviewed in [312]). In our
laboratories, we have often used the double transgenic APP(swe)/
PS1(M146L) line 6.2 [83]. These animals have the advantage of
presenting synaptic and memory deficits at 3–6 months of age
together with amyloid increase and deposition. However, it is
important to note that while RAWM impairment is already present
at 3–5 months of age, MWM starts to be deficient at 6–8 months of
age [83,138,140]. Thus, it is important to choose the appropriate
age in relation with the behavioral test to be performed.
Unfortunately, due to commercial issues, it is very difficult to
acquire this strain, especially in Europe, so many research groups
are using more readily available models such as 3�tg-AD [70].
These models show all of the anatomopathological hallmarks of
the disease (senile plaques, neurofibrillary tangles, neuronal loss),
together with synaptic and cognitive deficits. In these mice, we
detected a MWM impairment, especially in the hidden test, at 4
months of age (manuscript in preparation).

4. Conclusions

Animal behavior evaluation has become a fundamental tool in
multiple areas of translational neuroscience and is useful for
studying (i) the physiological mechanisms underlying neurological
disorders, (ii) the functional modifications induced by genetic
manipulation or chemical treatment, and (iii) the efficacy of novel
drugs in reversing phenotypes in disease models. This is
particularly useful in the AD field, as a clinical hallmark of the
disease is memory loss. Furthermore, the ‘‘primum movens’’ of AD is
still unknown. Thus, using cognition-based behavior as a readout
can help avoid assumptions about the disease pathogenesis that
might be disproved by future studies. Toward this end, Tables 3
and 4 list some AD approved drugs and experimental compounds,
that have provided positive results in various behavioral assays
performed in our laboratories and might therefore be used as
positive controls.

Although cognitive assays of mouse models can provide
important information on the validity and efficacy of targets
and compounds, it is important to keep in mind that these tasks are
incomplete analogs of human cognition. A key limitation is that
many cognitive functions are unique to humans or cannot be
adequately measured in experimental models (e.g. WM related to



Table 4
Example experimental compounds found to ameliorate cognitive deficits in Alzheimer’s disease mouse models.

Compound Action Behavioral task (s) Model (s) tested References

Ciproxifan H3 antagonist MWM APP (Tg2576) Bardgett et al. (2011) [324]

AF267B M1 muscarinic agonist MWM 3�Tg-AD Caccamo et al. (2006) [325]

Nicotine Nicotinic receptor agonist RAWM Chronic Ab infusion Srivareerat et al. (2011) [326]

MWM APP/PS1 Inestrosa et al. (2013) [327]

A-582941 a7-nAChR agonist FC, MWM 3�Tg-AD Medeiros et al. (2013) [328]

CHF5074 g-Secretase modulator FC APP (Tg2576) Imbimbo et al. (2010) [329]

TAK-070 b-Secretase inhibitor MWM APP (Tg2576) Fukumoto et al (2010) [330]

GRL-8234 b-Secretase inhibitor MWM APP (Tg2576) Chang et al. (2010) [331]

PBT2 Ab aggregation inhibitor MWM APP/PS1 Adlard et al. (2008) [332]

Bexarotene Retinoid receptor � agonist FC, MWM APP/PS1 Cramer et al. (2012) [333]

Rolipram PDE4 inhibitor FC, RAWM, MWM APP/PS1 Gong et al. (2004) [140]

Sildenafil PDE5 inhibitor FC, RAWM, MWM APP/PS1 Puzzo et al. (2009) [138]

Compound 7a PDE5 inhibitor FC, RAWM APP/PS1; Ab42 intrahippocampal infusion Fiorito et al. (2013) [33]

E64 Cysteine protease inhibitor FC, RAWM APP/PS1 Trinchese et al. (2008) [143]

BDA-410 Calpain inhibitor FC, RAWM APP/PS1 Trinchese et al. (2008) [143]

Trichostatin A Histone deacetylase inhibitor FC APP/PS1 Francis et al. (2009) [144]

MW108, MW181 p38aMAPK inhibitor FC, RAWM Ab42 intrahippocampal infusion Watterson et al. (2013) [34]

Table 3
Approved Alzheimer’s disease drugs found to ameliorate cognitive deficits in Alzheimer’s disease mouse models.

Compound Action Behavioral task (s) Model(s) tested References

Memantine NMDAR antagonist FC, MWM 3�Tg-AD Martinez-Coria et al. (2010) [313]

MWM APP/PS1 Minkeviciene et al. (2004) [314]

MWM APP (APP23) Van Dam et al. (2005); Van Dam

and De deyn (2006) [315,316]

MWM APP (Tg2576) Chen et al. (2010) [317]

FC Ts65Dn (Down syndrome mouse) Costa et al. (2008) [318]

Donepezil AChE inhibitor FC Intracerebroventricular Ab injection Tsunekawa et al. (2008) [319]

FC APP (Tg2576) Dong et al. (2005) [185]

MWM APP (APP23) Van Dam et al. (2005); Van Dam et al. (2008)

[315,320]

Donepezil, Memantine MWM APP/PS1 Nagakura et al. (2013) [321]

Galantamine AChE inhibitor,

nAChR modulator

FC Intracerebroventricular Ab injection Wang et al. (2007) [322]

MWM Intracerebroventricular Ab injection Takeda et al. (2009) [323]

MWM APP (APP23) Van Dam et al. (2005); Van Dam

and De deyn (2006) [315,316]
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language or math). Indeed, these differences might explain, at least
in part, the recent high-profile clinical trial failures with drugs that
showed promising efficacy in preclinical behavioral tasks. Howev-
er, in the absence of practical alternatives, mouse models will
continue to be essential for accessing AD-type pathology in vivo
and testing therapeutic strategies. Cognitive assays will provide
the most utility in combination with other experimental arms that
support a strong mechanistic correspondence between behavior
and molecular target.
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