A NEW EXISTENCE AND LOCALIZATION THEOREM FOR THE DIRICHLET PROBLEM

B. RICCERI

Department of Mathematics, University of Catania Viale A. Doria 6, 95125 Catania, Italy

Dedicated to the memory of Professor V. Lakshmikantham

ABSTRACT. Here is a very particular by-product of the main result of this paper: for each $h \in L^{\infty}(]0,1[) \setminus \{0\}$, with $h \ge 0$, and for each $\gamma \in]1,2[$, the only positive solution of the problem

$$\left\{ \begin{array}{ll} -u'' = h(t) u^{\gamma-1} & \text{ in }]0,1[\\ u(0) = u(1) = 0 \end{array} \right.,$$

satisfies the inequality

$$\int_{0}^{1} |u'(t)|^{2} dt \leq \int_{0}^{1} h(t) dt \left(\frac{2(\text{ess sup}_{]0,1[}h)^{\frac{\gamma}{2}}}{\gamma \pi^{\gamma}}\right)^{\frac{2}{2-\gamma}}$$

AMS (MOS) Subject Classification. 35J20; 35J92

1. RESULTS

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary and let p > 1. On the Sobolev space $W_0^{1,p}(\Omega)$, we consider the norm

$$||u|| = \left(\int_{\Omega} |\nabla u(x)|^p dx\right)^{\frac{1}{p}}.$$

If $n \geq p$, we denote by \mathcal{A} the class of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$\sup_{\xi \in \mathbb{R}} \frac{|f(\xi)|}{1+|\xi|^{\gamma}} < +\infty,$$

where $0 < \gamma < \frac{pn-n+p}{n-p}$ if p < n and $0 < \gamma < +\infty$ if p = n. While, when n < p, \mathcal{A} stands for the class of all continuous functions $f : \mathbb{R} \to \mathbb{R}$. Given $f \in \mathcal{A}$ and $h \in L^{\infty}(\Omega)$, consider the following Dirichlet problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = h(x)f(u) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
 (P_{hf})

Let us recall that a weak solution of (P_{hf}) is any $u \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) dx - \int_{\Omega} h(x) f(u(x)) v(x) dx = 0$$

Received January 8, 2013

1056-2176 \$15.00 ©Dynamic Publishers, Inc.

for all $v \in W_0^{1,p}(\Omega)$.

The functionals $T, J_{hf}: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$T(u) = \frac{1}{p} ||u||^p$$
$$J_{hf}(u) = \int_{\Omega} h(x) F(u(x)) dx,$$

where

$$F(\xi) = \int_0^{\xi} f(t)dt,$$

are C^1 with derivatives given by

$$T'(u)(v) = \int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) dx$$
$$J'_{hf}(u)(v) = \int_{\Omega} h(x) f(u(x)) v(x) dx$$

for all $u, v \in W_0^{1,p}(\Omega)$. Consequently, the weak solutions of problem (P_{hf}) are exactly the critical points in $W_0^{1,p}(\Omega)$ of $T - J_{hf}$ which is called the energy functional of the problem. Moreover, J'_{hf} is compact, while T' is a homeomorphism between $W_0^{1,p}(\Omega)$ and its dual.

Let us now recall a consequence of the variational principle established in [5] (see also [1], [3], [4] and [7]):

THEOREM A. Let X be a reflexive real Banach space and let $\Phi, \Psi : X \to \mathbb{R}$ be two sequentially weakly lower semicontinuous functionals, with Ψ also coercive and $\Phi(0) = \Psi(0) = 0.$

Then, for each $\sigma > \inf_X \Psi$ and each λ satisfying

$$\lambda > -\frac{\inf_{\Psi^{-1}(]-\infty,\sigma]}\Phi}{\sigma}$$

the restriction of $\lambda \Psi + \Phi$ to $\Psi^{-1}(] - \infty, \sigma[)$ has a global minimum.

If we want to apply Theorem A to get the existence of a weak solution for problem (P_{hf}) , we need to know that, for some $\sigma > 0$, we have

$$\sup_{\|u\|^p \le \sigma} J_{hf}(u) < \frac{\sigma}{p}.$$

Such an estimate can be obtained under quite natural assumptions if p > n, due to the embedding of $W_0^{1,p}(\Omega)$ in $C^0(\overline{\Omega})$. Actually, in the almost totality of the very numerous papers dealing with applications of Theorem A and its consequences to problems of the type we are dealing with, we find the assumption p > n (see the references in [7]).

The aim of the current paper is to highlight a class of nonlinearities f for which Theorem A can be applied without the assumption p > n.

Before stating the main result, we need to introduce some further notation.

Let $0 \le a < b \le +\infty$. For a generic pair of functions $\varphi, \psi : \mathbb{R} \to \mathbb{R}$, if $\lambda \in [a, b]$, we denote by $M(\varphi, \psi, \lambda)$ the set of all global minima of the function $\lambda \psi - \varphi$ or the empty set according to whether $\lambda < +\infty$ or $\lambda = +\infty$. We adopt the conventions $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$. We also put

$$\alpha(\varphi,\psi,b) = \max\left\{\inf_{\mathbb{R}}\psi,\sup_{M(\varphi,\psi,b)}\psi\right\}$$

and

$$\beta(\varphi, \psi, a) = \min\left\{\sup_{\mathbb{R}} \psi, \inf_{M(\varphi, \psi, a)} \psi\right\}.$$

Furthermore, let $q \in \left[0, \frac{pn}{n-p}\right]$ if n > p or $q \in]0, +\infty[$ if $n \le p$. Set

$$c_q = \sup_{u \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |u(x)|^q dx}{\left(\int_{\Omega} |\nabla u(x)|^p dx\right)^{\frac{q}{p}}} \,.$$

Finally, denote by \mathcal{F}_q the family of all lower semicontinuous functions $\psi : \mathbb{R} \to \mathbb{R}$, with $\sup_{\mathbb{R}} \psi > 0$, such that

$$\inf_{\xi \in \mathbb{R}} \frac{\psi(\xi)}{|\xi|^q + 1} > -\infty$$

and

$$\gamma_{\psi} := \sup_{\xi \in \mathbb{R} \setminus \{0\}} \frac{\psi(\xi)}{|\xi|^q} < +\infty$$

After introducing these notations, we can state our main result:

Theorem 1.1. Let $f \in \mathcal{A}$ and $h \in L^{\infty}(\Omega) \setminus \{0\}$, with $h \ge 0$. Moreover, assume that there exists $\psi \in \mathcal{F}_q$ such that, for each $\lambda \in]a, b[$, the function $\lambda \psi - F$ is coercive and has a unique global minimum in \mathbb{R} . Finally, suppose that there exists a number r > 0satisfying

$$\alpha(F,\psi,b) < r < \beta(F,\psi,a)$$

and

(1)
$$\sup_{\psi^{-1}(r)} F < \frac{r^{\frac{p}{q}}}{p(\gamma_{\psi} \mathrm{ess}\, \mathrm{sup}_{\Omega} h c_q)^{\frac{p}{q}} \left(\int_{\Omega} h(x) dx\right)^{\frac{q-p}{q}}}$$

Under such hypotheses, the problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = h(x)f(u) & \text{ in } \Omega\\ u = 0 & \text{ on } \partial\Omega \end{cases}$$

has a weak solution which is a local minimum of the energy functional and satisfies

$$\int_{\Omega} |\nabla u(x)|^p dx < \left(\frac{r \int_{\Omega} h(x) dx}{\gamma_{\psi} \mathrm{ess} \, \mathrm{sup}_{\Omega} h c_q}\right)^{\frac{p}{q}}.$$

Our proof of Theorem 1.1 is based on a joint application of Theorem A with the following proposition which is nothing else than a very particular case of Theorem 1 of [6].

PROPOSITION A. Let $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ be two functions such that, for each $\lambda \in]a, b[$, the function $\lambda \psi - \varphi$ is lower semicontinuous, coercive and has a unique global minimum in \mathbb{R} . Assume that

$$\alpha(\varphi,\psi,b) < \beta(\varphi,\psi,a).$$

Then, for each $s \in]\alpha(\varphi, \psi, b), \beta(\varphi, \psi, a)[$, there exists $\lambda_s \in]a, b[$, such that the unique global minimum of the function $\lambda_s \psi - \varphi$ lies in $\psi^{-1}(s)$.

Proof of Theorem 1.1. Set

(2)
$$\sigma = \left(\frac{r\int_{\Omega} h(x)dx}{\gamma_{\psi} \mathrm{ess}\, \mathrm{sup}_{\Omega}hc_{q}}\right)^{\frac{p}{q}}$$

Hence

(3)
$$r = \frac{\gamma_{\psi} \mathrm{ess} \, \mathrm{sup}_{\Omega} h c_q \sigma^{\frac{q}{p}}}{\int_{\Omega} h(x) dx}$$

By the Sobolev embedding theorem, we have

(4)
$$\{u \in W_0^{1,p}(\Omega) : \|u\|^p \le \sigma\} \subseteq \left\{u \in L^q(\Omega) : \int_{\Omega} |u(x)|^q dx \le c_q \sigma^{\frac{q}{p}}\right\}.$$

In turn, as $\psi \in \mathcal{F}_q$, we have

(5)
$$\int_{\Omega} h(x)\psi(u(x))dx \le \operatorname{ess}\, \sup_{\Omega} h\gamma_{\psi} \int_{\Omega} |u(x)|^q dx$$

for all $u \in L^q(\Omega)$. Therefore, from (4) and (5), it follows that (6)

$$\left\{u \in W_0^{1,p}(\Omega) : \|u\|^p \le \sigma\right\} \subseteq \left\{u \in L^q(\Omega) : \int_{\Omega} h(x)\psi(u(x))dx \le \operatorname{ess\,sup}_{\Omega}h\gamma_{\psi}c_q\sigma^{\frac{q}{p}}\right\}.$$

Now, for each $\lambda \in]a, b[$, denote by ξ_{λ} the unique global minimum in \mathbb{R} of the function $\lambda \psi - F$. In view of Proposition A, since $r \in]\alpha(F, \psi, b), \beta(F, \psi, a)[$, there exists $\lambda_r \in]a, b[$ such that

$$\psi(\hat{\xi}_{\lambda_r}) = r.$$

So, we have

$$\lambda_r r - F(\hat{\xi}_{\lambda_r}) \le \lambda_r \psi(\xi) - F(\xi)$$

for all $\xi \in \mathbb{R}$. From this, it clearly follows that

(7)
$$F(\hat{\xi}_{\lambda_r}) = \sup_{\psi^{-1}(r)} F.$$

Likewise, for each $u \in L^q(\Omega)$, it follows that

$$(\lambda_r r - F(\hat{\xi}_{\lambda_r})) \int_{\Omega} h(x) dx \le \int_{\Omega} h(x) (\lambda_r \psi(u(x)) - F(u(x))) dx.$$

Therefore, taking (7) into account, for each $u \in L^q(\Omega)$ satisfying

$$\int_{\Omega} h(x)\psi(u(x))dx \le r \int_{\Omega} h(x)dx,$$

we have

$$\int_{\Omega} h(x)F(u(x))dx \le \sup_{\psi^{-1}(r)} F \int_{\Omega} h(x)dx.$$

In view of (3) and (6), this implies that

(8)
$$\sup_{\|u\|^{p} \le \sigma} \int_{\Omega} h(x) F(u(x)) dx \le \sup_{\psi^{-1}(r)} F \int_{\Omega} h(x) dx$$

At this point, from (1), (2) and (8), it follows that

$$\frac{\sup_{\|u\|^p \le \sigma} \int_{\Omega} h(x) F(u(x)) dx}{\sigma} < \frac{1}{p}$$

This allows us to apply Theorem A, with $X = W_0^{1,p}(\Omega)$, $\Phi = -J_{hf}$ and $\Psi = T$. Consequently, the functional $T - J_{hf}$ has a local minimum in $W_0^{1,p}(\Omega)$ with norm less than $\sigma^{\frac{1}{p}}$, and the proof is complete.

We conclude by presenting an application of Theorem 1.1.

Theorem 1.2. Let $h \in L^{\infty}(\Omega) \setminus \{0\}$, with $h \ge 0$, and let $f : [0, +\infty[\rightarrow [0, +\infty[$ be a continuous function satisfying the following conditions:

(i₁) F has no global maximum in $[0, +\infty[$; (i₂) the function $t \to \frac{f(t)}{t^{q-1}}$ is decreasing in $]0, +\infty[$ and tends to 0 as $t \to +\infty$; (i₃) either

$$\lim_{t \to 0^+} \frac{F(t)}{t^p} = +\infty$$

or ess $\inf_{\Omega} h > 0$ and

$$\liminf_{t \to 0^+} \frac{F(t)}{t^p} > \frac{1}{p \operatorname{ess\,inf}_{\Omega} hc_p} ;$$

 (i_4) there is s > 0 such that

$$F(s) < \frac{s^p}{p(\operatorname{ess\ sup}_\Omega hc_q)^{\frac{p}{q}} (\int_\Omega h(x) dx)^{\frac{q-p}{q}}}$$

Then, the problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = h(x)f(u) & \text{ in } \Omega\\ u = 0 & \text{ on } \partial\Omega \end{cases}$$

has a positive weak solution satisfying

(9)
$$\int_{\Omega} |\nabla u(x)|^p dx < \left(\frac{\int_{\Omega} h(x) dx}{\operatorname{ess \, sup}_{\Omega} hc_q}\right)^{\frac{p}{q}} s^p.$$

Proof. Extend f to the whole \mathbb{R} by putting f(t) = f(0) for all t < 0. Clearly, in view of (i_2) , we have $f \in \mathcal{A}$. Moreover, as $hf \ge 0$, each non-zero weak solution of (P_{hf}) is strictly positive in Ω ([2], [8]). We are going to apply Theorem 1.1 with $\psi(t) = |t|^q$ and $a = 0, b = +\infty$. So, let $\lambda > 0$. Of course, from (i_2) it follows that

$$\lim_{|t|\to+\infty} (\lambda|t|^q - F(t)) = +\infty.$$

Let us show that the function $t \to \lambda |t|^q - F(t)$ has a unique global minimum. Arguing by contradiction, assume that this function has two distinct global minima t_1, t_2 . We can suppose that $t_1 < t_2$. Since $\lambda |t|^q - F(t) > 0$ for all t < 0, it would follow that $t_1 \ge 0$. By the Rolle theorem, there would be $t_3 \in]t_1, t_2[$ such that

$$q\lambda t_3^{p-1} = f(t_3).$$

As a consequence, we would have

$$\frac{f(t_2)}{t_2^{q-1}} = \frac{f(t_3)}{t_3^{q-1}} \,,$$

contrary to (i_1) . Clearly, $\alpha(F, |\cdot|^q, +\infty) = 0$ and, in view of $(i_1), \beta(F, |\cdot|^q, 0) = +\infty$. As a consequence, from (i_4) it follows that (1) is satisfied with $r = s^q$. Hence, Theorem 1.1 ensures the existence of a weak solution of problem (P_{hf}) which is a local minimum of the energy functional and satisfies (9). Finally, let us show that 0 is not a local minimum of the energy functional, so that the above solution is not zero. By a classical result, there is a bounded and positive function $v \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} |v(x)|^p dx = c_p \int_{\Omega} |\nabla v(x)|^p dx$$

Now, if ess $\inf_{\Omega} h = 0$, we denote by η a positive number such that the set $h^{-1}([\eta, +\infty[)$ has a positive measure. While, we set

 $\eta = \mathrm{ess} \, \mathrm{inf}_{\Omega} h$

if ess $\inf_{\Omega} h > 0$. Then, thanks to (i_3) , there is $\delta > 0$ such that

$$F(t) > \frac{\int_{\Omega} |v(x)|^p dx}{p\eta c_p \int_{h^{-1}([\eta, +\infty[)} |v(x)|^p dx} t^p$$

for all $t \in]0, \delta[$. Hence, for each $\mu \in \left]0, \frac{\delta}{\sup_{\Omega} v}\right[$, we have

$$\begin{split} \int_{\Omega} h(x) F(\mu v(x)) dx &\geq \int_{h^{-1}([\eta, +\infty[)} h(x) F(\mu v(x)) dx \\ &> \frac{\int_{\Omega} |v(x)|^{p} dx}{p \eta c_{p} \int_{h^{-1}([\eta, +\infty[)} |v(x)|^{p} dx} \int_{h^{-1}([\eta, +\infty[)} h(x) |\mu v(x)|^{p} dx \\ &\geq \frac{\int_{\Omega} |\mu v(x)|^{p} dx}{p \eta c_{p} \int_{h^{-1}([\eta, +\infty[)} |\mu v(x)|^{p} dx} \eta \int_{h^{-1}([\eta, +\infty[)} |\mu v(x)|^{p} dx \end{split}$$

$$= \frac{\int_{\Omega} |\mu v(x)|^p dx}{pc_p}$$
$$= \frac{1}{p} \int_{\Omega} |\nabla \mu v(x)|^p dx.$$

This shows that the energy functional takes negative values in each ball of $W_0^{1,p}(\Omega)$ centered at 0 and so 0 is not a local minimum for it. The proof is complete.

Notice the following remarkable corollary of Theorem 1.2.

Corollary 1.3. Let q > 1, let $h \in L^{\infty}(\Omega) \setminus \{0\}$, with $h \ge 0$, let a_1, \ldots, a_k $(k \ge 3)$ be k non-negative numbers and let q_1, \ldots, q_k be k numbers lying in]1, q[. Assume that either there is some $i \in \{1, \ldots, k\}$ for which $q_i < p$ and $a_i > 0$, or ess $\inf_{\Omega} h > 0$ and, if we put

$$I = \{i \in \{1, \dots, k\} : q_i = p\},\$$

we have $I \neq \emptyset$ and

$$\sum_{i \in I} a_i > \frac{1}{\mathrm{ess \, inf}_{\Omega} h c_p}$$

Finally, let s > 0 be such that

$$\frac{a_1}{q_1}\log(1+s^{q_1}) + \frac{a_2}{q_2}\operatorname{arctg} s^{q_2} + \sum_{i=3}^k \frac{a_i}{q_i} s^{q_i} < \frac{s^p}{p(\operatorname{ess}\,\sup_\Omega hc_q)^{\frac{p}{q}} (\int_\Omega h(x)dx)^{\frac{q-p}{q}}}$$

Then, the problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = h(x)\left(a_1\frac{u^{q_1-1}}{1+u^{q_1}} + a_2\frac{u^{q_2-1}}{1+u^{2q_2}} + \sum_{i=3}^k a_i u^{q_i-1}\right) & in \ \Omega\\ u = 0 & on \ \partial\Omega \end{cases}$$

has a positive weak solution satisfying

$$\int_{\Omega} |\nabla u(x)|^p dx < \left(\frac{\int_{\Omega} h(x) dx}{\operatorname{ess sup}_{\Omega} hc_q}\right)^{\frac{p}{q}} s^p.$$

Remark 1.4. For instance, taking into account that $c_2 = \pi^{-2}$ when $\Omega =]0, 1[$, from Corollary 1.3 it follows that that, for each $h \in L^{\infty}(]0, 1[) \setminus \{0\}$, with $h \ge 0$, and for each $\gamma \in]1, 2[$, the only positive solution of the problem

$$\begin{cases} -u'' = h(t)u^{\gamma - 1} & \text{in }]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$

satisfies the inequality

$$\int_{0}^{1} |u'(t)|^{2} dt \leq \int_{0}^{1} h(t) dt \left(\frac{2(\text{ess sup}_{]0,1[}h)^{\frac{\gamma}{2}}}{\gamma \pi^{\gamma}}\right)^{\frac{2}{2-\gamma}}$$

REFERENCES

- [1] S. G. Deng, A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations, Appl. Math. Comput., 211:234–241, 2009.
- [2] P. Drábek, On a maximum principle for weak solutions of some quasi-linear elliptic equations, Appl. Math. Letters, 22:1567–1570, 2009.
- [3] X. L. Fan, S. G. Deng, Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations, Nonlinear Anal., 67:3064–3075, 2007.
- [4] A. Kristály, V. Rădulescu and Cs. Varga, Variational principles in mathematical physics, geometry, and economics: qualitative analysis of nonlinear equations and unilateral problems, Encyclopedia of Mathematics and its Applications, Vol. 136, Cambridge University Press, 2010.
- [5] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113:401-410, 2000.
- B. Ricceri, Well-posedness of constrained minimization problems via saddle-points, J. Global Optim., 40:389–397, 2008.
- [7] B. Ricceri, Nonlinear eigenvalue problems, in "Handbook of Nonconvex Analysis and Applications" D. Y. Gao and D. Motreanu eds., International Press, 543–595, 2010.
- [8] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12:191–202, 1984.